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A B S T R A C T   

Temperature is a key abiotic factor that influences performance of several physiological traits in ectotherms. 
Organisms regulate their body temperature within a range of temperatures to enhance physiological function. 
The capacity of ectotherms, such as lizards, to maintain their body temperature within their preferred range 
influences physiological traits such as speed, various reproductive patterns, and critical fitness components, such 
as growth rates or survival. Here, we evaluate the influence of temperature on locomotor performance, sperm 
morphology and viability in a high elevation lizard species (Sceloporus aeneus). Whereas maximal values for 
sprint speed coincides with field active and preferred body temperature, short-term exposure at the same range of 
temperatures produces abnormalities in sperm morphology, lower sperm concentration and diminishes sperm 
motility and viability. In conclusion, we confirmed that although locomotor performance is maximized at 
preferred temperatures, there is a trade-off with male reproductive attributes, which may cause infertility. As a 
consequence, prolonged exposure to preferred temperatures could threaten the persistence of the species through 
reduced fertility. Persistence of the species is favored in environments with access to cooler, thermal micro
habitats that enhance reproductive parameters.   
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1. Introduction 

Temperature highly influences the environmental conditions neces
sary for thermoregulation at temporal and spatial scales in ectotherms 
such as reptiles (Angilletta, 2009). Behavioral thermoregulation allows 
reptiles to maintain their body temperatures within a narrow range 
during activity (Cowles and Bogert 1944; Cossins and Bowler, 1987; 
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Domínguez-Guerrero et al., 2019). This temperature range, known as 
the normal activity range (Pough and Gans, 1982), can influence growth 
rates (Sinervo and Dunlap, 1995), physiological performance (Angilletta 
et al., 2002) and reproductive patterns (Licht, 1973). 

Global climate change affects organisms in every biome and 
ecosystem. For lizards, local extinctions of ~20% are projected by the 
year 2080 accompanied by concomitant distributional changes are ex
pected (Sinervo et al., 2010). As a consequence of increasing tempera
tures, the number of hours of activity could become limited (Huey et al., 
2009). Given their dependence on temperature, reptiles are sensitive to 
environmental changes, which could be detrimental and even drive a 
population to extinction (Kearney et al., 2009). However, some organ
isms can manifest a favorable response to warmer temperatures by 
moving to habitats with higher thermal quality, when possible. As a 
consequence, either species distributions are altered by following spatial 
shifts in their thermal niche or they adapt by behavioral changes (Per
eira et al., 2010). 

In response to environmental changes, lizards may use short- and 
long-term acclimation responses to maintain physiological performance 
under local conditions (Pintor et al., 2016). Whereas current research 
primarily focuses on thermal performance curves that portray the 
dependence of physiological rates on temperature (Clusella-Trullas 
et al., 2011), few studies have examined how reproductive traits may 
respond to warmer environments. In mammals, it has been shown that 
high temperatures affect testicular, endocrine, and exocrine functions 
(Lue et al., 2006; Wang et al., 2007). For example, high temperatures 
interrupt spermatogenesis, which can generate giant, multinucleated 
cells (Paul et al., 2008); block the action of gonadotropins within the 
seminiferous tubules, which decreases testosterone synthesis (El-Hef
nawy et al., 2000); alter the epithelial cycles; and cause direct damage to 
germ cells (Clegg, 1963; Dutta et al., 2013). However, the effect of 
temperature on sperm parameters in ectotherms, particularly in reptiles 
is still poorly understood (Gist et al., 2000; Tourmente et al., 2011). 
Another neglected aspect is the influence of high temperatures on the 
epididymis, an organ essential for influencing the fertilization capacity 
of sperm (Gist et al., 2000). In the epididymis, the sperm acquire the 
ability to move, recognize, and fertilize the oocyte, a process known as 
epididymal sperm maturation (Arenas-Ríos et al., 2017). This process, 
being androgen dependent (Robaire et al., 2006), could be affected by 
rising environmental temperatures. Past research has determined that 
physiological performance, in a myriad of different activities, is opti
mized at body temperatures close to or at the preferred body tempera
tures of a species. However, Méndez de la Méndez-de la Cruz et al. 
(2014) proposed that male lizards require lower temperatures to achieve 
efficient sperm maturation. 

Here, we determined the effects of acclimation to different temper
atures on epididymis morphology, and sperm parameters in adult male 
individuals of the lizard species Sceloporus aeneus. We compared the 
temperatures that maximize male reproductive traits with the preferred 
temperatures and optimal temperatures for locomotor performance. 

2. Materials and methods 

2.1. Study species and site characteristics 

The southern bunchgrass lizard (Sceloporus aeneus Wiegmann, 1828) 
is a slender, small-sized lizard with a maximum snout-vent length (SVL) 
of 78 mm, endemic to central Mexico (Bryson et al., 2012). The species 
inhabits temperate forests and other open areas at elevations between of 
2300 m and 3400 m (Kölher and Heimes, 2002). The species is a diurnal, 
terrestrial predator of small invertebrates. The reproductive cycle is 
characterized by mating in spring, when environmental temperature 
increases, and reaches a maximum in May (Manríquez Morán, 1995). 
Maximum testicular activity occurs from March to May (Hernández-
Gallegos et al., 2014), which is concomitant with the increase in envi
ronmental temperatures. Females have a fixed spring reproductive 

pattern (Manríquez-Morán et al., 2013). Therefore, mating (copula
tions) occurs during the hottest months of the year (April, May). 
Oviposition takes place during the summer (June to September), during 
lower environmental temperatures and monsoon storms. Oviposition 
occurs during this time when nest conditions are ideal with soil tem
peratures and sufficient moistures for successful embryonic 
development. 

The study site was the Volcán Coatzontle in San Miguel Ajusco, south 
of Mexico City (19◦14′ 22′′ N, 99◦ 12’ 38” W, 2900 m elev.). The average 
low temperature varies between 14 and 16 ◦C, and the average high 
temperature varies between 26 and 29 ◦C) during the hottest monthly 
interval (April–June, Fig. 1). The site has a summer rain regimen (May to 
October) with a mean annual precipitation of 1340 mm (Schmitter, 
1953; Rzedowski, 1954). 

2.2. Ecophysiological patterns 

2.2.1. Fieldwork 
We captured lizards during the reproductive season (March to May 

2019) during their activity period (0900–1700 h, GMT-6). We searched 
for lizards among the microhabitats known to be used by the lizards (i.e., 
rocks, Agave spp. plants, and shrubs). We captured lizards by either a 
noose or hand (Harlow, 1996). We recorded the body (cloacal) tem
perature (Tb), within 10 s after the capture, using a digital thermometer 
Fluke® 54-II (±0.1 ◦C) (Lara-Reséndiz et al., 2013). Males were sexed by 
eversion of the hemipenes. We measured the SVL of the individuals 
using a digital caliper. The minimum SVL recorded was 40 mm. The 
mean size at sexual maturity is ~39 mm, thus we considered all of the 
lizards to be adults (Rodríguez-Romero, 2014). 

2.2.2. Operative environmental temperature 
We estimated operative environmental temperatures (Te), i.e., the 

equilibrium temperature attained by an animal in the absence of tem
perature regulation (Bakken 1992). We first validated the appropriate 
operative temperature model following the protocol of Domí
nguez-Guerrero et al. (2019) on Sceloporus torquatus. We constructed 
three biomimetic models connected to data loggers (Thermochron 
iButton®; DS1921G). These models were validated before the mea
surements of Te using the criteria proposed by Dzialowski (2005). Our 
calibration involved estimating the comparing the heating and cooling 
rates under laboratory conditions (10-min intervals of shade and arti
ficial incandescent light, 100 W) with an adult male individual of 
S. aeneus and three operative temperature models. We used polyvinyl 
chloride (PVC) pipes similar in size to S. aeneus and painted different 
shades of gray as potential models (Dzialowski, 2005; Domí
nguez-Guerrero et al., 2019). We chose the PVC model with the highest 
value of R2 (in this case was R2 = 0.88), because this model best emu
lates the thermodynamic properties of the S. aeneus (Dzialowski, 2005). 

Fig. 1. Monthly variation in air temperature and precipitation at the study site. 
Data source: Weather and Climate – The Global Historical Weather and 
Climate Data. 
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The model consisted of a PVC pipe painted gray 33 with a size of 50 mm 
length × 20 mm diameter. We placed the models in microhabitats where 
the lizards were observed to be active (e.g., rocks, under and on top of 
Agave plants, and under shrubs), and recorded Te once per hour for 90 
days. 

2.2.3. Laboratory work 
Captured individuals were transported to a laboratory and main

tained in separate terraria (34.5 × 21 × 12.5 cm) with peat moss as a 
substrate, controlled 8 h photoperiods matching the capture locality, 
and 30–40% humidity. We fed individuals every other day with 2–3 
Acheta domestica per individual, supplemented with calcium. Lizards 
were provided with water ad libitum. 

2.2.4. Selected temperature, critical thermal limits, and locomotor 
performance 

We recorded the selected temperatures (Tsel) of 37 individuals during 
the species’ activity period (0900–1700 h, GMT-6). The measurement of 
Tsel was done using a thermal gradient box (100 × 100 × 30 cm) with a 
0.5 cm substrate (peat moss). At one end of the gradient, we suspended 
100 W light bulbs ~30 cm above the box and ice bags on the other end, 
resulting in a temperature gradient between 20 ◦C – 50 ◦C. Prior to 
recording Tsel, we habituated the lizards by placing them in the gradient 
for 1 h. We recorded the body temperature of each individual (cloacal 
temperature) every hour using a Fluke® 54-II digital thermometer (±0.1 
◦C). To avoid dehydration, we sprinkled water on the substrate (Are
nas-Moreno et al., 2018). We used the mean body temperature in the 
thermal gradient as our estimate of Tsel. We also calculated the inter
quartile range (Tsel 25–75%), which was used as the Tsel set points, i.e., 
upper and lower Tset. 

The critical minimum (CTmin) and maximum (CTmax) temperatures 
refer to the lower and upper temperatures that compromises locomotion 
(Beitinger et al., 2000). We determined the critical temperatures based 
on the loss of righting response (Brusch et al., 2016). For CTmin we 
placed a lizard in a perforated box, partially covered with ice, and 
monitored every 3 min. Whereas for CTmax, we put a lizard in a terrar
ium with a 100W incandescent light bulb suspended above. We 
measured the body temperature of the individual once we observed the 
loss of righting (Huey and Stevenson, 1979; Arenas-Moreno et al., 
2018). We used different individuals for measuring CTmin (N = 10) and 
CTmax (N = 9). 

Five males were selected to determine the thermal performance 
curve. We ran lizards at six temperatures 22◦, 25◦, 28◦, 31◦, 34◦ and 
37◦C to determine the thermal sensitivity of sprint speed. We random
ized the order of temperatures. We exposed lizards to a 60 W incan
descent light for 30–40 min until reaching the desired body temperature. 
We verified Tb was by inserting a thermocouple connected to a digital 
thermometer (Fluke 50 Series II®, sensor type K, precision ± 0.1 ◦C) 
approximately 10 mm into the cloaca. The speed was determined using a 
video analysis of the lizards running on a wood track (1.20 × 0.15 x 
0.20, m; long, wide, and high, respectively) covered with a mesh (nat
ural fiber) to provide traction. The floor of the track had a visible 
reference each 5 cm (Husak et al., 2006). We induced lizards to run by 
gently tapping the lizard at the base of the tail. Each individual lizard 
was run three times at each body temperature. Lizards were allowed to 
rest for at least 30 min between successive runs (Wang et al., 2007). 

Lizards were filmed as they ran down the track with a GoPro→ video 
4K camera (16 megapixels at 30 FPS) suspended above the track. Videos 
were processed using to the editor ®Avidemux to estimate sprint speed. 
We used the fastest time among the three trials as our estimate of 
maximum sprint speed. 

We estimated the thermal performance curve using general additive 
mixed models (GAMM), which account for the nonlinear distribution of 
the data. We used the function “gamm” in the package “mgvc” v1.8-31 
(Wood et al., 2016) as implemented in the package Mapinguari 0.4.1 
(Caetano et al., 2017). We included SVL as a covariate and individual id 

as a random effect (Romero-Báez et al., 2020). We tested different cor
relation structures that account for the non-independent nature (i.e., 
repeated measures) of the performance data. We selected the best sup
ported correlation structure based on the Akaike Information Criterion 
and Bayesian Information Criterion (BIC). We plotted the best supported 
model with the function “visgam” in “mgvc” (Wood et al., 2016). We 
calculated the predicted maximum speed, optimal temperature (To) for 
sprint speed, and the thermal performance breadth (i.e., 85% of the 
maximum performance, B85; Huey and Stevenson, 1979). All analyses 
were conducted in the R computing environment v 4.0.2 (R Develop
ment Core Team, 2022). 

2.3. Histology and sperm parameters 

2.3.1. Histology 
We collected an additional nine male individuals at the same site 

(mean SVL = 52. ± 2.6 mm; range 48 mm - 56 mm) to assess how 
exposure to different temperatures affected the micro-anatomy of the 
epididymis. We acclimated three lizards each at one of three tempera
tures (24 ◦C, 28 ◦C, and 32 ◦C, i.e., N = 3 for each temperature) for a 
period of seven days. Lizards were kept at these temperatures during the 
activity period (0900–1700 h). All lizards were maintained at a tem
perature of 15 ◦C during the inactive, nocturnal period. This tempera
ture pattern is similar to that recorded at the study site. The sample size 
for this experiment was selected to minimize the number of sacrificed 
individuals. After the acclimation period, lizards were euthanized by an 
overdose of intraperitoneal injection of pentobarbital. We removed the 
right epididymis for histological analysis. The epididymides were kept 
for two days in 10% neutral stabilized formalin and dehydrated with an 
ascending concentration of ethanol (40%, 50%, 60%, 70%, 80%, 90%, 
96% and 100%). Following dehydration, we added xylol to clear the 
tissue and embedded the epididymis in paraffin. We cut 5 μm slices, 
longitudinally, using a rotary microtome (Reichert HistoSTAT 820). We 
stained the tissue using hematoxylin and eosin (Sigma H-9627, E-4009) 
to facilitate differentiating the nucleus and other extra-cytoplasmic el
ements, such as collagen Photomicrographs were taken by region: head, 
body, and tail, using an Axioskop II optical microscope (Zeiss®), with an 
axioCamMRc5 camera at 40x magnification. Photomicrographs were 
processed using Axiovision (version 4.8). The morphometric analysis 
was conducted by region of the epididymal ducts; the epithelial area and 
spermatic area of the epididymal tubule were estimated as follows: nine 
epididymal tubules were reviewed in three sections of two lamellae. The 
inclusion criteria were to consider only round tubules. 

The analysis of the epididymal ducts by region (head, body, and tail) 
included the area of the epithelium (AE), the space occupied by the 
epithelium in the epididymal tubule and the spermatic area, the space 
occupied by the sperm in the lumen of the epididymal tubule. The area 
of the epididymal epithelium at each region was obtained using the 
following formula: AE = DB – DA (where AE – area of the epididymis in 
⎧m2, DB = basal domain, and DA = apical domain). 

2.3.2. Sperm traits 
We extracted sperm from the left epididymis of lizards used in the 

histological analysis. We had used three lizards per temperature. The 
epididymis was divided into three regions: head, body, and tail. The 
sperm parameters analyzed were concentration, viability, morphology, 
and motility. Sperm parameters were analyzed the same day, following 
the techniques described in the World Health Organization manual for 
the evaluation of human semen (World Health Organization.WHO, 
2010), with modifications considered for lizard sperm, which are 
described below. We added 20 μl of Ringer’s solution [NaCl (MEYER), 
KCl (SIGMA), KH2PO4 (Productos Quimicos Monterrey) and CaCl2 2H2O 
(Baker Analyzed)] to each region of the epididymis and then macerated 
the tissue. The collected pellet was resuspended in Ringer’s solution and 
used to determine the core sperm parameters. 

We calculated the sperm concentration of 5 μl of 1:20 diluted 
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samples in a Neubauer chamber at 400x magnification. We calculated 
the sperm concentration using the formula N/n x (1:20) where x =

dilution factor, N = total number of the sperm count in the chambers, 
and n = counted lines. We used a smear test to estimate sperm viability. 
A 5 μl aliquot of sperm was mixed with 2 μl EspermaVit (Laboratorios 
FertiMexico S.A de C.V). We determined the sperm count of 100 cells at 
1000x magnification. We estimated sperm morphology after mixing 
sperm and EspermaVit. We recorded the number of normal and 
abnormal sperm. Abnormal sperm were identified by either the presence 
of a coiled and stump tail, curved head, or in some cases, the presence of 
cytoplasmic droplets. To analyze the sperm motility, we mixed 5 μl 
sperm and 10 μl Tyrode and identified the mobile and motionless sperm 
at a 400x magnification in each region of the epididymis. Motility is 
given as the percent of mobile sperm in the sample. 

2.3.3. Data analysis 
The histology results and the sperm parameters were analyzed using 

Kruskal-Wallis and Tukey and Dunn’s test, α = 0.05. Statistical analyses 
were performed in SigmaPlot v 11.0 (Systat Software, 2011). 

All experiments were conducted following the standards of ARRIVE 
(Animal Research: Reporting of In Vivo Experiments) (Kilkenny et al., 
2010), and permits of Secretaría del Medio Ambiente y Recursos Natu
rales (Approval: 01629 and 005406/18). 

Table 1 
Sceloporus aeneus thermal parameters. Body temperature (Tb); preferred tem
perature (Tpref); interquartile range (Tpref 25–75%); critical thermal minimum 
(CTmin); critical thermal maximum (CTmax); thermal tolerance range (TTR; 
CTmax-CTmin). Temperatures (◦ C) are shown as mean ± SD.  

Field 
thermal 
parameters 

Laboratory thermal parameters 

Tb Tpref Tpref 25%– 

75% 

CTmin CTmax TTR 

33.84 ±
3.68 
22.2–40.4 
n = 179 

32.71 ±
5.45 
21.2–38.3 n 
= 37 

28.3–36.95 6.70 ±
1.22 
5.2–9.2 n 
= 10 

42.98 ±
1.54 
40.4–45.6 n 
= 9 

36.28  

Fig. 2. Locomotor performance curve of S. aeneus generated by a general ad
ditive mixed model (GAMM). 

Table 2 
Summary of models from a GAMM analysis to describe the thermal performance 
curve in Sceloporus aeneus. Values are presented for Akaike Information Criterion 
(AIC) and Bayesian Information Criterion (BIC). Scores ΔAIC = Delta Akaike 
Information criterion, are taken as the difference between a specific model and 
the null model of performance and temperature. Values in boldface indicate the 
best supported model.  

Model GAMM 
correlation 
structure 
class 

AIC ΔAIC BIC ΔBIC 

1 corAR1 
(form =
~1|id) 

−19.60185 0.7486787 −11.413921 0.0081933 

2 corAR1 
(0.1,form 
= ~1|id) 

−19.60185 0.7486787 −11.413921 0.0081933 

3 corCAR1 
(0.1,form 
= ~1|id) 

−19.52274 0.8277891 −11.334811 0.08730369 

4 corGaus 
(form =
~1|id) 

−19.52274 0.8277891 −11.334811 0.08730369 

5 corGaus 
(form =
~1|id, 
nugget =
TRUE) 

−17.52274 2.8277891 −7.697225 3.72488985 

6 corExp 
(form =
~1|id) 

−19.52274 0.8277891 −11.334811 0.08730369 

7 corExp 
(form =
~1|id, 
nugget =
TRUE) 

−17.52274 2.8277891 −7.697225 3.72488985 

8 corRatio 
(form =
~1|id) 

−19.52274 0.8277891 −11.334811 0.08730369 

9 corRatio 
(form =
~1|id, 
nugget =
TRUE) 

−17.52274 2.8277891 −7.697225 3.72488986 

10 corSpher 
(form =
~1|id) 

−19.52274 0.8277891 −11.334811 0.08730369 

11 corSpher 
(form =
~1|id, 
nugget =
TRUE) 

−17.52274 2.8277891 −7.697225 3.72488985 

12 corARMA 
(form =
~1|id,p =
0,q = 1) 

−19.61005 0.7404854 −11.422114 0 

13 corARMA 
(form =
~1|id,p =
1,q = 0) 

−19.60185 0.7486787 −11.413921 0.0081933 

14 corARMA 
(form =
~1|id,p =
1,q = 1) 

−17.61483 2.7357018 −7.789312 3.63280256 

15 corARMA 
(form =
~1|id,p =
1,q = 2) 

−15.8217 4.5288287 −4.358599 7.06351562 

16 corARMA 
(form =
~1|id,p =
2,q = 1) 

−20.35053 0 −8.887427 2.53468692  

R.I. Quintero-Pérez et al.                                                                                                                                                                                                                      



Journal of Thermal Biology 113 (2023) 103526

5

3. Results 

3.1. Ecophysiological patterns 

The results of the thermal parameters are summarized in Table 1. 
The field active Tb of S aeneus is similar to their Tsel (32.84 ◦C and 
33.84 ◦C, respectively, Table 1). The mean operative environmental 
temperature (Te) during the hours of activity was 19.67 ◦C and 15 ◦C at 
night. These values were obtained during the reproductive season. 

Individuals of S. aeneus are capable of activity between the temper
atures of 6.70◦C and 42.98◦C, which yields a thermal tolerance range of 
36.3 ◦C. Sprint speed increased as Tb approached ~34 ◦C, which is 
similar to the species Tsel (Fig. 2). The thermal performance breadth 
(B85) was at 28–34 ◦C. The best model presented an optimal temperature 
(To) for performance at 34◦C ◦C with a speed of 0.54 m/s (AIC = -20.35, 
Δ AIC = 0.00 and BIC = -11.42, Fig. 2). Table 2 presents summary of the 
models estimated from the GAMM analysis. 

3.2. Sperm parameters 

An example of the stained sections of the epididymis (head, body, and 
tail) is shown in Fig. 3. Quantitative morphometric analysis of the three 
epididymis regions shows significant differences in the treatment. The 
head region (H = 8.926, df = 2, p = 0.012), shows an increased thick
ening of the epithelium at 28 ◦C (23 809.24 μm2), the body region (H =
29.713, df = 2, p = 0.001), shows a larger epithelial area (31 569.44 
μm2) at 24 ◦C and the tail region (H = 15.206, df = 2, p = 0.001), a larger 
area (33 516.66 μm2) at 32 ◦C (Fig. 4). 

We found significant statistical differences in sperm area, regardless 
of the treatment. The head region (H = 52.785, df = 2, p = 0.001) 
showed a larger area at 24 ◦C (15 320.09 μm2), the body region (H =
47.458, df = 2, p = 0.001) at 28 ◦C, (35 071.96 μm2) and the tail (H =
30.618, df = 2, p = 0.001) at 24 ◦C (16 2470.53 μm2) (Annex Fig. 3). 
Whereas temperatures below Tsel favored sperm area, temperatures over 
32 ◦C resulted in a striking decrease in area. At 32 ◦C the sperm area 
decreases while the luminal area increases, which is opposite to what 
was observed at 24 and 28 ◦C (Fig. 4). 

We obtained the sperm count per epididymal region. The concen
tration found in the treatment dropped in the body region (ᵞ = 0.050: 
1.000; p = 0.001). Both the head (ᵞ = 0.050: 0.339; p = 0.091) and tail 
regions (ᵞ = 0.050: 0.462; p = 0.057), showed no statistical differences 
(Fig. 5). 

The percentage of viable sperm significantly dropped at 24 ◦C, in 
every analyzed region, head (80.33%, γ  = 0.050: 1.000; p = 0.001), body 
(72%, γ  = 0.050: 1.000; p = 0.001) and tail (85.33%, γ  = 0.050: 1.000; p 
= 0.001) (Fig. 5). 

We found significant statistical differences in the three epididymal 
regions, regarding sperm normality. At 32 ◦C showed a lower percentage 
of normal sperm morphology in the head (ᵞ = 0.050: 0.973; p = 0.004), 
body (ᵞ = 0.050: 1.000; p = 0.001), and tail (ᵞ = 0.050: 0.930 p = 0.006), 
7.66%; 2.33% and 4.66%, respectively (Fig. 6). Our results show that a 
7-day exposure to preferred temperatures (32 ◦C) increases sperm 
abnormality. 

Sperm motility also showed significant difference in the head (ᵞ =
0.050: 0.521; p = 0.046), body (H = 6.006; df = 2; p = 0.025) and tail (H 
= 7.200; df = 2; p = 0.004) regions of the epididymis. Exposure to 24 ◦C, 
showed percentages of 48% motile sperm and at 28 ◦ C 61% motile 
sperm (Fig. 6). The treatment provides evidence that temperatures 
below preferred temperatures (24 ◦C and 28 ◦C) favor sperm motility. 

4. Discussion 

Ectothermic animals tend to maintain their active body temperature 
within a narrow range. A common assumption is that this range of 
temperatures maximizes performance and fitness (Huey and Bennett 
1987). Nevertheless, there is evidence that ectotherms tend to select 
body temperatures below the optimal temperature for locomotor per
formance to avoid a collapse in fitness due to the risk of overheating 
(Martin and Huey, 2008). Furthermore, the comparison among selected 
body temperatures, optimal temperatures in locomotor performance 
and the temperatures that maximize the reproduction patterns in males, 
has received limited attention. In this study, we found that the values for 
Tsel and To were significantly higher than the optimal temperature for 
several sperm traits in S. aeneus. 

Fig. 3. Micrographs of transverse sections of the epididymis regions (head, body, and tail) of S. aeneus, after acclimation to 24 ◦C, 28 ◦C, and 32 ◦C. Hematoxylin-eosin 
staining 10 μm scale bars and 100x magnification. 
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The average Tsel for individuals at our study site is close to the field 
active body temperature, which suggests active thermoregulation of the 
organisms at the Coatzontle study site. The lizards regulate their 
behavior to keep a Tb within the Tsel range. Several studies on other 
species in the lizard family Phrynosomatidae have reported Tsel values 
similar to the present study (Güizado-Rodríguez et al., 2011, 2011; 
Ávila-Bocanegra et al., 2012; Lara-Reséndiz et al., 2014), which may 
suggest that the Tsel range is phylogenetically conserved, as proposed 
previously (Adolph, 1990; Andrews, 1998). 

Warm temperatures (close to preferred temperatures), as our results 
indicate, promote efficient locomotor performance. However, these 
temperatures can also result in heat stress leading to unanticipated 
physiological repercussions (Pacak et al., 1998). Glucocorticoids are 
secreted in response to stress (Sapolsky et al., 2000) and this can lead to 
glycemia, which may alter the energy availability. It is important to 
point out that rising glucocorticoid levels always precedes a decrease in 
testosterone in males (Dhanabalan et al., 2011; García-Díaz et al., 2015). 

Hyperthermia can induce short-term damage to Leydig cells, which 
are responsible for androgen synthesis and secretion and essential for 
reproductive functions. Cessation of testosterone production, by envi
ronmental factors, can lead to infertility or sterility (Papadopoulos, 
2007). Previous studies show that high temperatures also alter sper
matogenesis, promote multinucleated germ cell generation, block the 
action of gonadotropin on the seminiferous tubules, alter epithelial 

cycles, and cause damage to germ cells (Clegg, 1963; Dutta et al., 2013). 
Experiments using rodents and apes that hyperthermia can reduce sperm 
concentration due to suppression of spermatogenesis by apoptosis (Lue 
et al., 2006; Zhang et al., 2012). 

The effect of tolerated and required temperatures have been long 
debated but it is well known that in scrotal mammals, higher tempera
tures can cause infertility in males (Papadopoulos 2007; Paul et al., 
2008). Cowles and Burleson (1945) determined testicular damage in the 
males of the Xantusia vigilis lizards when they were exposed during a 
week at a maximum temperature range of 95% of To for locomotor 
performance (~36 ◦C) (Kaufmann and Bennett, 1989). In addition, most 
sperm and primary spermatocytes agglomerated, nuclear material dis
integrated accompanied by increased macrophage activity, seminiferous 
tubules degenerated and almost complete atrophy was observed (Cowles 
and Burleson, 1945). In this study, we noticed that both the To and Tsel 
affect significatively the sperm parameters. 

Our histologic analysis confirmed our observations. In the acclima
tion treatments, at Tsel and higher temperatures, the lumen of seminif
erous tubules lumen decreased in the area. As a consequence, sperm 
concentration, viability, motility, and morphology were affected. The 
potential effect is the reduction in fertilization capacity. In contrast, 
temperatures below Tsel and To decreased the lumen of seminiferous 
tubules, but increased the spermatic area which represents favorable 
conditions for sperm. 

Fig. 4. Epididymal epithelium area on the left y-axis and spermatic area on the right y-axis. The three regions are represented: A. Head, B. Body, and C. Tail. Different 
letters represent significant statistical differences. Epithelium area (A. p = 0.001, B. p = 0.282, and C. p = 0.001). Sperm area (p = 0.001). Kruskal-Wallis and Dunn, 
n = 9. 
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Androgens receptors are found along the epididymis in different 
species primarily in the main cells, although they can also be found at 
basal and apical cells (Zhu et al., 2001). Because main cells synthesize 
proteins required for sperm maturation in the epididymis, heat stress can 
induce lower testosterone levels, affecting epididymal epithelium cells 
(Arenas-Ríos et al., 2017). Hence, this damage may explain the results 
we obtained in the sperm parameters in the head and body regions. 
Therefore, sperm maturation is affected as a consequence of rising 
temperatures. 

Temperature acts as an environmental cue of vital importance to the 
reproductive cycle in males (Kumar et al., 2011). In mammals, 
short-term exposure to high temperatures damages the seminiferous 
epithelium due to apoptosis and autophagia, in germ cells, and abolish 
spermatogenesis (Yin et al., 1997; Lue et al., 2006). However, this 
phenomenon is not well understood (Rockett et al., 2001). It is likely 
that the observed drastic effects, in the present work, are caused by 
temperature-induced cell death. Apart from the mentioned effects, heat 
stress can damage DNA (Banks et al., 2005; Paul et al., 2008) and alter 
oxygen levels, ion, and water transport, protein synthesis, and cell 
structure (Seiler et al., 2000). Our results are congruent with previous 
reports, that exposure to temperatures above preferred temperatures, 
results in a dramatic decrease in sperm concentration and damages the 
cells responsible for sperm production. 

According to Gist et al. (2000), lower temperatures boost sperm 

motility and speed. This has been observed in some turtles with winter 
copulas. Gametes may be more active at lower temperatures which can 
improve fertilization success. This matches with our results, which show 
that temperatures under the Tsel, enhance sperm parameters. In contrast, 
lower temperatures decrease locomotor performance. 

The increasing environmental temperatures, due to global warming, 
can affect the reproductive physiology of ectotherms, including lizards. 
High temperatures limit the activity periods and distribution of ecto
therms (Sinervo et al., 2010). Since global warming has direct effects on 
precipitation, temperature variations, reproductive seasons, and alters 
the reproduction physiology, particularly on pregnant females (Clu
sella-Trullas et al., 2011), it may be a direct cause of species extinction 
(Méndez de la Cruz et al., 2014). Therefore, we highlight the importance 
of studies focusing on thermal physiology, in particular sperm 
physiology. 

In conclusion, we confirmed the tradeoff between the fact that Tsel 
favors the locomotor performance, however, they diminish lizards’ 
reproductive aspects which may cause infertility, endangering these 
species populations. Sceloporus aeneus must be exposed to lower Tsel 
temperatures to efficiently complete its spermatic capacity and there
fore, be able to reproduce. 

Fig. 5. Sperm concentrations (millions/epididymis) on the left y-axis and percentage of sperm viability on the right y-axis, by region (A. Head, B. Body, and C. Tail). 
Different letters represent significant statistical differences. Sperm concentration (A. p = 0.004, B. p = 0.009, and C. p = 0.008) and sperm viability (p = 0.001), 
according to Kruskal-Wallis and Tukey tests. 

R.I. Quintero-Pérez et al.                                                                                                                                                                                                                      



Journal of Thermal Biology 113 (2023) 103526

8

Funding 

Funding for this research was provided by Universidad Nacional 
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México., México, CDMX, p. 1. 
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F. México, pp. 9–65 (Reimpreso de Anales de la Escuela Nacional de Ciencias 
Biológicas 8 (1–2), 59–129, 1954. IPN.  

Sapolsky, R.M., Romero, L.M., Munck, A.U., 2000. How do glucocorticoids influence 
stress responses? Integrating permissive, suppressive, stimulatory, and preparative 
actions. Endocr. Rev. 21, 55–89. https://doi.org/10.1210/edrv.21.1.0389. 

Schmitter, E., 1953. Investigación petrológica en las lavas del pedregal de San Ángel. En: 
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