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This paper proposes a novel stochastic-skill-level-based shared control framework to assist human novices to emulate

human experts in complex dynamic control tasks. The proposed framework aims to infer stochastic-skill-levels (SSLs) of the

human novices and provide personalized assistance based on the inferred SSLs. SSL can be assessed as a stochastic variable

which denotes the probability that the novice will behave similarly to experts. We propose a data-driven method which can

characterize novice demonstrations as a novice model and expert demonstrations as an expert model, respectively. Then, our

SSL inference approach utilizes the novice and expert models to assess the SSL of the novices in complex dynamic control

tasks. The shared control scheme is designed to dynamically adjust the level of assistance based on the inferred SSL to prevent

frustration or tedium during human training due to poorly imposed assistance. The proposed framework is demonstrated

by a human subject experiment in a human training scenario for a remotely piloted urban air mobility (UAM) vehicle. The

results show that the proposed framework can assess the SSL and tailor the assistance for an individual in real-time. The

proposed framework is compared to practice-only training (no assistance) and a baseline shared control approach to test the

human learning rates in the designed training scenario with human subjects. A subjective survey is also examined to monitor

the user experience of the proposed framework.
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1 INTRODUCTION

We propose a novel framework for inferring human skill-level and dynamically adjusting the assistance based on

the inferred skill-level in complex dynamic control tasks. Along with the development of state-of-the-art artiicial

intelligence technology, questions have been raised about the role, ability, and necessity of humans. The irst

question about the motivation of human training might be "Why do we have to train humans in the era of artiicial

intelligence?" We can irst consider the technical aspects of this question. For instance, the ever-increasing demand

for well-trained human pilots in the ield of urban air mobility (UAM) has received a lot of attention recently. To

promote the safety and eiciency of UAM operations in urban areas, the role of human pilots is actively being

discussed [41, 46]. Some tasks such as detection and avoidance, emergency procedures, communication, takeof

and landings, and planning and decision-making still require well-trained human pilots in speciic context [5].

Regulatory and social aspects also provide further context. For example, the Federal Aviation Administration

(FAA) pointed out that a human pilot is ultimately responsible for the operation and safety during unmanned

aerial vehicle (UAV) light [18]. A human supervisor with responsibility and authority must have the ability to

ensure safe operation [19]. Therefore, well-trained human operators are required, and assisting human training

is a signiicant beneit.

Since human training is important for safe and eicient system operations, the next question to ask is "How can

we train humans eiciently?" In daily life, humans learn motor skills for vehicle control through repetitive practice
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which induces a physical change in human brains [28]. To shorten the repetitive learning process, humans have

sought assistance from experts. This can be analogous to the parent-child metaphor [40]. When children learn

how to ride a bike, an adult assists to balance that bike. In general, the adult lets the children take control of the

bike if it is in a safe operational range so that the children can practice balancing themselves. One important

point is that assistance should only be provided as needed. The goal of assistance is to help novices perform their

task independently, so the assistant should not have full control of the target system. As the novice’s skill-level

improves, the assistant needs to reduce intervention so that the novice can practice the task.

The primary motivation of this paper is that if human-human (parent-child or expert-novice) interaction can

expedite human learning for dynamic control tasks, then autonomy can serve as a tutor to build an eicient

human-machine interaction (HMI). The expert plays an important role in human-human interaction, but the

number of experts is limited. In our proposed approach, autonomy models the performance of experts to build an

expert model. The expert models enable autonomy to provide appropriate assistance to novices, as experts do.

The past and current performance of novices can be utilized by autonomy to infer their skill-levels online. Then,

autonomy can personalize the level of assistance based on the inferred skill-level. This approach reduces the

demand for experts for human training while giving novices rapid access to quality training. In the following

section, we provide related work. Various HMI approaches have been developed to assist human training such as

modulating practice conditions, robot-assisted motor skill rehabilitation, and shared control applications. The

skill-level inference methods have been proposed in many applications since they may not be straightforward in

complex scenarios.

1.1 Related Work

1.1.1 Modulating Practice Conditions for Human Training. Efective practice conditions have beenwidely explored,

since practice is generally considered the most important factor for motor learning and human training. The

optimal challenge point (OCP) framework formulates the learning rate as a function of two variables, skill-level

and task diiculty [23]. Hence, the learning rate can be optimized by modulating the task diiculty based on the

skill-level of a learner. Note that skill refers to sensory-motor performance during tasks based on an intention

[51]. The OCP framework suggests that as skill-level improves, the task should be more diicult to obtain further

learning beneits [60]. In human-computer interaction, the dynamic diiculty adjustment (DDA) utilizes the

OCP framework. The DDA has been adopted in computer games, healthcare, and education to ofer appropriate

diiculty to learners based on their dexterity, adapting ability, and personal characteristics [64]. The intelligent

tutoring system is another approach to utilize the OCP framework [29]. The learners can engage in educational

tasks with the intelligent tutor, which provides appropriate interventions to expedite the learning process based

on the learner’s previous performance [62].

However, inferring skill-level and adjusting task diiculty are task-dependent and may not be straightforward

for complex dynamic control tasks. For instance, education games can assess the skill-level using a testing score

and provide easy or diicult problems based on the skill-level. On the other hand, the testing score and pre-deined

easy or diicult practice conditions may not be available in complex scenarios such as operating UAM vehicles.

1.1.2 Robot-Assisted Motor Skill Rehabilitation. Robotic exoskeleton systems have been used for motor learning

and rehabilitation. Recent experimental studies have revealed that the motor learning rate can be improved

or hindered by adjusting the assistance, feedback, and training tasks based on the current status of trainees

[3, 45, 48, 52, 53]. In various rehabilitation studies, skill-level-based haptic guidance and error augmentation

techniques have been demonstrated [3, 54]. Haptic guidance refers to providing appropriate torque to assist the

learners. The error augmentation imposes artiicial error to intentionally ofer variations in training environments

[42, 58]. Their studies showed that providing haptic assistance is generally beneicial for more impaired learners

and error augmentation is efective for less impaired learners. Their ideas and some of their results coincide
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with the OCP framework [23]. One study addressed the most similar approach to this paper, called the minimal

assist-as-needed controller [48]. As its name implies, the minimal assist-as-needed controller modulates the

assistance from a robotic algorithm which is afected by the skill-level of the learner and a pre-deined error

bound.

However, there are some concerns over the existing work. The existing algorithms for rehabilitation devices

only have considered limited degrees of freedom, and they may not be applicable to high-dimensional tasks.

Furthermore, the existing algorithms usually employ simple reference trajectories for human training, for instance,

straight lines. In complex high-dimensional scenarios, reference trajectories should consider the dynamics of

the target systems (e.g., vehicle dynamics in UAM scenarios). Also, reference trajectories might be situation

dependent (e.g., the UAM vehicle should slow down near the landing area). In this regard, data-driven methods

could be better options in complex cases (e.g., learning reference trajectories from expert demonstrations).

1.1.3 Shared Control. Shared control has no global deinition, but the method of controlling a system by a

convex combination of independent control inputs from the human and autonomy has been widely used [40]. In

general, autonomy assists humans to achieve goals by making tasks easier [16]. Popular applications include

automated vehicles [1], UAVs [33], robot-assisted surgery [57], and manufacturing robots [44]. For enhancing the

human learning rate, some applications utilized shared control [1]. Haptic shared control schemes use force or

torque inputs from humans to infer their intentions [31]. Interestingly, haptic shared control with ixed gain (i.e.,

non-adaptive assistance) can decrease the human learning rate [36]. The researchers claimed that ill-designed

shared controls may cause humans to adapt to a new task transformed by the shared controller rather than to the

actual task [47]. To realize a well-designed shared control scheme for human training, a progressive shared control

was proposed [35]. The progressive shared controller adjusts its assistance based on the skill-level of the learners.

Physically decoupled shared control schemes (i.e., non-haptic shared controllers [1]) have also been studied for

human training. Visual and auditory feedback can be provided [45, 52] or a shared controller can be used to

provide assistant inputs obtained from expert demonstrations based on inferred skill-level of the learners [7, 9].

Studies on adaptive shared control provide a solid foundation for human training, but their target systems

are relatively simple, i.e., controlling mass points in two-dimensional space [31, 35, 49]. Thus, their skill-level

inference approaches need to be extended in complex dynamic control tasks. More complex scenarios, such as

aerial vehicle landing scenarios, can be found in [7, 9], but only deterministic skill-level inference approaches are

available. Those approaches cannot address uncertainties in human behaviors [56]. More details of the skill-level

inference will be followed in Section 1.1.4.

1.1.4 Skill-Level Inference. Skill-level inference techniques aim to ind quantiiable indicators of humans’ skill-

level by observing human motion patterns [17]. If a given task is simple, an intuitive indicator such as a trajectory

tracking error can be used. On the other hand, for complex tasks such as surgery using robotic arms, human expert

demonstrations can be utilized to identify the performance metric. In [20], the authors extracted comparison

criteria for novice and expert performance in robot-controlled surgery. However, their comparison criteria depend

on tasks, and they cannot perform the skill-level inference online (i.e., the skill-level is inferred after each trial). In

[57], a convolution neural network technique was used to divide the skill-level into two categories (adept or rusty).

This approach requires labeled human demonstrations for each skill-level. In robotics, human skill-levels were

successfully quantiied in a complex task and human-exoskeleton interactive system but pre-deined performance

features are required [21, 22]. Some machine learning techniques have been investigated to infer the skill-level

[38]. They utilize human demonstrations to model human behavioral patterns. For instance, inverse optimal

control and inverse reinforcement learning were used to compare the given demonstrations from novices and

experts [8, 9, 38]. These methods can infer and quantify the skill-level as a continuous variable. Nevertheless,

these techniques cannot account for the variability of human behaviors. The variability refers to the intrinsic

uncertainties that can be observed in human behaviors [56]. For instance, when an expert performs a task
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multiple times, resultant demonstrations might not be perfectly consistent due to variability. In our pilot study,

experts tend to control the multi-rotor vehicle very accurately near an obstacle or waypoint, but relatively larger

variations are observed in the open air. Similar observations can be found in civil aircraft pilots who are highly

qualiied [15]. Even if a novice deviates from the expert nominal trajectory, if there is a contextual situation in

which the expert frequently deviates from the nominal trajectory, we do not want to underestimate the skill-level

of the novice. These complexities may induce additional problems in assessing skill-level.

1.2 Contributions

Our main contributions are three folds: 1) a novel stochastic-skill-level (SSL) inference method is developed to

estimate the SSL of each human in complex dynamic control tasks. The proposed inference method can account

for not only the nominal human behavior but also the variability in human behaviors. The SSL can be assessed

online; 2) the SSL-based shared control scheme is proposed to adapt the assistance based on the inferred SSL in

complex dynamic control tasks. It can personalize the assistance according to the inferred SSL; and 3) a human

subject experiment is conducted to demonstrate the proposed framework.

More details are provided to contextualize the contributions. The proposed shared control approach enables

us to apply the OCP framework in complex dynamic control tasks. To improve the human learning rate in the

dynamic control task, the diiculty of the task is modulated to prevent frustration from tasks being too hard

or boredom from tasks being too easy [64]. Consequently, two methods are required to facilitate task diiculty

modulation: skill-level inference and skill-level-based task modulation. Some related applications have been

investigated in robot-assisted motor skill rehabilitation [3, 48, 53], robot-assisted surgery [20, 57], and shared

control [35, 49, 61]. However, their target systems are relatively simple in terms of the system dynamics (e.g., mass

points in the two-dimensional space with spring-damper systems) or the degree of freedom (DOF) (e.g., single-axis

control of rehabilitation devices). Also, their tasks are simple (e.g., tracking a pre-deined path), and applied

skill-level inference methods are only suitable for certain simple tasks (details in Section 1.1.4). Several concerns

could arise if the target system and tasks are complex. In our case, the target system is a multi-rotor system with

the nonlinear 6-DOF dynamics. The task is lying through the urban area by safely passing through multiple

waypoints, which requires more sophisticated path planning rather than simply connecting waypoints by curved

lines since the vehicle dynamics adds constraints (e.g., obstacle avoidance maneuvers and acceleration constraints).

In the worst case, the waypoints may not be available, but they need to be derived from expert demonstrations.

Even if the optimal trajectory is available, it might not be preferred by humans due to the perceived risk [32] (e.g.,

human pilots do not want to ly close to buildings although autonomy says it is optimal). Thus, a data-driven

method can be applied to eiciently generate the nominal trajectory from the expert demonstrations. Furthermore,

multiple expert demonstrations also include the variability [56] which represents the inherent uncertainties in

human behaviors. For instance, pilots tend to control the vehicle very accurately near obstacles and waypoints,

but positional variations in the open air are much larger [15]. The proposed SSL inference method can explicitly

account for the variability to identify acceptable or unacceptable deviations from the nominal trajectory. Then,

the proposed shared control framework can adjust the assistant scheme based on the inferred SSL. Our human

subject study shows how the proposed method works in an illustrative scenario.

The rest of the paper is organized as follows. In Section 2, a human training scenario using a UAM simulator is

introduced. Section 3 addresses the structure of the proposed framework. The proposed framework is demonstrated

via a human subject experiment in Section 4. Discussion and conclusions are given in Section 5 and 6, respectively.
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2 HUMAN TRAINING SCENARIO

We introduce our human training scenario that helps readers understand how the proposed framework works. It

is used for the human subject experiment in Section 4. In this scenario, a human user is requested to control and

move a multi-rotor vehicle from an initial position to a destination for UAM operation training.

A 3-D virtual training environment is constructed in a constrained rectangular region with a take-of pad,

a landing pad, two large buildings, and detailed surroundings that imitate an urban environment as shown in

Fig. 1. This environment is powered by AirSim, an open-source simulator for physically and visually realistic

simulations [55]. Inside the environment, the two buildings lie between the starting and ending points, creating

a path shaped like the letter "S" between them (Fig. 1a). Along the path, six virtual waypoints, which have no

collision efect, are strategically placed in the air (Fig. 1b). The human users use a physical light controller (Xbox

controller) to control the vehicle’s roll, pitch, yaw rate, and thrust. A graphical representation of the vehicle

and the current system state information (e.g., current position and velocity) are displayed on a monitor (Fig.

1c). Vibration can be given to the human user through the light controller to notify changes in the assistant

scheme. The vehicle takes of automatically from its initial position to its designated altitude before human users

start each trial. When a release signal is triggered by human users via the light controller, they are requested

to trace the path by lying through the waypoints successively to their best ability whether passing through

each waypoint or not, i.e., they do not need to retry passing through each waypoint even if they missed it. The

last waypoint is three times wider to give lexibility on the inal approach to the landing pad. Note that we

only consider the skill training in this scenario, but path re-planning (e.g., choosing alternative paths) is not

considered. Above the landing pad, there is a target area marked by a semi-transparent sphere, which triggers an

automatic landing sequence only if the vehicle approaches the sphere with a speed of less than 7m/s (Fig. 1d).

During the entire training, human users control the vehicle in the irst-person view to replicate a remote pilot

control situation. A sub-window, which shows beneath the vehicle, is provided to the human user to enhance the

user’s depth perception. Along with each trial, the vehicle states such as position, velocity, acceleration, attitude,

angular velocity, angular acceleration, and human behavior data such as roll, pitch, yaw rate, and thrust inputs

are recorded in 20 Hz. The human user has to complete the given task within three minutes time limit, otherwise,

the simulation is terminated. Fig. 2 shows recorded trajectories from novice and expert demonstrations using the

training environment.

3 STOCHASTIC-SKILL-LEVEL-BASED SHARED CONTROL FRAMEWORK

In the SSL-based shared control framework, we utilize autonomy as a catalyst to expedite skill transfer from

experts to novices. The proposed framework assists novices to emulate experts by permitting manual control

(no assistance) to the novice unless the predicted behavior is deviating from a certain conidence interval. The

probability of conducting the given task properly can be mapped into the SSL and the assistant scheme would

be personalized since each novice has a diferent SSL in various situations. We formally present all necessary

technical elements of the SSL inference and SSL-based shared control. We consider a 6-DOF nonlinear dynamical

system operated by humans (like the multi-rotor system in Section 2):

[xk+1 ẋk+1 ϕk+1 ωk+1] = f (xk , ẋk ,ϕk ,ωk , uk ) (1)

where xk ∈ R
3 is the position, ẋk ∈ R

3 is the velocity, ϕk ∈ R
3 is the Euler angle, and ωk ∈ R

3 is the angular

velocity of the system, respectively. k denotes the time step. uk ∈ U ⊂ R
m denotes them-dimensional control

input and f : R12+m → R12 denotes the nonlinear system dynamics. Throughout this paper, our main interest is

to model human behaviors in controlling the trajectory of the system. The system model can be reformulated as:[
xk+1

ẋk+1

]
=

[
I I∆t

0 I

] [
xk

ẋk

]
+

[
0

I∆t

]
U(xk , ẋk ,ϕk ,ωk , uk ) (2)
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(a) Top view of the 3-D training environment. (b) The first waypoint and other objects.

(c) The human user view in the training environment. (d) The target area.

Fig. 1. Human training scenario.

where U : R12+m → R3 is the nonlinear mapping function from the position, velocity, Euler angle, angular

velocity, and control input into the acceleration input: ẍk = U(xk , ẋk ,ϕk ,ωk , uk ). I and ∆t denote the identity

matrix and the time step, respectively. The acceleration mapping function ẍk = U(uk |ϕk ) = Uk and its inverse

function uk = U
−1 (Uk |ϕk ) for a multi-rotor system are feasible with high precision [34]. See Appendix A.1 and

A.2 for the details.

The structure of the SSL-based shared control is given in Fig. 3. For the SSL inference, the proposed framework

requires two trajectory distributions: the expert trajectory distribution and the predicted novice trajectory

distribution. Even if experts perform the very same control task multiple times, their input sequences may not

be the same multiple times because of unintended variations in behavior, known as the variability of human

behavior in motor skills [56]. For novices, the variability is usually greater and their behaviors are unintentionally

inconsistent [9]. Thus, we model and estimate the probability distribution of multiple trajectories instead of

only considering the single mean trajectory. The expert trajectory distribution can be obtained from expert

demonstrations using a data-driven method. Since the expert trajectory distribution is only used as a reference,

oline computation is acceptable. The predicted novice trajectory distribution can be computed from novice

demonstrations and the current state of the system. By combining the novice’s past data and the current state, it

is possible to predict how the novice will control the system in the future. This process should be conducted

ACM Trans. Hum.-Robot Interact.
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Fig. 2. The recorded vehicle trajectories of human users. The red and green waypoints denote the human user fails and

succeeds to pass through them, respectively. The yellow solid lines show the recorded trajectories.

Fig. 3. Structure of the proposed stochastic-skill-level-based shared control.

in real-time to account for the time-varying SSL of the novice. Then, the SSL can be inferred by comparing the

expert trajectory distribution and the predicted novice trajectory distribution. Note that the novice model can

also be updated after each trial to examine SSL improvement trial by trial as shown in Fig. 3.

A data-driven method is used to reproduce the trajectory distribution from human demonstrations. The

proposed framework models the trajectory distribution using the hidden semi-Markov model (HSMM). The

HSMM has advantages over the existing trajectory distribution encoding algorithms [25]. The Gaussian mixture

model (GMM) can represent the structure of the demonstrations but cannot provide the state transition information

(i.e., a transition from one Gaussian mixture to another). The hidden Markov model (HMM) provides the state

transition probabilities, but its self-state transitions are known to be inaccurate. The HSMM can encode the state

duration probabilities which provide further advantages in accurate learning. See [10] for the details and tutorial

source codes.

ACM Trans. Hum.-Robot Interact.
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Weaim tomodel the trajectory distribution usingHSMMwith a given set of human demonstrations {xk , ẋk , ẍk }
N
k=1

where N =
∑M
m=1Tm denotes the total number of data points from M demonstrations with Tm data points for

each demonstration. Let ζ ∈ R9N and x ∈ R3N be the concatenated states as:

ζk =
[
x
T
k

ẋ
T
k

ẍ
T
k

]T
∈ Z ⊂ R9, ζ =

[
ζT1 ζT2 · · · ζTN

]T
, x =

[
x
T
1 x

T
2 · · · x

T
N

]T
. (3)

The given training data pointsζ can be encoded into a GMMusing the expectationmaximization (EM) algorithm

[10, 43], i.e., P (ζ ) ∼
∑K

i=1wiN (µi , Σi ) where K denotes the number of Gaussian mixture component,wi is the

weight of each Gaussian mixture component with
∑K

i=1wi = 1, N (·) is the normal distribution, and µi and Σi

denote the mean and covariance of each Gaussian mixture component. In the next step, the HSMM parameters

{πi , µi , Σi , {αi, j }
K
j=1, µ

D
i , Σ

D
i }

K
i=1 are trained and the mixture duration is post-estimated from the training data

points [12], where πi is the initial probability of being the Gaussian mixture component i and αi, j is the transition

probability from the Gaussian mixture component i to that of j. µDi and ΣDi are the mean and variance of the

mixture duration time.

Based on the trained HSMM parameters, the expert trajectory distribution can be reconstructed as a sequence of

Gaussian states s = {s1, s2, · · · , sT } where sk ∈ {1, 2, · · · ,K } and T denotes the trajectory reconstruction horizon.

Let dmax = σdT /K be the maximum duration of each mixture where σd ∈ R
+ denotes the safety factor and σd > 1.

The likelihood of the mixture duration for the Gaussian mixture i is given as:

Pd (i,d ) =
N (d | µDi , Σ

D
i )

∑dmax

k=1
N (k | µDi , Σ

D
i )

(4)

where d ∈ {1, · · · ,dmax} and N (x | µ, Σ) denotes the evaluated Gaussian function with input x , mean µ, and

covariance Σ. Then, the sequence of Gaussian mixture can be found by:

h(i, t ) =
γ (i, t )

∑K
j=1 γ (j, t )

, γ (i, t ) =

K
∑

j=1

D
∑

d=1

γ (j, t − d )α j,iPd (i,d ) (5)

where D = min(dmax, t − 1) with initialization γ (i, 1) = πi . Then, (5) can be recursively computed. We pick the

maximum probability Gaussian component to reconstruct the trajectory distribution [12]:

sk = max
i

h(i,k ). (6)

The likelihood of trajectory ζ given the Gaussian mixture sequence s is described as:

P (ζ | s ) =
∏T

k=1
N (ζk | µsk , Σsk ) = N (ζ | µs , Σs ) (7)

where µs =
[
µTs1 , · · · , µ

T
sT

]T
and Σs = diag

(

Σs1 , · · · , ΣsT
)

. diag(·) is the square diagonal matrix with the elements

on the diagonal. The log-likelihood of P (ζ | s ) can be obtained with a large sparse matrix Φ ∈ R9N×3N .

Φ =



.

.

.
.
.
.

.

.

.
.
.
.

· · · I 0 0 0 · · ·

· · · − 1
∆t I

1
∆t I 0 0 · · ·

· · · 1
∆t 2

I − 2
∆t 2

I 1
∆t 2

I 0 · · ·

· · · 0 I 0 0 · · ·

· · · 0 − 1
∆t I

1
∆t I 0 · · ·

· · · 0 1
∆t 2

I − 2
∆t 2

I 1
∆t 2

I · · ·

.

.

.
.
.
.

.

.

.
.
.
.



. (8)
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Then, P (ζ |s ) = P (Φx|s ) and the trajectory mean µ̂
x and covariance Σ̂

x

are given as a least-square solution [10]:

µ̂
x
= argmax

x
log P (Φx | s ) =

(

ΦT Σ−1s Φ
)−1

ΦT Σ−1s µs =
[
(µ̂

x

1 )
T · · · (µ̂

x

T )
T
]T

(9)

Σ̂
x

= σ
(

ΦT Σ−1s Φ
)−1
= diag

(

Σ̂
x

1 , · · · , Σ̂
x

T

)

(10)

where σ > 0 denotes the scale factor. Then, the reproduced trajectory distribution is given by x̂k ∼ N (µ̂
x

k , Σ̂
x

k ). Fig.

4 shows exemplar trajectory distributions from human demonstrations. Note that 10 Gaussian components are

used in our training environment (K = 10). This number can be determined based on the Bayesian information

criterion (BIC). One can ind the best itting number of Gaussian components by selecting K that yields the

lowest information criterion [59]. In the novice case, the trajectory distribution is relatively wide since the novice

demonstrations are inconsistent due to the lack of skill. The expert can perform the task relatively accurately

and consistently, and thus the trajectory distribution is relatively narrow. At the inal stage of the trajectory

(marked by black squares in Fig. 4b), the last waypoint is three times wider than the others. The wider waypoint

is designed to induce more variability in trajectories.

The proposed framework needs an assistant policy to provide expert-like assistant input. The assistant policy

can be represented as a state feedback controller which can reproduce the learned expert nominal trajectory. Let

x̂
e
k
∼ N (µ̂

e,x
k
, Σ̂

e,x

k ) be the expert trajectory distribution. Then, a trajectory tracking cost can be formulated as a

quadratic cost function ck for all k ∈ {0, · · · ,T } [10]:

ck =
(

xk − µ̂
e,x
k

)T (

Σ̂
e,x

k

)−1 (

xk − µ̂
e,x
k

)

+ U
T
kRUk (11)

where R = ρI is the control input cost with the scale factor ρ > 0. We consider a constrained optimization problem

with the constrained acceleration input Au
Uk ≤ bu to conduct realistic and safe operations. This optimization

problem can be solved using the inite-time horizon model predictive control (MPC) [30]. Let the current time

step k = 1, without loss of generality, and the inite-time horizon l . The cost function C is given by:

ζ [1:l ] = Sxζ 1 + S
u
Ũ (12)

(a) Novice demonstrations and corresponding trajectory

distribution (M = 10,K = 10).

(b) Expert demonstrations and corresponding trajectory

distribution (M = 24,K = 10).

Fig. 4. Trajectory distributions from novice and expert demonstrations.
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Sx =



I

A

A2

...

Al−1


, Su =



0 0 · · · 0

B 0 · · · 0

AB B · · · 0
...

...
...
...

Al−2B Al−3B · · · B


, Ũ =



U1

U2

...

Ul−1


(13)

C =
(

µ̃l − S
xζ 1 − S

u
Ũ

)T (

Σ̂e,x
)−1 (

µ̃l − S
xζ 1 − S

u
Ũ

)

+ Ũ
T R̃Ũ (14)

where

A =


I I∆t 0

0 I I∆t

0 0 I

 , B =


0

0

I∆t

 (15)

µ̃l =
[
µT1 · · · µT

l

]T
, Σ̂e,x = diag

(

Σ̂
e,x
1 , · · · , Σ̂

e,x
l

)

, R̃ = diag (R, · · · ,R) . (16)

Then, the MPC problem can be solved using the quadratic programming (QP) [6].

min
Ũ

(

1

2
Ũ
TH Ũ + дT Ũ

)

subject to Au
Uk ≤ bu (17)

where

H = 2(W TW + R̃), W = LSu, L = diag (L1, · · · ,Ll ) ,
(

Σ̂
e,x
k

)−1
= LTkLk (18)

д = −2vTW , v = L
(

µ̃l − S
xζ1
)

(19)

Note that Lk for k ∈ [1, l] can be computed using the Cholesky factorization [24]. This QP problem can be solved

very eiciently using the standard QP algorithm, and the assistant acceleration input Ua
k
computation is tractable

in real-time. Then, the assistant policy Πa is given by solving the QP problem (17):

U
a
k = Πa

(

ζk , µ̂
e,x
k
, Σ̂

e,x
k

)

(20)

which is a deterministic feedback policy with respect to the current state ζk and the data-driven expert model

{µ̂
e,x
k
, Σ̂

e,x
k
}. Finally, the assistant input ua

k
for a multi-rotor system can be obtained using the mapping function

from acceleration to control input (see Appendix A.2).

u
a
k = U

−1 (Ua
k |ϕk ). (21)

Next step is to obtain the novice control policy using the novice demonstrations (past data) and system state

(current data). This step aims to obtain the predicted novice trajectory distribution to assess the novice’s SSL based

on the observed variability. Assuming that the current state ζk = [xT
k
, ẋT

k
, ẍT

k
]T of the system is available. Let

{µ̂
n,x
k
, Σ̂

n,x
k
}T
k=1

be a set of the inferred trajectory distribution using the novice demonstrations and (9)-(10). Then,

the current phase j ∈ {1, · · · ,T } of the system needs to be identiied to align time series data:

j = argmin
i
∥xk − µ̂

n,x
i ∥ (22)

where ∥·∥ denotes the L2 norm and i ∈ {1, · · · ,T } denotes the time step. Then, we pick the Gaussian component

that has the maximum probability as similar to (6) with the inite-time horizon l :

snk = max
i

h(i,k ) (23)

where k ∈ {j, · · · , j + l − 1}. The trajectory distribution can be obtained using (7)-(10) and the initial condition

µs1 = ζj , Σs1 = Σj (24)

where Σj denotes the initial state covariance. Note that if the state ζj is perfectly known without uncertainty,

the initial state covariance can be Σj = ϵI where ϵ < 1 denotes the small positive scale factor. The novice
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Fig. 5. Predicted trajectory distribution from current state and novice model (finite-time horizon l = 200 or 10 sec).

model {sn , µsn , Σsn } is deined as a set of sequence, mean, and covariance of each Gaussian component, as

shown in (7). The prediction result {µ̂
np,x

k
, Σ̂

np,x

k
} is given by the mean and covariance of the novice trajectories

with respect to the current time step k . In other words, the predicted novice trajectory distribution is given

as x
np

k
∼ N (µ̂

np,x

k
, Σ̂

np,x

k
), as shown in (9)-(10). The novice control policy Πn represents the predicted novice

trajectory distribution as a stochastic policy:
(

µ̂
np,x

k
, Σ̂

np,x

k

)

= Πn
(

ζk , s
n , µsn , Σsn

)

. (25)

Fig. 5 shows the predicted novice trajectory distribution (µ̂
np,x

k
, Σ̂

np,x

k
) from the current state ζk and the novice

model {sn , µsn , Σsn }, using an example from the human training environment in Section 2.

3.1 Shared Controller Design

We present a formal representation of the SSL-based shared control in this section. The primary role of the shared

control is to determine the control authority αk ∈ [0, 1] at each time step k . The control authority is deined as a

weight value of the human input on the shared input space [2]. The shared control input uk is then a convex

combination of the human input uh
k
∈ U and assistant (autonomy) input ua

k
∈ U as

uk = αku
h
k + (1 − αk )u

a
k . (26)

Note that αk = 1 indicates the full manual control and αk = 0 denotes the full autonomous control, respectively.

In the proposed shared control framework, we only use a set of inite parameters such as αk ∈ A = {0.1, 0.5, 1.0},

since it is observed in our previous study [9] that continuous control authority change may provoke mode

confusion to the human. The control authority is allocated in a discretized manner and the corresponding control

authority is mapped into the discrete mode of the hybrid system [37]. The hybrid systems refers to the dynamic

systems that involve the interaction of continuous states and discrete states. Accordingly, the SSL can be inferred

in a discretized manner as well, and the SSL and the control authority are one-to-one mapped. Note that αk = 0.1,

αk = 0.5 and αk = 1.0 correspond to the assistant schemes for low-skill-level, intermediate-skill-level, and

high-skill-level human users, respectively. Also, the mapping can be modiied depending on the speciic task

and context (e.g., more inely discretized skill-level). The hybrid shared controller is formalized as a tuple of the

following elements [37],H = (Q,I,O, r ,G) where each element is deined as follows.

• Q = {1, 2, · · · ,Nq } denotes the set of discrete modes. qk ∈ Q denotes the discrete mode at time step k . Note

that Nq = 3 for the application in this paper.

• I = Z × Πa × Πn denotes the input of the hybrid system, which consists of the state space Z, the assistant

policy Πa , and the novice control policy Πn .

• O = U is the output of the hybrid system, i.e., the shared input uk .

• r : Q × I → O denotes the shared control law:

uk = r (qk , ζk ,Πa ,Πn ) ≜ α (qk )u
h
k + (1 − α (qk ))u

a
k (27)

ACM Trans. Hum.-Robot Interact.



12 • Sooyung Byeon, Joonwon Choi, Yutong Zhang, and Inseok Hwang

where the control authority αk is an one-to-one mapping from the discrete mode qk , i.e., αk = α (qk ), where

α : Q → [0, 1] is the one-to-one mapping function.

• G : Q × Q → 2Z×Πa×Πn denotes the guard condition which assigns the previous discrete mode qk−1 to the

current discrete mode qk if the state Z, the assistant policy Πa , and the novice control policy Πn satisfy the

guard condition. The guard condition is covered in detail in Section 3.3.

3.2 Stochastic-Skill-Level Inference

We deine the SSL to quantify the guard condition which determines the mode change of the hybrid system or the

control authority allocation in the proposed framework. The SSL represents the probability that a novice emulates

an expert’s behavior while performing a given task. With the control authority being allocated based on the SSL,

the proposed framework is named the SSL-based shared control. The proposed framework uses the Mahalanobis

distance [50] as a performance measure to determine the assistant scheme by considering the variability. Let the

mean of expert trajectory distribution µ̂
e,x
k

be the reference trajectory and the covariance Σ̂e,x
k

be the weighting

matrix for the Mahalanobis distance.

Dk =

[
(

xk − µ̂
e,x
k

)T (

Σ̂
e,x
k

)−1 (

xk − µ̂
e,x
k

)

] 1
2

. (28)

Let the current time step k = 1 without loss of generality. If the discrete mode is ixed for a inite-time horizon

L, i.e., qk = q for all k ∈ {1, · · · ,L}, the predicted Mahalanobis distance D̂L (q) of the system, controlled by the

shared control law (27), is given by:

D̂L (q) =

[
(

xL (q) − µ̂
e,x
L

)T (

Σ̂
e,x
L

)−1 (

xL (q) − µ̂
e,x
L

)

] 1
2

(29)

where the future predicted state xL (q) with the constant discrete mode q is given as:

xL (q) = α (q)µ̂
np,x

L
+ (1 − α (q))xaL (30)

subject to the state prediction under the assistant acceleration input Ua
k[

x
a
k+1

ẋ
a
k+1

]
=

[
I I∆t

0 I

] [
x
a
k

ẋ
a
k

]
+

[
0

I∆t

]
U
a
k (31)

for all k ∈ {1, · · · ,L} and the initial condition {xa1 , ẋ
a
1 } = {x1, ẋ1} is known. The predicted Mahalanobis distance

D̂L (q) for the ixed discrete mode q is a stochastic value that represents the skill-level. Indeed, if a novice performs

a given task similar to an expert, then D̂L (q) would be a small value which indicates that the skill-level of that

novice is high, and vice versa.

The covariance matrix of the expert trajectory distribution Σ̂e,x
k

is used as a weighting matrix of the performance

measure D̂L (q) to model the uncertainty of the expert demonstrations. If the expert demonstrations show a smaller

covariance at a region, it implies that the region is highly constrained. Thus, any small deviation (xL (q) − µ̂
e,x
L

)

may cause higher D̂L (q) which would induce a smaller control authority to the novice, and vice versa. This design

ensures that the shared controller relects the variability in the expert demonstrations.

3.3 Stochastic-Skill-Level-Based Assistance

The core part of designing the hybrid shared control is to determine the guard condition, which represents the

mode transition condition in the hybrid system. The discrete mode qk is one-to-one mapped into the control

authority αk and the mode transition from qk−1 to qk is governed by the guard condition. Note that if αk = 0

for every time step k , then the system is fully controlled by the autonomy, and the performance measure is

optimized. However, this is not a desirable case for human training. The proposed framework is designed to
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minimize the intervention from the autonomy during the human training so that novices can learn through their

own control experience. Thus, the control authority αk needs to be maintained high enough when the novice can

perform a given task similar enough to the expert performance. In this context, the guard condition is designed to

guarantee a certain conidence level of similarity between the expert performance and the novice performance

while maximizing the control authority of the novice:

αk = maxα (q) such that P (D̂L (q) < D̄) > P̄ , q ∈ {1, · · · ,Nq } (32)

where D̄ denotes the largest Mahalanobis distance of the expert demonstrations. P̄ ∈ [0, 1] is the conidence level

threshold and it is a tunable design parameter. Note that P̄ can be tuned in diferent training situations: a higher

P̄ will impose more assistance and vice versa. Then, the discrete mode qk at time step k is determined by an

inverse mapping

qk = α−1 (αk ) (33)

since αk = α (qk ) is an one-to-one mapping. Note that the control authority can be updated in real-time. The

probability P (D̂L (q) < D̄) in (32) can be computed using the generalized Chi-square (GCS) method which

provides a numerical probability density function (PDF) [14]. To compute the PDF, the Mahalanobis distance can

be reformulated as:
(

D̂L (q)
)2
= xL (q)

TQ2xL (q) +Q1xL (q) +Q0 (34)

where

xL (q) ∼ N
(

α (q)µ̂
np,x

L
+ (1 − α (q))xaL,α (q)

2Σ̂
np,x

L

)

(35)

Q2 =

(

Σ̂
e,x
L

)−1
, Q1 = −2

(

µ̂
e,x
L

)T (

Σ̂
e,x
L

)−1
, Q0 =

(

µ̂
e,x
L

)T (

Σ̂
e,x
L

)−1
µ̂
e,x
L

(36)

and the standard GCS method can provide the PDF of the Mahalanobis distance which represents the SSL in the

proposed framework. Then, the computed PDF can be used to determine the control authority αk by solving (32).

Note that (D̂L (q) < D̄) ⇔ ((D̂L (q))
2 < D̄2) since D̂L (q) and D̄ are positive.

4 HUMAN SUBJECT EXPERIMENT

4.1 Purpose and Hypothesis

The purpose of the human subject experiment is to demonstrate the proposed framework in the complex UAM

vehicle control scenario with the environment described in Section 2. Participants are randomly divided into

three groups. The irst group is a control group that is not assisted by any method during their practice. The

second group is assisted by a baseline shared control approach called Maxwell’s Demon Algorithm (MDA), which

is known to aid human learning [7]. The baseline approach is a deterministic and non-personalized hybrid

shared control method. The MDA has only two modes: MDA fully accepts human input if it is in the same

half-hyperplane (in Rm ) with assistant input (i.e., αk = 1), or MDA discards human input otherwise (i.e., αk = 0

and set uk = 0). The MDA only blocks particularly bad input from the human but does not provide any assistant

input. The MDA is formally presented in Appendix B. The third group is assisted by the proposed framework. A

hypothesis to be investigated is given as follows.

• Hypothesis: the proposed framework can improve the human learning rate, in terms of the immediate

skill retention, in the complex UAM vehicle control scenario in Section 2 compared to the practice-only

approach and the baseline approach.

4.2 Participants

A total of 40 human subjects were selected as novices for the human subject study, which is approved by the

Institutional Review Board at Purdue University (IRB-2020-755). Participants who can pass through more than

50% of waypoints at their initial trial were excluded. Novice participants were randomly divided into three groups.
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• Group 1 (practice-only group): 10 novices who are not assisted during training.

• Group 2 (baseline group): 15 novices who are assisted by the baseline approach during training.

• Group 3 (proposed group): 15 novices who are assisted by the proposed framework during training.

Two human subjects who can pass through all waypoints without failure for more than 10 consecutive trials

and touch the target area in Fig. 1d with stable speed and attitude were selected as the experts to provide expert

demonstrations.

4.3 Procedures

An experiment instruction was explained in advance to all participants so that they had the same information

regarding the task, basic control technique, and expectations. All participants were allowed three minutes to

familiarize themselves with the light controller and the environment. We did not request the participants to ly

fast but ly accurately. The only constraint for speed was to complete each trial within three minutes, otherwise,

the trial was terminated in the middle and data was stored up to that point. There were only three trials out of

1,000 trials of terminating in the middle due to timeout, and all of them were included in the experimental data.

The experimental procedure for each individual was separated into the following three phases:

• Phase 1 (Initial performance): All groups conduct the task 10 times by manual control. Their initial

performance measures before any training are recorded. The proposed framework exploits the participant

demonstrations to estimate parameters for the novice model. A ive minutes break follows Phase 1.

• Phase 2 (Training): All groups conduct the task 10 times. Group 1 performs manual control. Group 2 is

assisted by the baseline approach. Group 3 is assisted by the proposed framework during their trials. For

Group 3, their novice models are automatically updated after each trial by incorporating the latest trial and

excluding the oldest trial. A ive minutes break follows Phase 2.

• Phase 3 (Final performance): All groups conduct the task ive times by manual control. It is expected that

their performance measures are improved compared to their initial performance measures.

The control authority was allocated from inite sets for Group 2 and Group 3. For Group 2, the control authority

was determined in a inite set Ag2 = {0.0, 1.0}: full autonomous control when αk = 0.0 or full manual control

when αk = 1.0. Participants can recognize the current control authority via vibration cues: when the baseline

approach intervenes a participant (αk = 0.0), the light controller vibrates, and there is no vibration for the manual

control mode (αk = 1.0). For Group 3, the control authority was determined in a inite set Ag3 = {0.1, 0.5, 1.0}.

Note that the minimum control authority αk = 0.1 was set to prevent abuse of the autonomy. Vibration cues

were given with respect to the control authority: a high-frequency vibration for the irst mode (αk = 0.1), a

low-frequency vibration for the second mode (αk = 0.5), and no vibration for the manual control mode (αk = 1.0).

All participants in Group 3 reported that they can distinguish the vibration cues during the instruction. The

threshold for the Mahalanobis distance D̄ = 9.65 in (32) was obtained from the worst Mahalanobis distance of

expert demonstrations. The conidence level threshold P̄ = 0.5 was selected by our pilot study. These thresholds

can be interpreted as the assistance will be given only if the conidence level that the novice is worse than

the expert’s worst case is more than 1 − P̄ . The inite-time horizon for the shared control scheme was set to

l = 40 which is equivalent to two seconds in real-time. A dwell-time of three seconds was imposed on the mode

transitions in Group 2 and Group 3 to prevent frequent mode changes.

After each trial, the participants were instructed to answer the subjective survey form that evaluates their

self-conidence and workload for each trial on an integer scale of 1-10 [26, 63]. During the experiment, physical

variables such as position, velocity, and acceleration were recorded, as well as human input variables such as roll,

pitch, yaw rate, and thrust input. The SSL-based shared control parameters (e.g., αk and Dk ) were also recorded.
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4.4 Performance Measures

The following performance measures are used to quantify the results.

• The Mahalanobis distance Dk in (28), for all k , quantiies the weighted tracking error to the expert nominal

trajectory. This value is computed after applying the dynamic time wrapping (DTW) [11] so that the

expert’s and novice’s trajectories are temporally aligned with each other.

• The minimum distance to each waypoint, dwi for all i ∈ {1, 2, · · · , 6}, measures how well novices perform

the high-level task of passing through the waypoints.

• The inal stage performance denotes the Mahalanobis distance Dk after passing the last waypoint. It

represents the ability of the novice to stabilize and slow down the vehicle for safe landing near the inal

target.

• The learning rate is used to it the performance improvement over the training trials. The power function

(y = ax−b ) is used for the regression analysis [4]. A larger b value indicates a faster learning rate.

• The averaged control authority αavg ≜ 1/T
∑T

k=0 αk represents control authority of the novices for their

training in Phase 2. A higher averaged control authority means that more human control is engaged in

Phase 2.

• Two self-reported cognitive states, self-conidence and workload, are used to measure the user experience

[63].

• The human control eforts uef ≜
∑T

k=0 u
T
k
uk during the task is recoreded. The control input uk ∈ [−1, 1]

4

is constrained in roll, pitch, yaw rate, and throttle commands.

• Mean and standard deviation of the mission completion timeT in each phase are used to examine execution

time and consistency.

4.5 Results

The Mahalanobis distance Dk is compared in three groups to answer the research question of whether the

proposed framework can enhance the human learning rate. In Fig. 6, the box plots are used to visualize the

means of the Mahalanobis distance of each participant. The analysis of variance (ANOVA) is used for statistical

testing [27]. The two-way mixed ANOVA is used to determine how performance is afected by two variables,

phase and group. One-way repeated measures ANOVAs are used to examine the training results between phases

within each group. Note that the one-way repeated measures ANOVAs are presented in each igure. Conventional

symbols are used to represent p-values in igures: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, and ∗∗∗∗p < 0.0001.

The ANOVA result reveals that there is no signiicant two-way interaction between group and phase on the

Mahalanobis distance, F (2.63, 48.71) = 0.94,p = 0.42,η2 = 0.005. There is a signiicant main efect of phase,

F (1.32, 48.71) = 55.755,p < 0.0001,η2 = 0.135. All pairwise comparisons are analyzed between each group.

Only Group 1 and Group 3 show a signiicant diference of the Mahalanobis distance (p = 0.0162). Group 2 is

not signiicantly diferent from Group 1 (p = 0.374) and Group 3 (p = 0.0863). The one-way repeated measures

ANOVAs in Fig. 6 show that Group 3 has better training results compared to the others.

The minimum distance to each waypoint dwi is used to compare three groups in terms of the performance of the

high-level task, passing through the waypoints. The expert performance was 0.689m on average. As participants

are trained through Phase 2, their mean, median, and variance are all reduced in Fig. 7. There is no signiicant

two-way interaction between group and phase on the minimum distance to waypoints, F (3.25, 60.2) = 0.93,p =

0.44,η2 = 0.006. There is a signiicant main efect of phase, F (1.63, 60.2) = 41.948,p < 0.0001,η2 = 0.117. The

pairwise comparison results between each group reveal that Group 3 is signiicantly diferent from Group 1

(p = 0.018) and Group 2 (p = 0.0194). Group 1 and Group 2 are not signiicantly diferent (p = 0.78). The one-way

repeated measures ANOVAs results in Fig. 7 indicate that Group 3 outperforms other groups.
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The inal stage performance is a subset of the Mahalanobis distance result. The inal stage is diferent from the

rest of the trajectory since it requires slowing down the vehicle to gently touch the target. In Fig. 8, all groups show

improvement from Phase 1 to Phase 3, but only Group 3 shows a signiicant diference. There is no signiicant two-

way interaction between group and phase on the inal stage performance, F (3.03, 55.98) = 1.25,p = 0.3,η2 = 0.02.

There is a signiicant main efect of phase, F (1.51, 55.98) = 14.167,p < 0.0001,η2 = 0.093. The pairwise

comparison results show that Group 1 and Group 3 are signiicantly diferent (p = 0.0485). Group 2 is not

signiicantly diferent from Group 1 (p = 0.44) and Group 3 (p = 0.176). The one-way repeated ANOVAs in Fig. 8

show that Group 3 performs better than Group 1 and Group 2.

A regression analysis using the power function itting technique is used to quantify the human learning rate.

The power function y = ax−b is widely adopted to measure the learning rate [4], and it shows the highest R2

value among the linear, power, and exponential function itting for the presented experiment results. A bigger

b indicates a higher learning rate. The learning rate is estimated using each raw data over a total of 25 trials.

The one-way ANOVA method is used for comparing each group in Fig. 9. The results show that the learning

rate diferences (i.e., itted b values) are not signiicant except for the inal stage, between Group 1 and Group

3 (p = 0.0293). The results show that the itted power functions are not signiicantly diferent, even if the

performance improvements show signiicant diferences in Fig. 6-8. Nevertheless, Group 3 still shows higher

mean and median values of b for all the cases.

Fig. 10a represents the averaged control authority αavg over Phase 2 of each group. Larger values indicate that

the humans take more control authority over the system. Group 1 has full control authority (no assistance), i.e.,
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Fig. 6. Box plots of mean of the Mahalanobis distance (Dk ) for each participant.
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Fig. 7. Box plots of mean of minimum distance to waypoints (dwi ) for each participant.
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Fig. 8. Box plots of mean of final stage performance for each participant.
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Fig. 9. Box plots of the learning rate of each group using the power function y = ax−b .

αk = 1.0 for all k . Group 2 takes signiicantly less control authority during the training (lower αavg) compared

to Group 3. However, its performance improvement is still worse than that of Group 3. This fact indicates that

the proposed framework can infer the SSL and adjust the level of assistance appropriately such that the human

learning rate is increased while allowing more control authority to the humans. Fig. 10b shows the time portion

of each control authority (discrete mode) in Group 2 and Group 3. Each trial is divided into three segments to

get more detailed information, from the start to the third waypoint (initial stage), from the third waypoint to

the last waypoint (mid stage), and from the waypoint to landing area (inal stage). Some participants reported

that a curved trajectory in the mid stage is diicult compared to the initial and inal stage with the straight

trajectories. The proposed framework can relect the task diiculties since it provides more assistance (i.e., less

control authority to the humans) in the mid stage to Group 3 as shown in Fig. 10b.

The cognitive states are investigated using a subjective survey form. The surveyed values are normalized using

the z-score method [63]. Fig. 11 shows similar trends in all groups: self-conidence is increasing, and workload is

decreasing over phases, respectively. In the self-conidence survey, there is no statistically signiicant two-way

interaction between group and phase, F (2.97, 54.95) = 0.21,p = 0.89,η2 = 0.003. There is a signiicant main

efect of phase, F (1.49, 54.95) = 77.682,p < 0.0001,η2 = 0.385. One observed point is that Group 3 is the only

group that shows a signiicant diference in post-training, from Phase 2 to Phase 3 (p = 0.018). In the workload

survey, there is no signiicant two-way interaction between group and phase, F (4, 74) = 0.98,p = 0.42,η2 = 0.02.

However, there is a signiicant main efect of phase, F (2, 74) = 29.172,p < 0.0001,η2 = 0.249. Group 3 reported

a signiicantly lower workload in Phase 2 compared to Group 1 (p = 0.0238) and Group 2 (p = 0.0277). Some
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Fig. 11. Self-reported cognitive states: self-confidence and workload.

participants in Group 2 described that the baseline shared controller intervenes too frequently, and they tried

to explore the right control input to avoid the intervention. This may cause a higher workload in Phase 2 for

Group 2. This observation coincides with the average control authority result in Fig. 10a since Group 2 shows the

lower averaged control authority (more intervention from autonomy) in Phase 2. The results indicate that the

proposed framework could reduce workload during the training. Another interesting observation is that Group

3 shows lower variability in self-conidence and workload. This observation can be interpreted as a result of

the personalized nature of the proposed method, but further investigation is required to conclude. We plan to

examine the correlation between workload and training with further experiments.
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Fig. 12. Mean of control efort (uef).

The control efort is inspected to monitor the behavioral changes of the participants over the phases. There

is signiicant two-way interaction between group and phase, F (2.78, 51.49) = 6.06,p = 0.002,η2 = 0.06. All

groups show signiicant main efects of the phase as shown in Fig. 12. Group 2 demonstrates signiicantly higher

control eforts in Phase 2 compared to Group 1 (p = 0.0195) and Group 3 (p = 0.0102). Some Group 2 participants

reported that the assistant scheme was too restrictive for them, and they tried to avoid vibration which was

regarded as punishment instead of assistance (details in Section 5). They also pointed out that they had explored

the control space to stop the assistance and vibration in Phase 2. The exploring behaviors can be interpreted as

adaptive behaviors to the changed nature of the task due to the baseline approach. This aspect is also relected

in the workload survey in Fig. 11 since Group 2 reported a higher workload in Phase 2 compared to Group 3.

On the other hand, Group 3 made signiicantly lower control eforts in Phase 2 compared to Phase 1. This fact

shows that the proposed framework does not change the nature of the training task, and thus, it did not cause

the exploring behaviors in Phase 2.

The mission completion time should be carefully analyzed since the participants were not requested to inish

the task fast but accurately. In our pilot study, some participants tended to ind shortcuts while ignoring the

waypoints. Those strategies are not appropriate for UAM operations especially near the landing area due to

safety concerns. Thus, we particularly requested the participants to follow the nominal trajectory. Nevertheless,

our intuitive prediction was that the participants will ly faster and be consistent in multiple trials as they have

more experience. In Fig. 13, all groups show decreasing trends in terms of the mean and the standard deviation

of the mission completion time. There is no signiicant two-way interaction on the mean mission completion

time, F (3.22, 59.65) = 1.32,p = 0.28,η2 = 0.01. Only Group 2 does not show a signiicant diference between

Phase 1 and Phase 3. The results show that Group 3 performed better than other groups in mission completion

time reduction. In the bottom of Fig. 13, the standard deviations of the mission completion time decrease over

phases. There is no signiicant two-way interaction on the standard deviation of the mission completion time,

F (4, 74) = 2.22,p = 0.075,η2 = 0.04. Nevertheless, Group 3 shows the most signiicant main efects of the

phase compared to Group 1 and Group 2 as shown in Fig. 13. Since consistency in time is another feature of

expert demonstrations (e.g., the standard deviation of one expert was 2.18 sec), this result indicates that Group 3

successfully emulated expert demonstrations even without a speciic direction in mission completion time.

5 DISCUSSION

The SSL-based shared control framework was demonstrated in the UAM vehicle control training task. The human

subject experiment results reveal that the proposed framework can expedite human training in a speciic scenario

compared to practice-only (no assistance) scheme and the baseline shared control scheme. In particular, similarity
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Fig. 13. Mission completion time (T ) in mean and standard deviation (STD).

to expert performance increased more signiicantly in Group 3 (assisted by the proposed framework) accompanied

by an improvement in other metrics like control efort and mission completion time. In subjective cognitive states

report, the proposed framework further reduced the training workload compared to the baseline approach. The

results reveal that our SSL inference approach and SSL-based shared control scheme can facilitate better training

environments by realizing the OCP [23] in complex dynamic control tasks. The human subject experiment results

are valuable since the adaptive training environment methods are not necessarily result in improving the human

learning rate [3]. Our results present signiicant diferences between the control group, baseline group, and

the proposed framework group. This fact shows that the proposed framework can be a foundation for further

investigations in SSL-based approaches for human training.

However, we note that the proposed framework may not be always efective for general training scenarios. It

is fair to say that the proposed framework tested a speciic hypothesis as described in Section 4.1. Indeed, our

primary contributions are the design and demonstration of the SSL-based shared control for complex dynamic

tasks. Any claim on the human learning rate, on the other hand, may require more experimental data and depend

on tasks [49]. We provide several points which can be tested with further investigations in skill training: long-term

skill retention, dynamic training environments, and multi-modal feedback. Long-term skill retention can be

tested by collecting performance measures after a certain time after the training [35]. It can test whether human

subjects maintain and retain their skills. Dynamic training environments can be imposed to test whether human

subjects can transfer their capabilities to cope with diferent situations, such as tracking diferent trajectories

and avoiding dynamic obstacles [61]. Random errors in the experiment environments (e.g., disturbance) can be

imposed to investigate the human learning rate under error-augmented situations [61]. Multi-modal feedback,

including haptic feedback [49, 61] and auditory feedback [52], has been examined in human training. Especially,

various haptic feedback schemes have been implemented to assist human learning [1]. Interesting results might

be obtained if an experiment is conducted to examine how the human learning rate changes when all the factors

mentioned are involved. Nevertheless, the proposed framework is still valuable since the inferred SSL can be

useful for further experiments.

In future work, we may investigate the transparency [13, 39] between humans and autonomy for a compre-

hensive SSL inference. Autonomy may be designed in a better way if it can directly measure, infer, and consider
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the human cognitive state. Especially, physio-psychological instruments including but not limited to eye-tracker,

electroencephalography (EEG), and Galvanic skin response (GSR). Some participants wanted explanations on how

autonomy determined the control authority. If autonomy can convey the information concisely, the acceptance of

assistance could be further improved. In the human subject experiment, ive participants in Group 2 and Group 3

reported that they want to have more information, for instance, the reasoning for the control authority decision.

However, increasing the transparency requires an additional consideration since the higher transparency may

induce higher workload to the humans [13]. Finally, we can investigate an online human model update scheme

(i.e., update the HSMM online) to cope with potentially fast-changing human characteristics. In our experiments,

updating the HSMMs after each trial was enough. However, further fast-changing cases may require online model

update [25].

6 CONCLUSION

A stochastic-skill-level-based shared control framework is proposed and a human subject experiment was

conducted. The purpose of the proposed framework is to help a human novice emulate a human expert in complex

dynamic control tasks. The proposed framework consists of three steps to transfer skills from the expert to the

novice. In the irst step, the autonomy learns how the expert performs the given task. Then, the autonomy infers

the stochastic-skill-level of the novice by comparing the demonstrations of the expert and those of the novice. In

the third step, the autonomy allocates the control authority based on the time-varying stochastic-skill-level of the

novice. The stochastic-skill-level inference and the control authority allocation are both based on probabilistic

approaches which account for the uncertainty of human behavior (i.e., variability). The assistance is given to

the novices only when their current stochastic-skill-levels are poor such that the performance measure is not

satisfying a stochastic threshold. The human subject experiment results show that the proposed framework can

provide a solid foundation for human training in complex dynamic control tasks.
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A MAPPING FUNCTION OF MULTI-ROTOR SYSTEM

A.1 Mapping Function From Control Input to Acceleration

Let the current attitude in Euler angle be ϕk = [ϕk ,θk ,ψk ]
T and let Tk be the current thrust input. Then, the

corresponding translational acceleration ẍk is given as [34]:

ẍk = −
1

mu
R (ψk )


cosϕk sinθk
− sinϕk

cosϕk cosθk

 Tk + д

where R (ψk ) ∈ R
3×3 denotes the yaw rotation matrix. mu and д denote the mass of the multi-rotor and the

gravitational acceleration, respectively.

A.2 Mapping Function From Acceleration to Control Input

Let the current attitude in Euler angle be ϕk = [ϕk ,θk ,ψk ]
T . Let ẍd,k = [ẍd,k , ÿd,k , z̈d,k ]

T be the desired

acceleration at time step k . Then, the desired control input in roll, pitch, yaw rate, and thrust, i.e., ud,k =

[ϕd,k ,θd,k ,ψ̇d,k ,Td,k ]
T ∈ U ⊂ R4 to realize the desired acceleration ẍd,k at the current state and time is given as

[34]:

θd,k = arctan

(

ẍd,k

z̈d,k

)

, ϕd,k = arctan
*..,

ÿd,k
√

ẍ2
d,k
+ z̈2

d,k

+//-
, Td,k = −

mu z̈d,k

cosϕk cosθk

where mu denotes the mass of the multi-rotor system. Note that yaw can remain zero to obtain the desired

translational acceleration ẍd,k or be aligned with the heading angle of the multi-rotor system if necessary.
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B BASELINE SHARED CONTROL APPROACH

The Maxwell’s Demon Algorithm (MDA) is a deterministic and non-personalized shared control scheme [7].

Assume ua
k
in (21) is available. Then, the shared control law is given by:

uk =


u
h
k

if u
h
k
× ua

k
> 0,

0 otherwise
(37)

where × denotes the dot product.
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