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ABSTRACT

Understanding the inner workings of Artificial Intelligence (AI)
recommendation systems may benefit children in becoming more
sensible consumers of the ever-growing information in their daily
lives. It may further enable deeper reflections on related ethical
issues such as the filter bubble. With limited prior knowledge in
math and computing, children often find Al concepts overly abstract.
Inspired by optical computation, we propose a novel tangible inter-
face, OptiDot. Through exploratory manipulation with light beams,
OptiDot supports children in learning the dot product—a build-
ing block for numerous Al algorithms—and AI recommendations
through embodied learning experiences. Findings of a preliminary
user study with ten middle school students indicate the effective-
ness of the key embodied metaphors. We also discuss the design
implications and challenges of developing optical-inspired learning
tools for children.
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1 INTRODUCTION

With the increasingly prevalent Artificial Intelligence (AI) appli-
cations in our daily lives, Al literacy has become essential for the
young generation to make more informed and mindful decisions.
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Figure 1: OptiDot: A tangible interface using (1) light beams,
(2) two sets of polarized films, (3) a convex lens, and (4) the
focused beam to manipulate the dot product.

Existing Al literacy education for children often treats Al as a black
box and only introduces its high-level workflows and capabilities
(e.g., image & voice recognition) (see [43] as a review) without
explaining their inner workings. Such opacity may leave children
at risk for inaccurate or oversimplified mental models of AI [30],
which may become hard to change once formed [16]. More impor-
tantly, research shows that learning AI’s inner workings empowers
children to take action around the ethical aspects of Al technologies
and relieve some stress of feeling “powerless” [42]. Furthermore,
more technical Al literacy is needed for the young generation to
meet the higher demand for Al-related computational capabilities
at work by better collaborating with AI [10, 32, 50]. However, the
underlying Al concepts, such as the dot product, are often overly
abstract to young students due to their limited prior knowledge of
math and computing [21].

Therefore, we propose new embodied learning experiences that
utilize exploration with light beams. Embodied learning may benefit
young students’ conceptual understanding and memory retention
by mapping abstract Al concepts with embodied metaphors, which
use repeated sensorimotor patterns to represent knowledge [3, 18].
Two factors inspire the choice of creating optical-based embodied
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metaphors. First, the recent advancement of optical computing (e.g.,
optical neural network [13, 15]) makes the interaction with optical
phenomena promising bodily experiences to reveal the inner work-
ings of Al applications. Second, existing K-12 STEM curricula [8]
also familiarize young students with many optical phenomena, such
as light passing through and refraction of light.

We created a novel optical interface named OptiDot (Fig. 1)
by utilizing image schemas - mental structures formed from re-
curring sensorimotor experiences [20]. Through five key image
schemas (PART-WHOLE, BRIGHT-DARK, BLOCKAGE, MERGING,
HUE), OptiDot connects Al applications (Al recommendation sys-
tems [34]) and abstract inner workings (i.e., data vector, the dot
product) with concrete observation and manipulation of light beams.
The Al recommendation system is chosen because it’s one of the
most popular and accessible Al technologies for the young genera-
tion and has a significant impact on what information they receive
which hugely influences their opinions and behaviors [2, 26, 31].
The dot product is an algebraic operation that takes two equal-
length data vectors and returns a value representing the similarity
between the data vectors. It was chosen because it’s one of the
fundamental building blocks for numerous Al applications, such as
feature engineering and neural networks.

With OptiDot, we investigated the research question: to what ex-
tent can OptiDot bridge the abstract concept of Al recommendation
systems and the underlying dot product procedure with familiar
sensorimotor experiences with light beams? Preliminary findings
from 10 middle school students indicate the effectiveness of key
embodied metaphors in OptiDot. We also discuss the design impli-
cations and limitations of optical-inspired learning technologies in
Al education for children.

2 RELATED WORK
2.1 Teach AI to Children

Recent research in teaching Al knowledge to children has created
various forms of interfaces and curricula to introduce students to
the fundamental concepts and applications of AI. Most of them are
web-based learning platforms, such as SmileyCluster [46], PRIMA-
RYAI [12], AlpacaML [51], and Zhorai [28], LearningML [11]. AI
knowledge is introduced through the lens of scientific inquiry learn-
ing [46], art [45], social studies [22, 48], and integration with other
STEM domains [27, 49]. The most common approaches to make
abstract Al literacy accessible for young learners include accessible
data visualization [28, 46], embodied learning with gestures and
body movements for model training data collection [16, 51], and
gamification [17, 33]. With emerging research in Al education for
children, more findings have been revealed showing that learning
the inner workings of Al empowers children to take action against
the ethical concerns of Al technologies [10, 14, 24, 42, 44], and
support them to develop a more positive attitude. Research gaps,
however, exist in understanding how to design specific connections
between image schemas and abstract Al concepts [9].

2.2 Embodied Learning and Image Schema

Embodied Learning enables students to physically interact with the
learning content and transfer their intelligence into the physical
world [35], which can enhance their classification and recall [4, 4].
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In addition, picking up, rotating, and dropping virtual pieces pro-
motes 3D investigation and problem-solving [38]. Interaction with
abstract concepts denotes the use of digital technology to materi-
alize abstract concepts. Embodied learning suggests stimulating
various motions for re-enacting 3D simulated phenomena [36, 37]
which can improve children’s comprehension of abstract action [39].
To design effective embodied learning, it is necessary to utilize im-
age schemas as embodied metaphors to represent abstract knowl-
edge. Image schemas are mental structures formed by repeated
sensorimotor and subconscious experiences [18]. Common image
schemas (e.g., PART-WHOLE, BRIGHT-DARK, BLOCKAGE, MERG-
ING) can be categorized into groups of basic, space, containment,
multiplicity, process, force, and attribute. For example, the PART-
WHOLE schema is an embodied structure of a whole, parts, and
configuration [25]. BLOCKAGE represents a scenario in which an
object is stopped moving [5]. And MERGING demonstrates the
stages of objects’ relationship of coming together [7].

2.3 Optics for Al

Recent years have seen the development of Al especially its ap-
plication in digital transformation [47]. However, it requires large
computer processing capability to implement Al, especially for deep
artificial neural networks. Optical hardware-based Al has become
popular recently due to its lower power consumption and faster
speed, thus with the potential to solve the above-mentioned issue.
This is also one of the reasons we chose optics in this paper. An-
other reason is that optics provides a sensorimotor experience to
users. Also, one famous example of the application of optics in Al
is the optical neural network [13, 15].

2.4 Light for Embodied Learning

Optical phenomena can be used to create embodied learning experi-
ences. For example, the Light-Wall [23] has the intensity of light to
represent the value of the stock in system thinking building blocks.
Another system named EnergyBugs [41] used the time duration
that the lamp can be illuminated to represent the amount of energy
produced by the user’s motion. It also introduced brightness differ-
ences to explain the energy consumption rate. Similarly, Lantern [1]
used the intensity of the lamp to specify the time that has been spent
for a group on one exercise during the recitation, thus improving
the tutor-team interactions and the intra-team collaborations.

3 THE DESIGN OF OPTIDOT
3.1 Light as Creating Embodied Metaphors

Young learners are familiar with optical phenomena (Table 1 (2)),
such as light beams and light brightness, through their daily life
experience and the existing in-school STEM curriculum [8]. With
image schemas related to the light (e.g., PART-WHOLE, BRIGHT-
DARK, BLOCKAGE, HUE, MERGING) [18, 19, 29], we create Opti-
Dot elements to represent concepts related to Al recommendation
systems (Table 1 (1)). For example, the brighter the light is, the
higher the value predicted by the recommendation system (Fig. 2.1).
The dimmer the light is, the lower the predicted value is (Fig. 2.2).

3.1.1  Embodied metaphors for the data vector. A data vector typi-
cally consists of multiple attributes that describe the characteristics
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Figure 2: (1) & (2): Examples with different value settings; (3): an example of using a color filter.

of the data point. To make the concept of a data vector more con-
crete and accessible for children, we use an array of light beams
as the embodied metaphor for an array of attributes. Individual
light beams in the array represent individual data attributes in a
vector (Fig. 3.1) (PART-WHOLE). The brightness of a light beam
represents the value of an attribute in a data vector (BRIGHT-
DARK). To change the brightness of a specific light beam, we
utilize the polarized film, a material allowing only polarized light to
pass through. By rotating a knob attached to a polarized film over-
laid with another polarized film, learners can change the amount
of light passing through the two polarized films stacked together.
This embodies the change in a data value (Fig. 3.2) (BLOCKAGE).
We calibrated the knob scale to make no light pass through the
polarized films when the knob is rotated to the value of zero on the
scale and make all the light pass through when the knob is rotated
to the value of one on the scale.

An inspector is created with color filters for learners to differen-
tiate different data attributes in a vector (Fig. 3.3). By placing a color
filter in front of a light beam, the color of the light passing through
will change to that color accordingly (see Fig. 2.3 for an example).
This helps learners differentiate light beams that represent different
data attributes in a vector or data vectors in the dot product (HUE).

For instance, a learner observes a more saturated blue light dot
on the last projection screen after placing the blue color filter right
in front of the left polarized film in a set of polarized films (Fig. 3.3),
while the learner observes a less saturated blue dot on the last screen
after placing the blue color filter in front of the second polarized
film in the same set of polarized films. The learner can understand
that the first attribute in the data vector has a higher impact/weight
on the final output.

To investigate the different impacts/weights between two data
vectors, a learner can (1) place a color filter right in front of the
first set of polarized films, (2) observe the color projected on the
last screen, (3) move the color filter in front of the second set of
polarized films, and (4) observe the color change in the light dot
focused on the last screen. If the color saturation in the light dot
increases, the second data vector has a higher impact on the final

output. If the color saturation in the light dot decreases, the first
data vector has a higher impact.

3.1.2  Embodied metaphors for the dot product. There are two ma-
jor operations in the dot product of two data vectors. First, multiply
individual pairs of values of attributes in the same position of the
two data vectors (e.g., the value of the first attribute in one data
vector multiplies the value of the first attribute in the other data
vector; the value of the second attribute in one data vector mul-
tiplies the value of the second attribute in the other data vector).
Second, add up individual values from multiplications in the first
step (Fig. 3.b & 3.c).

OptiDot unveils the two-step dot product through image schemas
BLOCKAGE, MERGING, and BRIGHT-DARK (Table 1. First, the
amount of light changes after passing through two sets of polar-
ized films, which represent the multiplication of individual pairs
of values in the two vectors (Fig. 3.a) (BLOCKAGE). For example,
Fig. 2.2 shows multiplications of three pairs of values in two data
vectors. Second, light beams converge after passing through a con-
vex lens. This embodies the addition of all the products from the
multiplications (Fig. 3.b) (MERGING). Fig. 2.1 is an example of the
maximum amount of light that can merge from three light sources.
In the end, the projection of the focused beam represents the output
of the dot product and the brightness embodies the value (Fig. 3.c)
(BRIGHT-DARK).

3.2 OptiDot Learning Activity Design

To evaluate the effectiveness of the embodied metaphors in OptiDot,
we create three major learning activities that introduce the Al
recommendation system and its inner workings (i.e., the concept
of data vectors and the dot product). The first set of polarized films
represents the user vector (i.e., values describing preferences toward
certain product properties for users of a recommendation system).
The second set is the item vector (i.e., values describing certain
properties of products in a recommendation system). We chose
snack recommendations as the content for three reasons: (1) snack
recommendations may engage students in the activity with higher
interest; (2) snack recommendations can provide a familiar and
inclusive common ground to engage young learners with different
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Table 1: Embodied metaphor schema to connect abstract Al concepts and methods with concrete bodily experiences.

(1) Al Literacy

Image Schema

(2) Optical phenomenon for embodied learning

Vector Concept: The array of attributes PART-WHOLE  The array of light beams
Concept: Attribute values BRIGHT-DARK  The brightness of a light beam (the amount of light passing through)
Method: Changing vector values BLOCKAGE Rotate a knob on a polarized film sheet to change the amount of light
that can pass through the lens
Method: Differentiating different attributes in a vector =~ HUE Place a color filter in front of different torches
Dot Product ~ Concept: Multiplication BLOCKAGE One light beam going through two polarized films
Concept: Addition MERGING The array of light beams going through a convex lens
Method: Reading the dot product output value BRIGHT-DARK  Observe the brightness of the focused beam

Figure 3: OptiDot embodied metaphors for the data vector: (1) PART-WHOLE (an array of light beams), (2) BRIGHT-DARK &
BLOCKAGE (polarized films to adjust the amount of light passing through), (3) HUE (filters in different colors); embodied
metaphors for the dot product: (a) BLOCKAGE (two sets of polarized films to adjust the amount of light passing through), (b)
MERGING (a convex lens to add up all the light beams), (c) BRIGHT-DARK (the amount of light in the focused beam).

levels of exposure to Al technology; (3) the topic of snacks can
be extended to the learning related to nutrition, which is also a
crucial knowledge domain for children to develop [40]. We created
three learning activities for students to interact with OptiDot, each
lasting for about 10 minutes.

3.2.1 LA#1: Introducing an Al recommendation system to predict
your snack preference. The first learning activity is structured to
help learners understand OptiDot’s snack preference predictions.
It begins with learners adjusting the first set of polarized films to
create a “user vector”, reflecting their tastes in sweetness, salinity,
and greasiness on a scale from 0 (“strongly dislike”) to 10 (“strongly
like”). Next, they adjust a second set of films to represent the sugar,
salt, and oil content of a specific snack, like a chocolate bar. These
vectors are used by OptiDot to predict the learner’s preference for
the snack, shown as a light dot’s brightness on the final screen.
Learners then compare this prediction with their actual snack pref-
erence and discuss OptiDot’s prediction accuracy and rationale.

3.22  LA#2: Predicting different people’s preferences for one snack.
The purpose of the second learning activity is to help learners
understand how OptiDot predicts different individuals’ snack pref-
erences. First, they set up a user vector for a person named Sammy,
representing his preference for snacks’ sweetness, salinity, and
greasiness, along with an item vector for the cheesecake’s nutri-
tional properties. Learners then observe OptiDot’s prediction about
Sammy’s liking for the cheesecake. Next, they change the user vec-
tor to represent another person, Jessie, and compare her predicted
preference for the same cheesecake. This comparison of predictions
for Sammy and Jessie facilitates a discussion among learners about
the factors influencing OptiDot’s diverse preference predictions for
the same item across different users.

3.2.3  LA#3: Manipulating one value to alternate the prediction re-
sult. The objective is to provide an in-depth exploration of the
mechanisms underlying an Al recommendation system. It starts
with learners changing the item vector to represent potato chips,
and they note that the system predicts Jessie will like them a lot.
The main task for learners is to work together to make just one
change in OptiDot that shifts this prediction from “strongly like”
to “strongly dislike”. They use color filters to identify different data
vectors or attributes easily. The activity culminates in a discussion,
where learners articulate their understanding of how their singular
modification influenced the AT’s final predictive output.

4 RESEARCH METHOD
4.1 Participants

Using study flyers and snowball sampling, we recruited five pairs
of middle-school students for a preliminary evaluation study in the
collaborative learning setting. There are six males and four females
with ages ranging from 11 to 12 (Mean =11.5, SD = 0.53). The study
was approved by the institutional Research Subjects Review Board.

4.2 Study Procedure

The study took place in an on-campus lab and lasted about one hour,
facilitated by three researchers (Fig. 4). Students first completed a
pre-survey collecting basic demographic information and assessing
their prior knowledge of the dot product and Al recommendation
systems. Then they participated in three OptiDot activities by fol-
lowing the instructions printed out. Researchers observed the entire
session and provided facilitation when needed. After interacting
with OptiDot, students completed a post-test. In the end, the re-
searchers conducted a brief interview with the participants.
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Figure 4: The preliminary evaluation of OptiDot with middle
school students (N=10).

4.3 Data Collection

The research sites were set up by three researchers before the study.
From the preliminary evaluation, we collected (1) video recordings
from five cameras located at different places, (2) audio recordings
of learners’ discussions during the learning experience, and (3)
pre- and post-tests on target Al literacy about Al recommendation
systems and the inner workings (i.e., data representation, the dot
product). Individual assessment questions are mapped with specific
target knowledge components (Table 2 (1) & (2)). For the video
recordings, the five different cameras cover the four different angles
as well as the top view of the OptiDot system.

4.4 Data Analysis

We measured students’ learning gains on different AI concepts
related to Al recommendation systems (Table 2 (2)). A rubric is
developed to score students’ answers from the pre- and post-tests.
Two researchers assigned scores to the answers independently,
reaching a 0.87 agreement. Then researchers discussed and resolved
the disagreements in the coding results.

Furthermore, we conducted a thematic analysis of post-interviews
on students’ subjective learning experiences. We derive an initial
understanding of what design elements of OptiDot are effective
and what design iterations are needed.

5 RESULTS
5.1 Learning Gains with OptiDot

The average differences of all questions between pre- and post-tests
were normally distributed. A paired-sample t-test was conducted
for the pre- to post-test (Table 2). The results showed significant
increases for four questions assessing students’ conceptual under-
standing of (1) the user representation, (2) the item representation,
(3) the output in a recommendation system, and (4) the dot product
procedure as the inner workings of a recommendation system, with
p-values < 0.005. The learning gains significantly increase for the
conceptual understanding of the multiplication in the dot product
with a p-value < 0.05. However, the increase in the conceptual
understanding of the addition calculation in the dot product is not
statistically significant (p = 0.739). Furthermore, the mean pre-test
results show that the participants in our preliminary evaluation
study have little prior knowledge of the related knowledge compo-
nents around Al recommendation systems and the inner workings
of the dot product (Table 2).
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The findings above indicate that the OptiDot activities are ef-
fective in supporting young learners with no or little AT and math
prior knowledge to develop a conceptual understanding of how
a recommendation system uses data vectors to represent a user
and an item for the recommendation, the output of a recommenda-
tion system, and its inner workings of the dot product procedure
and the multiplication calculation. The image schemas embodying
these knowledge components are (1) PART-WHOLE for the array
of data attributes), (2) BRIGHT-DARK for the attribute values
in a data vector and for reading the recommendation output, (3)
BLOCKAGE for changing the attribute values in a data vector and
for the multiplication calculation in the dot product, (4) HUE for
differentiating and investigating different attributes in a vector.

The non-significant increase in the knowledge of the addition
in the dot product indicates the current OptiDot design for the
corresponding image schema MERGING. In the current OptiDot,
a convex lens is placed in front of the last project screen to merge
all the light beams passing through the previous polarized films
(i.e., output values from the multiplication step in the dot product).
Learners read the output value from the addition on the last screen.

5.2 Design Iterations Needed

From the analysis of students’ feedback provided during the in-
terviews, we identified a few design iterations needed from the
observation of learners’ interaction experience and their feedback.

5.2.1 Enhancing the light paths. Learners reported that it’s chal-
lenging for them to view the value changes within individual steps
in the dot product process while they are adjusting different polar-
ized films. This is because, in the current prototype of OptiDot, the
transmission of light beams between lenses is not visible with air as
the transmission medium. Therefore, the changes in the brightness
of the light beams are hard to show before the focused beam is
projected on the last screen. In the future iteration, we can try out
other transparent transmission mediums to experiment with how
the light paths within the dot product process can be enhanced.

5.2.2 Improving the knob design. We created six knobs that can
be rotated to adjust the scale values in two vectors. In the current
design, the knobs for the second vector are hard to rotate because
of the limited physical space in the middle part of the OptiDot
prototype. Furthermore, the current interaction design for the knob
rotation often leads to learners blocking the light paths with their
hands, which could cause confusion during the learning experience.

5.2.3 Hard to read the output on the last projection screen. We
found that learners find it hard to accurately interpret the final out-
put value in OptiDot. With the nuanced change in the brightness
of the focused light beam projected on the last screen, students
felt less confident about whether they should interpret the bright-
ness as high-level (i.e., a high value in the prediction result) or
medium-level (i.e., a medium value in the prediction result). Such
inaccuracy in the interpretation of brightness might be more severe
in the learning scenario for multi-class prediction. This difficulty
in reading the light dot more confidently and accurately might
be a potential reason for the less effectiveness of embodying the
addition operation in the dot product by merging light beams with
a convex lens.
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Table 2: Paired t-test results for pre-and post-tests (N=10)

(1) Assessment Question (Scores range 0-3)

(2) Knowledge Component

Pre-Test Post-Test t-test p
M SD M SD

How to describe a user for a recommenda- The user representationinarec- 0.1 032 23 0.82 -7.89  <0.001

tion system?

ommendation system

How to describe an item for a recommenda- Theitemrepresentationinarec- 0.1 032 2.1 0.88 -6.8 <0.001

tion system?

ommendation system

What does a recommendation system pre- The output of a recommenda- 04 0.516 2.8 042 -11.38 <0.001

dict? tion system

How does a recommendation system calcu- The dot product procedure as 0.4 097 2.2 1316 -348  0.0026
late the prediction result with a user vector  the inner workings of a recom-

and an item vector?

mendation system

To calculate a user’s preference (user vector ~ The dot product calculation for 03 095 1.8 156 -2.61  0.0177
= (1, 9, 2)) for a book (book vector = (7,0, arecommendation system (mul-

1)), which of the multiplication below will  tiplication)
happen?

What’s the numeric prediction result of a The dot product calculation for 0.6 1.265 1.8 1.55 -1.897 0.739
user’s preference (user vector = (1, 9, 2)) for ~a recommendation system (ad-

a book (book vector = (7, 0, 1))? dition)

6 CONCLUSIONS AND FUTURE WORK

This work proposed OptiDot, an optical tangible interface, for chil-
dren to learn about the dot product and Al recommendation systems.
A preliminary evaluation indicated OptiDot’s learning effective-
ness and derived the design implications for developing interfaces
utilizing optic-related image schemas as embodied metaphors

Physical constraints in tangible interfaces for embodied learning.
With the optical tangible interface, many physical restrictions are
introduced by the optical principles. For example, the distances
between lenses are determined by the corresponding focal lengths.
This leads to the fixed size of the interface and limits many different
interaction design options. Second, to provide a clear view of both
the light beams from the flashlights and the interface annotations,
a very specific lighting condition in the physical environment is
required. Potential enhancements could be augmenting the existing
tangible interface with Augmented Reality (AR) to (1) support more
gesture-based interaction with the learning content, (2) enhance
the light path, and (3) support the interpretation of the output light
dot for multi-class prediction scenarios. With improvement in this
aspect, observing the light beams in OptiDot can be more conve-
nient and effective. This might lead to a better learning outcome of
the addition calculation in the dot product. Last but not least, the
current prototype of OptiDot is not portable with the requirements
of all different lenses and polarized films.

Activity design for learning Al ethics. In addition to the snack rec-
ommendation, more recommendation contexts (e.g., game recom-
mendations, book recommendations, music recommendations) can
be introduced to engage more young students with a diverse range
of cultural backgrounds and personal interests. To further develop
children’s understanding of Al ethics, one of the most important
Al literacy categories [6], OptiDot activities can be specifically de-
signed to scaffold the discussion around the ethical issues around
Al recommendation systems, such as the filter bubble, data privacy,
and data fairness. For instance, the light source can embody users’

personal data and raise children’s awareness of potential privacy
concerns.

Further data analysis and collection. First, we are planning to
further analyze students’ more detailed learning behaviors during
their learning processes. To measure the learning processes, we
are looking into students’ verbal and non-verbal behaviors during
their interaction with OptiDot. We pay special attention to those
unexpected behaviors they have while interacting with OptiDot or
interacting with each other. Second, we can investigate the unique
learning benefits and limitations of learning through embodied
metaphors by comparing students’ learning behaviors and out-
comes with (1) the tangible OptiDot, (2) a 2D-version OptiDot, and
(3) video or text-based instructional materials. Furthermore, beyond
the existing set of image schemas designed as embodied metaphors
for learning with OptiDot, we can more systematically explore the
mapping between other image schemas and essential Al concepts.
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