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Abstract— We propose a data-driven forward stochas-
tic reachability analysis algorithm for Human-In-The-Loop
(HITL) systems. We focus on a certain type of HITL system
whose behavior is dominated by a human operator, for example,
a multi-rotor controlled by a human operator. In such a system,
the intervention of the human operator may generate a conser-
vative reachable set due to the unpredictable control strategy of
the human operator. The proposed algorithm computes a less
conservative reachable set of the HITL system by accounting for
the human operator’s behavior, i.e., we present the data-driven
reachability analysis algorithm that considers the unknown
controller information of the HITL system. The behavior of
the human operator is trained as a Gaussian Mixture Model
(GMM) from the state and input trajectories of the system.
Then, the conditional probability distribution of the human
operator’s behavior is obtained from the Gaussian Mixture
Regression (GMR) for the closed-loop reachability analysis. The
proposed algorithm is tested and demonstrated by the data
collected from human subject experiments.

I. INTRODUCTION

The forward reachable set is a set of states at which a
certain system can arrive at a specific future time instant.
With the forward reachable set, one can verify the safety of
the system by checking whether the reachable set violates
safety constraints; or design a safety-guaranteeing controller
[1]. However, the conventional reachability analysis methods
may not be directly applicable, or if applicable, may yield
inaccurate prediction results if the target system has an
unknown element, for instance, a system lacking a mathe-
matical model or controller information [2]. The data-driven
reachability analysis has recently gained more attention as a
solution for such systems that contain an unknown element.
The data-driven reachability analysis can obtain the feasible
reachable set by utilizing data generated by the system
without requiring accurate knowledge about the target system
[3].

In this paper, we aim to compute a reachable set for the
Human-In-The-Loop (HITL) system controlled by a human
operator. The reachability analysis has been widely used to
guarantee the safety of the HITL system [4], [5]. Never-
theless, the closed-loop reachability analysis of the HITL
system is challenging, as the behavior of the human operator
is difficult to be modeled as a tractable form [6]. The lack of
the controller (human operator) information could generate
an overly conservative reachable set that is impractical for
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Fig. 1: Example of the HITL system with multiple control
choices (routes) and the concept of the proposed algorithm

real-world applications or even degenerates the performance
of the HITL system [7], [8]. The data-driven reachability
analysis is required to alleviate the conservativeness of the
reachable set by accounting for the behavior of the human
operator.

Motivated by this, we propose a data-driven forward
stochastic reachability analysis algorithm for the HITL
systems. The proposed algorithm can reduce the conser-
vativeness of the reachable set by realizing the closed-
loop analysis. We assume that the behavior of the human
operator is the only unknown element and the dynamics
of the HITL system is given. Many existing data-driven
reachability analysis methods mainly consider the system
whose dynamics model is unavailable. It means that many
existing methods are difficult to be directly applied to the
closed-loop reachability analysis of the HITL system, as
the unknown controller also needs to be considered. To
tackle this problem, the proposed algorithm computes a less
conservative reachable set by retrieving the behavior of the
human operator from given data. We assume the dynamics
of the system is given as a linear deterministic discrete-
time system and the control input be given by the human
operator. Note that this condition can be readily extended to
the uncertain system with zero mean Gaussian noise whose
control is input given by both a human and a machine.

The key challenge of computing the closed-loop reachable
set in a data-driven manner is taking into account the
human operator’s behavior based on given data. To this end,
we train the human operator’s behavior as a form of the
Gaussian Mixture Model (GMM) using the given control
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input trajectories and system state trajectories. The GMM has
been widely applied to model a human driver’s driving action
[9] and to learn from demonstration of human motion [10].
The trained GMM human control model represents the joint
probability distribution between the human operator’s control
input trajectory and system state trajectory. Then, the Gaus-
sian Mixture Regression (GMR) provides the conditional
probability distribution of the control input for a given system
state, which can be regarded as a state feedback controller
information of the HITL system. The stochastic reachable
set, which is inferred as a probability density function (pdf)
of the reachable state, is computed by propagating the state
pdf and the result of the GMR. The proposed scheme can
significantly reduce the conservativeness of the reachable set
when the human operator has multiple choices, as shown in
Fig. 1, by capturing the human operator’s state dependent
behavior.

The main contributions of this paper are as follows:
(1) The data-driven forward stochastic reachability analysis
algorithm for the HITL system is proposed, which can
significantly reduce the conservativeness of the reachable set
through the closed-loop analysis. Assuming HITL system’s
dynamics is known, the proposed algorithm accurately pre-
dicts the reachable set by explicitly accounting for the human
operator’s state dependent behavior; and (2) the proposed
algorithm is tested and compared with some existing reach-
ability analysis methods using the data collected from human
subject experiments.

The rest of the paper is organized as follows: In Section
II, the definition and method for training the GMM human
control model are introduced. In Sections III and IV, the data-
driven forward reachability analysis for the HITL system
and the human subject experiment results are provided,
respectively. Lastly, the conclusion is given in Section V.

II. GMM HUMAN CONTROL MODEL

In this paper, we assume the dynamics of the HITL system
is given as a linear discrete-time system:

xk+1 = Axk +Buk, (1)

where xk ∈ Rn and uk ∈ Rm are the state and the control
input vector at time step k ∈ Z, respectively. A ∈ Rn×n is
the dynamics matrix and B ∈ Rn×m is the input matrix. In
this paper, we assume both A and B are known. In (1), the
initial state (x0) has a Gaussian mixture uncertainty and uk

is assumed to be given by a human operator, i.e., the HITL
system is driven by the human operator.

The objective of the proposed algorithm is to compute
the pdf of the state at the desired future time step T >
0, P (xT ), by utilizing the GMM human control model.
The GMM human control model is defined as a joint
probability distribution between the system state trajectory
and control input trajectory and contains the information
about the human operator’s state dependent behavior. In the
following sections, we present how to construct the GMM
human control model and extract the state feedback control
information from the inferred GMM.

Remark 1: Although uk is assumed to be given by the
human operator in this paper, the same algorithm can be
applied to a shared control system, where the machine and
human operator share the same control space. Let uk =
uh,k + um,k, where uh,k is the input from the human
operator and um,k is the input from the machine. If um,k

follows the linear state feedback law, i.e., um,k = Kxk as in
[11], where K ∈ Rm×n is a proper gain matrix, the system
dynamics (1) can be rewritten as

xk+1 = Axk +B(uh,k + um,k)

= (A+BK)xk +Buh,k

= A′xk +Buh,k

(2)

which has the same form as (1), where A′ = A+BK.

A. Training GMM Human Control Model

The GMM is defined as a convex combination of multiple
Gaussian distributions. Let the i−th Gaussian component of
the GMM as N(µp,i,Σp,i) where µp,i and Σp,i are the mean
and covariance, respectively. For the GMM with M Gaussian
components, its pdf is represented as

M∑
i=1

πp,iN(µp,i,Σp,i), (3)

where πp,i is the weight of each Gaussian component satis-
fying

∑M
i=1 πp,i = 1.

The GMM (3) can be trained to represent the joint
probability distribution between the state trajectory (x) and
the input trajectory (u) of the system, P (u,x), where u =
[uT

1 ,u
T
2 , · · · ,uT

tf
]T , x = [xT

1 ,x
T
2 , · · · ,xT

tf
]T , and tf is

the last time step of the trajectory. We train P (u,x) as
the GMM human control model using the given trajecto-
ries of the HITL system. Let the augmented trajectory of
the system be defined as ζ = [ζT

0 , ζ
T
1 , · · · , ζT

tf
]T , where

ζk = [uT
k ,x

T
k ]

T . Then, the proper parameters of the joint
probability distribution P (u,x) can be computed by feeding
ζ to the Expectation Maximization (EM) algorithm [10].

Throughout the paper, we assume that the GMM human
control model is composed of M Gaussian components and
properly trained using a sufficient amount of data. In other
words, P (u,x) is represented by the GMM in (3) which is
trained by the sufficiently rich ζ.

B. Gaussian Mixture Regression (GMR)

After training the GMM human control model (3), one
can compute the pdf of uk when xk is specified through
the GMR, i.e., the conditional probability distribution of uk

for the given xk, P (uk|xk), can be obtained by using (3)
and the GMR [12]. P (uk|xk) provides us the information
about how the human operator would control the system
for the given state, xk. By using P (uk|xk) as the state-
feedback controller information, we can realize the closed-
loop stochastic reachability analysis of the HITL system.

Let µp,i and Σp,i in (3) be defined as

µp,i =

(
µu

p,i

µx
p,i

)
,Σp,i =

(
Σu

p,i Σux
p,i

Σxu
p,i Σx

p,i

)
, (4)
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where µu
p,i ∈ Rm is the mean fraction corresponding to

the human control input, µx
p,i ∈ Rn is that of the state,

and Σu
p,i ∈ Rm×m, Σx

p,i ∈ Rn×n, Σux
p,i ∈ Rm×n, and

Σxu
p,i ∈ Rn×m are the corresponding covariance fractions,

respectively. Then, the conditional probability distribution
P (uk|xk) is computed as

P (uk|xk) =
M∑
i=1

π̂p,i(xk)N(µ̂p,i(xk), Σ̂p,i), (5)

where

µ̂p,i(xk) = µu
p,i +Σux

p,iΣ
x−1

p,i (xk − µx
p,i), (6)

Σ̂p,i = Σu
p,i − Σux

p,iΣ
x−1

p,i Σxu
p,i, (7)

π̂p,i(xk) =
πp,iN(µx

p,i,Σ
x
p,i)∑M

j=1 πp,jN(µx
p,j ,Σ

x
p,j)

. (8)

In the following section, we present how to incorporate
the GMR’s output into the reachability analysis to achieve
the closed-loop analysis.

III. DATA-DRIVEN FORWARD STOCHASTIC
REACHABILITY ANALYSIS

A. Uncertainty Propagation of State and Control Input

One can compute the human operator’s control input for
the given state in the form of the conditional probability
distribution using (5). Therefore, the pdf of the reachable
state P (xk) can be computed by propagating the state pdf
and the conditional probability distribution of the human
operator’s control input (5) according to the given system
dynamics (1).

Let us assume that the pdf of the state at time step k (xk)
is represented as a GMM with L Gaussian components

P (xk) =
L∑

i=1

πk,iN(µk,i,Σk,i), (9)

where πk,i,µk,i, and Σk,i are the corresponding weight,
mean, and covariance for the i−th Gaussian component, re-
spectively. The propagation of the state pdf can be described
by the Chapman-Kolmogorov equation [13]:

P (xk+1) =

∫
P (xk+1|xk)P (xk)dxk (10)

By using (1), the conditional probability distribution
P (xk+1|xk) can be rewritten as

P (xk+1|xk) = P (Axk +Buk|xk). (11)

Equation (11) shows the conditional probability distribu-
tion of the state at time step k+1 (xk+1) for the given current
state (xk). When xk is given, the pdf of the human operator’s
control input at the current time step can be computed from

the GMR (5). By combining (5) with (11),

P (xk+1|xk) =
M∑
i=1

π̂p,i(xk)N(Axk +Bµ̂p,i(xk), BΣ̂p,iB
T ). (12)

In (12), each Gaussian component’s mean can be sim-
plified as a linear function of xk. If we rewrite the i−th
Gaussian component in (12) without the weight,

N(Axk +Bµ̂p,i(xk), BΣ̂p,iB
T ) = N(Āixk + B̄i, Σ̄i),

(13)
where

Āi = A+BΣux
p,iΣ

x−1

p,i ,

B̄i = Bµu
p,i −BΣux

p,iΣ
x−1

p,i µx
p,i,

Σ̄i = BΣ̂p,iB
T .

(14)

Then, the new conditional probability distribution of xk+1

for the given xk is represented with (12)-(14),

P (xk+1|xk) =
M∑
i=1

π̂p,i(xk)N(Āixk + B̄i, Σ̄i). (15)

By substituting (15) for P (xk+1|xk) in (10), we obtain

P (xk+1) =

∫ M∑
i=1

π̂p,i(xk)N(Āixk + B̄i, Σ̄i)·

P (xk)dxk, (16)

and by replacing P (xk) with (9),

P (xk+1) =

∫ M∑
i=1

π̂p,i(xk)N(Āixk + B̄i, Σ̄i)·

L∑
j=1

πk,jN(µk,j ,Σk,j)dxk. (17)

The inner part of (17) is described as a product of two
GMMs, where one of the GMMs has π̂p,i(xk) as its weight
∀ i = 1, 2, · · · ,M . It is already proven that P (xk+1) is dis-
tributed by a GMM if π̂p,i(xk) is constant ∀ i = 1, 2, · · · ,M
[13]. Unfortunately, P (xk+1) might not be distributed by a
GMM due to the state dependency in π̂p,i(xk), which makes
solving (17) intractable. To address this issue, we adopt a
sampling-based propagation method [14] to propagate (17)
in the following subsection.

Remark 2: The extension of the proposed algorithm to a
system with zero mean Gaussian noise is trivial. Let the
dynamics of the system be xk+1 = Axk + Buk + ωk,
where ωk ∈ Rn is the zero mean Gaussian system noise
with zero mean vector 0 ∈ Rn and covariance Σk ∈ Rn×n,
ωk ∼ N(0,Σk). Then, the same algorithm can be applied
by substituting BΣ̂p,iB

T +Σk for Σ̄i in (14).

B. Propagation through Sampling and Clustering

Although the pdf of the propagated state, P (xk+1), can
be computed using (17), it is difficult to solve the equation
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analytically. To tackle this problem, we use a sampling and
clustering-based propagation method proposed in [14]. The
method was originally used to approximate the prediction
step of the Particle Gaussian Mixture (PGM) filter. In this
paper, we apply the method to approximate (17). The algo-
rithm starts by generating Ns ∈ Z+ samples (Si

s ∈ Rn, i =
1, 2, · · · , Ns) from P (xk) in (9). Then, one can generate
S

′i
s ∈ Rn from the conditional probability distribution

P (xk+1|Si
s) for each sample Si

s using (15). P (xk+1) is
approximated by clustering S

′i
s as a GMM with L Gaussian

components using a clustering algorithm such as the K-
means. The detailed algorithm is presented in Algorithm 1.

Algorithm 1 Data-driven forward reachability analysis for
HITL systems

Given the initial state x0 with initial GMM uncertainty,
dynamics (1), trained GMM human control model (3), and
desired future time step T > 0
k ← 0
while k < T do

i← 1
for i < Ns + 1 do

Compute Āj , B̄j , Σ̄j , ∀j = 1, 2, · · · ,M , using (14)
Si
s ← samples from P (xk) in (9)

S
′i
s ← samples from P (xk+1|Si

s) using (15) and
Āj , B̄j , Σ̄j , ∀j = 1, 2, · · · ,M

i← i+ 1
end for
P (xk+1) ← GMM with L Gaussian components

clustered from S
′i
s , ∀i = 1, 2, · · · , Ns

k ← k + 1
end while

IV. HUMAN SUBJECT EXPERIMENT

A. Simulation Setup

To test the performance of the proposed algorithm, we first
trained the GMM human control model using the trajectories
obtained from human subject experiments1. The scenario
used for the experiment is shown in Fig. 2. In the experiment,
the participant should safely land a multi-rotor vehicle on the
goal point in the 2-D simulation environment. The vehicle
should maintain its speed as 10[m/s] and follow one of
the designated routes, left or right, which was informed at
the beginning of each trial. By training the GMM human
control model using the recorded flight trajectories, we try to
validate whether the proposed algorithm can distinguish the
human operator’s designated route based on the given state
of the vehicle; and achieve a less conservative but accurate
reachable set of the HITL system. A total of 150 trajectories
were collected, 75 for each route, and 145 of them were used
to train the GMM. The remaining 5 trajectories were used
for validation.

1The Institutional Review Board (IRB) at Purdue University approved the
study. IRB protocol number: IRB-2020-755.

Fig. 2: Simulation scenario

For the multi-rotor vehicle’s dynamics, we define the
system matrices A and B in (1) as follow:

A = I6 +


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 g 0 0 0
0 0 0 0 k1 0
0 0 k2 0 0 k3

∆t, (18)

B =


0 0
0 0
0 0
0 0
0 1/m

1/Ix 0

∆t, (19)

where ∆t is the discretization time interval, g is the gravita-
tional acceleration, m and Ix are the mass and the moment of
inertia of the multi-rotor, respectively; k1, k2, and k3 are the
controller parameters; and I6 is the 6× 6 identity matrix. A
and B are obtained by linearizing the multi-rotor’s dynamics
with respect to a hovering point [15]. The state vector xk ∈
R6 is defined as xk = [px,k, py,k, θatt,k, vx,k, vy,k, θ̇k]

T ,
which consists of the X and Y axis position (px,k, py,k), the
attitude (θatt,k), the X and Y axis linear velocity (vx,k, vy,k),
and the angular velocity (θ̇att,k) at time step k. The control

TABLE I: Simulation parameters

Discretization time interval (∆t) 0.1 [s]
Gravitational acceleration (g) 9.8 [m/s2]

Mass (m) 0.25 [kg]
Moment of inertia (Ix) 0.01 [kg ·m2]

Control parameter (k1, k2, k3) −0.1,−1,−30
Thrust input bound (T ) [−1.5, 1.5]

Angular acceleration input bound (α) [−0.5, 0.5]
X axis speed bound (vx) [−10, 10][m/s]
Y axis speed bound (vy) [−15, 15][m/s]

Gaussian components for human control model (M ) 6
Gaussian components for state pdf (L) 6

Number of samples for comparative methods 2500
Number of samples for propagation of (17) (Ns) 1500
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(a) T = 2 [s]

(b) T = 5 [s]

(c) T = 7 [s]

Fig. 3: Comparative simulation results when the multi-rotor
is heading toward the right route

input uk ∈ R2 is defined as uk = [αk, Tk]
T where αk and

Tk are the angular acceleration and the thrust at time step
k, respectively. For the initial state, x0, we assume there
is the initial single Gaussian uncertainty N(0,Σ0) where
Σ0 = diag[1.5, 1.5, 0.1, 0.5, 1, 0.1].

The augmented trajectory used for the GMM human
control model training is defined as

ζ = [ζT
0 , ζ

T
1 , · · · , ζT

tf
]T (20)

where

ζk = [αk, Tk, px,k, py,k, θatt,k, vx,k, vy,k, θ̇att,k]
T , (21)

(a) T = 2 [s]

(b) T = 5 [s]

(c) T = 7 [s]

Fig. 4: Comparative simulation results when the multi-rotor
is heading toward the left route

with tf as the last time step of the trajectory. We separated
6 [s] of the trajectory for each trial and constructed ζ by
concatenating them. The detailed parameters used for the
simulation can be found in Table I.

We compare our proposed algorithm’s result with other
existing reachability analysis methods. For a fair comparison,
we borrow two algorithms that can account for the trained
GMM human control model: randUP [16] and the Monte
Carlo sampling-based method proposed in [17]. Both of the
algorithms propagate the state by sampling from the trained
GMM human control model and the number of samples is
set to be 2500. All the pdfs are properly marginalized or
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truncated depending on the conditions.

B. Simulation Result

Fig. 3 and 4 show the simulation results of the proposed
algorithm and the other two existing algorithms. In the
figures, the red circle indicates the true initial position of
the multi-rotor, where we start the prediction, the dark
gray line is the true trajectory, and the black circle is the
true position of the multi-rotor at a specific time instant.
The gray dashed line shows the simulation routes that are
described in Fig. 2. The proposed algorithm’s results are
plotted as contours where the brighter line means the higher
probability of the multi-rotor to be located. Besides, the 95%
level-set boundary of the proposed algorithm is indicated
by the white dashed line, which can be regarded as the
ϵ−accurate reachable set proposed in [17]. Meanwhile, the
results of randUP [16] and the Monte Carlo sampling-based
method [17] are represented as the red and the green line,
respectively.

Fig. 3(a)-3(c) and 4(a)-4(c) show the trajectories of the
multi-rotor from 2 [s] to 7 [s] in to the future after the
prediction begins. From the figures, one can easily notice
that the existing methods generate conservative reachable
sets which include both of the routes, i.e., they cannot accu-
rately predict which route the multi-rotor will follow. This
result might be impractical in real-world applications as the
reachable set cannot distinguish the human operator’s control
choice. For instance, for a car crossing an intersection, such
a conservative reachable set covers the other corners that
the car is not actually heading toward. This yields the risk
to be overestimated and impedes the analysis by taking
into account unnecessary factors, which the human operator
scarcely encounters in practice. In contrast, the proposed
algorithm successfully predicts the route where the multi-
rotor is heading by giving more probability weight to it;
and thus can significantly reduce the conservativeness of
the reachable set by explicitly accounting for the human
operator’s behavior using the GMM human control model.
This characteristic provides significant benefits to the HITL
system by preventing unnecessary interruption from the
machine, for example, making an assistant system intervene
only when the human operator is truly in danger; or reducing
false alarms of a warning system to preserve the reliance on
the system [9].

V. CONCLUSION

In this paper, we proposed the data-driven forward stochas-
tic reachability analysis method for the Human-In-The-
Loop (HITL) system, which can significantly alleviate the
conservativeness of the reachable set through the closed-
loop analysis. Our proposed algorithm trains the Gaussian
Mixture Model (GMM) human control model from the given
trajectories of the HITL system and computes the expected
human operator’s control probability density function (pdf)
using the Gaussian Mixture Regression (GMR). The pro-
posed algorithm computes the pdf of the state at desired
future time step by propagating the GMR result according to

the given dynamics. Through the human subject experiment,
the computed reachable set is shown to be less conservative
than the reachable sets computed by two existing algorithms,
which can be achieved by explicitly considering the human
operator’s state feedback behavior.
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