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Abstract

Consider the class of zero-mean functions with fixed L> and L' norms and exactly
N € N nodal points. Which functions f minimize W,(f, f-), the Wasserstein
distance between the measures whose densities are the positive and negative parts?
We provide a complete solution to this minimization problem on the line and the
circle, which provides sharp constants for previously proven “uncertainty principle”-
type inequalities, i.e., lower bounds on N - W), (f4, f—). We further show that, while
such inequalities hold in many metric measure spaces, they are no longer sharp when
the non-branching assumption is violated; indeed, for metric star-graphs, the optimal
lower bound on W, (f4, f_) is not inversely proportional to the size of the nodal
set, N. Based on similar reductions, we make connections between the analogous
problem of minimizing W, (fy, f—) for f defined on 2 C R¢ with an equivalent
optimal domain partition problem.
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1 Introduction

The study of nodal sets (or zero sets) of functions is a classic topic in analysis. Loosely
speaking, the key question is, for a given a function, “how big” its nodal set Z(f) =
fx | f(x)=0}is.!

In recent years, this question has been connected to the notion of optimal transport.
The intuition is as follows: given a sufficiently regular metric Borel probability space
Q (e.g., a domain in RY or a Riemannian manifold) and a sufficiently regular and
bounded real-valued function f : @ — R with mean zero over €2, we consider its
positive and negative parts f1(x) = £ max(£ f(x), 0) as densities, and the nodal set
Z(f) as the interfaces of their supports. If the nodal set is small, then there should be
some regions in the support of f that cannot be near the support of f_. Therefore,
the cost of transporting f to f_ cannot be arbitrarily small.

A common metric which quantifies the notion of transport cost is the Wasserstein-p
distance Wy ( f+, f-). To make the connection between the nodal set and the transport
cost more transparent, we ask:

Given a nodal set of a certain size, which functions minimize W, (f, f-)? (1)

The answer to this minimization problem should depend on the norms of f’; first, the
larger || f||1 is, the more mass there is to transport. Second, the more localized the
function is, as measured in this work by || f||~0, the more mass can be concentrated
near the interface, thus decreasing the transport distance and cost.

Before rigorously formalizing our question (see Question 1 in Sect.2), we note
that the motivation behind it originates from the following type of inequalities: for a
domain €2,

ILf 1l
(WA

p -
Wi(fy, f=) - Surf {x € Q: f(x) =0} = ¢() < ) £l Viec @,

@)

where p > 0, ¢(2) > 0 is a constant that depends only on the domain €2, and Surf
is a surface measure, e.g., the co-dimension 1 Hausdorff measure. The first inequality
of this type was proven by Steinerberger (2020) for two-dimensional domains such
as the unit square [0, 1]2, with p = 1. This result was then generalized to certain
compact domains in R? with arbitrary d > 1 by Steinerberger and the second author
with p = 4 — 1/d, see Sagiv and Steinerberger (2020). Subsequently, Carroll et al.
(2020) improved the exponent to p = 2 — 1/d, and Cavalletti and Farinelli proved
that the optimal p = 1 is true in all dimensions (Cavalletti and Farinelli 2021). The
analysis in Cavalletti and Farinelli (2021) takes place at a much larger class of metric
measure spaces that satisfy the Curvature-Dimension (CD(K, N)) condition, where
the nodal set can be measured using the notion of Perimeter (Ambrosio and Di Marino
2014; Miranda 2003). That result was then also proven for RCD(K, 0o) metric spaces
(Ambrosio et al. 2015, 2014) by De-Ponti and Farinelli for all p > 1 (2022).

! Here we use the term “nodal set” for a broad class of functions (see Sect.2), whereas in other places it
refers to the zero sets of a special class of functions, e.g., Laplacian eigenfunctions.
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Fig. 1 An exemplary minimizer of Wy, (f4, f—) with 3 nodal points on an interval

Despite the great level of generality of the above results, some fundamental ques-
tions still remain: is the inequality (2) with an exponent p = 1 sharp? First, we
do not know what the optimal constant c¢(£2) is. More fundamentally, one may ask
whether a multiplicative inequality is the natural one. Indeed, some works studied
related additive inequalities (Buttazzo et al. 2020; Candau-Tilh and Goldman 2022;
Novack et al. 2023; Xia and Zhou 2021) regarding transport of the Lebesgue measure
between disjoint domains.?

But even the most general results regarding inequalities of the form (2) require
an essentially non-branching property (Cavalletti and Farinelli 2021; De Ponti and
Farinelli 2022): all RCD(K, 0o) spaces satisfy this property (Rajala and Sturm 2014),
whereas the result of Cavalletti and Farinelli (2021) is proven only to CD(K, N)
spaces which satisfy this property. A primary takeaway of our study is that it is indeed
necessary in order for inequalities like (2) to be sharp.

1.1 Main Results

In this paper, we formalize the minimization problem (1) and establish a strategy to
its solution. We find the minimizers on three families of one-dimensional domains: a
line (or an interval), a circle, and metric star graphs. The analysis of these domains
leads us to the following key conclusions:

o Generalized nodal sets for L' N L>° functions Common to all these settings
are that the minimizers are step functions, and therefore do not have nodal sets
in the usual sense. Hence, it is crucial to extend the class of admissible functions
and notion of nodal sets of continuous functions to a broader class of L' N L™
functions. Furthermore, it may be expected that this would be the right formulation
through which to explore the minimizers in higher dimensions (see Sect. 6).

e Strategy Our work establishes a strategy to approach the minimization problem
under consideration through a series of reductions of the class of feasible func-

2 In particular, Candau-Tilh and Goldman (2022), Proposition 2.5 and Novack et al. (2023), Lemma 2.8
consider the overall transport outside of a bounded set E C R< and prove that a lower bound on the transport
cost must be inversely proportional to the perimeter of E, i.e., if F C E€ with volume |E| = |F| = 1, then
Wp(1g, 1F) > C(d)/Per(E) for some universal C(d) > 0.
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tions. The reduction strategy consists of three stages: (1) We reduce the functional
minimization problem to a geometric one. Fixing the nodal domain, i.e., the inter-
face between the positive and negative parts (see Definition 1), we show that it is
always preferable to allocate the L' mass near the nodal domain. Thus, given a
function f we find a new function g which is (up to a sign and scaling) the indicator
function of a subset of the supports of f1, and for which the overall transport cost
is cheaper. (2) We find that there is always a preferable configuration of the mass
and the nodal points such that the optimal transport plan only couples adjacent
intervals. (3) Steps (1) and (2) reduce the infinite-dimensional variational problem
to a constrained finite dimensional problem, which one can solve by elementary
means.

e The minimizers By posing the question as a minimization problem, our work goes
beyond previous works on the subject since we gain insight into the minimizers
themselves. In the simplest case, the interval (or for every smooth non-intersecting
curve), the minimizers are step functions whose only possible values are either
£ flloo or O, as can be seen in Fig. 1. Thus, these are functions for which the
optimal transport between f and f_ is local, across a single interface. Next, even
though the circle introduces a new global structure, we show that the nature of the
problem (and the minimizers) do not change.

e Sharp multiplicative inequalities for the interval and the circle The complete
solution of the minimization problem allows us to explore the sharpness of the mul-
tiplicative “uncertainty principle” (2). For an interval, we find that multiplicative
inequalities are optimal (Sect. 3). The sharp inequality for p > 1 is

Wy (e fo) - 1Z(P)] = 2717 <ﬁ§%b—>nfnf.

We further show that the same conclusion is not limited to an interval domain but
also remains valid for a circle (see Sect.4). This, in turn, leads us to seek for an
example of domains, e.g., a metric star graph, for which the sharp lower bound is
not expected to be multiplicative (see Sect. 5).

e Metric star graphs We carry our strategy to the more complicated case of metric
star graphs (e.g., we need to solve Kontorvich’ problem and not Monge’s); indeed,
as before, Theorem 13 reduces the general minimization problem over L'nL>®
into a finite-dimensional constrained optimization problem. The key difference,
however, is that in contrast to the line and the circle, the optimal relation between
the minimal transport cost and the other factors under consideration is not multi-
plicative on star graphs. The introduction of a node yields optimal lower bounds
which depend on the geometry of the domain. For example, in the case of a star
with D e N sufficiently long edges,

%, D even,

o LISl -
w , [-)N > — , N =|Z —1
e FON 2 3 D=1 wenomn g ogq.
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When some of the edges are not sufficiently long, even more complicated forms
of inequalities emerge. Our conclusions for star graphs echo and contrast the
analysis of Cavalletti and Farinelli (2021), where the multiplicative (2) lower bound
is proved for a broad class of non-branching spaces. Since stars, and metric graphs
in general, are branching spaces (see also Erbar et al. (2021)), one might expect a
different type of results, as we indeed prove in Sect. 5.

The strategy and issues identified in this work are expected to be generalizable to
high dimensional settings. The one-dimensional settings help establish the strategy
in its simplest form, and allow us to reach easy-to-compute and precise constants.
Furthermore, by considering graphs, we are able to expose the key challenges in
going beyond all previous works on non-branching spaces. In Sect.6, we outline
the conjectures and key challenges in generalizing our strategy to multi-dimensional
domains, as well as to general metric graphs.

1.2 Structure of the Paper

Preliminaries, definitions, and the formulation of our minimization problem (Question
1) are given in Sect. 2. Then, the problem is solved for the interval (Theorem 5) and
the circle (Theorem 7) in Sects.3 and 4, respectively. For star graphs, in Sect.5 we
re-formulate Question 1 as a finite-dimensional constrained minimization problem
(Theorem 13) and solve it for a number of special cases. Finally, an outlook on the
problem in multiple dimensions and on general metric graphs is presented in Sect. 6.

2 Settings
2.1 Nodal Sets

Given a one-dimensional domain 7, constants ¢, ¢; > 0, and N € N, define

1 flloo = ¢oo s
_ — . Hflly=cr,
X = X(¢oo,c1,N,I) = { f : I — R measurable such that Z(F)l = N , 3
[; f(x)dx =0.

where Z( f) is the set of points where f changes its signed, defined as follows:

Definition 1 (Effective nodal set) Consider a measurable f : I — R with finite L'
and L°° norms.

e Define
Zi(f)=o0{x |f(x) >0} Na{x |f(x) <0}.
e Let Z(f) =mn (f’1 ({0})), the set of all connected components of Frqop.

o Let Z/(f) € Z(f) be the set of all elements of Z(f) whose closure intersects
both d{x | f(x) > 0} and d{x | f(x) < O}.

@ Springer
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Fig.2 Under Definition 1, the f(z)
portrayed function has

1Z(HI =2

e Let Z>(f) be a set which consists of a unique point x € J for every J € Z'(f).
e Finally, define the effective nodal set as Z(f) = Z1(f) U Za(f).

Our intention is to define Z ( f) in a way which exactly captures every sign change of
f once. Let us see that this is indeed achieved by the definition: consider, for example,
the function in Fig. 2. While f = 0 on [A, B], and so [A, B] € Z(f), it is not an
element of Z'( f), since it does not intersect with 8{ f < 0}. Hence, no pointin [A, B]
is contained in Z(f). The same is true for [D, E]. By definition, C € Z;(f). Lastly,
[F, G] € Z'(f), and therefore F € Z(f). Overall, f changes its sign exactly twice
and indeed |Z(f)| = |{C, F}| = 2.

We contrast our definition with those used in previous works:

e In Sagiv and Steinerberger (2020) and Steinerberger (2020), the objects of study
are continuous functions, and therefore the interface between the supports of f
and f_ is always contained in the set £ ~!({0}). For general measurable functions,
therefore, Definition 1 of the effective nodal set need not coincide with f~!({0})
for f € CO(I) (consider e.g., f(x) = x2 on [—1, 1]). Moreover, for functions
which are merely bounded but not continuous, these interfaces are not necessarily
in £71({0}), and hence the somewhat more complicated form of Definition 1.

e The authors of Cavalletti and Farinelli (2021) considered the quantity
Per({x | f(x) > 0}). First note that, in Euclidean settings, the Perimeter coin-
cides with the Hausdorff measure H¢~! of the reduced boundary of { f > 0}, and
in particular for d = 1 this is just the cardinality of the set. Furthermore, the zero
set in Cavalletti and Farinelli (2021), d{x|f(x) > 0}, includes points where f
does not changes signs, e.g., A and B in Fig. 2. This is not an issue when seeking
lower bounds of the type (2), as adding points which are not interfaces between f
and f_ can only increase the left-hand side of (2). Since we solve minimization
problems on functions with exactly N sign changes, it is easier if we avoid such
issues, even at a cost of a slightly more elaborated definition.

2.2 Optimal Transport and the Wasserstein Distance

We briefly recall the definition and certain key properties of the Wasserstein-p dis-
tance. We refer to Santambrogio (2015) and Villani (2003) for a more comprehensive
treatment of this topic. Let p > 1, Q2 € R" a Borel set, and denote by P, (2) the set of
all Borel probability measures on €2 with finite p-th moments. Define the Wasserstein-
p distance between two measures (1, u2 € P, (2) as

@ Springer
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1
Wy p = inf KI(p), K,,(y>z/|x—y|de<x,y>, 4
yel(uy,u2)
QxQ

where |x — y| is the geodesic distance on / and I'(ut1, ) is the set of all Borel
probability measures on €2 x €2 with marginals 11 and p», i.e.,

pi(A) =y @ xA), (A =y(AxQ), (&)

for any y € I'(u1, n2) and any Borel set A C Q.

A measure y is often called a transport plan and y minimizing K, is said to solve
the Kantorovich problem. In some cases, there exists an optimal transport map, a
function T : Q — Q which solves the so-called Monge problem:

1

inf Kp; (T), K,(T) = / lx — T ()P dui(x), (6)
{T | Tyr=p2} 2

where by Ty/41 we mean the pushforward of 11 by 7', i.e., the measure which assigns
to any Borel set A € € the measure Ty/t1(A) = 1 (T~'(A)). Any map that pushes
W1 to po induces a transport plan (id, T)su; € I' (i1, i2), and the transport cost is
unambiguously defined, i.e., we can write K ,(T') as a shorthand for K, ((d, T)#u1).
On an interval I C R, for any p > 1 and any two atomless measures, an optimal
transport plan is induced by an optimal transport map (Santambrogio 2015, Theorem
2.9),1i.e., Wlf (11, m2) = K, (T), with a monotonically increasing T defined by

T=F,'oF,. @)

where F,(y) = p(—00,y) is the cumulative distribution function (CDF), and the
inverse is taken in the generalized sense, F,; ' (x) = inf{t € R | F,,(t) > x}.> For p >
1, this map is also unique (Santambrogio 2015). Hence, the Wasserstein-p distance
has the much simpler form

Wy Gur ) = | Ft = ! ®)

LP(R)
In the particular case of p = 1, one gets the more straightforward formula with
the CDFs (and not their inverses) Wy (w1, uo) = || Fu, see Salvemini
(1943) and Vallender (1974).

Our main question can be rigorously formalized as

- Fuz ”Ll(]R)’

Question 1 For a one-dimensional domain I with nonzero measure |I| > 0, p > 1,
Co > 0, c1 € (0,c0|R|], and N € Ny, what are the minimizers and the minimum
value of the minimization problem

Wp(fer f) ©)

min
feX(coo,c1,N, 1)

3 The statement holds more generally for the optimal transport with respect to any convex cost function
h(x — y) on the line, but we will not pursue this level of generality here.
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By W, (f+, f-), we mean the W,-distance between the measures whose densities are
f+ and f_. Note that ¢; € (0, co|€2]] and N > 0 are specified in the statement of
Question 1 as necessary and sufficient condition for X (cso, ¢1, N, I) # 0.

A crucial ingredient to study the above minimization problem is to establish an
equivalence formulation that provides a characterization of the minimizers to the
original problem. Connected to this, we present a sub-class of functions, defined
below:

Definition 2 Let / be a one-dimensional domain (a curve or a metric graph). Denote
by X; = X(ceo, €1, N, I) the set of step-functions f € X(coo, c1, N, I) such that
f = = cxo only on intervals adjacent to points in Z(f) and 0 everywhere else; see,
e.g., Figs. 1 and 3B.

3 The Interval

In this section, we study the case of a nonempty interval / = (0, L) with L > 0.
Our strategy to answer Question 1, here and throughout this paper, is that of optimiza-
tion; for every candidate function f € X, we attempt to construct g € X such that
Wy (fy, f-) > Wp(g+, g-). The minimizers will therefore be the only functions for
which further optimization is not possible, and we will show that, by construction,
those are also global minimizers.

Lemma2 Let I = (0,L). For every f € X = X(¢co,¢1, N, 1), denote Z(f) =
{z1,...,zny} with z; < zj+1 forall 1 <i < N. Then, there exists a function g € X
such that

) Z(f) =Z(2)
(ii) Forany z; € Z(g), g = 0on I; = (z;, zi+1) ifand only if f > O there, and

/g(x)dx:/ f(x)dx.
I I

(i) Wy(fy, f-) = Wy(gy, g-) for any p > 1, with strong inequality if f ¢ X;.

Remark Even though the optimal transport plan in this case is given by the monotonic
map (7), we will work in this proof with a general coupling y € I'(f, f-). This level
of generality shows that at least the geometric nature of the problem extends to the
following more general setting: let 2 be a simple curve, c(x, y) = h(]x — y|) where
h : Ry — R, is a monotonically increasing function in the geodesic distance for two
points x, y € 2, and define the c-transport cost as

K(T) :/Q QC(x,T(X)),dM(X)- (10)

Then, defining the optimal transport with respect to c(x, y) analogously to (4), Lemma
2 still holds. Also, it will allow us to generalize this statement immediately to star
graphs in Sect. 5.
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Fig.3 A For an interval /; where f(x) > 0 and a given transport plan y € I'(f4, f—), the mass left of the
dotted lines will be transported to intervals Iy with £ < j, and the mass to the right of the dotted to intervals
Ig with € > j. B The cost of transport for the portrayed re-organization of f on I; is cheaper

Proof Consider an optimal transport plan between f4 and f_, i.e., a measure y €
I'(f+, f-) suchthat K, (y) = Wﬁ(f+, f-), see Eq. (5). The intuition is that for each
0 < j < N, some of the mass on /; has to be transported to the left by y, and some
has to be transported to the right, see Fig. 3a.% It is therefore less costly to have those
respective masses already concentrated near the endpoints of /;, see Fig. 3b.

To prove the above intuition rigorously, we will inductively define a sequence
of functions in the following way: let f© = f and ¥ = y. For1 < j < N,
we will define a function f/ and a new transport map y/ € I'(f{, f’) such that
they satisfy conditions (i-iii) of Lemma 2 on the intervals I, ..., I; 1 and such that
Ky(yj-1) = Kp(y;) forany p > 1.

Since f has a definite sign on each interval, suppose without loss of generality
that f is non-negative on /; (the negative case is completely symmetric). Define
pl=yid j % -); this is a Borel measure on / which specifies how much mass from
1; is transported in I under /.

Since the functions f3 and f_ (thus the functions f’ i and f J ) have disjoint supports,
v/ does not transports from // into itself, and so p/(I;) = y/(I; x I;) = 0. There
exist two constants A ;, 0; > 0, such that (identifying zo = 0 and zy 11 = L)

P (0. 2))) =20 P ((zj+12n)) =0

These are the masses transported from /; to its left and right, respectively.

4 The red dotted line, separating between the left and right transported parts in /;, is vertical in Fig. 3a,
since the optimal transport in this case is given by a map. In the case when the optimal transport is given
by a coupling, this separation would be better depicted by a curve i (x) with 0 < h(x) < fi(x).

@ Springer
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We construct a new function f/*! € X with Z (f/) = Z (f/*') as follows’:

A’.
o, X €\Zj,7j+ .’>,

Coo

0, X € Zj+$,2j+l_$>»

@) =sign(H ) - _
Coo » xe(Zj+1_%,Zj>
fI(x), otherwise .

Clearly f/ *+1 satisfies conditions (i)—(if) of Lemma 2 on the interval / 7, and by induc-
tion on the intervals Iy, ..., I;_1 as well. Since the mass transported from /; to the
left is now concentrated on (zj, z; +A j /co) as much as possible (with density = coo),
one can transport this mass to the left at a lower cost, by Definition (4). The same holds
for the transport out of /; to the right. The transport from any other positive interval
is defined identically to y/. The resulting y/*!, the optimal transport plan between
ffrH and £/ satisfies K, (v/) = Kp (y/*!) forany p > 1. This is because, under
the new optimal transport plan, some of the mass is transported over a shorter distance,
and no mass is transported over a longer distance.

Moreover, note that if f/*! # £/ i.e., if the construction really did change the
function (and so also y/ # y/T1), then a nonzero mass is now transported over a
shorter distance, and so a strict inequality holds K, (/) > K, (y/™1).

Finally, we set g = fN+1, i

Lemma 2 implies that for any p > 1

min Wplfs, f-) = min W, (fv, o).
feX(coosc1,N,I) (S )_fEXS(COQ,cl,N,I) p(f+, 1)

And furthermore the minimum on the left hand side is attained only on X (coo, ¢1, N, I).
Hence, Question 1 reduces as follows:

Corollary 3 For I = (0, L), the two minimization problems

min w , f-) and min w , =),
feX(eos,c1,N, 1) pfes f-) FeXs(Cooc1, N, ) p(fs f-)

have the same minimizers and the same minimum value for any p > 1.

Corollary 3 allows us consider the minimizers in Question 1 only from X, simply by
shifting the mass without changing the nodal set itself. To further reduce the problem,
we will now allow for non-local shifts: we will move mass across sub-intervals, which
may also change the nodal set (but not its size). To ensure that these non-local shifts
reduce the transport cost, we will make use of the monotonicity properties of (7).

Lemma4 Let I = (0, L) and f € X(coo, 1, N, I). There exists a function g € X
such that W,(fy, f—) = Wy(gy, g-), with the following property: denoting the
optimal transport map (7) of g by T = T|[g], then T only transport mass between

5 Since the nodal set Z (f Tyis independent of j, we write z; unambiguously.
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Fig.4 A nodal point z7 and the
supports of f and f_ to its left
and right, with zp — I and

z7 + rp annotated

z9 — l2 22 z2 + T2

adjacent intervals, i.e., T(Ij) C Ij_1 Uljyy for every I; = (zj,zj_H) where
{z1,.. . 2an} = Z(g), 20 =0, and zy+1 = L.

Proof Suppose without loss of generality that f is nonnegative on Iy = (zo, 21)-
By definition, f is characterized by 3N nonnegative numbers, {z;, /;, ri}f\': 1» such
that f = (—=D)"*lew on (zi — i, z), f = (=D'coo O (zi,zi +7i), and f = 0
everywhere else,® see Fig. 4.

We will again construct a sequence of functions f Je X, (€0, €1, N), now charac-

; . N
terized by {z/ r! ll./ } r such that
=

irti
1) K, (Tf ) > K, (T/ ‘H), where 7/ is the monotone optimal transport map (7)
associated with W, ( i f! )

(i) T/H' () C Ly UL fork =0,...,j

Set fO = f. Suppose without loss of generality that f/ is nonnegative on I;. By
Lemma 2, the mass in (zj., z§ + rjj) is transported to the left, i.e., to Iy, ..., [;_;.
By the induction assumption, in the j-th step all of the mass in intervals with index

less than j is transported to adjacent intervals. Hence our inductive construction only
needs to consider mass transported from I; to the right.

Assume T/ = T transports an interval £ C (Zj+1 — l§+l’ Zj+1> C I; to a non-

adjacent sub-interval to the right of 7;,1.e., T(E) C (z§+3, L) butT(E)NIj4q = 8.

For simplicity, suppose further that £ maps into a single interval, i.e., T(E) C I;
withi > j + 2; Otherwise, if 7 only maps a part of E into /;, one can split £ into
different sub-intervals each mapping into a distinct interval.

To construct /%!, we would like to perform a shift operation, that is, to shift
T(E) into Ij41. To make this more precise, consider first the ideal situation where
ff — 0 on some subset E C Ij41 of equal length, i.e., |E| = |E]|. In loose terms, it
means that there is space for E to be shifted into /1, and so we would set

6 Since f € X;, behaviors such as the interval [ F, G] in Fig.2 are excluded.
7 Since f7 is non-negative on I}, it is also non-negative on /17, and therefore the next-nearest interval
on which f is non-positive is /3 = (zj+3, zj+4).
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' —Coo, X E E,
=1 0, xeT(E) (11)
fI(x), otherwise .

In particular, in this case Z (/) = Z (f/*).

The above construction, however, might not be possible; it might be that the interval
I is already full, by which we mean that if sz + ’”}+17 z§+1 - lj+2) Cljt1,
the sub-interval on which f = 0is shorter than 7'(E). Then the mass of 7'(E) cannot
be shifted there (and f/7! cannot be defined as in (11)), since f is a step function of
height +co, and so cannot exceed this value and stay in X (coo, ¢1, N). If this is the
case, we need to push some or all of the points zj.ﬂ, ceey z{ to the right by up to |E|,
and then we can repeat the above construction as in (11), with the shifted intervals and
nodal points.

The shift operation is depicted on Fig.5. Let us consider the effect of the shift

operation on the overall transport cost W, ( frl, i Jrl):

e The mass |E|co, Which was previously transported between from £ C [; to
T/(E) C I;, is now transported over as shorter distance, to T/HU(E) C Ijt1.

e Suppose that for £ > j, the nodal endpoint zé was pushed to the right. By the
inductive construction, the transport from/to I, could not have been from a point
to the left of z;. If it was transported to/from a point fo the right of I;, then the
overall transport distance decreased.

e Suppose that for £ > j, the nodal endpoint zé was pushed to the right. Suppose
without loss of generality that I, C supp(f5) (the negative case is analogous) and
that for some D C Iy, we have Tf(D) C I, C supp(f-) with £ > m > j; the
proposed shift would then increase the transport distance, by potentially pushing D
away from T (D). This scenario, however, is impossible due to the monotonicity of
T/, see (7): take two points x € E and x” € D, then x < x’ but we T'(x) > T'(x)
(since i > £), hence a contradiction.

We note here that our construction cannot change the order of points, i.e., z,J(-H <
z,iill . Similarly, the construction keeps the nodal points inside 7, i.e., z{ + > (0 and
Z{v o

We established the first property in the induction, that K, (Tf) > K, (T-/ ‘H).
Now, note that the new transport map we constructed is monotone and pushes f. frl
to f g+ Hence, it is an optimal transport map between f f:H and f I+ (the unique
one for p > 1), T7*+!. By construction, it satisfies the adjacency requirement, that
TITN (L) C I U Iy forall k < j.

This completes the j-th step. We take ¢ = f*, which completes the construction.
Finally, note that unless f = g, we strictly reduced the transport cost at some stage
of the induction, and so W, (f4, f-) > Wp(g+, g-). O

Remark The proof of Lemma 4 relies on the convexity of the cost function 2(|Jx —y|) =
|x — y|? with p € [1, 00). When £ is convex, the monotone map (7) is a solution of
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shift
ECI; Iin T/ (E)
e -
e
e ——
push

Fig. 5 The shift operation described in the proof of Lemma 4: on the j-th step, some E C I; is mapped
by T/toa non-adjacent interval /; right of E. We shift that mass to /1. In the process, some or all of

the nodal points in between, e.g., zé with j + 1 < £ < i, need to be pushed away (to the right) to “make
room” for the shifted mass

Monge’s problem (6), see Santambrogio (2015). This is no longer the case if one
considers a concave cost function, e.g., |x — y|? with p € (0, 1). For concave costs,
it is known that the maps may not be monotone (Gangbo and McCann 1996; McCann
1999), and a different type of analysis will be needed. Another interesting cost function
not considered in this work is the L* cost (Barron et al. 2017; Champion et al. 2008).

We conclude that f € X (cxo, c1, N, I') can be a minimizer of the problem (9) for
p > 1if and only if it has the following structure:

G Z(f) ={z1,...,zn} C (0, L).
(ii) Thereexistdy,...,dy > Osuchthatz;j+d; < zji1—djiqforallj=1,..., N,
z1—d; >0,and zy +dy < L.
(iii) without loss of generality, assume that f > 0 on (zg, z1). Then for j odd,
g(x) = ¢ On (zj —dj, zj) and g(x) = —cso ON (zj, Zj + dj), and vice versa
for j even.

In less formal language, a minimizing step-function attains its maximal value c
anti-symmetrically around each nodal point z, see Fig. 1. The optimal transport plan
y € I'(f+, f-), which is given by the monotone map (7), only transports across each
nodal point, and K, (y) is just the sum of costs accrued at each nodal point. The only
questions that now remain concern the distribution of the width parameters dy, . .. dy,
and the overall minimal optimal transport cost.

Theorem5 Let I = (0, L) withL > 0, p > 1, coo > 0, c1 € (0, Lco], and N € N
The minimizers of the problem (9) are step functions, anti-symmetric about each nodal
point, with value ‘¢, and width c1/(2cooN). These minimizers satisfy

rtl ¢y

min w L f)y=2"7
feX(cos,c1, N 1) p(f+ 1) Ncoo

1
cl. (12)

Proof By (8), the transport cost across a single nodal point z; depends on the inverse
CDFs.® By Lemmas 2 and 4, it suffices to consider step functions f € X, where mass

8 Since Fu(y) = (=00, y) might not be bijective, we define the inverse CDF by F*I(x) = inf{y €
R | F(y) > y}, see Santambrogio (2015), Section 2.1.
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is transported only to adjacent sub-intervals. Suppose without loss of generality that
f =ccoon (z1 —di,z1) and f = —cx On (21, 21 + d1). By definition, F(z1) =
F_(z1 4+ di) = cood;. Hence Ff (coody) — ;_1 (coody) = di. On the interval (of
cumulative probabilities) (0, cood1), the inverse CDFs are linear with slope 1/c~, and
so for every t € (0, cood)) the difference between the inverse CDFs is constant, i.e.,
d;. Hence,

1
Cood] ?
00 1 1

1

R Nt
/|F;+1(t)—F;_1(t)|sz =[cood{’+‘]”=cgodl v (13)
0

Summing up the contributions of all nodal points, then by (8) we have that

N
W (fe, f) =Y eacdl™. (142)

j=1

For simplicity of computations, we will minimize W,f7 (f4, f—) (which is equivalent
to minimizing W, (f4, f-)). This is a constrained minimization problem, under the
L' constraint

N
14b
2 2o (o
By the method of Lagrange multipliers, let

L',:cOOX:dJ’.’—H —A(Zd./ —c1/2coo>.
J J

We get from the condition dg; £ = 0 that
h=(p+Dexd], 1<j<N. (15)

The condition 9, £ = 0 yields

which leads to,
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Combining the above expressions of A together, we getd; = ¢1/2N ¢, and the overall
cost is, by (14a),

p+1 14
Cl 1 (&
Wp s J— =N — = — .
p [+, f-) Coo (2Ncoo> Spri (Ncoo) ci

O
As a consequence, we have
Corollary 6 Let I = (0, L) and p > 1. For any f € L*(I) we have
=L (N flh H
Wo(f+, [2) - 1Z(H1 =2 " » /1 - (16)
I/ oo

This inequality is sharp, where equality holds if and only if f is a minimizer of (9) as
described in Theorem 5.

We thus see that for the case of I = (0, L), we have a sharp inequality (16) in a
multiplicative form. The inequality shows no dependence on the length of L, which
can also be seen from the scaling properties of the quantities involves. Moreover, we
are able to characterize an explicit constant factor which is also the best possible. Our
result establishes that for p = 1, the inequality in Cavalletti and Farinelli (2021), Prop.
3.1 is (16), and therefore it is indeed sharp. For p > 1, the scaling in (De Ponti and
Farinelli 2022, Corollary 3.3) of the lower bound is the same as here, 2-1=1/P but the
overall constant is lower since it is proven in more general settings. We may attribute
the proof of the inequality (16) not only to properties of the special geometry in one
dimension, but also the way the minimization problem (9) is posed; it is the solution
to the latter that leads to, as a by-product, the most natural “uncertainty principle” in
a multiplicative form.

4 The Circle
We now consider the minimizers of Wi (f4, f-) in X = X(ceo, ¢1, N, I) for the case
where [ is a circle. As we see from the earlier discussion on the case of an interval,

by scaling of ¢; we can restrict our attention to the unit circle / = S'. The geodesic
distance between two points '/, ¢’ € S! is defined by

d (en’ eis) = min{(t — s) mod(27), (s — 1) mod(27)}.

For every z; € Z(f) we denote z; = e'S/ such that, without loss of generality
0=S1 <8N < <IN <SN+1 =27‘L’,
i.e., the nodal points are ordered from the x-axis in a counterclockwise direction.

In this section we show that, on a circle, the minimizers and minimal value of (9)
are analogous to those on the interval (Theorem 5 and Corollary 6):
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Theorem7 Let p > 1, coo > 0, ¢ € (0,2¢co0m], and N € N,. The minimizers
of Wy (f+, f-) over X(coo, c1, N, S are step functions in Xs(¢oo, €1, N, Sl), anti-
symmetric about each nodal point, with value *co, and width c1/2cooN. Hence

min  W,(fy, fo) =2 cf.
feX(coo,c1,N,SY) Ncoo

Proof Throughout this proof, we use the existence of an optimal transport map; for
all orders p > 1 there exists such amap 7 : §' — S!, as established for p > 1 in
see McCann (2001) or Villani (2003), Theorem 2.47, and for p = 1 in Feldman and
McCann (2002) (see also Santambrogio (2015), Section 3.1 and Caffarelli et al. (2002)
and Bianchini and Cavalletti (2013) for general metric settings). A more elaborate
analysis of optimal transport maps on the circle appears in Delon et al. (2010).

First, we note that the proof of Lemma 2 carries to the circle without change: it is
an iterative process done on f in each interval (arch) {¢/* | 5 € (s I j+1)}§\'=1. Hence,
we can restrict our attention to solving the optimal-transport minimization problem
on X;(¢coo, 1, N, Sl), see Definition 2.

Next, we turn to extend Lemma 4 to the circle, i.e., to show that a function f €
X has a cheaper transport cost if the optimal transport map associated with it only
transports mass between adjacent arcs. Here lies the main new challenge: we cannot
simply implement our inductive “shifting” strategy from Lemma 4, since there are no
end-points to the circle, and hence no natural candidate arc /; to start the induction
from. To this end, we prove the following lemma:

Lemma8 Let f € X and let T be the optimal transport map associated with
Wy (f+, f-) for a fixed p > 1. Then, there exists a partition Sl=JU-- Uk
into disjoint arcs such that for each arc Ji, either

(1) All points x € Ji N supp(f+) are transported clockwise to T (x) € Ji, or
(2) all points x € Ji N supp(fy) are transported counterclockwise to T (x) € J, or
3) f=00nJ.

To prove Lemma 8, we will rely on the existence of an optimal transport map (in the
sense of Monge). For p > 1, recall the following theorem due to McCann (2001) (for
the Euclidean case, see Brenier (1991)), presented here in a simplified form:

Theorem (McCann (2001)) Let Q be a C3 connected, compact, Riemannian manifold
without boundaries. Let p > 1 and consider two Borel probability measures (1 and v
with finite p-moments, such that | is absolutely continuous with respect to the volume
measure of Q2. Then, with respect to the Wasserstein-p distance (4), there exists an
optimal transport map T. Moreover, there exists a vector field V such that

T(x) = exp,[V], (17)

where exp is the exponential map with respect to the geodesic distance.

Remark McCann'’s theorem holds for the general class of optimal transport problems
with respect to K. (see (10)) for a strictly convex cost function c(x, y) = h(|Jx —
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Fig.6 The “lagging” scenario
as defined in the proof of
Lemma 8: red intervals are in the
support of f, Blue intervals are
in the support of f_. The two
dash-dotted lines are equator
lines: They indicate that e.g., I
would transport to [;
counterclockwise under 7

y|). Furthermore, the vector-field V is characterized in terms of the gradient of the
Kantorovich potential, see McCann (2001), Theorem 13 for details.

The case of p = 1 is similar: the circle decomposes into a union of geodesics lines
(arcs), known as “transport rays”’, which intersect (potentially) only at their endpoints.
On each such transport ray, the optimal transport map is monotone; see details in
Santambrogio (2015), Section 3.1 and Feldman and McCann (2002).

Proof of Lemma 8 First consider p > 1. Choose any x € S', and suppose first that
y = T(x) is transported clockwise from x, i.e., y is clockwise to x on the shorter arc
between the two points. Then, any point w € S' N supp(f;) lying on that arc is also
transported clockwise, since the vector field V points clockwise on that arc. Hence,
the set of points x € S' for which 7' transports clockwise is a union of arcs, and so
each Ji is a connected component of that set. If y = T (x) is counterclockwise, the
proof is analogous, and together these type of arcs cover supp(f4+) U supp(f—). The
remaining points on S' are those where f = 0, and by the extension of Lemma 2 to
the circle, it too is covered by disjoint arcs. This completes the proof for p > 1.

For p = 1, the decomposition of the circle into transport rays, on each of which
the optimal-transport map is monotone, yields an analogous proof. O

Proof of Theorem 7 - continued: Suppose first that J; # S, i.e., it is not the case
that all points x € supp( fy) are transported clockwise (or counterclockwise). Then,
on each arc J; we can apply the analysis from the case of the interval. Suppose points
are transported clockwise on Ji. Therefore the counterclockwise end of Ji has to be
in supp(f+), and we can choose it as the starting point of the inductive process in
Lemma 4.

If, on the contrary, J; = S' assume that without loss of generality, all points
x € supp(f4) are transported counterclockwise. If each x € supp(f4) is transported
to the adjacent interval, the proof is completed. Assume otherwise, i.e., that we are in
a “lagging” scenario as in Fig. 6. We claim that this cannot be the optimal transport
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map for a minimizer of W, (fy, f—). This can be shown by constructing g € X, for
which Wy, (g4, g-) < W,(f+, f-) as follows:

Let Z(f) = {z1, ... zn} be the nodal points arranged in a counterclockwise order,
with an arbitrary starting point. As before, denote by I; the arcs between z; and
Zj+1, where Iy is the arc between zy and z;. Assume without loss of generality that
I € supp(fy),andset I for g tobe the same as for f. Adjacent to /| counterclockwise
we set a negative arc I, precisely of the length |/ |, and we define the new pushforward
map Syg+ = g— as the monotonic map from 7; to I,. We do so iteratively - we
position positive intervals precisely of the size they had for f, and then a negative
interval of the same size. In defining g, the L' and L® norms are unchanged, and so
it the number of nodal points. While the map S might not be the optimal transport
map between g4 to g_, the overall transport distances have been reduced and so
Wy (fis f2) = Kp(T) > Kp(S) > Wylgs, ).

Hence, we have extended Lemma 4 to the circle, for all p > 1. Now, since the trans-
port occurs only across nodal points to adjacent intervals, our Lagrange-multipliers
analysis for the case of the interval applies, and we obtain the desired result. O

Remark The work of Delon et al. (2010) suggests an alternative route to prove Lemma
8 on the circle: “lifting” each measure on the circle to a periodic measure on the line,
they study locally optimal transport maps between the “lifted” periodic measure. These
measures are similarto " IoF, up to a shift, and therefore in particular, are monotonic.
We do not pursue this strategy further in this work, and refer to Delon et al. (2010) for
details.

5 Star Graphs

Given a positive integer D, we define the star graph Sp = Sp(Ly, ..., Lp) as the
quotient space of the disjoint union of D intervals /; = [0, L;) where L; > 0 for
1, ..., D, under the equivalence relation 0 I = 0. For ease of notation, denote by ¢;
the point 7 € I; forevery 1 < j < D andeveryt € (0, L;].

We will call the O point the vertex of the star. Definition 1 for Z( f) extends to [ =
Sp. Consequently, the definitions of X (¢, c1, N, I) (see (3)) and X;(coo, €1, N, I)
(see Definition 2) naturally extend to the case of star graph I = Sp as well. The
distance between any two points x € [j and y € Iy is [x — y|if j = k,and x + y
otherwise, i.e., if the two points are on different edges of the star, the geodesic distance
between them is the length of the path going from x to y through the vertex 0.

Stars are a class of spaces where we might expect the optimal dependence between
Wy (f+, f-) and the number of nodal points N to be non-multiplicative, for the
following reason: In Cavalletti and Farinelli (2021) and De Ponti and Farinelli
(2021), the sharp (up to a constant) uncertainty quantification (2) was derived for
metric spaces which are essentially non-branching. Intuitively, this means that if
£1(2), €2(t) : [0,1] — K are two “generic” geodesic lines of unit length, and
£1(t) = £»(t) on an open subset of [0, 1], then ¢; = £, everywhere; see Rajala
and Sturm (2014) for details. Star graphs, however, are certainly spaces with branch-
ing (and so are trees in general). Hence, in search for new types of dependencies
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S3 L Sy L, Sy — 53 Ly

Lo 0 Lo 0

Ls

Ly Ly Ly

Fig. 7 Left and Center stars have 3 and 4 long edges, respectively. But in a star graph, the lengths of the
edges matter: as the length L3 — 07, Sy is deformed into S3 (Right). This metric structure in turn manifests
itself in the minimization problem and in its solution, see Theorem 13

between min W, (fy, f-) and N, stars are excellent candidates over which to study
the minimization problem stated in Question 1.

The technical difficulty is that, on the star, we do not have explicit optimal maps
such as (7) for the interval, nor do we even expect the existence of optimal transport
maps, i.e., we expect a solution to the Kontorovich problem (4), but not Monge’s (6).
More broadly, stars are an example of metric graphs, on which the study of optimal
transport is at a relatively early stage (Erbar et al. 2021; Mazén 2015).

Main results: The key element of our analysis is that it is always “useful”, in the
sense of minimizing W, (f, f-), to position one of the nodal points at the vertex of
the star. We approach Question 1 on stars by establishing a correspondence between
transport over a star-vertex and transport on the real line (Lemma 9). This equivalence
allows us to reduce the minimization problem to a finite-dimensional constrained
optimization problem (Theorem 13).

From there, the optimization problem bifurcates into several different cases, depend-
ing on both the topology and the lengths of the star’s edges. In Sects. 5.2-5.5, we work
the details of the following cases:

e For an even number of sufficiently long edges, the vertex 0 € Sp is equivalent
to D /2 nodal points. Hence, we have a multiplicative uncertainty principle of the
type (presented here for simplicity with p = 1)

Wi ) > c% 1
18+,8-) = dem N
see Sect.5.3.
e For an odd number of sufficiently long edges, the main complication is that
there is an imbalance between the number of positive and negative edges around

0. Nevertheless, we get the same type of inequality, only now with (Sect.5.4)

(D+D(D—-1)

N=N-1+D, D
+ 2D
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e When one of the edges is short, no N or D type inequalities emerge, but the
lower bounds we obtain “interpolate” between the case of a star with D — 1 long
edges (and a “degenerate” D-th edge with length zero) to the case of D long edges
(Sect.5.5).

In summary, for stars with D long edges, the vertex 0 € Sp is effectively equivalent
to D/2 or D= % nodal points on the line, depending on whether D is even
or odd, respectively. Finally, since we can interpolate between D and D — 1 edges by
shortening/lengthening the edges (see Fig. 7) the general case of a star does not seem
to admit such a clean result; indeed, an “uncertainty principle”-type lower bounds on
Wi(f+, f=)-1Z(f)|, suchas (16), breaks even in relatively simple metric graphs, thus
demonstrating that the non-branching property used in Cavalletti and Farinelli (2021)
is indeed necessary.

5.1 Stars - The General Framework

Our strategy to prove the main result, Theorem 13, consists of two parts. In Lemma
9, we analyze the optimal transport problem in the case of a single nodal point on the
star vertex. Lemma 11 generalizes Lemma 4 on the optimality of transfer to adjacent
sub-interval to the case of the star graph. The main technical difficulty here is that
we cannot assume the existence of optimal transport maps (in the sense of Monge’s
problem (6), as opposed to Kantorovich (4)), on graphs. Indeed Lemma 9 shows that
already in simple settings of Z( f) = {0} the optimal transport plan will not be induced
by a map. Moreover, we cannot expect to have monotonicity in the strict sense, due to
the geometry of the graph. Nonetheless, Lemma 12 shows that the optimal transport
plans satisfy a sufficient monotonicity-like property.
We begin with functions satisfying Z( f) = {0}.

Lemma9 Let D > M > 1 be integers and consider f € X(cxo, 1, 1, Sp) where for
everyxj € I; C Sp,

>0,1<j=<M,
f(xj){SO,MJrlsjsD,' (1%

Define g : R — R as’

M D
g =gl =g +g- () =) fi)+ Y fi(—=x) (19
j=1

J=M+1

such that g, is supported on (0,max;—i . mL;) and g_ is supported on (—
max—p+1,...p Lj,0). Then there is a surjective correspondence ® : I'(fy, f-) —
I'(g+,g-) such that K,(y) = K,(®[y]) for every p > 1 and y € T(f4, f-).

9 Here we identify x € R with the point x; € I; with the exact same value. This is unambiguous since
each f; is only defined on the respective edge /;.
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Hence,

Wy(g+,g-) = Wy(f+, f-).

Proof For every y € I'(f4, f—) and any two measurable sets E4, E_ C (0, 00),
define

M D
PIyNEr, —E )= > y(EyNlj,—E_N-1I), (20)

j=1i=M+1

where for every A C (0, co) we define —A = {—x | x € A}. P[y]is aBorel measure
on R x R with marginals g1 and g_, simply by additivity. That K ,(y) = K,(®[y])
follows from definition (4): the same amount of mass travels the same distance in both
plans. To summarize, we have shown the inclusion

(Kp() ly € D(fr. £} = {Kp(@[yD) |y € T(fs, [}
c{K,m | neT(gr.8-)} .

To conclude that W, (f, f-) = W,(g+, g-) we need to prove inclusion in the
other direction, i.e., to find for any n € I'(g, g—) a coupling y, € I'(f4, f-) such
that ®[y,] = n. We define y, in a symmetric manner: for any two measurable sets
A,BC (0,00)and 1 <i,j <D,

izt canmy W fillLisnr,
v (AN 1 BOT) = (A, -yl It WL o)

||g+||L1(A) ||g—||Ll(_B)’
and for any general sets A, B C Sp, then
D D
W AB =33y (AN BNI)) .
i=1 j=1

Again, by definition y, is a Borel measure on Sp x Sp. To verify that y,, € I'(f5, f-),
we compute its marginals. Let (x, y) € suppy,. Necessarily y is an element in one of

the negative intervals Ips41, ... Ip, then for any measurable set A € (0, 00)
j= M+1
= Vn A NI, I; )
.,=M+l
I fill L1 canay) D I filla;)

lg+1z1(a) Pt 8-l 21 (—00,0)
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Il fi ||L1(Am1,~)

=1(A, (=00, 0)) L= 1lfillLvangy »

g+ (a)

where at the last passage we used the fact that g is the density of the second-coordinate
marginal of any n € I'(g+, g-), i.e., that n(A, (=00, 0)) = [|g+Il.1(4)- The calcula-
tion of the second-coordinate marginals of y;, is analogous.

Finally, to prove that ®[y,] = n, consider a pair of open sets E,, E_ C (0, 00).
By (20)

Wil ey Wil ce_ary)

M D
@[y (Eq, —E-) = n(E4, —E-)
! Z Z ||g+\|L1(E+) llg- ”L‘(—E,)

J=li=M+1
M D
n(Ey, —E_) Z
= Wil e nry Y Wfilloie,n
g+ Nz ey - 8=l —£y = (E-niy) Pyl N
n(Ey, —E_)
= : (WS PRV A AT
lg+llp1 ey - 8=l —£_y
=n(E4, —E-).

O

To solve the minimization problem on Sp, we first state an extension of Lemma 2
to star graphs, where the proof is completely identical to that of Lemma 2:

Lemma 10 For every f € X = X(cwo,c1, N, Sp), there exists a function h €
Xs(Cxo, €1, N, Sp) such that
@) Z(f)=Z(h)
(ii) For any sub-interval J between two adjacent nodal points, i.e., J = (z, 7') where
2,7 € Z(f)and (z,Z)YNZ(f) =@, thenh > 0on J if and only if f > O there,
and

/h(x)dx:/f(x)dx. 20
J J

If0 ¢ Z(f), (21) also holds when J is a maximal star-like subgraph for which
0 € J but Z(f) is disjoint from the interior of J.
(i) Wp(f+, f-) = Wy(hy, ho) for any p > 1 with equality possible only if f €
X;(coo, 1, N, Sp) as well.
We now proceed to prove an analog of Lemma 4 for star graphs; the minimizers of

Wy (f+, f-) in X(coo, c1, N, Sp) are those where mass is transported only between
adjacent sub-intervals. .

Lemma 11 Let f € Xs(cso,c1, N, Sp). There exists g € Xs(¢cso, 1, N, Sp) Such
that Wy (f+, f-) > W,(g+, g-) for every p > 1, with the following property:

Ify € T'(g+, g-) is an optimal transport plan, then y only transport mass between
adjacent intervals. By this, we mean that if J and J' are two closed sub-intervals
between two adjacent nodal points (or the smallest star-like subgraph between the
nodal points closest t0 0), then y(J x J') £ 0 only if 3J N3J' # @.
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The new challenge in proving Lemma 11 is the absence of a monotonicity property.
On the interval, the explicitly optimal transport map (7) is monotone. On the circle,
monotonicity is a consequence of the exponential map form of (17) (or of the more
specific construction in Delon et al. (2010)). On star graphs, while we cannot hope
for monotonicity in the usual sense, we show that a similar property (Lemma 12)
is sufficient to demonstrate that the shift operations described in Lemma 4 can be
implemented on Sp as well (Lemma 11).

Proof of Lemma 11 We define the following disjoint partition:

D n(i)

Sp=J*"U UUJ,',.,',

i=1j=1

where on each interval /; that comprises the star graph Sp, we denote the sub-intervals
between adjacentnodal pointsby J; 1, ..., J; », C I; wheren; > Oforeachl <i <d,
and where the subintervals are ordered by decreasing distances from 0. Finally, let J*
be the smallest star-like graph between the closest nodal point to 0. If 0 € Z(f), then
J* = (. For ease of notation, it is useful to denote J* = J; )41 forall 1 <i < D.
We repeat the inductive construction of Lemma 4 (see Fig. 8 for illustration): for
each j, we iterate over all 1 < i < D for which j < n(i). Suppose without loss
of generality that J; ; N supp(f1) # @ and that for some set of nonzero measure
E C J; jNsupp(f4) we have that y (E, -) is supported on non-adjacent intervals, i.e.,

c=y (E, Sp\ (Ji,j—l U Ji,j+l)) >0.

For each non-adjacent interval where y (E, -) is supported, we will shift that exact
same mass to either J; j_1 or J; j+1, depending on the relative order between the
intervals.

As in Lemma 4, these shifts might require to push away from J; j some nodal points
to create room for the negative mass. See Fig. 8 for an illustration. Suppose then that
some interval of length A was shifted from J;/ ;s to J; j+1, and that all or some of the
mass between them has been pushed away from J; j+1. To exclude these scenarios,
we state a monotonicity lemma (in the spirit of Santambrogio (2015), Theorem 2.9):

Lemma 12 Let y be an optimal transport plan with respect to W), with p > 1, let
1<i,j,k,l<D,letx,x',y,y >0, andlet (x;, yt), (x}, yl’> € supp(y). Then the
following scenarios are impossible:

(1) i, j, k are distinct, k =1, x’ < x, and y' < y.

(2) j,k,laredistinct,i = j, x' <x,andy’ < y.

(3) i =j,x' <x,andy' < y (it may or may not be that i = k, i.e., (x;j, y;) may or
may not be part of the same edge).

Here, as before, for every 1 <i < D and every x € (0, L;), we denote by x; the point
on I; whose distance from the vertex 0 is x. The same notation applies to yx, x}, and y;.
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Fig.8 The shifts of Lemma 11 I,
on S3. A E is being (partially)
transported into U under the
optimal transport plan y. B After
the shift, the relevant mass of U
is shifted to the interval adjacent
to E, where mass on some of the

intervals between E and where
ECJ
U previously was has been I = \1 J . U Iy
shifted to the right. CIf x| € E, m——— = vrssssssm—
y3 € U, e, (x1,y3) € supp(y),
then this “push” could be (A)
harmful if (x}, y4) € supp(y), I
since then yé could be pushed
away from x). We show that this
scenario is forbidden when y is
an optimal transport plan with
respect to the cost function
h(x —y) = |x — y|? for p > 1
ECJ
I V’J I
AN % 0
——
push
(®)
1
i B
! ! !
()

The proof of Lemma 12 is given after we complete the proof of Lemma 11.

Lemma 12 is a star-graph analog of the monotonicity property (7) of optimal trans-
port on the line: item (3) is the most straightforward, since it implies that all four points
lie on the same linear path. Item (1) (and analogously (2)) is depicted in Fig. 8¢ with
i, j,and k being distinct, k = [, i.e., x; and x} do not lie on the same edges, and y,/{ is
on the path between x; and yy.

With the help of Lemma 12, we now make the following claim: if a set with nonzero
mass between J; ; and J;r j» was pushed away from J; j, then it cannot increase the
overall transport cost.

As in the case of the interval or the circle, proving this claim would show that our
inductive construction decreases the transport cost, thus proving the lemma.

To proceed with the proof of the above claim, we note that such a “push” away of a
set D from J; ; (towards the vertex 0) could increase the overall transport cost in three
scenarios: either (i) the optimal-transport plan y couples D to a set further away from
the vertex on /;,i.e.,in J; 1, ..., J; j—1, or, (ii) y couples D to an interval between I;
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and D (iii) y couples D to a third interval, i.e., not /; and not I;;. We will now rule
out both all these three scenarios.

First, (i) is impossible since there cannot be a point xlf € Ji1U...UJ; j—» which
was previously transported into a pushed interval, due to the inductive construction.
The only other way for the transport distance to increase with the shift is if y; is on the

path between x; and y and that (x;, yg), (x; y,’() € supp(y) with y’ # y. Lemma
12, item (3) similarly rules out scenario (ii). We are left with scenario (iii), depicted in
Fig. 8c. We remark that it is really this scenario that distinguishes the star graph from
the interval.

Here, i # j, and so Lemma 12, items (1)—(2), imply that |x’| > |x|. Hence, up to
relabeling of the edges, we have that (x1, y3), (x5, ¥;) € spt(y) with |x'| > |x|, and
|y| > |¥'|. By a slight abuse of notation, let x and x” be the infimum of all values such
that x| and xé satisfy these hypotheses, i.e., the closest to the vertex 0.

To rule this scenario out, let us now define an auxiliary function, f, which exchanges
the values of f on (0, x) between I and ;. Formally, for every j = 1,...D and
every t; € I;

f) if j=1 andt € (0,x)
fap =1 f@) if j=2 andr e (0, x)
f(t;) otherwise

Let us also define 7 to be the coupling between f, and f_ which is identical to y,
with the corresponding changes. We now proceed to make one helpful observation
that 7 is an optimal transport plan between fy and f_.

Indeed, since x; is transported to /3, then no other point on (0, x1) is transported to
(x1, L1). This would contradict monotonicity on the interval 7 (see item (3) of Lemma
12). The analogous statement holds for xé as well. Hence, the “exchange” of intervals
did not change the distances along Whic_h mass is transported, and so K, (y) = K, (),
and so Wy (f+, f2) = Kp(y) = Wp(f4, f-).

We now want to show an inequality in the other direction. Let y, be an optimal
transport plan for f, then y; is a coupling of f, and f_, and so

Wy (fa, f2) = Kp(y) = Kp(@) = Wp(fi, [2) = Kp(re) = Kp(7) = Wp(f4, f2).

Hence we have equalities throughout, and in particular K, (y) = W) ( fv. f-),and so
y is an optimal transport plan from f to f_.

By construction (xé, yé) € spt(y) (as it were with y), and due to the “exchange”
now we have that (x, y3) € spt(y). This violates item (3) in Lemma 12.

Thus we arrive at a contradiction. Hence x” = x. But now consider the situation
where (x1.y3), (x2, y3) € spt(y), with y > y'. By the exact same argument with the
roles of y and x interchanged, we arrive at a contradiction again. We have ruled out
scenario (iii), as depicted in Fig. 8c.

To summarize, the proposed shift cannot increase the transport cost, and therefore
Lemma 11 is proven. O
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Proof of Lemma 12 Consider first the case of p > 1, where c(x,y) = h(x — y) =
|x — y|? is strictly convex. First, recall that the support of y is c-cyclically monotone
(Santambrogio 2015, Theorem 1.38), i.e.,

B =y +h (= vj) < h (= yj) + 1 (x) = ) - (22)

We will show in detail how the first of the three scenarios is impossible, as the others
follow similarly.

Assume without loss of generality that x; € I1, y5,y3 € I3, and x; € I, as in
Fig.8c. Denote a = |y| — |y'| > 0. Then (22) reads as

h()x|+ 1y'| +a) + (X' + 1Y) < h(x|+ 1y'D + (x| + Y| +a).  (23)
Suppose |x/| < |x| first. Then

X1+ 1Y < X+ 1y +a < x|+ 1Y]|+a,
X+ 1Y < x4+ 1Y < x|+ 1Y +a.

We can express the “sandwiched” numbers, |x| + |y’| and |x’| + |y’| + a, as linear
interpolation between the endpoints o« = |x'| + |y’| and 8 = |x| + || + a,

X'+ 1y |+a=ta+ 1 —=0B, |x|+yI=tB+1—1)e,

where

r=—2 0.1,
a+|x| — x|

However, 4 is strictly convex for p > 1, and so combined with (23), then

h(@)+h(B) <h(ta+A-=0)B)+h@p+ (1 —1Da)
<th(a)+ (1 —0)h(B) +th(B) + (1 —t)h(x)
= h(a) +h(B),

which is a contradiction.

The case of p = 1 is proven by approximating 4 (x —y) = |x — y| by a sequence of
strictly convex functions, see Santambrogio (2015). Crucially, even though x, y € Sp
and not on the real line, 4 (x — y) is really a shorthand for / operating on the geodesic
distance (on the graph) between x and y, and hence the procedure generalizes to the
graph.

We have proven item (1) in the lemma. Item (2) is analogous, but with interchanging
x and x’ with y and y’, respectively. Item (3) reduces to the standard analysis of the
interval, since all four points lie on the same line. O
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SG (1a g, 9 E)
Lj ~ &
Ly ~1 0
Fig. 9 A star with 6 edges, where Lj, ..., Lg ~ ¢ with € << 1. However, since most of the edges are

very short, this star should be almost equivalent to an interval, in terms of transport and mass allocation. In
particular, for a function with a single nodal point (N = 1), that point cannot be the vertex 0

Remark While it is preferable to have 0 € Z(f), it might not be possible; A sufficient
condition is to have ar least two sufficiently long edges. Up to a relabeling of the
edges, we make the hypothesis that

[11], | I2] > ¢1/2¢00

i.e., all of the positive and negative mass could be allocated on /] and /5, respectively, in
intervals adjacent to 0. This is a sufficient condition that avoids somewhat pathological
star graphs for which O cannot be efficiently utilized as a nodal point. Such graphs
might resemble an interval attached to many short edges at its end, see e.g., Fig. 9.

Since the minimizers of W), (f3, f—) on Sp shift mass only between adjacent sub-
intervals (Lemma 11), we can now integrate our analysis of the single-point case
(Lemma 9) and conclude that it is always preferable to have a nodal point on the
vertex. Hence, minimizers have the following form:

(1) The vertex is a nodal point, i.e., 0 € Z(f), and there exists r{, ..., rp > 0 such
that f on [0,7;] € I; is non-negative for 1 < j < M, and non-positive for
M + 1 < j < D. The overall mass concentrated around 0 is therefore

D
1 = Coo E rj.
j=1

(2) The other N — 1 nodal points are “internal”, i.e., for each z, € Z(f) there exists
1 < j < Dsuchthatzy €]0, L;[ and f is an anti-symmetric step function around
it with length d; > 0, as in the interval case of Sect. 3.

Therefore, one needs to optimize only the positive step-widths rq,...,rp and
di, ...,dy—1. We summarize these results in the following theorem:

Theorem 13 Suppose Sp has at least two edges longer than c|/2coo. Question
1, i.e., minimizing W[f(er, f-) over X(cxo,c1, N, Sp), is equivalent to finding

Fly...,¥p,d1,...,dy—1 > 0 and a configuration function q : {1,...,N — 1} —
{1, ..., D} which minimize
N—1
1
> cood! T+ W (g1 80) (24a)
=1
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where

g<x>_coo210r]](x) Coo Z [=r;.0] (%) (24b)

j=M+1

subject to the mass conservation conditions

COOZ"J—COO Z rj =30,

j=M+1
N1 (24¢)
Cl+2c0 Y di=c1,
=1
and the admissibility constraints
rj+2 Y de<Lj, 1<j<D. (24d)

q(O)=j

Note that, since g is given explicitly by the equivalence established in Lemma 9,
see (19), and since it is a function on the line, W, (g4, g—) is given by the respective
inverse CDFs as in (8). Therefore optimizing W,f (g+, g—) involves a direct, closed
form calculation (see below). Moreover, if the edges are long, i.e., L; > c1/co for
any 1 < j < D, then the first constraint can be satisfied for any assignment of r;’s
and nodal point, i.e., for any choice of g. Hence, (24) becomes computable in closed
form without having to enumerate over all (N — 1) configuration functions ¢.

We can also see what is the complication introduced by shortedges -ife.g., Lp — 0,
then effectively the number of effective edges becomes D — 1 (in the sense that only
vanishingly small mass can be assigned to Ip), thus changing the solution. Hence,
obtaining a closed-form expression for (24) can be algebraically daunting. In fact,
already for N = 1, where Z(f) = {0}, there are some complications. We will work
out a few cases.

5.2 Long Edges, N = 1

We find the minimizers of W,(f4, f-) on f € X(ceo,C1, N = 1, Sp) where all
edges are sufficiently long.!” As discussed above, it is always preferable to have the
nodal point at 0. Moreover, it would always be better to distribute the L' mass on all
edges. This is because the L' and L constraints imply that “wasted” edges (on which
fj = Oeverywhere) lead to transport over larger distances, and so to a more expensive
optimal transport cost. Hence, W, (fy, f—) = W,(g+, g-), the equivalent function
on the line given by (24a). Since the edges are sufficiently long, if f has1 <M < D
positive edges, then g could be a general function with || g||cc = max(D, D — M)cxe.
Hence, by our analysis for the interval (Sect. 3), the optimal g is of the form:

10 The notation of the L! norm by ¢1 here will be convenient when we consider N > 1 in the next section.
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—(D—M)c, x € (—r_,0),
g(x) =1 Dcwo s x e 0,ry),
0, otherwise .

Crucially, an f : Sp — R to which this g is equivalent is only possible when all of
Sp edges (the different /;’s) are sufficiently long. In that case, the corresponding f
will be of the form

Co, X€O,ry),1<j<M,
fix)=1—Co,x€0,r ), M+1<j<D, (25)
0, otherwise ,

where ry and r_ are determined by the mass conservation relation (24c¢), which reduces
to

Mri=(D —M)r_. (26)
In these settings, minimizing W, (fy, f-) = W, (g, g-) reduces to finding the opti-
mal parameters ry,r— > 0and 1 <M < D.
Proposition 14 [N = 1 on a star] Suppose Sp has at least two edges longer than
c1/2¢c0. Then,
argmin W{:(f+5 f*) over XS(COO’gla 15 SD)5

is given by (25) with M = | D /2], the lower integer part of D /2.

Proof Since the equivalent g (see Lemma 9) is a function on an interval, we can
use the explicit formula in terms of the inverse CDFs, (8). By direct calculation,
the inverse CDFs, defined on the interval [0, ¢;/2], are G_T_l(t) = r+251_1(t) and
G~! () =—r_+r_ ZEflt. Assume without loss of generality that 74 > r_, and so
o= 251_1(r+ —r_) > 0. Hence,

c1/2
WP _/ ~—1, _ (_ ~—1.\1”
(g1, 8-) = [V+2C1 t ( ro+r_2c t)] dr
0
c1/2 c1/2
= [ [ +7r_]" dr > / [r-]". (27)
0 0

Hence, W,l; (g+, g—) is minimized when o = 0, i.e., when r; = r_, which by the
mass conservation relation (26) yields M = D/2.
When D is even, substitution of M = D/2 into (27) yields

C1 1 c1\? . 11
Deven W)(gy, g-)= Er_p =>pr <C—) €Ly r-=ry=—x, (28)
o
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which is the same as in the single step function case for D = 2, see (13).

When D isodd, M = D/2isnot an integer, and therefore not an admissible choice.
We claim that the optimal choices are either M = | D /2| = (D—1)/2or M = [D/2].
To see that, first note that the integrand in (27) is monotonic in «. Moreover, by the
mass conservation relation (26), we get that

1 1 1
w=atn) == (3= 55 ) 29)

forany 1 < M < D.Hence, W},’ (g+, g—) is monotonic convex in M near its minimum
at D/2, and the closest integer values, | D /2| and [ D /27, minimize the cost.
To find the minimal cost, first, by direct computation of the integral in (27), we get

1 c p+1

By substitution of M = | D /2] = (D — 1)/2 into (29), we get that

D\ 1 [ 2 20\ 4
“(LEJ)_Q(D—l_D+1)_cm(D—1)(D+1)'

Similarly, by the same constraint in (27), we have that

D+1 ¢ ¢ ¢
=—1:r =1 and ry = !

r_Coo _ , _
2 2 coo(D + 1) coo(D — 1)

Substituting the expressions for o and r_ into (30), we get

(D — 1)(D + 1 4é ¢ p+l
WP (g4, 8-) = - ( )(D + )[( ‘1 ‘1 )

4p+1) 2c0(D = 1)(D + 1) +coo(D+l)

& Pl
_(coo<D+ 1))

1
T4 p+ D+ HP(D -1y

~ P
(C—l> G+ 1P —(p -1t

Coo

To compare this expression to the even case (28), let us set p = 1. Then

~ ~2
D C1 i

———— (= —=—, (€29
2(D+1)(D —1) ceo 4Dcso

Wi(g+.g-) =

with D = % as defined before. Since

LI TSN
2(D+1) ~ 4D ~ 2(D—-1)
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we easily see that Wy lies in between the optimal cost for stars with D — 1 and D + 1.
This is consistent with the intuition that as D increases, the cost decreases.

Either D is even or odd, the overall transport cost is cheaper than the case of an
internal point. This makes intuitive sense, because a nodal point on the vertex allows
for more mass to be transported over a shorter distance, due to Lemma 9. |

5.3 Long Edges, N > 1, D is Even

In principle, now one can go to the general case of N > 1 and, using the minimization
formulation (24), find the minimizers. Comparing the even and odd cases in (28) and
(31), respectively, it seems that the case of D even is more tractable.

The total cost of transport through the O-vertex depends on a single parameter
r_ = r4, which is not yet determined. Equivalently, it depends on ¢, the amount of
mass concentrated around the vertex, with 0 < ¢; < c¢y. Since we assume that the
edges are sufficiently long, then (based on our analysis for the interval in Sect. 3) the
minimization problem (24) simplifies by di = - -+ = dy—_1 = din. We therefore wish
to minimize

D
WE(fy, fo) = (N = Deaod? ™ + Ecwrﬁ“ , (32)
subject to

2(N — Ddiptcoo + Dricoo =1 -

As in the case of the interval (Sect. 3), we use the method of Lagrange multipliers

D
L=(N-— l)coodp—H + —cmrfH — AQ2(N — 1)dipt€oo + Drycoo — 1) -

int 2
Then
14 p 2A
0= 8dim£ = (P + DN - 1)Coodint —2AN = Dee = dim - m ’
and
D 2%
0=3r+£:(p+1)36wrﬁ—chw — ri:ﬁ

In particular, 4 = din;. The constraint associated with ¢ then yields

1 C1l

1
d' = ="
int r+ Z(N—l)—i-%coo
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and the minimal optimal transport cost is

1
Cl Clp 1
"4 , o) =— = .
p(fr ) TR 7

In comparison with Theorem 5 for the interval, we see that for a star with an even
number of edges that are sufficiently long, N is replaced by N, i.e., the vertex as a
nodal point is equivalent to D /2 nodal points on a line.

5.4 Long Edges, N > 1, D is Odd

In this case, the same argument yields a much more cumbersome expression, and so
we resolve it only for p = 1. Lagrange multipliers method now yields

~2

1 ¢ -
L= (N—cod? + —=—L = 22N = Ddintcoo + &1 — 1),
4D Cx
(D+1)(D—1)

for D =
2D

Here, since r4 # r_, it is easier to minimize the cost with respect to ¢, the total L'
mass around the vertex. Then

1 ¢
O = 8" = ——— — ,
“ 2D Cco
and so
1 ¢
0=204,L=2(N—Dcocding —2L(N — 1)coo = dinn=r=——.
2D Cxo

The L! constraint now reads as

N—1¢; 5 D

_— _COO+51 =] > Cl = ——= (1.
D ¢ N—-1+D

As a sanity check, we see that ¢c; — ¢ as D — oo. We note that, in this case, the
sharp lower bound for f € X(cx, c1, N, Sp) reads like

~2
Lo

Wi(fi f2) = (N = Deoodiy + 5
ot

4(N — 1+ D)coo

Coo

v

>——L, for N=N-1+0D. (33)
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Compared with the case where the number of edges is even (see Sec. 5.3), D may be
viewed as the effective multiplicity of the nodal point at the vertex.

The key difference between the lower bounds on W for stars and the lower bounds
obtained for non-branching spaces (the interval, the circle, and general d-dimensional
surfaces in (2), see Carroll et al. (2020), Cavalletti and Farinelli (2021) and Sagiv and
Steinerberger (2020)), is that here the lower bound does not admit a multiplicative
‘uncertainty principle’-like structure of 4W; - N > %cl, where A depends on the
domain and norms of f. Nevertheless, for the cases in Sects.5.3 and 5.4, we may
still say that the structure is preserved with an effective N that is replaced by N to
account for the particular geometry of the nodal point at the vertex of the star. However,
discussions below imply that the precise characterization of N could be much more
involved than only the degree D with short edges present.

5.5 D = 3 with One ShortEdge,N > 1Tandp = 1

In the long-edge cases discussed above, the minimization problem given in Theorem
13 is assumed to have a solution in the interior of the constraint set (24d). To see further
how the geometry affects the conclusion on the minimal optimal transport cost, we
consider the special case of D = 3, with two long edges and a third short one as an
illustrative example. Our goal is to see how the limit L3 — OV interpolates between
S3 with three long edges, and S» = [—L1, L»].

First, note that to optimize the transport cost in the present case, it remains advanta-
geous to include the node of the star in Z( f). Moreover, the maximal amount of mass
should be assigned to the short edge if its length is sufficiently small. Meanwhile, away
from the node, we retain the symmetric structure around the other points in Z( f) that
are located on the long edges. Near those points, we utilize earlier discussion and use
din; to represent the length of the subintervals on which the functions are taken to be
Fcoo with the total optimal transport cost given by (N — 1)coodizm.

As before, to get an explicit expression for (24a), we need to work out Wy (g4, g—)
as a function of the overall mass assigned to the vertex, ¢;. Assume without loss of
generality that f > O on /; and f < 0 on I and /3 near the node. For L3 < 1, then
the maximal amount of mass should be assigned to /3,i.e.,r3 = L3 and f(x) = —cx
on /3. By the consideration above, we have that the equivalent g : R — R is of the
form

Coo X E€(=r1,0),
—2¢o0 x € (0, L3),

—Coo X € (L3,12),
0 otherwise .

glx) =

for two undetermined constants 71, r» > 0. For p = 1, we can use the CDF counterpart
of (8), Wi(g+,8-) = IIG+ — G_|lL1(r), Wwhere G are the CDFs of g.. By direct
computation

COO(t+rl) te(_rlao)a
Gi(t) —G_(t) = | Cool1 — 2Co0t t € (0, Ls),
Cool1 — 2Co0Ll3 — Ccoot x € (L3, 1) .
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Since the overall mass conservation (24¢) reduces to r| = rp + L3 = ¢1/2¢00, WE
have that

Wi+, 8-) =16+ — G-lpw

-~ 1 1.
=—Cir + <cir2 + ZCILS —cools3

4 4
& .
= —— —rc
4Coo 2Co0 L3
& & . .
=— = | — - c .
deoo 2Co0 3 ) foots

Putting these considerations together, the minimization problem in (24) reduces to

2 5% cl
Wilf+, f2) = (N — Deoodiy + dos <— - L3> Coo L3
Coo

- 2
C1 Lj 3
= Coo |:(N — 1)d12m + <F - 7) + ZL%] ,
00

subject to the L! mass conservation constraint

¢ c
2N = D + C—l =

00 Coo

Thus, for f = L3cso/c1, we get the optimal transport cost

1 (¢ 23, ¢ A-p2+3NB?
Wi(f+, [-) = oo |:4W (g - L3> + ZL3:| = dew N (34)

with equality for

dint =

1 ¢ N —1)L
LI T WO N N Lt D)
2N \ coo Coo Nceoo N

B as an Interpolation Parameter Between S3 and an Interval

We can understand these expressions between the two limits of either shortening or
lengthening I3, i.e., as the star graph deforms into an interval with L3 — 0T on one
hand and as

third edge becomes long enough for us to recover the case of three long edges, as
described in Sects.5.2 and 5.4. Note that our analysis involving the short edge holds
precisely until the case where there is no distinction between /> and I3 in terms of
mass allocation. By the results in Sect.5.4, the optimal mass around the origin for
D = 3isc¢; = 4c;/(BN + 1). Since near the vertex, L3 and Ly both contain the
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support of f_, the threshold length for L3 to enable the optimal ¢; thus corresponds
to B* = cooL3/c1 =C1/4c1 = 1/(BN + 1).

Indeed, we may rewrite the right-hand side of (34) to get an equivalent form given
by

Wi for f) = cf 3N+l(,3 1 )2+ cl
I = g N N+H1) T (N+ 1)

The lower bound is clearly a decreasing function of § for 8 € [0, 1/(3N + 1)], hence
interpolating, as expected, between the lower bound derived in (16) for p = 1 and
B = O4 (i.e., D = 2 for the case of an interval) and that given in (33) with D = 3 and
D = 3.

Me3anwhile, for small but nonzero L3, the non-multiplicative nature of the lower
bound on the right hand side of (34) is evident. Compared to the cases in Sects. 5.3
and 5.4, we see that the multiplicative form is lost not only in terms of N but also with

<L
respect to oo

Remark What can be said on stars such as in Fig. 9, for which Theorem 13 does
not apply? We outline the strategy for their analysis: first, the equivalence relation in
Lemma 9 can be extended to a single nodal point near the vertex, on the long edge.
The adjacency and monotonicity arguments (Lemmas 11 and 12) seem to go through
as well. Then, the optimization problem in Theorem 13 should be extended by adding
another parameter to represent the location of that “special” nodal point, which is near
the vertex. Finally, we remark that the condition for a long edge being > ¢ /2cqo is
sufficient, but not necessarily sharp. The sharpness of this lower bound would become
one interesting element in the study of Question 1 on general metric graphs.

6 Outlook

An important message of this work is that the original problem of minimizing the
transport cost over the specified function class is equivalent to a generalized mini-
mal surface problem associated with optimal domain partition. For one-dimensional
domains, minimizing the cost reduces to optimally positioning the nodal points and
locating masses around them. We believe that this approach can be generalized to
more challenging cases, some of which are discussed below.

Multidimensional Domains

In an analogous way to the one-dimensional settings of this study, it seems that on
bounded and regular domain 2 C RY, the minimizers will be step functions concen-
trated near the interfaces between f and f_. If this is indeed the case, the key remains
to be the solution to the minimization problem

i Wo(fr, ). 35
rexs gy Vel S (35)
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It should be commented that, for step functions, the existence of a lower bound ((2)
Carroll et al. (2020), Cavalletti and Farinelli (2021) and Sagiv and Steinerberger
(2020)) combined with nucleation arguments such as Novack et al. (2023), Lemma
2.8, should yield the existence of minimizers. An element in X (1, ¢1/co0, N, €2) cor-
responds to a unique partition of 2 into three disjoint subsets Q, Q2_, Q¢ C 2, where
Qp = Q\ (24 U Q_), such that

‘1 d—1 _
IQ-|=|Q+I=3, HTI M) =N, T'=0QNiQ_,

assuming that the partitions are sufficiently regular such that ¢~ (") is well defined.
Denoting the set of such partitions by Y (c1, N, €2), one may attempt a similar approach
to the one presented in this work: reducing the functional minimization problem (35)
to a purely geometric one:

Wy (fs. f2) = Wp(la,. la ) (36)

min min
fexX(,c,N,Q) (R2-,924,R0)€Y(c1,N,Q)

Clearly, the latter becomes an optimal partition problem or a minimal surface problem.
That s, the problem under consideration may be formulated as an equivalent geometric
question.

Question 15 For a bounded and regular domain Q C RY, p>1c1>0andN >0,
what are the optimal partitions (2—, Q.+, Qo) of Q and the corresponding minimum
value associated with the problem

min Wy(la,, lg ) @7
(Q_.24,20)€Y (c1,N.Q)

This draws interesting connections to possibly other optimal domain partition prob-
lems such as those related to different optimal transport minimization problems, e.g.,
partitions defined by the optimal quantization (centroidal Voronoi tessellations) (Qiang
et al. 1999; Mérigot et al. 2021). One may find more discussions on other optimal
domain partition problems in Bucur et al. (1998). A variation of Question 15 con-
sidered in Buttazzo et al. (2020), Novack et al. (2023), Peletier and Roger (2009)
and Xia and Zhou (2021) is to modify the set of feasible partitions by removing the
constraint on the prescribed measure of the nodal, and consider the minimization of
0924 | + AW (1q,, 1o ) where [0€2, | is the Hausdorff measure of the boundary set
of Q4 and A > 0 is a penalty constant.

The solution to the purely geometric Question 15 can be used to offer a new per-
spectives on the existing studies concerning (2) in multiple-dimensions (Steinerberger
2020; Sagiv and Steinerberger 2020; Carroll et al. 2020; Cavalletti and Farinelli 2021)
and to make further connections with the bilayer membrane limits (Peletier and Roger
2009; Lussardi 2014). In particular, the optimal transport problem admits a decompo-
sition into a continuous family of one-dimensional optimal-transport problems. One
of the main challenges is that, as we seek to solve (37), this decomposition changes
as well. Based on the discussion on the one-dimensional examples, it is obvious that
the optimal partitions may not be unique in general, even though they yield the same

@ Springer



Journal of Nonlinear Science (2023) 33:95 Page370f40 95

optimal transport cost. While a complete solution is beyond the scope of this work,
one might conjecture that I" is made of piecewise planar surfaces, which are the con-
ventional minimal surfaces in the Euclidean space.

Metric Graphs and Laplacian Eigenfunctions

This work is a starting point for the study of the Wasserstein minimization problems
on metric graphs, for which the star Sp (Sect.5) is perhaps the most basic nontrivial
example. Our analysis for Sp suggests what might be the key challenges for general
metric graphs - first, that the associated minimization problems might be algebraically
complicated, and second, that the equivalence principles (Lemma 9) are not easily
extended to general graphs. The second key challenge is to find a monotonicity-like
property which generalizes Lemma 12 to non-star graphs.

While the study of optimal transport on metric graphs is relatively new Erbar
et al. (2021), the study of nodal sets of special functions on metric graphs is a
well-established field, see e.g., Alon et al. (2018), Band (2014), Band et al. (2012),
Berkolaiko and Weyand (2014), Colin de Verdiere (2013), Gnutzmann et al. (2003)
and Hofmann (2021) as well as (Berkolaiko and Kuchment 2013) and the references
therein. In its heart, the question is a natural extension of Sturm’s Oscillations Theory:
given the N-th Laplacian eigenfunction on a certain metric graph, how many zeroes
does it have?

Independently, uncertainty principles for the Wasserstein distance such as (16) were
applied to generalize Sturm and Sturm-Hurwitz (sums of Laplacian eigenfunctions)
type results in dimensions d > 1 (Carroll et al. 2020; Cavalletti and Farinelli 2021;
Sagiv and Steinerberger 2020; Steinerberger 2020). Generally speaking, the approach
proceeds in two steps: first, prove a lower bound of the type (16), and then, obtain an
upper bound on W ( f, f_) for the specialized type of functions under consideration,
e.g., Laplacian eigenfunction. The current work might therefore open the way of
connecting these two lines of works, though many open challenges remain before
such a connection is established.

Minimization over More Specialized Function Classes

Concerning the possible connection to properties of Laplacian eigenfunctions, related
studies on lower bounds and uncertainty-principles of Laplacian eigenfunctions on
Riemannian manifolds (and RCD spaces in general) can be found in De Ponti and
Farinelli (2022), Mukherjee (2021) and Steinerberger (2021). One may note that the
key to get the new lower bounds like (16) presented in this work is through the study
of the minimization problem over the function class defined by, e.g., (3). The latter
class is large enough to allow minimizers taking on the form of step functions. On
the other hand, eigenfunctions of elliptic operators are smooth. Thus, another natural
research direction to explore is the study of possibly different bounds, associated with
similar minimization problems, but over classes of functions that are more regular or
of special forms. In particular, the special forms may correspond to discrete function
spaces, and the problem of passing from discretizations of L functions, where the
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minimization problem is finite-dimensional, to the continuum limit (studied in this
paper), might be of independent interest.

Functional Analytic Perspective

Inequalities such as (2) and (16) can be thought of as interpolation inequalities. On the
lower-bound side, there are the L' and L° norms involving no derivatives. The upper
bound consists of two terms, which can be connected to derivative norms of different
orders, respectively: first, |Z( )| is smaller than || DLsupp(f,)ll1, where the derivative
D is taken in the sense of functions of bounded variations (Evans and Garzepy 2018;
Giusti and Williams 1984); then, W, (f, f-) can be viewed as norms of derivatives
of negative order, e.g., the W distance is related to the standard Sobolev H™! norm;
See Loeper (2006) and Peyre (2018) for details.

While this functional-analytic perspective is not used in this paper, it can lead to
the exploration of more general variational problems of the type Question 1, e.g., by
allowing for constraints not only in L' and L, but in other norms such as L” norms
for 1 < p < oo. Moreover, understanding (2) as an interpolation inequality, (16) can
be thought of as a sharp interpolation inequality with optimal constants, of which an
extensive literature exists (Del Pino and Dolbeault 2002, 2003).
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