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Abstract

Consider the class of zero-mean functions with fixed L∞ and L1 norms and exactly

N ∈ N nodal points. Which functions f minimize Wp( f+, f−), the Wasserstein

distance between the measures whose densities are the positive and negative parts?

We provide a complete solution to this minimization problem on the line and the

circle, which provides sharp constants for previously proven “uncertainty principle”-

type inequalities, i.e., lower bounds on N · Wp( f+, f−). We further show that, while

such inequalities hold in many metric measure spaces, they are no longer sharp when

the non-branching assumption is violated; indeed, for metric star-graphs, the optimal

lower bound on Wp( f+, f−) is not inversely proportional to the size of the nodal

set, N . Based on similar reductions, we make connections between the analogous

problem of minimizing Wp( f+, f−) for f defined on � ⊂ R
d with an equivalent

optimal domain partition problem.
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1 Introduction

The study of nodal sets (or zero sets) of functions is a classic topic in analysis. Loosely

speaking, the key question is, for a given a function, “how big” its nodal set Z( f ) =

{x | f (x) = 0} is.1

In recent years, this question has been connected to the notion of optimal transport.

The intuition is as follows: given a sufficiently regular metric Borel probability space

� (e.g., a domain in R
d or a Riemannian manifold) and a sufficiently regular and

bounded real-valued function f : � → R with mean zero over �, we consider its

positive and negative parts f±(x) ≡ ± max(± f (x), 0) as densities, and the nodal set

Z( f ) as the interfaces of their supports. If the nodal set is small, then there should be

some regions in the support of f+ that cannot be near the support of f−. Therefore,

the cost of transporting f+ to f− cannot be arbitrarily small.

A common metric which quantifies the notion of transport cost is the Wasserstein-p

distance Wp( f+, f−). To make the connection between the nodal set and the transport

cost more transparent, we ask:

Given a nodal set of a certain size, which functions minimize Wp( f+, f−)? (1)

The answer to this minimization problem should depend on the norms of f ; first, the

larger ‖ f ‖1 is, the more mass there is to transport. Second, the more localized the

function is, as measured in this work by ‖ f ‖∞, the more mass can be concentrated

near the interface, thus decreasing the transport distance and cost.

Before rigorously formalizing our question (see Question 1 in Sect. 2), we note

that the motivation behind it originates from the following type of inequalities: for a

domain �,

W1( f+, f−) · Surf {x ∈ � : f (x) = 0} ≥ c(�)

(

‖ f ‖L1

‖ f ‖L∞

)ρ

‖ f ‖L1 , ∀ f ∈ C0(�̄),

(2)

where ρ > 0, c(�) > 0 is a constant that depends only on the domain �, and Surf

is a surface measure, e.g., the co-dimension 1 Hausdorff measure. The first inequality

of this type was proven by Steinerberger (2020) for two-dimensional domains such

as the unit square [0, 1]2, with ρ = 1. This result was then generalized to certain

compact domains in R
d with arbitrary d ≥ 1 by Steinerberger and the second author

with ρ = 4 − 1/d, see Sagiv and Steinerberger (2020). Subsequently, Carroll et al.

(2020) improved the exponent to ρ = 2 − 1/d, and Cavalletti and Farinelli proved

that the optimal ρ = 1 is true in all dimensions (Cavalletti and Farinelli 2021). The

analysis in Cavalletti and Farinelli (2021) takes place at a much larger class of metric

measure spaces that satisfy the Curvature-Dimension (CD(K , N )) condition, where

the nodal set can be measured using the notion of Perimeter (Ambrosio and Di Marino

2014; Miranda 2003). That result was then also proven for RCD(K ,∞) metric spaces

(Ambrosio et al. 2015, 2014) by De-Ponti and Farinelli for all p ≥ 1 (2022).

1 Here we use the term “nodal set” for a broad class of functions (see Sect. 2), whereas in other places it

refers to the zero sets of a special class of functions, e.g., Laplacian eigenfunctions.
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Fig. 1 An exemplary minimizer of Wp( f+, f−) with 3 nodal points on an interval

Despite the great level of generality of the above results, some fundamental ques-

tions still remain: is the inequality (2) with an exponent ρ = 1 sharp? First, we

do not know what the optimal constant c(�) is. More fundamentally, one may ask

whether a multiplicative inequality is the natural one. Indeed, some works studied

related additive inequalities (Buttazzo et al. 2020; Candau-Tilh and Goldman 2022;

Novack et al. 2023; Xia and Zhou 2021) regarding transport of the Lebesgue measure

between disjoint domains.2

But even the most general results regarding inequalities of the form (2) require

an essentially non-branching property (Cavalletti and Farinelli 2021; De Ponti and

Farinelli 2022): all RCD(K ,∞) spaces satisfy this property (Rajala and Sturm 2014),

whereas the result of Cavalletti and Farinelli (2021) is proven only to CD(K , N )

spaces which satisfy this property. A primary takeaway of our study is that it is indeed

necessary in order for inequalities like (2) to be sharp.

1.1 Main Results

In this paper, we formalize the minimization problem (1) and establish a strategy to

its solution. We find the minimizers on three families of one-dimensional domains: a

line (or an interval), a circle, and metric star graphs. The analysis of these domains

leads us to the following key conclusions:

• Generalized nodal sets for L1 ∩ L∞ functions Common to all these settings

are that the minimizers are step functions, and therefore do not have nodal sets

in the usual sense. Hence, it is crucial to extend the class of admissible functions

and notion of nodal sets of continuous functions to a broader class of L1 ∩ L∞

functions. Furthermore, it may be expected that this would be the right formulation

through which to explore the minimizers in higher dimensions (see Sect. 6).

• Strategy Our work establishes a strategy to approach the minimization problem

under consideration through a series of reductions of the class of feasible func-

2 In particular, Candau-Tilh and Goldman (2022), Proposition 2.5 and Novack et al. (2023), Lemma 2.8

consider the overall transport outside of a bounded set E ⊂ R
d and prove that a lower bound on the transport

cost must be inversely proportional to the perimeter of E , i.e., if F ⊆ Ec with volume |E | = |F | = 1, then

Wp(1E , 1F ) > C(d)/Per(E) for some universal C(d) > 0.
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tions. The reduction strategy consists of three stages: (1) We reduce the functional

minimization problem to a geometric one. Fixing the nodal domain, i.e., the inter-

face between the positive and negative parts (see Definition 1), we show that it is

always preferable to allocate the L1 mass near the nodal domain. Thus, given a

function f we find a new function g which is (up to a sign and scaling) the indicator

function of a subset of the supports of f±, and for which the overall transport cost

is cheaper. (2) We find that there is always a preferable configuration of the mass

and the nodal points such that the optimal transport plan only couples adjacent

intervals. (3) Steps (1) and (2) reduce the infinite-dimensional variational problem

to a constrained finite dimensional problem, which one can solve by elementary

means.

• The minimizers By posing the question as a minimization problem, our work goes

beyond previous works on the subject since we gain insight into the minimizers

themselves. In the simplest case, the interval (or for every smooth non-intersecting

curve), the minimizers are step functions whose only possible values are either

±‖ f ‖∞ or 0, as can be seen in Fig. 1. Thus, these are functions for which the

optimal transport between f+ and f− is local, across a single interface. Next, even

though the circle introduces a new global structure, we show that the nature of the

problem (and the minimizers) do not change.

• Sharp multiplicative inequalities for the interval and the circle The complete

solution of the minimization problem allows us to explore the sharpness of the mul-

tiplicative “uncertainty principle” (2). For an interval, we find that multiplicative

inequalities are optimal (Sect. 3). The sharp inequality for p ≥ 1 is

Wp ( f+, f−) · |Z( f )| ≥ 2
−1− 1

p

(

‖ f ‖1

‖ f ‖∞

)

‖ f ‖
1
p

1 .

We further show that the same conclusion is not limited to an interval domain but

also remains valid for a circle (see Sect. 4). This, in turn, leads us to seek for an

example of domains, e.g., a metric star graph, for which the sharp lower bound is

not expected to be multiplicative (see Sect. 5).

• Metric star graphs We carry our strategy to the more complicated case of metric

star graphs (e.g., we need to solve Kontorvich’ problem and not Monge’s); indeed,

as before, Theorem 13 reduces the general minimization problem over L1 ∩ L∞

into a finite-dimensional constrained optimization problem. The key difference,

however, is that in contrast to the line and the circle, the optimal relation between

the minimal transport cost and the other factors under consideration is not multi-

plicative on star graphs. The introduction of a node yields optimal lower bounds

which depend on the geometry of the domain. For example, in the case of a star

with D ∈ N sufficiently long edges,

W1( f+, f−)Ñ ≥
1

4

‖ f ‖1

‖ f ‖∞

‖ f ‖1 , Ñ = |Z( f )| − 1 +

{

D
2
, D even ,

(D+1)(D−1)
2D

D odd .
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When some of the edges are not sufficiently long, even more complicated forms

of inequalities emerge. Our conclusions for star graphs echo and contrast the

analysis of Cavalletti and Farinelli (2021), where the multiplicative (2) lower bound

is proved for a broad class of non-branching spaces. Since stars, and metric graphs

in general, are branching spaces (see also Erbar et al. (2021)), one might expect a

different type of results, as we indeed prove in Sect. 5.

The strategy and issues identified in this work are expected to be generalizable to

high dimensional settings. The one-dimensional settings help establish the strategy

in its simplest form, and allow us to reach easy-to-compute and precise constants.

Furthermore, by considering graphs, we are able to expose the key challenges in

going beyond all previous works on non-branching spaces. In Sect. 6, we outline

the conjectures and key challenges in generalizing our strategy to multi-dimensional

domains, as well as to general metric graphs.

1.2 Structure of the Paper

Preliminaries, definitions, and the formulation of our minimization problem (Question

1) are given in Sect. 2. Then, the problem is solved for the interval (Theorem 5) and

the circle (Theorem 7) in Sects. 3 and 4, respectively. For star graphs, in Sect. 5 we

re-formulate Question 1 as a finite-dimensional constrained minimization problem

(Theorem 13) and solve it for a number of special cases. Finally, an outlook on the

problem in multiple dimensions and on general metric graphs is presented in Sect. 6.

2 Settings

2.1 Nodal Sets

Given a one-dimensional domain I , constants c∞, c1 > 0, and N ∈ N, define

X = X(c∞, c1, N , I ) ≡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f : I → R measurable such that

‖ f ‖∞ = c∞ ,

‖ f ‖1 = c1 ,

|Z( f )| = N ,
∫

I
f (x) dx = 0 .

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (3)

where Z( f ) is the set of points where f changes its signed, defined as follows:

Definition 1 (Effective nodal set) Consider a measurable f : I → R with finite L1

and L∞ norms.

• Define

Z1( f ) ≡ ∂{x | f (x) > 0} ∩ ∂{x | f (x) < 0} .

• Let Z( f ) ≡ π0

(

f −1({0})
)

, the set of all connected components of f −1({0}).

• Let Z ′( f ) ⊆ Z( f ) be the set of all elements of Z( f ) whose closure intersects

both ∂{x | f (x) > 0} and ∂{x | f (x) < 0}.

123



   95 Page 6 of 40 Journal of Nonlinear Science            (2023) 33:95 

Fig. 2 Under Definition 1, the

portrayed function has

|Z( f )| = 2

x

f(x)

A B C D E F G

• Let Z2( f ) be a set which consists of a unique point x ∈ J for every J ∈ Z ′( f ).

• Finally, define the effective nodal set as Z( f ) ≡ Z1( f ) ∪ Z2( f ).

Our intention is to define Z( f ) in a way which exactly captures every sign change of

f once. Let us see that this is indeed achieved by the definition: consider, for example,

the function in Fig. 2. While f = 0 on [A, B], and so [A, B] ∈ Z( f ), it is not an

element of Z ′( f ), since it does not intersect with ∂{ f < 0}. Hence, no point in [A, B]

is contained in Z( f ). The same is true for [D, E]. By definition, C ∈ Z1( f ). Lastly,

[F, G] ∈ Z ′( f ), and therefore F ∈ Z2( f ). Overall, f changes its sign exactly twice

and indeed |Z( f )| = |{C, F}| = 2.

We contrast our definition with those used in previous works:

• In Sagiv and Steinerberger (2020) and Steinerberger (2020), the objects of study

are continuous functions, and therefore the interface between the supports of f+
and f− is always contained in the set f −1({0}). For general measurable functions,

therefore, Definition 1 of the effective nodal set need not coincide with f −1({0})

for f ∈ C0(I ) (consider e.g., f (x) = x2 on [−1, 1]). Moreover, for functions

which are merely bounded but not continuous, these interfaces are not necessarily

in f −1({0}), and hence the somewhat more complicated form of Definition 1.

• The authors of Cavalletti and Farinelli (2021) considered the quantity

Per({x | f (x) > 0}). First note that, in Euclidean settings, the Perimeter coin-

cides with the Hausdorff measure Hd−1 of the reduced boundary of { f > 0}, and

in particular for d = 1 this is just the cardinality of the set. Furthermore, the zero

set in Cavalletti and Farinelli (2021), ∂{x | f (x) > 0}, includes points where f

does not changes signs, e.g., A and B in Fig. 2. This is not an issue when seeking

lower bounds of the type (2), as adding points which are not interfaces between f+
and f− can only increase the left-hand side of (2). Since we solve minimization

problems on functions with exactly N sign changes, it is easier if we avoid such

issues, even at a cost of a slightly more elaborated definition.

2.2 Optimal Transport and theWasserstein Distance

We briefly recall the definition and certain key properties of the Wasserstein-p dis-

tance. We refer to Santambrogio (2015) and Villani (2003) for a more comprehensive

treatment of this topic. Let p ≥ 1, � ⊆ R
n a Borel set, and denote by Pp(�) the set of

all Borel probability measures on � with finite p-th moments. Define the Wasserstein-

p distance between two measures μ1, μ2 ∈ Pp(�) as
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Wp(μ1, μ2) ≡ inf
γ∈�(μ1,μ2)

K
1
p
p (γ ) , K p(γ ) ≡

∫

�×�

|x − y|p dγ (x, y) , (4)

where |x − y| is the geodesic distance on I and �(μ1, μ2) is the set of all Borel

probability measures on � × � with marginals μ1 and μ2, i.e.,

μ1(A) = γ (� × A) , μ2(A) = γ (A × �) , (5)

for any γ ∈ �(μ1, μ2) and any Borel set A ⊆ �.

A measure γ is often called a transport plan and γ minimizing K p is said to solve

the Kantorovich problem. In some cases, there exists an optimal transport map, a

function T : � → � which solves the so-called Monge problem:

inf
{T | T#μ1=μ2}

K
1
p
p (T ) , K p(T ) ≡

∫

�

|x − T (x)|p dμ1(x) , (6)

where by T#μ1 we mean the pushforward of μ1 by T , i.e., the measure which assigns

to any Borel set A ⊆ � the measure T#μ1(A) = μ1

(

T −1(A)
)

. Any map that pushes

μ1 to μ2 induces a transport plan (id, T )#μ1 ∈ � (μ1, μ2), and the transport cost is

unambiguously defined, i.e., we can write K p(T ) as a shorthand for K p ((id, T )#μ1).

On an interval I ⊆ R, for any p ≥ 1 and any two atomless measures, an optimal

transport plan is induced by an optimal transport map (Santambrogio 2015, Theorem

2.9), i.e., W
p
p (μ1, μ2) = K p(T ), with a monotonically increasing T defined by

T = F−1
μ1

◦ Fμ2 , (7)

where Fμ(y) ≡ μ(−∞, y) is the cumulative distribution function (CDF), and the

inverse is taken in the generalized sense, F−1
μ (x) ≡ inf{t ∈ R | Fμ(t) ≥ x}.3 For p >

1, this map is also unique (Santambrogio 2015). Hence, the Wasserstein-p distance

has the much simpler form

Wp (μ1, μ2) =

∥

∥

∥
F−1

μ1
− F−1

μ2

∥

∥

∥

L p(R)
. (8)

In the particular case of p = 1, one gets the more straightforward formula with

the CDFs (and not their inverses) W1 (μ1, μ2) =
∥

∥Fμ1 − Fμ2

∥

∥

L1(R)
, see Salvemini

(1943) and Vallender (1974).

Our main question can be rigorously formalized as

Question 1 For a one-dimensional domain I with nonzero measure |I | > 0, p ≥ 1,

c∞ > 0, c1 ∈ (0, c∞|�|], and N ∈ N+, what are the minimizers and the minimum

value of the minimization problem

min
f ∈X(c∞,c1,N ,I )

Wp( f+, f−) . (9)

3 The statement holds more generally for the optimal transport with respect to any convex cost function

h(x − y) on the line, but we will not pursue this level of generality here.
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By Wp( f+, f−), we mean the Wp-distance between the measures whose densities are

f+ and f−. Note that c1 ∈ (0, c∞|�|] and N > 0 are specified in the statement of

Question 1 as necessary and sufficient condition for X(c∞, c1, N , I ) �= ∅.

A crucial ingredient to study the above minimization problem is to establish an

equivalence formulation that provides a characterization of the minimizers to the

original problem. Connected to this, we present a sub-class of functions, defined

below:

Definition 2 Let I be a one-dimensional domain (a curve or a metric graph). Denote

by Xs = Xs(c∞, c1, N , I ) the set of step-functions f ∈ X(c∞, c1, N , I ) such that

f = ± c∞ only on intervals adjacent to points in Z( f ) and 0 everywhere else; see,

e.g., Figs. 1 and 3B.

3 The Interval

In this section, we study the case of a nonempty interval I = (0, L) with L > 0.

Our strategy to answer Question 1, here and throughout this paper, is that of optimiza-

tion; for every candidate function f ∈ X , we attempt to construct g ∈ X such that

Wp( f+, f−) > Wp(g+, g−). The minimizers will therefore be the only functions for

which further optimization is not possible, and we will show that, by construction,

those are also global minimizers.

Lemma 2 Let I = (0, L). For every f ∈ X = X(c∞, c1, N , I ), denote Z( f ) =

{z1, . . . , zN } with zi < zi+1 for all 1 ≤ i < N. Then, there exists a function g ∈ Xs

such that

(i) Z( f ) = Z(g)

(ii) For any zi ∈ Z(g), g ≥ 0 on Ii = (zi , zi+1) if and only if f ≥ 0 there, and

∫

Ii

g(x) dx =

∫

Ii

f (x) dx .

(iii) Wp( f+, f−) ≥ Wp(g+, g−) for any p ≥ 1, with strong inequality if f /∈ Xs .

Remark Even though the optimal transport plan in this case is given by the monotonic

map (7), we will work in this proof with a general coupling γ ∈ �( f+, f−). This level

of generality shows that at least the geometric nature of the problem extends to the

following more general setting: let � be a simple curve, c(x, y) = h(|x − y|) where

h : R+ → R+ is a monotonically increasing function in the geodesic distance for two

points x, y ∈ �, and define the c-transport cost as

Kc(T ) =

∫

�×�

c(x, T (x)) , dμ(x) . (10)

Then, defining the optimal transport with respect to c(x, y) analogously to (4), Lemma

2 still holds. Also, it will allow us to generalize this statement immediately to star

graphs in Sect. 5.
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(a)

x

Ij ⊂ supp(f+)

c∞

(b)

x

Ij ⊂ supp(f+)

c∞

Fig. 3 A For an interval I j where f (x) ≥ 0 and a given transport plan γ ∈ �( f+, f−), the mass left of the

dotted lines will be transported to intervals I� with � < j , and the mass to the right of the dotted to intervals

I� with � > j . B The cost of transport for the portrayed re-organization of f on I j is cheaper

Proof Consider an optimal transport plan between f+ and f−, i.e., a measure γ ∈

�( f+, f−) such that K p(γ ) = W
p
p ( f+, f−), see Eq. (5). The intuition is that for each

0 ≤ j ≤ N , some of the mass on I j has to be transported to the left by γ , and some

has to be transported to the right, see Fig. 3a.4 It is therefore less costly to have those

respective masses already concentrated near the endpoints of I j , see Fig. 3b.

To prove the above intuition rigorously, we will inductively define a sequence

of functions in the following way: let f 0 ≡ f and γ 0 ≡ γ . For 1 ≤ j ≤ N ,

we will define a function f j and a new transport map γ j ∈ �( f
j

+, f
j

−) such that

they satisfy conditions (i–iii) of Lemma 2 on the intervals I0, . . . , I j−1 and such that

K p(γ j−1) ≥ K p(γ j ) for any p ≥ 1.

Since f has a definite sign on each interval, suppose without loss of generality

that f is non-negative on I j (the negative case is completely symmetric). Define

p j ≡ γ j (I j × ·); this is a Borel measure on I which specifies how much mass from

I j is transported in I under γ j .

Since the functions f+ and f− (thus the functions f
j

+ and f
j

−) have disjoint supports,

γ j does not transports from I j into itself, and so p j (I j ) = γ j (I j × I j ) = 0. There

exist two constants λ j , 
 j ≥ 0, such that (identifying z0 = 0 and zN+1 = L)

p j
((

z0, z j

))

= λ j , p j
((

z j+1, zN+1

))

= 
 j .

These are the masses transported from I j to its left and right, respectively.

4 The red dotted line, separating between the left and right transported parts in I j , is vertical in Fig. 3a,

since the optimal transport in this case is given by a map. In the case when the optimal transport is given

by a coupling, this separation would be better depicted by a curve h(x) with 0 ≤ h(x) ≤ f+(x).
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We construct a new function f j+1 ∈ X with Z
(

f j
)

= Z
(

f j+1
)

as follows5:

f j+1(x) ≡ sign( f )(x) ·

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

c∞ , x ∈
(

z j , z j +
λ j

c∞

)

,

0 , x ∈
(

z j +
λ j

c∞
, z j+1 −


 j

c∞

)

,

c∞ , x ∈
(

z j+1 −

 j

c∞
, z j

)

f j (x) , otherwise .

Clearly f j+1 satisfies conditions (i)–(ii) of Lemma 2 on the interval I j , and by induc-

tion on the intervals I0, . . . , I j−1 as well. Since the mass transported from I j to the

left is now concentrated on (z j , z j +λ j/c∞) as much as possible (with density = c∞),

one can transport this mass to the left at a lower cost, by Definition (4). The same holds

for the transport out of I j to the right. The transport from any other positive interval

is defined identically to γ j . The resulting γ j+1, the optimal transport plan between

f
j+1

+ and f
j+1

− , satisfies K p

(

γ j
)

≥ K p

(

γ j+1
)

for any p ≥ 1. This is because, under

the new optimal transport plan, some of the mass is transported over a shorter distance,

and no mass is transported over a longer distance.

Moreover, note that if f j+1 �= f j , i.e., if the construction really did change the

function (and so also γ j �= γ j+1), then a nonzero mass is now transported over a

shorter distance, and so a strict inequality holds K p

(

γ j
)

> K p

(

γ j+1
)

.

Finally, we set g ≡ f N+1. ��

Lemma 2 implies that for any p ≥ 1

min
f ∈X(c∞,c1,N ,I )

Wp( f+, f−) ≥ min
f ∈Xs (c∞,c1,N ,I )

Wp( f+, f−).

And furthermore the minimum on the left hand side is attained only on Xs(c∞, c1, N , I ).

Hence, Question 1 reduces as follows:

Corollary 3 For I = (0, L), the two minimization problems

min
f ∈X(c∞,c1,N ,I )

Wp( f+, f−) and min
f ∈Xs (c∞,c1,N ,I )

Wp( f+, f−) ,

have the same minimizers and the same minimum value for any p ≥ 1.

Corollary 3 allows us consider the minimizers in Question 1 only from Xs , simply by

shifting the mass without changing the nodal set itself. To further reduce the problem,

we will now allow for non-local shifts: we will move mass across sub-intervals, which

may also change the nodal set (but not its size). To ensure that these non-local shifts

reduce the transport cost, we will make use of the monotonicity properties of (7).

Lemma 4 Let I = (0, L) and f ∈ Xs(c∞, c1, N , I ). There exists a function g ∈ Xs

such that Wp( f+, f−) ≥ Wp(g+, g−), with the following property: denoting the

optimal transport map (7) of g by T = T [g], then T only transport mass between

5 Since the nodal set Z( f j ) is independent of j , we write z j unambiguously.
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Fig. 4 A nodal point z2 and the

supports of f+ and f− to its left

and right, with z2 − l2 and

z2 + r2 annotated

z2z2 − l2 z2 + r2

· · ·

adjacent intervals, i.e., T
(

I j

)

⊆ I j−1 ∪ I j+1 for every I j =
(

z j , z j+1

)

where

{z1, . . . , zN } = Z(g), z0 = 0, and zN+1 = L.

Proof Suppose without loss of generality that f is nonnegative on I0 = (z0, z1).

By definition, f is characterized by 3N nonnegative numbers, {zi , li , ri }
N
i=1, such

that f = (−1)i+1c∞ on (zi − li , zi ), f = (−1)i c∞ on (zi , zi + ri ), and f = 0

everywhere else,6 see Fig. 4.

We will again construct a sequence of functions f j ∈ Xs(c∞, c1, N ), now charac-

terized by
{

z
j

i , r
j

i , l
j

i

}N

i=1
, such that

(i) K p

(

T j
)

≥ K p

(

T j+1
)

, where T j is the monotone optimal transport map (7)

associated with Wp

(

f
j

+, f
j

−

)

.

(ii) T j+1(Ik) ⊆ Ik+1 ∪ Ik−1 for k = 0, . . . , j

Set f 0 = f . Suppose without loss of generality that f j is nonnegative on I j . By

Lemma 2, the mass in
(

z
j

j , z
j

j + r
j

j

)

is transported to the left, i.e., to I0, . . . , I j−1.

By the induction assumption, in the j-th step all of the mass in intervals with index

less than j is transported to adjacent intervals. Hence our inductive construction only

needs to consider mass transported from I j to the right.

Assume T j = T transports an interval E ⊆
(

z j+1 − l
j
j+1, z j+1

)

⊆ I j to a non-

adjacent sub-interval to the right of I j , i.e., T (E) ⊆
(

z
j
j+3, L

)

but T (E)∩ I j+1 = ∅.7

For simplicity, suppose further that E maps into a single interval, i.e., T (E) ⊆ Ii

with i > j + 2; Otherwise, if T only maps a part of E into Ii , one can split E into

different sub-intervals each mapping into a distinct interval.

To construct f j+1, we would like to perform a shift operation, that is, to shift

T (E) into I j+1. To make this more precise, consider first the ideal situation where

f j = 0 on some subset Ẽ ⊆ I j+1 of equal length, i.e., |Ẽ | = |E |. In loose terms, it

means that there is space for E to be shifted into I j+1, and so we would set

6 Since f ∈ Xs , behaviors such as the interval [F, G] in Fig. 2 are excluded.

7 Since f j is non-negative on I j , it is also non-negative on I j+2, and therefore the next-nearest interval

on which f is non-positive is I j+3 =
(

z j+3, z j+4

)

.
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f j+1(x) =

⎧

⎨

⎩

−c∞ , x ∈ Ẽ ,

0 , x ∈ T (E)

f j (x) , otherwise .

(11)

In particular, in this case Z
(

f j
)

= Z
(

f j+1
)

.

The above construction, however, might not be possible; it might be that the interval

I j+1 is already full, by which we mean that if

(

z
j
j+1 + r

j
j+1, z

j
j+1 − l

j
j+2

)

⊂ I j+1,

the sub-interval on which f = 0 is shorter than T (E). Then the mass of T (E) cannot

be shifted there (and f j+1 cannot be defined as in (11)), since f is a step function of

height ±c∞, and so cannot exceed this value and stay in Xs(c∞, c1, N ). If this is the

case, we need to push some or all of the points z
j

j+2, . . . , z
j

i to the right by up to |E |,

and then we can repeat the above construction as in (11), with the shifted intervals and

nodal points.

The shift operation is depicted on Fig. 5. Let us consider the effect of the shift

operation on the overall transport cost Wp

(

f
j+1

+ , f
j+1

−

)

:

• The mass |E |c∞, which was previously transported between from E ⊆ I j to

T j (E) ⊆ Ii , is now transported over as shorter distance, to T j+1(E) ⊆ I j+1.

• Suppose that for � > j , the nodal endpoint z
j

� was pushed to the right. By the

inductive construction, the transport from/to I� could not have been from a point

to the left of z j . If it was transported to/from a point to the right of Ii , then the

overall transport distance decreased.

• Suppose that for � > j , the nodal endpoint z
j

� was pushed to the right. Suppose

without loss of generality that I� ⊆ supp( f+) (the negative case is analogous) and

that for some D ⊆ I�, we have T j (D) ⊆ Im ⊂ supp( f−) with � > m > j ; the

proposed shift would then increase the transport distance, by potentially pushing D

away from T (D). This scenario, however, is impossible due to the monotonicity of

T j , see (7): take two points x ∈ E and x ′ ∈ D, then x < x ′ but we T (x) > T (x ′)

(since i > �), hence a contradiction.

We note here that our construction cannot change the order of points, i.e., z
j+1
k ≤

z
j+1
k+1 . Similarly, the construction keeps the nodal points inside I , i.e., z

j+1
1 ≥ 0 and

z
j+1
N ≤ L .

We established the first property in the induction, that K p

(

T j
)

≥ K p

(

T j+1
)

.

Now, note that the new transport map we constructed is monotone and pushes f
j+1

+

to f
j+1

− . Hence, it is an optimal transport map between f
j+1

+ and f
j+1

− (the unique

one for p > 1), T j+1. By construction, it satisfies the adjacency requirement, that

T j+1 (Ik) ⊆ Ik+1 ∪ Ik−1 for all k ≤ j .

This completes the j-th step. We take g = f N , which completes the construction.

Finally, note that unless f = g, we strictly reduced the transport cost at some stage

of the induction, and so Wp( f+, f−) > Wp(g+, g−). ��

Remark The proof of Lemma 4 relies on the convexity of the cost function h(|x−y|) =

|x − y|p with p ∈ [1,∞). When h is convex, the monotone map (7) is a solution of
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E ⊆ Ij Ij+1 T j(E)

push

shift

z
j
�

Fig. 5 The shift operation described in the proof of Lemma 4: on the j-th step, some E ⊆ I j is mapped

by T j to a non-adjacent interval Ii right of E . We shift that mass to I j+1. In the process, some or all of

the nodal points in between, e.g., z
j
�

with j + 1 < � < i , need to be pushed away (to the right) to “make

room” for the shifted mass

Monge’s problem (6), see Santambrogio (2015). This is no longer the case if one

considers a concave cost function, e.g., |x − y|p with p ∈ (0, 1). For concave costs,

it is known that the maps may not be monotone (Gangbo and McCann 1996; McCann

1999), and a different type of analysis will be needed. Another interesting cost function

not considered in this work is the L∞ cost (Barron et al. 2017; Champion et al. 2008).

We conclude that f ∈ Xs(c∞, c1, N , I ) can be a minimizer of the problem (9) for

p ≥ 1 if and only if it has the following structure:

(i) Z( f ) = {z1, . . . , zN } ⊂ (0, L).

(ii) There exist d1, . . . , dN > 0 such that z j +d j ≤ z j+1−d j+1 for all j = 1, . . . , N ,

z1 − d1 ≥ 0, and zN + dN ≤ L .

(iii) without loss of generality, assume that f ≥ 0 on (z0, z1). Then for j odd,

g(x) = c∞ on
(

z j − d j , z j

)

and g(x) = −c∞ on
(

z j , z j + d j

)

, and vice versa

for j even.

In less formal language, a minimizing step-function attains its maximal value c∞

anti-symmetrically around each nodal point z j , see Fig. 1. The optimal transport plan

γ ∈ �( f+, f−), which is given by the monotone map (7), only transports across each

nodal point, and K p(γ ) is just the sum of costs accrued at each nodal point. The only

questions that now remain concern the distribution of the width parameters d1, . . . dN ,

and the overall minimal optimal transport cost.

Theorem 5 Let I = (0, L) with L > 0, p ≥ 1, c∞ > 0, c1 ∈ (0, Lc∞], and N ∈ N+.

The minimizers of the problem (9) are step functions, anti-symmetric about each nodal

point, with value ±c∞ and width c1/(2c∞N ). These minimizers satisfy

min
f ∈X(c∞,c1,N ,I )

Wp( f+, f−) = 2
−

p+1
p

c1

Nc∞

c
1
p

1 . (12)

Proof By (8), the transport cost across a single nodal point z j depends on the inverse

CDFs.8 By Lemmas 2 and 4, it suffices to consider step functions f ∈ Xs where mass

8 Since Fμ(y) = μ(−∞, y) might not be bijective, we define the inverse CDF by F−1(x) ≡ inf{y ∈

R | F(y) ≥ y}, see Santambrogio (2015), Section 2.1.
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is transported only to adjacent sub-intervals. Suppose without loss of generality that

f = c∞ on (z1 − d1, z1) and f = −c∞ on (z1, z1 + d1). By definition, F+(z1) =

F− (z1 + d1) = c∞d1. Hence F−1
f+

(c∞d1) − F−1
f−

(c∞d1) = d1. On the interval (of

cumulative probabilities) (0, c∞d1), the inverse CDFs are linear with slope 1/c∞, and

so for every t ∈ (0, c∞d1) the difference between the inverse CDFs is constant, i.e.,

d1. Hence,

⎡

⎣

c∞d1
∫

0

|F−1
f+

(t) − F−1
f−

(t)|p dt

⎤

⎦

1
p

=
[

c∞d
p+1
1

]
1
p

= c
1
p
∞d

1+ 1
p

1 . (13)

Summing up the contributions of all nodal points, then by (8) we have that

W
p
p ( f+, f−) =

N
∑

j=1

c∞d
p+1
j . (14a)

For simplicity of computations, we will minimize W
p
p ( f+, f−) (which is equivalent

to minimizing Wp( f+, f−)). This is a constrained minimization problem, under the

L1 constraint

N
∑

j=1

d j =
c1

2c∞

. (14b)

By the method of Lagrange multipliers, let

L = c∞

∑

j

d
p+1
j − λ

(

∑

j

d j − c1/2c∞

)

.

We get from the condition ∂d j
L = 0 that

λ = (p + 1)c∞d
p

j , 1 ≤ j ≤ N . (15)

The condition ∂λL = 0 yields

c1

2c∞

=

N
∑

j=1

d j = N

[

λ

(p + 1)c∞

]
1
p

,

which leads to,

λ = (p + 1)c∞

(

c1

2Nc∞

)p

.
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Combining the above expressions of λ together, we get d j = c1/2Nc∞, and the overall

cost is, by (14a),

W
p
p ( f+, f−) = Nc∞

(

c1

2Nc∞

)p+1

=
1

2p+1

(

c1

Nc∞

)p

c1 .

��

As a consequence, we have

Corollary 6 Let I = (0, L) and p ≥ 1. For any f ∈ L∞(I ) we have

Wp( f+, f−) · |Z( f )| ≥ 2
−1− 1

p

(

‖ f ‖1

‖ f ‖∞

)

‖ f ‖
1
p

1 . (16)

This inequality is sharp, where equality holds if and only if f is a minimizer of (9) as

described in Theorem 5.

We thus see that for the case of I = (0, L), we have a sharp inequality (16) in a

multiplicative form. The inequality shows no dependence on the length of L , which

can also be seen from the scaling properties of the quantities involves. Moreover, we

are able to characterize an explicit constant factor which is also the best possible. Our

result establishes that for p = 1, the inequality in Cavalletti and Farinelli (2021), Prop.

3.1 is (16), and therefore it is indeed sharp. For p ≥ 1, the scaling in (De Ponti and

Farinelli 2022, Corollary 3.3) of the lower bound is the same as here, 2−1−1/p, but the

overall constant is lower since it is proven in more general settings. We may attribute

the proof of the inequality (16) not only to properties of the special geometry in one

dimension, but also the way the minimization problem (9) is posed; it is the solution

to the latter that leads to, as a by-product, the most natural “uncertainty principle” in

a multiplicative form.

4 The Circle

We now consider the minimizers of W1( f+, f−) in X = X(c∞, c1, N , I ) for the case

where I is a circle. As we see from the earlier discussion on the case of an interval,

by scaling of c1 we can restrict our attention to the unit circle I = S1. The geodesic

distance between two points ei t , eis ∈ S1 is defined by

d
(

ei t , eis
)

= min{(t − s) mod(2π), (s − t) mod(2π)}.

For every z j ∈ Z( f ) we denote z j = eis j such that, without loss of generality

0 = s1 < s2 < · · · < sN < sN+1 = 2π ,

i.e., the nodal points are ordered from the x-axis in a counterclockwise direction.

In this section we show that, on a circle, the minimizers and minimal value of (9)

are analogous to those on the interval (Theorem 5 and Corollary 6):
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Theorem 7 Let p ≥ 1, c∞ > 0, c1 ∈ (0, 2c∞π ], and N ∈ N+. The minimizers

of Wp( f+, f−) over X(c∞, c1, N , S1) are step functions in Xs(c∞, c1, N , S1), anti-

symmetric about each nodal point, with value ±c∞ and width c1/2c∞N. Hence

min
f ∈X(c∞,c1,N ,S1)

Wp( f+, f−) = 2
−1− 1

p
c1

Nc∞

c
1
p

1 .

Proof Throughout this proof, we use the existence of an optimal transport map; for

all orders p ≥ 1 there exists such a map T : S1 → S1, as established for p > 1 in

see McCann (2001) or Villani (2003), Theorem 2.47, and for p = 1 in Feldman and

McCann (2002) (see also Santambrogio (2015), Section 3.1 and Caffarelli et al. (2002)

and Bianchini and Cavalletti (2013) for general metric settings). A more elaborate

analysis of optimal transport maps on the circle appears in Delon et al. (2010).

First, we note that the proof of Lemma 2 carries to the circle without change: it is

an iterative process done on f in each interval (arch) {eis | s ∈ (s j , s j+1)}
N
j=1. Hence,

we can restrict our attention to solving the optimal-transport minimization problem

on Xs(c∞, c1, N , S1), see Definition 2.

Next, we turn to extend Lemma 4 to the circle, i.e., to show that a function f ∈

Xs has a cheaper transport cost if the optimal transport map associated with it only

transports mass between adjacent arcs. Here lies the main new challenge: we cannot

simply implement our inductive “shifting” strategy from Lemma 4, since there are no

end-points to the circle, and hence no natural candidate arc I j to start the induction

from. To this end, we prove the following lemma:

Lemma 8 Let f ∈ Xs and let T be the optimal transport map associated with

Wp( f+, f−) for a fixed p ≥ 1. Then, there exists a partition S1 = J1 ∪ · · · ∪ JK

into disjoint arcs such that for each arc Jk , either

(1) All points x ∈ Jk ∩ supp( f+) are transported clockwise to T (x) ∈ Jk , or

(2) all points x ∈ Jk ∩ supp( f+) are transported counterclockwise to T (x) ∈ Jk , or

(3) f = 0 on Jk .

To prove Lemma 8, we will rely on the existence of an optimal transport map (in the

sense of Monge). For p > 1, recall the following theorem due to McCann (2001) (for

the Euclidean case, see Brenier (1991)), presented here in a simplified form:

Theorem (McCann (2001)) Let � be a C3 connected, compact, Riemannian manifold

without boundaries. Let p > 1 and consider two Borel probability measures μ and ν

with finite p-moments, such that μ is absolutely continuous with respect to the volume

measure of �. Then, with respect to the Wasserstein-p distance (4), there exists an

optimal transport map T . Moreover, there exists a vector field V such that

T (x) = expx [V ] , (17)

where exp is the exponential map with respect to the geodesic distance.

Remark McCann’s theorem holds for the general class of optimal transport problems

with respect to Kc (see (10)) for a strictly convex cost function c(x, y) = h(|x −
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Fig. 6 The “lagging” scenario

as defined in the proof of

Lemma 8: red intervals are in the

support of f+, Blue intervals are

in the support of f−. The two

dash-dotted lines are equator

lines: They indicate that e.g., I j

would transport to Ii

counterclockwise under T
Ij

In

Ii

Im

y|). Furthermore, the vector-field V is characterized in terms of the gradient of the

Kantorovich potential, see McCann (2001), Theorem 13 for details.

The case of p = 1 is similar: the circle decomposes into a union of geodesics lines

(arcs), known as “transport rays”, which intersect (potentially) only at their endpoints.

On each such transport ray, the optimal transport map is monotone; see details in

Santambrogio (2015), Section 3.1 and Feldman and McCann (2002).

Proof of Lemma 8 First consider p > 1. Choose any x ∈ S1, and suppose first that

y = T (x) is transported clockwise from x , i.e., y is clockwise to x on the shorter arc

between the two points. Then, any point w ∈ S1 ∩ supp( f+) lying on that arc is also

transported clockwise, since the vector field V points clockwise on that arc. Hence,

the set of points x ∈ S1 for which T transports clockwise is a union of arcs, and so

each Jk is a connected component of that set. If y = T (x) is counterclockwise, the

proof is analogous, and together these type of arcs cover supp( f+) ∪ supp( f−). The

remaining points on S1 are those where f = 0, and by the extension of Lemma 2 to

the circle, it too is covered by disjoint arcs. This completes the proof for p > 1.

For p = 1, the decomposition of the circle into transport rays, on each of which

the optimal-transport map is monotone, yields an analogous proof. ��

Proof of Theorem 7 - continued: Suppose first that J1 �= S1, i.e., it is not the case

that all points x ∈ supp( f+) are transported clockwise (or counterclockwise). Then,

on each arc Jk we can apply the analysis from the case of the interval. Suppose points

are transported clockwise on Jk . Therefore the counterclockwise end of Jk has to be

in supp( f+), and we can choose it as the starting point of the inductive process in

Lemma 4.

If, on the contrary, J1 = S1 assume that without loss of generality, all points

x ∈ supp( f+) are transported counterclockwise. If each x ∈ supp( f+) is transported

to the adjacent interval, the proof is completed. Assume otherwise, i.e., that we are in

a “lagging” scenario as in Fig. 6. We claim that this cannot be the optimal transport
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map for a minimizer of Wp( f+, f−). This can be shown by constructing g ∈ Xs for

which Wp(g+, g−) < Wp( f+, f−) as follows:

Let Z( f ) = {z1, . . . zN } be the nodal points arranged in a counterclockwise order,

with an arbitrary starting point. As before, denote by I j the arcs between z j and

z j+1, where IN is the arc between zN and z1. Assume without loss of generality that

I1 ⊆ supp( f+), and set I1 for g to be the same as for f . Adjacent to I1 counterclockwise

we set a negative arc I2 precisely of the length |I1|, and we define the new pushforward

map S#g+ = g− as the monotonic map from I1 to I2. We do so iteratively - we

position positive intervals precisely of the size they had for f , and then a negative

interval of the same size. In defining g, the L1 and L∞ norms are unchanged, and so

it the number of nodal points. While the map S might not be the optimal transport

map between g+ to g−, the overall transport distances have been reduced and so

Wp( f+, f−) = K p(T ) > K p(S) > Wp(g+, g−).

Hence, we have extended Lemma 4 to the circle, for all p ≥ 1. Now, since the trans-

port occurs only across nodal points to adjacent intervals, our Lagrange-multipliers

analysis for the case of the interval applies, and we obtain the desired result. ��

Remark The work of Delon et al. (2010) suggests an alternative route to prove Lemma

8 on the circle: “lifting” each measure on the circle to a periodic measure on the line,

they study locally optimal transport maps between the “lifted” periodic measure. These

measures are similar to F−1
μ ◦Fν up to a shift, and therefore in particular, are monotonic.

We do not pursue this strategy further in this work, and refer to Delon et al. (2010) for

details.

5 Star Graphs

Given a positive integer D, we define the star graph SD = SD(L1, . . . , L D) as the

quotient space of the disjoint union of D intervals I j = [0, L j ) where L j > 0 for

1, . . . , D, under the equivalence relation 0I j
≡ 0. For ease of notation, denote by t j

the point t ∈ I j for every 1 ≤ j ≤ D and every t ∈ (0, L j ].

We will call the 0 point the vertex of the star. Definition 1 for Z( f ) extends to I =

SD . Consequently, the definitions of X(c∞, c1, N , I ) (see (3)) and Xs(c∞, c1, N , I )

(see Definition 2) naturally extend to the case of star graph I = SD as well. The

distance between any two points x ∈ I j and y ∈ Ik is |x − y| if j = k, and x + y

otherwise, i.e., if the two points are on different edges of the star, the geodesic distance

between them is the length of the path going from x to y through the vertex 0.

Stars are a class of spaces where we might expect the optimal dependence between

Wp( f+, f−) and the number of nodal points N to be non-multiplicative, for the

following reason: In Cavalletti and Farinelli (2021) and De Ponti and Farinelli

(2021), the sharp (up to a constant) uncertainty quantification (2) was derived for

metric spaces which are essentially non-branching. Intuitively, this means that if

�1(t), �2(t) : [0, 1] → � are two “generic” geodesic lines of unit length, and

�1(t) = �2(t) on an open subset of [0, 1], then �1 = �2 everywhere; see Rajala

and Sturm (2014) for details. Star graphs, however, are certainly spaces with branch-

ing (and so are trees in general). Hence, in search for new types of dependencies
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0

L1

L3

L2

S3

0

L1

L4

L3

L2

S4

0

L1

L4

L3 → 0

L2

S4 → S3

Fig. 7 Left and Center stars have 3 and 4 long edges, respectively. But in a star graph, the lengths of the

edges matter: as the length L3 → 0+, S4 is deformed into S3 (Right). This metric structure in turn manifests

itself in the minimization problem and in its solution, see Theorem 13

between min Wp( f+, f−) and N , stars are excellent candidates over which to study

the minimization problem stated in Question 1.

The technical difficulty is that, on the star, we do not have explicit optimal maps

such as (7) for the interval, nor do we even expect the existence of optimal transport

maps, i.e., we expect a solution to the Kontorovich problem (4), but not Monge’s (6).

More broadly, stars are an example of metric graphs, on which the study of optimal

transport is at a relatively early stage (Erbar et al. 2021; Mazón 2015).

Main results: The key element of our analysis is that it is always “useful”, in the

sense of minimizing Wp( f+, f−), to position one of the nodal points at the vertex of

the star. We approach Question 1 on stars by establishing a correspondence between

transport over a star-vertex and transport on the real line (Lemma 9). This equivalence

allows us to reduce the minimization problem to a finite-dimensional constrained

optimization problem (Theorem 13).

From there, the optimization problem bifurcates into several different cases, depend-

ing on both the topology and the lengths of the star’s edges. In Sects. 5.2–5.5, we work

the details of the following cases:

• For an even number of sufficiently long edges, the vertex 0 ∈ SD is equivalent

to D/2 nodal points. Hence, we have a multiplicative uncertainty principle of the

type (presented here for simplicity with p = 1)

W1(g+, g−) ≥
c2

1

4c∞

1

Ñ
, Ñ = N − 1 +

D

2
,

see Sect. 5.3.

• For an odd number of sufficiently long edges, the main complication is that

there is an imbalance between the number of positive and negative edges around

0. Nevertheless, we get the same type of inequality, only now with (Sect. 5.4)

Ñ ≡ N − 1 + D̃ , D̃ ≡
(D + 1)(D − 1)

2D
.

123



   95 Page 20 of 40 Journal of Nonlinear Science            (2023) 33:95 

• When one of the edges is short, no Ñ or D̃ type inequalities emerge, but the

lower bounds we obtain “interpolate” between the case of a star with D − 1 long

edges (and a “degenerate” D-th edge with length zero) to the case of D long edges

(Sect. 5.5).

In summary, for stars with D long edges, the vertex 0 ∈ SD is effectively equivalent

to D/2 or D̃ = (D+1)(D−1)
2D

nodal points on the line, depending on whether D is even

or odd, respectively. Finally, since we can interpolate between D and D − 1 edges by

shortening/lengthening the edges (see Fig. 7) the general case of a star does not seem

to admit such a clean result; indeed, an “uncertainty principle”-type lower bounds on

W1( f+, f−) · |Z( f )|, such as (16), breaks even in relatively simple metric graphs, thus

demonstrating that the non-branching property used in Cavalletti and Farinelli (2021)

is indeed necessary.

5.1 Stars – The General Framework

Our strategy to prove the main result, Theorem 13, consists of two parts. In Lemma

9, we analyze the optimal transport problem in the case of a single nodal point on the

star vertex. Lemma 11 generalizes Lemma 4 on the optimality of transfer to adjacent

sub-interval to the case of the star graph. The main technical difficulty here is that

we cannot assume the existence of optimal transport maps (in the sense of Monge’s

problem (6), as opposed to Kantorovich (4)), on graphs. Indeed Lemma 9 shows that

already in simple settings of Z( f ) = {0} the optimal transport plan will not be induced

by a map. Moreover, we cannot expect to have monotonicity in the strict sense, due to

the geometry of the graph. Nonetheless, Lemma 12 shows that the optimal transport

plans satisfy a sufficient monotonicity-like property.

We begin with functions satisfying Z( f ) = {0}.

Lemma 9 Let D > M ≥ 1 be integers and consider f ∈ X(c∞, c1, 1, SD) where for

every x j ∈ I j ⊆ SD ,

f (x j )

{

≥ 0 , 1 ≤ j ≤ M,

≤ 0 , M + 1 ≤ j ≤ D,
. (18)

Define g : R → R as9

g(x) = g(x; f ) = g+(x) + g−(x) ≡

M
∑

j=1

f j (x) +

D
∑

j=M+1

f j (−x) (19)

such that g+ is supported on (0, max j=1,...,M L j ) and g− is supported on (−

max j=M+1,...,D L j , 0). Then there is a surjective correspondence � : �( f+, f−) →

�(g+, g−) such that K p(γ ) = K p(�[γ ]) for every p ≥ 1 and γ ∈ �( f+, f−).

9 Here we identify x ∈ R with the point x j ∈ I j with the exact same value. This is unambiguous since

each f j is only defined on the respective edge I j .
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Hence,

Wp(g+, g−) = Wp( f+, f−) .

Proof For every γ ∈ �( f+, f−) and any two measurable sets E+, E− ⊆ (0,∞),

define

�[γ ](E+,−E−) ≡

M
∑

j=1

D
∑

i=M+1

γ (E+ ∩ I j ,−E− ∩ −Ii ) , (20)

where for every A ⊆ (0,∞) we define −A ≡ {−x | x ∈ A}. �[γ ] is a Borel measure

on R × R with marginals g+ and g−, simply by additivity. That K p(γ ) = K p(�[γ ])

follows from definition (4): the same amount of mass travels the same distance in both

plans. To summarize, we have shown the inclusion

{K p(γ ) |γ ∈ �( f+, f−)} =
{

K p(�[γ ]) |γ ∈ �( f+, f−)
}

⊆
{

K p(η) | η ∈ �(g+, g−)
}

.

To conclude that Wp( f+, f−) = Wp(g+, g−) we need to prove inclusion in the

other direction, i.e., to find for any η ∈ �(g+, g−) a coupling γη ∈ �( f+, f−) such

that �[γη] = η. We define γη in a symmetric manner: for any two measurable sets

A, B ⊆ (0,∞) and 1 ≤ i, j ≤ D,

γη

(

A ∩ Ii , B ∩ I j

)

≡ η(A,−B)
‖ fi‖L1(A∩Ii )

‖g+‖L1(A)

‖ f j‖L1(B∩I j )

‖g−‖L1(−B)

,

and for any general sets A,B ⊆ SD , then

γη (A,B) ≡

D
∑

i=1

D
∑

j=1

γη

(

A ∩ Ii ,B ∩ I j

)

.

Again, by definition γη is a Borel measure on SD × SD . To verify that γη ∈ �( f+, f−),

we compute its marginals. Let (x, y) ∈ suppγη. Necessarily y is an element in one of

the negative intervals IM+1, . . . ID , then for any measurable set A ⊆ (0,∞)

γη (A ∩ Ii , SD) = γη

⎛

⎝A ∩ Ii ,

D
⋃

j=M+1

I j

⎞

⎠

=

D
∑

j=M+1

γη

(

A ∩ Ii , I j

)

= η(A, (−∞, 0))
‖ fi‖L1(A∩Ai )

‖g+‖L1(A)

D
∑

j=M+1

‖ f j‖L1(I j )

‖g−‖L1(−∞,0)
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= η(A, (−∞, 0))
‖ fi‖L1(A∩Ii )

‖g+‖L1(A)

· 1 = ‖ fi‖L1(A∩Ii )
,

where at the last passage we used the fact that g+ is the density of the second-coordinate

marginal of any η ∈ �(g+, g−), i.e., that η(A, (−∞, 0)) = ‖g+‖L1(A). The calcula-

tion of the second-coordinate marginals of γη is analogous.

Finally, to prove that �[γη] = η, consider a pair of open sets E+, E− ⊆ (0,∞).

By (20)

�[γη](E+,−E−) =

M
∑

j=1

D
∑

i=M+1

η(E+,−E−)
‖ fi‖L1(E+∩Ii )

‖g+‖L1(E+)

‖ f j ‖L1(E−∩I j )

‖g−‖L1(−E−)

=
η(E+,−E−)

‖g+‖L1(E+) · ‖g−‖L1(−E−)

M
∑

j=1

‖ f j ‖L1(E−∩I j )

D
∑

i=M+1

‖ fi‖L1(E+∩Ii )

=
η(E+,−E−)

‖g+‖L1(E+) · ‖g−‖L1(−E−)

‖ f+‖L1(E+)‖ f−‖L1(−E−)

= η(E+,−E−) .

��

To solve the minimization problem on SD , we first state an extension of Lemma 2

to star graphs, where the proof is completely identical to that of Lemma 2:

Lemma 10 For every f ∈ X = X(c∞, c1, N , SD), there exists a function h ∈

Xs(c∞, c1, N , SD) such that

(i) Z( f ) = Z(h)

(ii) For any sub-interval J between two adjacent nodal points, i.e., J = (z, z′) where

z, z′ ∈ Z( f ) and (z, z′)∩ Z( f ) = ∅, then h ≥ 0 on J if and only if f ≥ 0 there,

and

∫

J

h(x) dx =

∫

J

f (x) dx . (21)

If 0 /∈ Z( f ), (21) also holds when J is a maximal star-like subgraph for which

0 ∈ J but Z( f ) is disjoint from the interior of J .

(iii) Wp( f+, f−) ≥ Wp(h+, h−) for any p ≥ 1 with equality possible only if f ∈

Xs(c∞, c1, N , SD) as well.

We now proceed to prove an analog of Lemma 4 for star graphs; the minimizers of

Wp( f+, f−) in Xs(c∞, c1, N , SD) are those where mass is transported only between

adjacent sub-intervals. .

Lemma 11 Let f ∈ Xs(c∞, c1, N , SD). There exists g ∈ Xs(c∞, c1, N , SD) such

that Wp( f+, f−) ≥ Wp(g+, g−) for every p ≥ 1, with the following property:

If γ ∈ �(g+, g−) is an optimal transport plan, then γ only transport mass between

adjacent intervals. By this, we mean that if J and J ′ are two closed sub-intervals

between two adjacent nodal points (or the smallest star-like subgraph between the

nodal points closest to 0), then γ (J × J ′) �= 0 only if ∂ J ∩ ∂ J ′ �= ∅.
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The new challenge in proving Lemma 11 is the absence of a monotonicity property.

On the interval, the explicitly optimal transport map (7) is monotone. On the circle,

monotonicity is a consequence of the exponential map form of (17) (or of the more

specific construction in Delon et al. (2010)). On star graphs, while we cannot hope

for monotonicity in the usual sense, we show that a similar property (Lemma 12)

is sufficient to demonstrate that the shift operations described in Lemma 4 can be

implemented on SD as well (Lemma 11).

Proof of Lemma 11 We define the following disjoint partition:

SD = J ∗ ∪

D
⋃

i=1

n(i)
⋃

j=1

Ji, j ,

where on each interval Ii that comprises the star graph SD , we denote the sub-intervals

between adjacent nodal points by Ji,1, . . . , Ji,ni
⊂ Ii where ni ≥ 0 for each 1 ≤ i ≤ d,

and where the subintervals are ordered by decreasing distances from 0. Finally, let J ∗

be the smallest star-like graph between the closest nodal point to 0. If 0 ∈ Z( f ), then

J ∗ = ∅. For ease of notation, it is useful to denote J ∗ = Ji,n(i)+1 for all 1 ≤ i ≤ D.

We repeat the inductive construction of Lemma 4 (see Fig. 8 for illustration): for

each j , we iterate over all 1 ≤ i ≤ D for which j ≤ n(i). Suppose without loss

of generality that Ji, j ∩ supp( f+) �= ∅ and that for some set of nonzero measure

E ⊆ Ji, j ∩supp( f+) we have that γ (E, ·) is supported on non-adjacent intervals, i.e.,

c ≡ γ
(

E, SD \
(

Ji, j−1 ∪ Ji, j+1

))

> 0 .

For each non-adjacent interval where γ (E, ·) is supported, we will shift that exact

same mass to either Ji, j−1 or Ji . j+1, depending on the relative order between the

intervals.

As in Lemma 4, these shifts might require to push away from Ji, j some nodal points

to create room for the negative mass. See Fig. 8 for an illustration. Suppose then that

some interval of length A was shifted from Ji ′, j ′ to Ji, j±1, and that all or some of the

mass between them has been pushed away from Ji, j±1. To exclude these scenarios,

we state a monotonicity lemma (in the spirit of Santambrogio (2015), Theorem 2.9):

Lemma 12 Let γ be an optimal transport plan with respect to Wp with p ≥ 1, let

1 ≤ i, j, k, l ≤ D, let x, x ′, y, y′ > 0, and let (xi , yk) ,
(

x ′
j , y′

l

)

∈ supp(γ ). Then the

following scenarios are impossible:

(1) i, j, k are distinct, k = l, x ′ < x, and y′ < y.

(2) j, k, l are distinct, i = j , x ′ < x, and y′ < y.

(3) i = j , x ′ < x, and y′ < y (it may or may not be that i = k, i.e., (xi , yk) may or

may not be part of the same edge).

Here, as before, for every 1 ≤ i ≤ D and every x ∈ (0, L i ), we denote by xi the point

on Ii whose distance from the vertex 0 is x. The same notation applies to yk , x ′
j , and y′

l .
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Fig. 8 The shifts of Lemma 11

on S3. A E is being (partially)

transported into U under the

optimal transport plan γ . B After

the shift, the relevant mass of U

is shifted to the interval adjacent

to E , where mass on some of the

intervals between E and where

U previously was has been

shifted to the right. C If x1 ∈ E ,

y3 ∈ U , i.e., (x1, y3) ∈ supp(γ ),

then this “push” could be

harmful if
(

x ′
2, y′

3

)

∈ supp(γ ),

since then y′
3 could be pushed

away from x ′
2. We show that this

scenario is forbidden when γ is

an optimal transport plan with

respect to the cost function

h(x − y) = |x − y|p for p ≥ 1

0

I1 I2

I2

E ⊆ J1,j U

(a)

0

I1 I2

I2

E ⊆ J1,j

push

(b)

x1 y3y′

3

x′

2

(c)

The proof of Lemma 12 is given after we complete the proof of Lemma 11.

Lemma 12 is a star-graph analog of the monotonicity property (7) of optimal trans-

port on the line: item (3) is the most straightforward, since it implies that all four points

lie on the same linear path. Item (1) (and analogously (2)) is depicted in Fig. 8c with

i , j , and k being distinct, k = l, i.e., xi and x ′
j do not lie on the same edges, and y′

k is

on the path between xi and yk .

With the help of Lemma 12, we now make the following claim: if a set with nonzero

mass between Ji, j and Ji ′, j ′ was pushed away from Ji, j , then it cannot increase the

overall transport cost.

As in the case of the interval or the circle, proving this claim would show that our

inductive construction decreases the transport cost, thus proving the lemma.

To proceed with the proof of the above claim, we note that such a “push” away of a

set D from Ji, j (towards the vertex 0) could increase the overall transport cost in three

scenarios: either (i) the optimal-transport plan γ couples D to a set further away from

the vertex on Ii , i.e., in Ji,1, . . . , Ji, j−1, or, (ii) γ couples D to an interval between Ii
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and D (iii) γ couples D to a third interval, i.e., not Ii and not Ii ′ . We will now rule

out both all these three scenarios.

First, (i) is impossible since there cannot be a point x ′
i ∈ Ji,1 ∪ . . . ∪ Ji, j−2 which

was previously transported into a pushed interval, due to the inductive construction.

The only other way for the transport distance to increase with the shift is if y′
k is on the

path between xi and yk and that (xi , yk),
(

x ′
j , y′

k

)

∈ supp(γ ) with y′ �= y. Lemma

12, item (3) similarly rules out scenario (ii). We are left with scenario (iii), depicted in

Fig. 8c. We remark that it is really this scenario that distinguishes the star graph from

the interval.

Here, i �= j , and so Lemma 12, items (1)–(2), imply that |x ′| ≥ |x |. Hence, up to

relabeling of the edges, we have that (x1, y3),
(

x ′
2, y′

3

)

∈ spt(γ ) with |x ′| ≥ |x |, and

|y| > |y′|. By a slight abuse of notation, let x and x ′ be the infimum of all values such

that x1 and x ′
2 satisfy these hypotheses, i.e., the closest to the vertex 0.

To rule this scenario out, let us now define an auxiliary function, f̄ , which exchanges

the values of f on (0, x) between I1 and I2. Formally, for every j = 1, . . . D and

every t j ∈ I j

f̄ (t j ) =

⎧

⎨

⎩

f (t2) if j = 1 and t ∈ (0, x)

f (t1) if j = 2 and t ∈ (0, x)

f (t j ) otherwise

Let us also define γ̄ to be the coupling between f̄+ and f̄− which is identical to γ ,

with the corresponding changes. We now proceed to make one helpful observation

that γ̄ is an optimal transport plan between f̄+ and f̄−.

Indeed, since x1 is transported to I3, then no other point on (0, x1) is transported to

(x1, L1). This would contradict monotonicity on the interval I1 (see item (3) of Lemma

12). The analogous statement holds for x ′
2 as well. Hence, the “exchange” of intervals

did not change the distances along which mass is transported, and so K p(γ ) = K p(γ̄ ),

and so Wp( f+, f−) = K p(γ ) ≥ Wp( f̄+, f̄−).

We now want to show an inequality in the other direction. Let γ∗ be an optimal

transport plan for f̄ , then γ̄∗ is a coupling of f+ and f−, and so

Wp( f+, f−) = K p(γ ) = K p(γ̄ ) ≥ Wp( f̄+, f̄−) = K p(γ∗) = K p(γ̄∗) ≥ Wp( f+, f−) .

Hence we have equalities throughout, and in particular K p(γ̄ ) = Wp( f̄+, f̄−), and so

γ̄ is an optimal transport plan from f̄+ to f̄−.

By construction
(

x ′
2, y′

3

)

∈ spt(γ̄ ) (as it were with γ ), and due to the “exchange”

now we have that (x2, y3) ∈ spt(γ̄ ). This violates item (3) in Lemma 12.

Thus we arrive at a contradiction. Hence x ′ = x . But now consider the situation

where (x1.y3), (x2, y′
3) ∈ spt(γ ), with y > y′. By the exact same argument with the

roles of y and x interchanged, we arrive at a contradiction again. We have ruled out

scenario (iii), as depicted in Fig. 8c.

To summarize, the proposed shift cannot increase the transport cost, and therefore

Lemma 11 is proven. ��
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Proof of Lemma 12 Consider first the case of p > 1, where c(x, y) = h(x − y) =

|x − y|p is strictly convex. First, recall that the support of γ is c-cyclically monotone

(Santambrogio 2015, Theorem 1.38), i.e.,

h(xi − yk) + h
(

x ′
k − y′

l

)

≤ h
(

xi − y′
l

)

+ h
(

x ′
j − yk

)

. (22)

We will show in detail how the first of the three scenarios is impossible, as the others

follow similarly.

Assume without loss of generality that x1 ∈ I1, y′
3, y3 ∈ I3, and x ′

2 ∈ I2, as in

Fig. 8c. Denote a = |y| − |y′| > 0. Then (22) reads as

h(|x | + |y′| + a) + h(|x ′| + |y′|) ≤ h(|x | + |y′|) + h(|x ′| + |y′| + a) . (23)

Suppose |x ′| ≤ |x | first. Then

|x ′| + |y′| < |x ′| + |y′| + a ≤ |x | + |y′| + a ,

|x ′| + |y′| ≤ |x | + |y′| < |x | + |y′| + a .

We can express the “sandwiched” numbers, |x | + |y′| and |x ′| + |y′| + a, as linear

interpolation between the endpoints α = |x ′| + |y′| and β = |x | + |y′| + a,

|x ′| + |y′| + a = tα + (1 − t)β , |x | + |y′| = tβ + (1 − t)α ,

where

t ≡
a

a + |x | − |x ′|
∈ (0, 1) .

However, h is strictly convex for p > 1, and so combined with (23), then

h(α) + h(β) ≤ h(tα + (1 − t)β) + h(tβ + (1 − t)α)

< th(α) + (1 − t)h(β) + th(β) + (1 − t)h(α)

= h(α) + h(β) ,

which is a contradiction.

The case of p = 1 is proven by approximating h(x − y) = |x − y| by a sequence of

strictly convex functions, see Santambrogio (2015). Crucially, even though x, y ∈ SD

and not on the real line, h(x − y) is really a shorthand for h operating on the geodesic

distance (on the graph) between x and y, and hence the procedure generalizes to the

graph.

We have proven item (1) in the lemma. Item (2) is analogous, but with interchanging

x and x ′ with y and y′, respectively. Item (3) reduces to the standard analysis of the

interval, since all four points lie on the same line. ��
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0
Lj ∼ ε

L1 ∼ 1

S6(1, ε, . . . , ε)

Fig. 9 A star with 6 edges, where L2, . . . , L6 ∼ ε with ε << 1. However, since most of the edges are

very short, this star should be almost equivalent to an interval, in terms of transport and mass allocation. In

particular, for a function with a single nodal point (N = 1), that point cannot be the vertex 0

Remark While it is preferable to have 0 ∈ Z( f ), it might not be possible; A sufficient

condition is to have at least two sufficiently long edges. Up to a relabeling of the

edges, we make the hypothesis that

|I1|, |I2| > c1/2c∞

i.e., all of the positive and negative mass could be allocated on I1 and I2, respectively, in

intervals adjacent to 0. This is a sufficient condition that avoids somewhat pathological

star graphs for which 0 cannot be efficiently utilized as a nodal point. Such graphs

might resemble an interval attached to many short edges at its end, see e.g., Fig. 9.

Since the minimizers of Wp( f+, f−) on SD shift mass only between adjacent sub-

intervals (Lemma 11), we can now integrate our analysis of the single-point case

(Lemma 9) and conclude that it is always preferable to have a nodal point on the

vertex. Hence, minimizers have the following form:

(1) The vertex is a nodal point, i.e., 0 ∈ Z( f ), and there exists r1, . . . , rD ≥ 0 such

that f on [0, r j ] ⊆ I j is non-negative for 1 ≤ j ≤ M , and non-positive for

M + 1 ≤ j ≤ D. The overall mass concentrated around 0 is therefore

c̃1 ≡ c∞

D
∑

j=1

r j .

(2) The other N − 1 nodal points are “internal”, i.e., for each z� ∈ Z( f ) there exists

1 ≤ j ≤ D such that z� ∈]0, L j [ and f is an anti-symmetric step function around

it with length d� > 0, as in the interval case of Sect. 3.

Therefore, one needs to optimize only the positive step-widths r1, . . . , rD and

d1, . . . , dN−1. We summarize these results in the following theorem:

Theorem 13 Suppose SD has at least two edges longer than c1/2c∞. Question

1, i.e., minimizing W
p
p ( f+, f−) over X(c∞, c1, N , SD), is equivalent to finding

r1, . . . , rD, d1, . . . , dN−1 > 0 and a configuration function q : {1, . . . , N − 1} →

{1, . . . , D} which minimize

N−1
∑

�=1

c∞d
p+1
� + W

p
p (g+, g−) , (24a)
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where

g(x) ≡ c∞

M
∑

j=1

1[0,r j ](x) − c∞

D
∑

j=M+1

1[−r j ,0](x) , (24b)

subject to the mass conservation conditions

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

c∞

M
∑

j=1

r j = c∞

D
∑

j=M+1

r j ≡ 1
2

c̃1 ,

c̃1 + 2c∞

N−1
∑

�=1

d� = c1 ,

(24c)

and the admissibility constraints

r j + 2
∑

q(�)= j

d� ≤ L j , 1 ≤ j ≤ D . (24d)

Note that, since g is given explicitly by the equivalence established in Lemma 9,

see (19), and since it is a function on the line, Wp(g+, g−) is given by the respective

inverse CDFs as in (8). Therefore optimizing W
p
p (g+, g−) involves a direct, closed

form calculation (see below). Moreover, if the edges are long, i.e., L j > c1/c∞ for

any 1 ≤ j ≤ D, then the first constraint can be satisfied for any assignment of r j ’s

and nodal point, i.e., for any choice of q. Hence, (24) becomes computable in closed

form without having to enumerate over all (N − 1)D configuration functions q.

We can also see what is the complication introduced by short edges - if e.g., L D → 0,

then effectively the number of effective edges becomes D − 1 (in the sense that only

vanishingly small mass can be assigned to ID), thus changing the solution. Hence,

obtaining a closed-form expression for (24) can be algebraically daunting. In fact,

already for N = 1, where Z( f ) = {0}, there are some complications. We will work

out a few cases.

5.2 Long Edges, N = 1

We find the minimizers of Wp( f+, f−) on f ∈ X(c∞, c̃1, N = 1, SD) where all

edges are sufficiently long.10 As discussed above, it is always preferable to have the

nodal point at 0. Moreover, it would always be better to distribute the L1 mass on all

edges. This is because the L1 and L∞ constraints imply that “wasted” edges (on which

f j = 0 everywhere) lead to transport over larger distances, and so to a more expensive

optimal transport cost. Hence, Wp( f+, f−) = Wp(g+, g−), the equivalent function

on the line given by (24a). Since the edges are sufficiently long, if f has 1 ≤ M < D

positive edges, then g could be a general function with ‖g‖∞ = max(D, D − M)c∞.

Hence, by our analysis for the interval (Sect. 3), the optimal g is of the form:

10 The notation of the L1 norm by c̃1 here will be convenient when we consider N ≥ 1 in the next section.
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g(x) =

⎧

⎨

⎩

−(D − M)c∞ , x ∈ (−r−, 0) ,

Dc∞ , x ∈ (0, r+) ,

0 , otherwise .

Crucially, an f : SD → R to which this g is equivalent is only possible when all of

SD edges (the different I j ’s) are sufficiently long. In that case, the corresponding f

will be of the form

f j (x) =

⎧

⎨

⎩

c∞ , x ∈ (0, r+) , 1 ≤ j ≤ M ,

−c∞ , x ∈ (0, r−) , M + 1 ≤ j ≤ D ,

0 , otherwise ,

(25)

where r+ and r− are determined by the mass conservation relation (24c), which reduces

to

Mr+ = (D − M)r− . (26)

In these settings, minimizing Wp( f+, f−) = Wp(g+, g−) reduces to finding the opti-

mal parameters r+, r− > 0 and 1 ≤ M ≤ D.

Proposition 14 [N = 1 on a star] Suppose SD has at least two edges longer than

c1/2c∞. Then,

arg min W
p
p ( f+, f−) over Xs(c∞, c̃1, 1, SD) ,

is given by (25) with M = �D/2�, the lower integer part of D/2.

Proof Since the equivalent g (see Lemma 9) is a function on an interval, we can

use the explicit formula in terms of the inverse CDFs, (8). By direct calculation,

the inverse CDFs, defined on the interval [0, c̃1/2], are G−1
+ (t) = r+2c̃−1

1 (t) and

G−1
− (t) = −r− + r−2c̃−1

1 t . Assume without loss of generality that r+ ≥ r−, and so

α ≡ 2c̃−1
1 (r+ − r−) ≥ 0. Hence,

W
p
p (g+, g−) =

c̃1/2
∫

0

[

r+2c̃−1
1 t −

(

−r− + r−2c̃−1
1 t

)]p

dt

=

c̃1/2
∫

0

[

αt + r−

]p
dt ≥

c̃1/2
∫

0

[

r−

]p
. (27)

Hence, W
p
p (g+, g−) is minimized when α = 0, i.e., when r+ = r−, which by the

mass conservation relation (26) yields M = D/2.

When D is even, substitution of M = D/2 into (27) yields

D even W
p
p (g+, g−) =

c̃1

2
r

p
− =

1

2D p

(

c̃1

c∞

)p

c̃1, r− = r+ =
c̃1

c∞

1

D
, (28)
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which is the same as in the single step function case for D = 2, see (13).

When D is odd, M = D/2 is not an integer, and therefore not an admissible choice.

We claim that the optimal choices are either M = �D/2� = (D−1)/2 or M = �D/2�.

To see that, first note that the integrand in (27) is monotonic in α. Moreover, by the

mass conservation relation (26), we get that

α = α(M) =
1

c∞

(

1

M
−

1

D − M

)

, (29)

for any 1 ≤ M ≤ D. Hence, W
p
p (g+, g−) is monotonic convex in M near its minimum

at D/2, and the closest integer values, �D/2� and �D/2�, minimize the cost.

To find the minimal cost, first, by direct computation of the integral in (27), we get

W
p
p (g+, g−) =

1

(p + 1)α

[

(

αc̃1

2
+ r−

)p+1

− r
p+1
−

]

. (30)

By substitution of M = �D/2� = (D − 1)/2 into (29), we get that

α

(

�
D

2
�

)

=
1

c∞

(

2

D − 1
−

2

D + 1

)

=
4

c∞(D − 1)(D + 1)
.

Similarly, by the same constraint in (27), we have that

r−c∞
D + 1

2
=

c̃1

2
�⇒ r− =

c̃1

c∞(D + 1)
, and r+ =

c̃1

c∞(D − 1)
.

Substituting the expressions for α and r− into (30), we get

W
p
p (g+, g−) =

c∞(D − 1)(D + 1)

4(p + 1)

[

(

4c̃1

2c∞(D − 1)(D + 1)
+

c̃1

c∞(D + 1)

)p+1

−

(

c̃1

c∞(D + 1)

)p+1
]

=
1

4(p + 1)(D + 1)p(D − 1)p

(

c̃1

c∞

)p

c̃1

[

(D + 1)p+1 − (D − 1)p+1
]

.

To compare this expression to the even case (28), let us set p = 1. Then

W1(g+, g−) =
D

2(D + 1)(D − 1)

c̃1

c∞

c̃1 =
c̃2

1

4D̃c∞

, (31)

with D̃ = (D+1)(D−1)
2D

as defined before. Since

1

2(D + 1)
≤

1

4D̃
≤

1

2(D − 1)
,
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we easily see that W1 lies in between the optimal cost for stars with D − 1 and D + 1.

This is consistent with the intuition that as D increases, the cost decreases.

Either D is even or odd, the overall transport cost is cheaper than the case of an

internal point. This makes intuitive sense, because a nodal point on the vertex allows

for more mass to be transported over a shorter distance, due to Lemma 9. ��

5.3 Long Edges, N ≥ 1, D is Even

In principle, now one can go to the general case of N ≥ 1 and, using the minimization

formulation (24), find the minimizers. Comparing the even and odd cases in (28) and

(31), respectively, it seems that the case of D even is more tractable.

The total cost of transport through the 0-vertex depends on a single parameter

r− = r+, which is not yet determined. Equivalently, it depends on c̃1, the amount of

mass concentrated around the vertex, with 0 ≤ c̃1 ≤ c1. Since we assume that the

edges are sufficiently long, then (based on our analysis for the interval in Sect. 3) the

minimization problem (24) simplifies by d1 = · · · = dN−1 = dint. We therefore wish

to minimize

W
p
p ( f+, f−) = (N − 1)c∞d

p+1
int +

D

2
c∞r

p+1
+ , (32)

subject to

2(N − 1)dintc∞ + Dr+c∞ = c1 .

As in the case of the interval (Sect. 3), we use the method of Lagrange multipliers

L = (N − 1)c∞d
p+1
int +

D

2
c∞r

p+1
+ − λ(2(N − 1)dintc∞ + Dr+c∞ − c1) .

Then

0 = ∂dintL = (p + 1)(N − 1)c∞d
p
int − 2λ(N − 1)c∞ �⇒ d

p
int =

2λ

p + 1
,

and

0 = ∂r+L = (p + 1)
D

2
c∞r

p
+ − λDc∞ �⇒ r

p
+ =

2λ

p + 1
.

In particular, r+ = dint. The constraint associated with c1 then yields

dint = r+ =
1

2

1

(N − 1) + D
2

c1

c∞
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and the minimal optimal transport cost is

Wp( f+, f−) =
c1

c∞

c
1
p

1

2
1+ 1

p

1

Ñ
, Ñ ≡ N − 1 +

D

2
.

In comparison with Theorem 5 for the interval, we see that for a star with an even

number of edges that are sufficiently long, N is replaced by Ñ , i.e., the vertex as a

nodal point is equivalent to D/2 nodal points on a line.

5.4 Long Edges, N ≥ 1, D is Odd

In this case, the same argument yields a much more cumbersome expression, and so

we resolve it only for p = 1. Lagrange multipliers method now yields

L = (N − 1)c∞d2
int +

1

4D̃

c̃2
1

c∞

− λ (2(N − 1)dintc∞ + c̃1 − c1) ,

for D̃ ≡
(D + 1)(D − 1)

2D
.

Here, since r+ �= r−, it is easier to minimize the cost with respect to c̃1, the total L1

mass around the vertex. Then

0 = ∂c̃1
L =

1

2D̃

c̃1

c∞

− λ ,

and so

0 = ∂dintL = 2(N − 1)c∞dint − 2λ(N − 1)c∞ �⇒ dint = λ =
1

2D̃

c̃1

c∞
.

The L1 constraint now reads as

N − 1

D̃

c̃1

c∞
c∞ + c̃1 = c1 �⇒ c̃1 =

D̃

N − 1 + D̃
c1.

As a sanity check, we see that c̃1 → c1 as D → ∞. We note that, in this case, the

sharp lower bound for f ∈ X(c∞, c1, N , SD) reads like

W1( f+, f−) ≥ (N − 1)c∞d2
int +

1

4D̃

c̃2
1

c∞

≥
c2

1

4(N − 1 + D̃)c∞

≥
1

4Ñ

c2
1

c∞

, for Ñ ≡ N − 1 + D̃ . (33)
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Compared with the case where the number of edges is even (see Sec. 5.3), D̃ may be

viewed as the effective multiplicity of the nodal point at the vertex.

The key difference between the lower bounds on W1 for stars and the lower bounds

obtained for non-branching spaces (the interval, the circle, and general d-dimensional

surfaces in (2), see Carroll et al. (2020), Cavalletti and Farinelli (2021) and Sagiv and

Steinerberger (2020)), is that here the lower bound does not admit a multiplicative

‘uncertainty principle’-like structure of 4W1 · N ≥ c1
c∞

c1, where A depends on the

domain and norms of f . Nevertheless, for the cases in Sects. 5.3 and 5.4, we may

still say that the structure is preserved with an effective N that is replaced by Ñ to

account for the particular geometry of the nodal point at the vertex of the star. However,

discussions below imply that the precise characterization of Ñ could be much more

involved than only the degree D with short edges present.

5.5 D = 3 with One Short Edge, N ≥ 1 and p = 1

In the long-edge cases discussed above, the minimization problem given in Theorem

13 is assumed to have a solution in the interior of the constraint set (24d). To see further

how the geometry affects the conclusion on the minimal optimal transport cost, we

consider the special case of D = 3, with two long edges and a third short one as an

illustrative example. Our goal is to see how the limit L3 → 0+ interpolates between

S3 with three long edges, and S2
∼= [−L1, L2].

First, note that to optimize the transport cost in the present case, it remains advanta-

geous to include the node of the star in Z( f ). Moreover, the maximal amount of mass

should be assigned to the short edge if its length is sufficiently small. Meanwhile, away

from the node, we retain the symmetric structure around the other points in Z( f ) that

are located on the long edges. Near those points, we utilize earlier discussion and use

dint to represent the length of the subintervals on which the functions are taken to be

±c∞ with the total optimal transport cost given by (N − 1)c∞d2
int.

As before, to get an explicit expression for (24a), we need to work out W1(g+, g−)

as a function of the overall mass assigned to the vertex, c̃1. Assume without loss of

generality that f ≥ 0 on I1 and f ≤ 0 on I2 and I3 near the node. For L3 � 1, then

the maximal amount of mass should be assigned to I3, i.e., r3 = L3 and f (x) = −c∞

on I3. By the consideration above, we have that the equivalent g : R → R is of the

form

g(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

c∞ x ∈ (−r1, 0) ,

−2c∞ x ∈ (0, L3) ,

−c∞ x ∈ (L3, r2) ,

0 otherwise .

for two undetermined constants r1, r2 > 0. For p = 1, we can use the CDF counterpart

of (8), W1(g+, g−) = ‖G+ − G−‖L1(R), where G± are the CDFs of g±. By direct

computation

G+(t) − G−(t) =

⎧

⎨

⎩

c∞(t + r1) t ∈ (−r1, 0) ,

c∞r1 − 2c∞t t ∈ (0, L3) ,

c∞r1 − 2c∞L3 − c∞t x ∈ (L3, r2) .
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Since the overall mass conservation (24c) reduces to r1 = r2 + L3 = c̃1/2c∞, we

have that

W1(g+, g−) = ‖G+ − G−‖L1(R)

=
1

4
c̃1r1 +

1

4
c̃1r2 +

1

4
c̃1L3 − r2c∞L3

=
c̃2

1

4c∞

− r2c∞L3

=
c̃2

1

4c∞

−

(

c̃1

2c∞

− L3

)

c∞L3 .

Putting these considerations together, the minimization problem in (24) reduces to

W1( f+, f−) = (N − 1)c∞d2
int +

c̃2
1

4c∞

−

(

c̃1

2c∞

− L3

)

c∞L3

= c∞

[

(N − 1)d2
int +

(

c̃1

2c∞

−
L3

2

)2

+
3

4
L2

3

]

,

subject to the L1 mass conservation constraint

2(N − 1)dint +
c̃1

c∞

=
c1

c∞

.

Thus, for β ≡ L3c∞/c1, we get the optimal transport cost

W1( f+, f−) ≥ c∞

[

1

4N

(

c1

c∞

− L3

)2

+
3

4
L2

3

]

=
c2

1

4c∞

(1 − β)2 + 3Nβ2

N
(34)

with equality for

dint =
1

2N

(

c1

c∞

− L3

)

, and
c̃1

c∞

=
c1

Nc∞

+
(N − 1)L3

N
.

ˇ as an Interpolation Parameter Between S3 and an Interval

We can understand these expressions between the two limits of either shortening or

lengthening I3, i.e., as the star graph deforms into an interval with L3 → 0+ on one

hand and as

third edge becomes long enough for us to recover the case of three long edges, as

described in Sects. 5.2 and 5.4. Note that our analysis involving the short edge holds

precisely until the case where there is no distinction between I2 and I3 in terms of

mass allocation. By the results in Sect. 5.4, the optimal mass around the origin for

D = 3 is c̃1 = 4c1/(3N + 1). Since near the vertex, L3 and L2 both contain the
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support of f−, the threshold length for L3 to enable the optimal c̃1 thus corresponds

to β∗ = c∞L3/c1 = c̃1/4c1 = 1/(3N + 1).

Indeed, we may rewrite the right-hand side of (34) to get an equivalent form given

by

W1( f+, f−) ≥
c2

1

4c∞

3N + 1

N

(

β −
1

3N + 1

)2

+
c2

1

4c∞

(

N + 1
3

) .

The lower bound is clearly a decreasing function of β for β ∈ [0, 1/(3N + 1)], hence

interpolating, as expected, between the lower bound derived in (16) for p = 1 and

β = 0 (i.e., D = 2 for the case of an interval) and that given in (33) with D = 3 and

D̃ = 4
3

.

Meanwhile, for small but nonzero L3, the non-multiplicative nature of the lower

bound on the right hand side of (34) is evident. Compared to the cases in Sects. 5.3

and 5.4, we see that the multiplicative form is lost not only in terms of N but also with

respect to c1
c∞

.

Remark What can be said on stars such as in Fig. 9, for which Theorem 13 does

not apply? We outline the strategy for their analysis: first, the equivalence relation in

Lemma 9 can be extended to a single nodal point near the vertex, on the long edge.

The adjacency and monotonicity arguments (Lemmas 11 and 12) seem to go through

as well. Then, the optimization problem in Theorem 13 should be extended by adding

another parameter to represent the location of that “special” nodal point, which is near

the vertex. Finally, we remark that the condition for a long edge being ≥ c1/2c∞ is

sufficient, but not necessarily sharp. The sharpness of this lower bound would become

one interesting element in the study of Question 1 on general metric graphs.

6 Outlook

An important message of this work is that the original problem of minimizing the

transport cost over the specified function class is equivalent to a generalized mini-

mal surface problem associated with optimal domain partition. For one-dimensional

domains, minimizing the cost reduces to optimally positioning the nodal points and

locating masses around them. We believe that this approach can be generalized to

more challenging cases, some of which are discussed below.

Multidimensional Domains

In an analogous way to the one-dimensional settings of this study, it seems that on

bounded and regular domain � ⊆ R
d , the minimizers will be step functions concen-

trated near the interfaces between f+ and f−. If this is indeed the case, the key remains

to be the solution to the minimization problem

min
f ∈Xs (1,c1/c∞,N ,�)

Wp( f+, f−). (35)
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It should be commented that, for step functions, the existence of a lower bound ((2)

Carroll et al. (2020), Cavalletti and Farinelli (2021) and Sagiv and Steinerberger

(2020)) combined with nucleation arguments such as Novack et al. (2023), Lemma

2.8, should yield the existence of minimizers. An element in Xs(1, c1/c∞, N ,�) cor-

responds to a unique partition of � into three disjoint subsets �+,�−,�0 ⊂ �, where

�0 = �\(�+ ∪ �−), such that

|�−| = |�+| =
c1

2
, H

d−1(�) = N , � ≡ ∂�+ ∩ ∂�− ,

assuming that the partitions are sufficiently regular such that Hd−1(�) is well defined.

Denoting the set of such partitions by Y (c1, N ,�), one may attempt a similar approach

to the one presented in this work: reducing the functional minimization problem (35)

to a purely geometric one:

min
f ∈X(1,c1,N ,�)

Wp( f+, f−) = min
(�−,�+,�0)∈Y (c1,N ,�)

Wp(1�+ ,1�−) (36)

Clearly, the latter becomes an optimal partition problem or a minimal surface problem.

That is, the problem under consideration may be formulated as an equivalent geometric

question.

Question 15 For a bounded and regular domain � ⊂ R
d , p ≥ 1, c1 > 0, and N > 0,

what are the optimal partitions (�−,�+,�0) of � and the corresponding minimum

value associated with the problem

min
(�−,�+,�0)∈Y (c1,N ,�)

Wp(1�+ ,1�−) (37)

This draws interesting connections to possibly other optimal domain partition prob-

lems such as those related to different optimal transport minimization problems, e.g.,

partitions defined by the optimal quantization (centroidal Voronoi tessellations) (Qiang

et al. 1999; Mérigot et al. 2021). One may find more discussions on other optimal

domain partition problems in Bucur et al. (1998). A variation of Question 15 con-

sidered in Buttazzo et al. (2020), Novack et al. (2023), Peletier and Röger (2009)

and Xia and Zhou (2021) is to modify the set of feasible partitions by removing the

constraint on the prescribed measure of the nodal, and consider the minimization of

|∂�+| + λW1(1�+ ,1�−) where |∂�+| is the Hausdorff measure of the boundary set

of �+ and λ > 0 is a penalty constant.

The solution to the purely geometric Question 15 can be used to offer a new per-

spectives on the existing studies concerning (2) in multiple-dimensions (Steinerberger

2020; Sagiv and Steinerberger 2020; Carroll et al. 2020; Cavalletti and Farinelli 2021)

and to make further connections with the bilayer membrane limits (Peletier and Röger

2009; Lussardi 2014). In particular, the optimal transport problem admits a decompo-

sition into a continuous family of one-dimensional optimal-transport problems. One

of the main challenges is that, as we seek to solve (37), this decomposition changes

as well. Based on the discussion on the one-dimensional examples, it is obvious that

the optimal partitions may not be unique in general, even though they yield the same
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optimal transport cost. While a complete solution is beyond the scope of this work,

one might conjecture that � is made of piecewise planar surfaces, which are the con-

ventional minimal surfaces in the Euclidean space.

Metric Graphs and Laplacian Eigenfunctions

This work is a starting point for the study of the Wasserstein minimization problems

on metric graphs, for which the star SD (Sect. 5) is perhaps the most basic nontrivial

example. Our analysis for SD suggests what might be the key challenges for general

metric graphs - first, that the associated minimization problems might be algebraically

complicated, and second, that the equivalence principles (Lemma 9) are not easily

extended to general graphs. The second key challenge is to find a monotonicity-like

property which generalizes Lemma 12 to non-star graphs.

While the study of optimal transport on metric graphs is relatively new Erbar

et al. (2021), the study of nodal sets of special functions on metric graphs is a

well-established field, see e.g., Alon et al. (2018), Band (2014), Band et al. (2012),

Berkolaiko and Weyand (2014), Colin de Verdière (2013), Gnutzmann et al. (2003)

and Hofmann (2021) as well as (Berkolaiko and Kuchment 2013) and the references

therein. In its heart, the question is a natural extension of Sturm’s Oscillations Theory:

given the N -th Laplacian eigenfunction on a certain metric graph, how many zeroes

does it have?

Independently, uncertainty principles for the Wasserstein distance such as (16) were

applied to generalize Sturm and Sturm-Hurwitz (sums of Laplacian eigenfunctions)

type results in dimensions d ≥ 1 (Carroll et al. 2020; Cavalletti and Farinelli 2021;

Sagiv and Steinerberger 2020; Steinerberger 2020). Generally speaking, the approach

proceeds in two steps: first, prove a lower bound of the type (16), and then, obtain an

upper bound on W ( f+, f−) for the specialized type of functions under consideration,

e.g., Laplacian eigenfunction. The current work might therefore open the way of

connecting these two lines of works, though many open challenges remain before

such a connection is established.

Minimization over More Specialized Function Classes

Concerning the possible connection to properties of Laplacian eigenfunctions, related

studies on lower bounds and uncertainty-principles of Laplacian eigenfunctions on

Riemannian manifolds (and RCD spaces in general) can be found in De Ponti and

Farinelli (2022), Mukherjee (2021) and Steinerberger (2021). One may note that the

key to get the new lower bounds like (16) presented in this work is through the study

of the minimization problem over the function class defined by, e.g., (3). The latter

class is large enough to allow minimizers taking on the form of step functions. On

the other hand, eigenfunctions of elliptic operators are smooth. Thus, another natural

research direction to explore is the study of possibly different bounds, associated with

similar minimization problems, but over classes of functions that are more regular or

of special forms. In particular, the special forms may correspond to discrete function

spaces, and the problem of passing from discretizations of L∞ functions, where the
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minimization problem is finite-dimensional, to the continuum limit (studied in this

paper), might be of independent interest.

Functional Analytic Perspective

Inequalities such as (2) and (16) can be thought of as interpolation inequalities. On the

lower-bound side, there are the L1 and L∞ norms involving no derivatives. The upper

bound consists of two terms, which can be connected to derivative norms of different

orders, respectively: first, |Z( f )| is smaller than ‖D1supp( f+)‖1, where the derivative

D is taken in the sense of functions of bounded variations (Evans and Garzepy 2018;

Giusti and Williams 1984); then, Wp( f+, f−) can be viewed as norms of derivatives

of negative order, e.g., the W2 distance is related to the standard Sobolev Ḣ−1 norm;

See Loeper (2006) and Peyre (2018) for details.

While this functional-analytic perspective is not used in this paper, it can lead to

the exploration of more general variational problems of the type Question 1, e.g., by

allowing for constraints not only in L1 and L∞, but in other norms such as L p norms

for 1 < p < ∞. Moreover, understanding (2) as an interpolation inequality, (16) can

be thought of as a sharp interpolation inequality with optimal constants, of which an

extensive literature exists (Del Pino and Dolbeault 2002, 2003).
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