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ABSTRACT

We consider the problem of estimating differences in two time se-
ries Gaussian graphical models (TSGGMs) which are known to have
similar structure. The TSGGM structure is encoded in its inverse
power spectral density (IPSD) just as the vector GGM structure is
encoded in its precision (inverse covariance) matrix. Motivated by
many applications, in existing works one is interested in estimating
the difference in two precision matrices to characterize underlying
changes in conditional dependencies of two sets of data comprised
of independent and identically distributed observations. In this pa-
per we consider estimation of the difference in two IPSD’s to char-
acterize underlying changes in conditional dependencies of two sets
of time-dependent data. We analyze a group lasso penalized D-trace
loss function approach in the frequency domain for differential graph
learning, using Wirtinger calculus. An alternating direction method
of multipliers (ADMM) algorithm is presented to optimize the ob-
jective function. Theoretical analysis establishing consistency of
IPSD difference estimator in high-dimensional settings is presented.
We illustrate our approach using a numerical example.

Keywords: Sparse graph learning; differential graph estimation;
undirected graph; time series graphs.

1. INTRODUCTION

Graphical models are an important and useful tool for analyzing
multivariate data [1]. A central concept is that of conditional in-
dependence. Given a collection of random variables, one wishes to
assess the relationship between two variables, conditioned on the re-
maining variables. Consider a graph G = (V&) with a set of p
vertices (nodes) V' = {1,2,--- ,p} = [p], and a corresponding set
of (undirected) edges £ C [p] X [p]. Also consider a stationary (real-
valued), zero-mean, p—dimensional multivariate Gaussian time se-
ries z(t), t = 0,+1,42, - - -, with ith component z; (), and corre-
lation (covariance) matrix function R, (7) = E{x(t + 7)a” (t)},
7 =0,%£1,---. Given {x(t)}, in the corresponding graph G, each
component series {z;(¢)} is represented by a node (¢ in V'), and as-
sociations between components {x;(¢)} and {x;(¢)} are represented
by edges between nodes i and j of G. In a conditional independence
graph (CIG), there is no edge between nodes ¢ and j if and only if
(iff) z;(t) and z; (t) are conditionally independent given the remain-
ing p-2 scalar series z¢(t), £ € [p], £ # i, £ # j.

A key insight in [2] was to transform the series to the frequency
domain and express the graph relationships in the frequency do-
main. Denote the power spectral density (PSD) matrix of {z(¢)}
by S (f), where So(f) = 320 Ruu(7)e 2™ 7. In [2] it was
shown that conditional independence of two time series components
given all other components of the time series, is encoded by zeros in
the inverse PSD (IPSD), that is, {i, j} ¢ & iff the (4, j)-th element of
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S (f) vanishes, i.e., [Sy'(f)]s; = O for every f. Hence one can
use estimated IPSD of observed time series to infer the associated
graph.

Graphical models were originally developed for random vectors
(i.i.d. time series) [3, p. 234]. In particular, Gaussian graphical mod-
els (GGMs) are CIGs where @ is multivariate Gaussian. Suppose
a has positive-definite covariance matrix 3 with inverse covariance
matrix © = X~'. Then Q;j, the (i, j)-th element of €, is zero iff
x; and x; are conditionally independent. Such models have been
extensively studied, and found to be useful in a wide variety of ap-
plications [4-7]. Graphical modeling of real-valued time-dependent
data (stationary time series) originated with [8], followed by [2].
Nonparametric approaches for graphical modeling of real time se-
ries in high-dimensional settings (p is large and/or sample size n is
of the order of p) have been investigated in [9-12], among others.

More recently there has been increasing interest in differential
network analysis where one is interested in estimating the differ-
ence in two inverse covariance matrices [13-17]. Given observa-
tions « and y from two groups of subjects, one is interested in
the difference A = Q, — Q,, where Q, = (E{ma:T})’1 and
Q, = (E{yy'})"!. The associated differential graph is Ga =
(V,Ea) where {7, j} € Ea iff [A];; # 0. It characterizes differ-
ences between the GGMs of the two sets of data. We use the term
differential graph as in [17,18] ( [13, 14, 16] use the term differen-
tial network). As noted in [16], in biostatistics, the differential net-
work/graph describes the changes in conditional dependencies be-
tween components under different environmental or genetic condi-
tions. For instance, one may be interested in the differences in the
graphical models of healthy and impaired subjects, or models un-
der different disease states, given gene expression data or functional
MRI signals [4,19,20].

In contrast to the approaches of [13—17], in this paper we ad-
dress the problem of estimating differences in two time series Gaus-
sian graphical models (TSGGMs) which are known to have simi-
lar structure. The TSGGM structure is encoded in its IPSD just as
the vector GGM structure is encoded in its precision matrix. We
consider estimation of the difference in two IPSD’s to character-
ize underlying changes in conditional dependencies of two sets of
time-dependent data {x(¢)};, and {y(¢)};,. We analyze a group
lasso penalized D-trace loss function approach in the frequency do-
main for differential graph learning, using Wirtinger calculus [21].
As a preliminary step, we first address the problem of estimation
of complex differential graphs, given two complex-valued i.i.d. time
series. This problem and the general problem of differential times
series graph estimation have not been investigated before. The work
of [18] considers time series differential graphs except that in [18]
x(t) and y(t) are non-stationary (“functional” modeling), and in-
stead of a single record (sample) of & (¢),t = 1,2, - ,ny and y(t),
t=1,2,---,ny, asin this paper, they assume multiple independent
observations of (t), t € T, and y(t), t € T (a closed subset of
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real line).

Notation: For a set V, |V| denotes its cardinality. Given
A € CP*P, we use Gmin(A), dmax(A), |A| and tr(A) to denote
the minimum eigenvalue, maximum eigenvalue, determinant and
trace of A, respectively. [B];; denotes the (7, j)-th element of B,
and so does B;;. I is the identity matrix. The symbol ® denotes
the Kronecker product. The superscripts * and / denote the com-
plex conjugate and the Hermitian (conjugate transpose) operations,
respectively. For B € CP*9, we define | B|| = \/¢max(B" B),
IBllr = Vu(BYB), Bl = > ;|Bij| and |[Blloc =
max;, ; | Bij|. The notation * ~ A.(m,X) denotes a random
vector x that is circularly symmetric (proper) complex Gaussian
with mean m and covariance 3. Similarly, z ~ N, (m,X) de-
notes a random vector @ that is real-valued Gaussian with mean m
and covariance 3.

2. COMPLEX DIFFERENTIAL GRAPHS

We first recall a formulation of [13-16] for real-valued data. Let
xR, &~ J\/}(O, 3oz ) and suppose we are given i.i.d. samples
x(t),t =1,2, -+ ,ng, of &, and similarly given i.i.d. samples y(t),
t=1,2,- ,ny, ofmdependenty € RP, y ~ N,(0,X0,). Form
the sample covariance estimates 3, = - o) Dt x(t)z " (t) and

= nl S y(t)y ' (t). In[13-16] one seeks to estimate Ag =

Qoy — Qo and graph Ga = (V, Ea), based on 3, and fly, where
Qoy = Bg, . Qo= = g, In [14] (see also [15, Sec. 2.1]), the
following convex D-trace loss function is used

(A S, 5,) = %tr(ﬁ]zAnyAT) Cw(AG. —5,)) (D)
where D-trace refers to difference-in-trace loss function, a term
coined in [22] in the context of graphical model estimation. The
function L, (A, Yoz, Xoy) is strictly convex in A and has a unique
minimum at Ag = Qoy — Q0. [14, 15]. When one uses sample co-
variances, A is estimated by minimizing a lasso-penalized D-trace
loss function [13-16] (group-lasso in [17]).

2.1. Proper Complex Gaussian Vectors

Consider complex-valued & ~ N.(0,X¢;) and y ~ N.(0, Xo,)
with 2o, > 0, X, > 0. We need to estimate Ay = 2o, — Qog.
Consider the real-valued cost

1 < - ok * ok
=3 (tr(ZmAEyAH) Fu(SEA EyAT))

—3,)+ AT(EL - 3) @

with 3, = - 3707, @(t)e” (1) and By = - 300, y(t)y™ (¢).
Using Wirtmger calculus, we find 0 = aaAL* = EzAEy —
(3, — %,), implying L(A, 2., Zo,) has a minimum at Ay =
Qo, — Qo Define 8 = [vec(A)T vec(A)7]T € C27°. Then
using tr(ATBCD") = vec(A)T (D ® B)vec(C), we have
L(A, 3oz, Zoy) = 560710 — 6" b where

2y — | Zoy @ s 0 } _ [Vec(EOx - zoy)}

0 oy ® 3o, vee(X5, — Xoy)

As in the real case, L(A, 3o,, 2oy ) is strictly convex in A and the
minimum at Ag is unique since the Hessian 7 > 0. For A > 0,
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define the lasso-penalized D-trace loss

p
LA, 3, 3) + A Y Akl (3)
k(=1

LA(Av Ez, Ey) =

We seek A = arg mina Li(A, S, 3y).

2.2. Optimization

Similar to [15] (also [14]), we use an alternating direction method
of multipliers (ADMM) approach [23] with variable splitting. Using
variable splitting, consider

mm{L (A, 3,,5,) + A Z |Wkg|}subjecttoA W. @
k=1

The scaled augmented Lagrangian for this problem is [23]

P
Ly = LA S, 3) + A D7 (Wil + E1A =W + Ui )
k=1
where U is the dual variable, and p > 0 is the penalty parameter.
Given the ith iteration results A® W(Z)7 U™, in the (i + 1)stit-
eration, the algorithm executes the following 3 updates:
(@) AUTY argmina La(A), La(A):= L(A, 3., 3,)+
sla - W LU
(b) WO« argminw Ly(W), Ly(W) :=
A o Wie| + 1A — W + UD|J3

© U U 4 (A<i+1> _ W““))

Update (a): Differentiate L, (A) w.r.t. A* to obtain 0 = 2%a(&) —
S.AS, — (3, -3, + (A —WW 4+ UY). Hence,
Uu))

(6)

(2; ® 21 + gI)vec(A) = Vec(i — E + = (W(l)

where we used vec(AY B) = (B' ® A)vec(Y). Direct ma-
trix inversion solution of (6) requires inversion of a p® x p* ma-
trix. A computationally cheaper solution follows as in [14, 15], but
for Hermitian matrices. Carry out eigendecomposition of 3, and
By as 2 = Q.D.QY, Q.Q = Iand B, = Q,D,Q},
QyQy = I, where D, and D, are diagonal matrices. Then A
that minimizes L, (A) is given by

A=Q.[Do[Q! (2. -, + LW —U)Q,l|Q)

N
where the symbol o denotes the Hadamard product and D € RP*?

organizes the diagonal of (D, ® D, + £I)™" in a matrix with
Djx = 1/([Dz];;[Dy]rr + §). Note that the eigendecomposition

of 33, and f]y has to be done only once. Thus
AT =Q.[Do[Qp(E: - B, + E WO —UM)Q, Q)
®)

Update (b): Here we have the lasso solution [12, Lemma 1]

G+1) _ (1 (M p)
Wiee " = (1 [AGHD + U®)]|

)+[A<i+” U 9)
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where (a)4+ = max(O a). It results from separable optimization of
Ly(W) = 8 ooy {M\Wae| + §1A5GT = We + U 1P

Convergence A stoppmg (convergence) criterion follow-
ing [23, Sec. 3.3.1] can be devised. The stopping criterion is based
on primal and dual residuals being small where, in our case, at
(i + 1)st iteration, the primal residual is given by A(+1) — i+
and the dual residual by p(W Y — W) Convergence cri-
terion is met when the norms of these residuals are below some
threshold. The objective function Ly (A, 3, 3,), given by (3), is
strictly convex. It is also closed, proper and lower semi-continuous.
Hence, for any fixed p > 0, the ADMM algorithm is guaranteed to
converge [23, Sec. 3.2], in the sense that we have primal residual
convergence to 0, dual residual convergence to 0, and objective
function convergence to the optimal value.

3. DIFFERENTIAL TIME SERIES GRAPHS

We will address the problem via a frequency-domain formulation.
For simplicity, we take n, = n, = n. Given x(t) and y(t) for
t=1,2,---,n, define their respective (normalized) DFTs

o (fm) \FZ )exp (—j2mfm(t = 1)), (10)

dy(fm) ny Jexp (—j2nfm(t = 1)), (1D
m=0,1,---,n—1. (12)

The set of complex-valued random vectors {dx(fm), dy( fm)}"/ 2

is a sufficient statistic for any inference problem based on data set
{x(t), y(t)}i=1 [12]. Suppose S (fx) is locally smooth, so that
Sz (fx) is (approx.) constant over K = 2m; + 1 consecutive fre-
quency points f,’s, m; > 0. Pick M = |(% —m; — 1)/K| and
fo = ((k = 1)K +my+1)/nfork =1,2,--- , M yielding M
equally spaced frequencies fk in the interval (0,0.5). It turns out
that for “large” n, the DFT d(f,) is a complex-valued proper (i.e.,
circularly symmetric) Gaussian vector ~ N (0, Sz (fm)), and (mu-
tually) independent form = 1,2, --- , (n/2) —1, (n even) [24, The-
orem 4.4.1], though not identically distributed, so long as the auto-
correlation function of @(¢) is absolutely summable. Similar com-
ments apply to dy (fm). By local smoothness, S, (fx.¢) = Sz (fx)

for 0 = —my, —my + 1, ,my, where fr o = M.
Define
Soi = K Z do (fr.0)dE (fie) (13)
L=—my
Sy = K z o (fr.)dy (fie) (14)
L=—my

where S, and S’yk represent PSD estimators at frequency fk
using unweighted frequency-domain smoothing [24]. By lo-
cal smoothness, du(fr,c) ~ Ne(0,S8:(fr),) and dy(fr,e) ~
NC(OvSy(fk)v)' _ _
Henceforth we will denote the true values of S, (f) and Sy (fx)
as Sozr and Soyk, respectively, with their respective sample esti-
mates S’Tk and S'yk, k=1,2,---, M. Let Aoy, = Sgylk - nglk.
By local smoothness assumption, we apply the approach of Sec. 2.1
to estimate the differences Aoy, & = 1,2,---, M, together with
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a group-lasso penalty to enforce a common edgeset across the M
frequency points. Define
~ 2]\/[
A =[Ay, Ay, oo, Ay]€CP T (15)
A =[[A1]y, [Asliy, -, [Auly] €CY. 16)
We propose to estimate Ay s by minimizing

M P
Li(A) =" L(Ak, Sur, Syr) + 2 Y 1AW 17

k=1 ij=1

In the estimated differential graph, {i,5} € £4 < [|A) || £ 0.
3.1. Optimization

Asin Sec. 2.2, we use an ADMM approach. Using variable splitting,
the scaled augmented Lagrangian for this problem is

L,(A,W,U) = L;(A)

+A Z WD 4+ 2 Z AL — Wi + Uil|7 (18)

i,7=1

where W = [W; --- Wy, U = [U; --- Uyl is the dual
variable, and p > 0 is the penalty parameter. Given the results
A W™ T of the mith iteration, in the (m + 1)st iteration,
an ADMM algorithm executes the following three updates:
(a) Alm+D) arg min x 2221 Lok (Ak), Lok(Ag) =
L(Ar, 8o, Sy + §l1 8k = W™ + U3

(b) WD« argming, Ly(W), Ly(W) =

17 m—+1 m
AL W+ 25 AT - Wi + U™ |3
(©) UM  gm 4 Almt+D) _ gjy(m+1)

Update (a): Optimization in step (a) is separable in Ay, and the
solution discussed in Sec. 2.2 applies. Therefore, with notational
changes, for k = 1,2,--- | M, we have

A =Qui [D® o [QU (Sur — Sy

2w —ulm)aul]el a9

where we have the eigendecomposition of S, and S'yk as Spp =
Q.1 D..QY and S, = Qu:DyrQ}, and D" ¢ RPXP or.
ganizes the diagonal of (Dyx ® Dgyr + 2I)™" in a matrix with
[D®)i; = 1/([Darlii[Dyrlii + 5).

Update (b): Optimization in step (b) is separable in W ¥) and the
group lasso solution [12, Lemma 1] applies. With A, = A(mH) +
Uli ,andfork=1,--- Mandi,j=1,---,p,

mny (g A 3
W, i = (1 p||A<z-j>||>+ [Aklss,  (20)
where A®) = [[A1]y, -+, [An]i;] € CM. 1)

4. THEORETICAL ANALYSIS

Here we analyze consistency of A by following the approach of
[26]. The i.i.d. results of [14,15,22] follow the method of [25] which

Authorized licensed use limited to: Auburn University. Downloaded on July 01,2024 at 13:32:40 UTC from IEEE Xplore. Restrictions apply.



2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

requires an irrepresentability condition that we do not impose. De-
fine the true differential edgeset

a0 ={ 10,7} ¢ 180, (1) = Sat (D] 20,

i£5,0<F<05}, s=leal. @2
Let R..(7) = E{x(t + 7’ ()} and Ry, (1) = E{y(t +
7)yT (t)}. In the rest of this section, we allow p, K = 2m; + 1,
M, s and X to be a functions of sample size n, denoted as p,,, K,
M., sy, and A, respectively.

Define
My = max{ ma(>)(5] mz?x [[So=(f)]ij]
 max_ max|[Soy (/)] } 23
¢0 min — = min { %ln ¢mln(50z(f)) 5 fe%ll(}5 ()bmln(s()y(f))}v
(24)
My = max max|[Sg, (f) = S5} (Dl (25)
Cl = 80 manx { [ S ()]ee. [Sou (F)ee
% /2(In(16p7,M.,)/ In(pn)) (26)
where 7 > 2.
Let A = argming Ls(A).
Theorem 1 : Assume that > 70 [[Rux(7)ke] < oo and

2 Ry (T)]ke] < oo for every k,¢ € [p], Under (22),
if

In(pn
An > 2V M, (3Mosn My + 2)Co % , (27)
M, Mosn \2
K, > (u) C2In(pn), (28)
¢O,m7ﬁn
then with probability > 1 — 2/p},~2, for any 7 > 2, we have
12+/Sn An
1A = Agllp < =200 (29)

¢O min

The proof of Theorem 1 is omitted for lack of space.
Remark 1: Convergence Rate. If Mo, Mg, ¢o,min and Co stay

bounded with increasing sample size n, we have HA — AOH P =
Op(st®y/M,In(p,)/Ky,). Therefore, for |A — Aoz — 0 as

n — oo, we must have 5,7 /M, In(p,)/K,) — 0. O

5. NUMERICAL EXAMPLE

Consider p = 128, 16 clusters (communities) of 8 nodes each, where
nodes within a community are not connected to any nodes in other
communities. Within any community of 8 nodes, the x-data are gen-
erated using a vector autoregressive (VAR) model of order 3. Con-
sider community ¢, ¢ = 1,2, --- ,16. Then (9 (t) € R® is gener-
atedas 29 (t) = 37 A(q> (q)( i) + w'?(t). Only 15% of
entries of Al@ ’s are nonzero and the nonzero elements are indepen-
dently and uniformly distributed over [—0.6,0.6]. We then check
if the VAR(3) model is stable with all eigenvalues of the compan-
ion matrix < 0.95 in magnitude; if not, we re-draw randomly till

this condition is fulfilled. The overall data @(¢) is given by @(t) =
(27T (t) - 19T (1)]T € RP with w'? (t) as i.i.d. zero-mean
Gaussian with identity covariance matrix. To generate y-data, we
randomly eliminate one of the 16 clusters of x(¢) and replace it
with an independently generated y(?)(t) mimicking generation of
x(? (t). First 100 samples are discarded to eliminate transients. This
set-up leads to a differential time series graph with one cluster dif-
ference (82 edges out of 1282 edges). We generate n = n, = n,
observations for (t) and y(t), with n € {512,2048,4096}.

Simulation results based on 100 runs are shown in Fig. 1. By
changing the penalty parameter A and determining the resulting
edges over 100 runs, we calculated the true positive rate (TPR)
which calculates true edges correctly detected (|[A|| # 0 and
|AS?)||  0), and false positive rate 1-TNR (where TNR is the true
negative rate) which are the edges {4, j} for which [|AC9)]| # 0
but HA(()U )| = 0. (Estimated Ay’s are not necessarily Hermitian.
We use (Ay + A)/2 as the Hermitian estimate.) The receiver
operating characteristic (ROC) is shown in Fig. 1 for our proposed
approach (labeled “DTS”) as well as for an approach that assumes
the data is i.i.d. (labeled “IID”), based on [15] which minimizes
lasso-penalized (1) based on difference of precision matrices. For
the proposed approach we used M = 2 and K = 127,511,1023
for n = 512,2048, 4096, respectively. It is seen from Fig. 1 that
our approach significantly outperforms the IID approach, yielding
much higher TPR for a given 1-TNR.

M=2

TPR

—o—DTS: n=512
— = —DTS: n=2048| |
—»—DTS: n=4096 | |
—4—1ID: n=512

— * —1ID: n=2048
—*—ID: n=4096

0 0.1 02 03 04 05 06 07 08 09 1
1-TNR

Fig. 1: ROC curves: DTS is the proposed approach and IID is the
approach of [15]. TPR=true positive rate, TNR=true negative rate

6. CONCLUSIONS

We addressed the problem of estimating differences in two time se-
ries Gaussian graphical models (TSGGMs) which are known to have
similar structure, via estimation of the difference in their IPSD’s.
We analyzed a group lasso penalized D-trace loss function approach
in the frequency domain. An ADMM algorithm was presented to
optimize the convex objective function. Theoretical analysis es-
tablishing consistency of the estimator of IPSD difference in high-
dimensional settings was performed. We illustrated our approach
via a numerical example.
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