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ABSTRACT

We consider the problem of estimating differences in two time se-

ries Gaussian graphical models (TSGGMs) which are known to have

similar structure. The TSGGM structure is encoded in its inverse

power spectral density (IPSD) just as the vector GGM structure is

encoded in its precision (inverse covariance) matrix. Motivated by

many applications, in existing works one is interested in estimating

the difference in two precision matrices to characterize underlying

changes in conditional dependencies of two sets of data comprised

of independent and identically distributed observations. In this pa-

per we consider estimation of the difference in two IPSD’s to char-

acterize underlying changes in conditional dependencies of two sets

of time-dependent data. We analyze a group lasso penalized D-trace

loss function approach in the frequency domain for differential graph

learning, using Wirtinger calculus. An alternating direction method

of multipliers (ADMM) algorithm is presented to optimize the ob-

jective function. Theoretical analysis establishing consistency of

IPSD difference estimator in high-dimensional settings is presented.

We illustrate our approach using a numerical example.

Keywords: Sparse graph learning; differential graph estimation;

undirected graph; time series graphs.

1. INTRODUCTION

Graphical models are an important and useful tool for analyzing

multivariate data [1]. A central concept is that of conditional in-

dependence. Given a collection of random variables, one wishes to

assess the relationship between two variables, conditioned on the re-

maining variables. Consider a graph G = (V, E) with a set of p
vertices (nodes) V = {1, 2, · · · , p} = [p], and a corresponding set

of (undirected) edges E ⊆ [p]× [p]. Also consider a stationary (real-

valued), zero-mean, p−dimensional multivariate Gaussian time se-

ries x(t), t = 0,±1,±2, · · · , with ith component xi(t), and corre-

lation (covariance) matrix function Rxx(τ) = E{x(t + τ)xT (t)},

τ = 0,±1, · · · . Given {x(t)}, in the corresponding graph G, each

component series {xi(t)} is represented by a node (i in V ), and as-

sociations between components {xi(t)} and {xj(t)} are represented

by edges between nodes i and j of G. In a conditional independence

graph (CIG), there is no edge between nodes i and j if and only if

(iff) xi(t) and xj(t) are conditionally independent given the remain-

ing p-2 scalar series xℓ(t), ℓ ∈ [p], ℓ 6= i, ℓ 6= j.

A key insight in [2] was to transform the series to the frequency

domain and express the graph relationships in the frequency do-

main. Denote the power spectral density (PSD) matrix of {x(t)}
by Sx(f), where Sx(f) =

∑

∞

τ=−∞
Rxx(τ)e

−j2πfτ . In [2] it was

shown that conditional independence of two time series components

given all other components of the time series, is encoded by zeros in

the inverse PSD (IPSD), that is, {i, j} 6∈ E iff the (i, j)-th element of

This work is supported by NSF Grant CCF-2308473.

S−1
x (f) vanishes, i.e., [S−1

x (f)]ij = 0 for every f . Hence one can

use estimated IPSD of observed time series to infer the associated

graph.

Graphical models were originally developed for random vectors

(i.i.d. time series) [3, p. 234]. In particular, Gaussian graphical mod-

els (GGMs) are CIGs where x is multivariate Gaussian. Suppose

x has positive-definite covariance matrix Σ with inverse covariance

matrix Ω = Σ
−1. Then Ωij , the (i, j)-th element of Ω, is zero iff

xi and xj are conditionally independent. Such models have been

extensively studied, and found to be useful in a wide variety of ap-

plications [4–7]. Graphical modeling of real-valued time-dependent

data (stationary time series) originated with [8], followed by [2].

Nonparametric approaches for graphical modeling of real time se-

ries in high-dimensional settings (p is large and/or sample size n is

of the order of p) have been investigated in [9–12], among others.

More recently there has been increasing interest in differential

network analysis where one is interested in estimating the differ-

ence in two inverse covariance matrices [13–17]. Given observa-

tions x and y from two groups of subjects, one is interested in

the difference ∆ = Ωy − Ωx, where Ωx = (E{xx⊤})−1 and

Ωy = (E{yy⊤})−1. The associated differential graph is G∆ =
(V, E∆) where {i, j} ∈ E∆ iff [∆]ij 6= 0. It characterizes differ-

ences between the GGMs of the two sets of data. We use the term

differential graph as in [17, 18] ( [13, 14, 16] use the term differen-

tial network). As noted in [16], in biostatistics, the differential net-

work/graph describes the changes in conditional dependencies be-

tween components under different environmental or genetic condi-

tions. For instance, one may be interested in the differences in the

graphical models of healthy and impaired subjects, or models un-

der different disease states, given gene expression data or functional

MRI signals [4, 19, 20].

In contrast to the approaches of [13–17], in this paper we ad-

dress the problem of estimating differences in two time series Gaus-

sian graphical models (TSGGMs) which are known to have simi-

lar structure. The TSGGM structure is encoded in its IPSD just as

the vector GGM structure is encoded in its precision matrix. We

consider estimation of the difference in two IPSD’s to character-

ize underlying changes in conditional dependencies of two sets of

time-dependent data {x(t)}nx

t=1 and {y(t)}ny

t=1. We analyze a group

lasso penalized D-trace loss function approach in the frequency do-

main for differential graph learning, using Wirtinger calculus [21].

As a preliminary step, we first address the problem of estimation

of complex differential graphs, given two complex-valued i.i.d. time

series. This problem and the general problem of differential times

series graph estimation have not been investigated before. The work

of [18] considers time series differential graphs except that in [18]

x(t) and y(t) are non-stationary (“functional” modeling), and in-

stead of a single record (sample) of x(t), t = 1, 2, · · · , nx and y(t),
t = 1, 2, · · · , ny , as in this paper, they assume multiple independent

observations of x(t), t ∈ T , and y(t), t ∈ T (a closed subset of
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real line).

Notation: For a set V , |V | denotes its cardinality. Given

A ∈ C
p×p, we use φmin(A), φmax(A), |A| and tr(A) to denote

the minimum eigenvalue, maximum eigenvalue, determinant and

trace of A, respectively. [B]ij denotes the (i, j)-th element of B,

and so does Bij . I is the identity matrix. The symbol ⊗ denotes

the Kronecker product. The superscripts ∗ and H denote the com-

plex conjugate and the Hermitian (conjugate transpose) operations,

respectively. For B ∈ C
p×q , we define ‖B‖ =

√

φmax(BHB),

‖B‖F =
√

tr(BHB), ‖B‖1 =
∑

i,j |Bij | and ‖B‖∞ =

maxi,j |Bij |. The notation x ∼ Nc(m,Σ) denotes a random

vector x that is circularly symmetric (proper) complex Gaussian

with mean m and covariance Σ. Similarly, x ∼ Nr(m,Σ) de-

notes a random vector x that is real-valued Gaussian with mean m

and covariance Σ.

2. COMPLEX DIFFERENTIAL GRAPHS

We first recall a formulation of [13–16] for real-valued data. Let

x ∈ R
p, x ∼ Nr(0,Σ0x) and suppose we are given i.i.d. samples

x(t), t = 1, 2, · · · , nx, of x, and similarly given i.i.d. samples y(t),
t = 1, 2, · · · , ny , of independent y ∈ R

p, y ∼ Nr(0,Σ0y). Form

the sample covariance estimates Σ̂x = 1
nx

∑nx

t=1 x(t)x
⊤(t) and

Σ̂y = 1
ny

∑ny

t=1 y(t)y
⊤(t). In [13–16] one seeks to estimate ∆0 =

Ω0y −Ω0x and graph G∆ = (V, E∆), based on Σ̂x and Σ̂y , where

Ω0y = Σ
−1
0y , Ω0x = Σ

−1
0x . In [14] (see also [15, Sec. 2.1]), the

following convex D-trace loss function is used

Lr(∆, Σ̂x, Σ̂y) =
1

2
tr(Σ̂x∆Σ̂y∆

⊤)− tr(∆(Σ̂x − Σ̂y)) (1)

where D-trace refers to difference-in-trace loss function, a term

coined in [22] in the context of graphical model estimation. The

function Lr(∆,Σ0x,Σ0y) is strictly convex in ∆ and has a unique

minimum at ∆0 = Ω0y −Ω0x [14,15]. When one uses sample co-

variances, ∆ is estimated by minimizing a lasso-penalized D-trace

loss function [13–16] (group-lasso in [17]).

2.1. Proper Complex Gaussian Vectors

Consider complex-valued x ∼ Nc(0,Σ0x) and y ∼ Nc(0,Σ0y)
with Σ0x ≻ 0, Σ0y ≻ 0. We need to estimate ∆0 = Ω0y −Ω0x.

Consider the real-valued cost

L(∆, Σ̂x, Σ̂y) =
1

2

(

tr(Σ̂x∆Σ̂y∆
H) + tr(Σ̂∗

x∆
∗
Σ̂

∗

y∆
⊤)

)

− tr
(

∆(Σ̂x − Σ̂y) +∆
∗(Σ̂∗

x − Σ̂
∗

y)
)

(2)

with Σ̂x = 1
nx

∑nx

t=1 x(t)x
H(t) and Σ̂y = 1

ny

∑ny

t=1 y(t)y
H(t).

Using Wirtinger calculus, we find 0 = ∂L
∂∆∗

= Σ̂x∆Σ̂y −
(Σ̂x − Σ̂y), implying L(∆,Σ0x,Σ0y) has a minimum at ∆0 =

Ω0y − Ω0x. Define θ = [vec(∆)⊤ vec(∆)H ]⊤ ∈ C
2p2 . Then

using tr(A⊤BCD⊤) = vec(A)⊤(D ⊗ B)vec(C), we have

L(∆,Σ0x,Σ0y) =
1
2
θHHθ − θHb where

H =

[

Σ
∗
0y ⊗Σ0x 0

0 Σ0y ⊗Σ
∗
0x

]

, b =

[

vec(Σ0x −Σ0y)
vec(Σ∗

0x −Σ
∗
0y)

]

.

As in the real case, L(∆,Σ0x,Σ0y) is strictly convex in ∆ and the

minimum at ∆0 is unique since the Hessian H ≻ 0. For λ > 0,

define the lasso-penalized D-trace loss

Lλ(∆, Σ̂x, Σ̂y) = L(∆, Σ̂x, Σ̂y) + λ

p
∑

k,ℓ=1

|∆kℓ| . (3)

We seek ∆̂ = argmin∆ Lλ(∆, Σ̂x, Σ̂y).

2.2. Optimization

Similar to [15] (also [14]), we use an alternating direction method

of multipliers (ADMM) approach [23] with variable splitting. Using

variable splitting, consider

min
∆,W

{

L(∆, Σ̂x, Σ̂y) + λ

p
∑

k,ℓ=1

|Wkℓ|
}

subject to ∆ = W . (4)

The scaled augmented Lagrangian for this problem is [23]

Lρ = L(∆, Σ̂x, Σ̂y) + λ

p
∑

k,ℓ=1

|Wkℓ|+ ρ

2
‖∆−W +U‖2F (5)

where U is the dual variable, and ρ > 0 is the penalty parameter.

Given the ith iteration results ∆(i),W (i),U (i), in the (i + 1)st it-

eration, the algorithm executes the following 3 updates:

(a) ∆
(i+1) ← argmin∆ La(∆), La(∆) := L(∆, Σ̂x, Σ̂y)+

ρ
2
‖∆−W (i) +U (i)‖2F

(b) W (i+1) ← argminW Lb(W ), Lb(W ) :=

λ
∑p

k,ℓ=1 |Wkℓ|+ ρ
2
‖∆(i+1) −W +U (i)‖2F

(c) U (i+1) ← U (i) +
(

∆
(i+1) −W (i+1)

)

Update (a): Differentiate La(∆) w.r.t. ∆∗ to obtain 0 = ∂La(∆)
∂∆∗

=

Σ̂x∆Σ̂y − (Σ̂x − Σ̂y) +
ρ
2
(∆−W (i) +U (i)). Hence,

(Σ̂∗

y ⊗ Σ̂x +
ρ

2
I)vec(∆) = vec(Σ̂x − Σ̂y +

ρ

2
(W (i) −U

(i)))

(6)

where we used vec(AY B) = (B⊤ ⊗ A)vec(Y ). Direct ma-

trix inversion solution of (6) requires inversion of a p2 × p2 ma-

trix. A computationally cheaper solution follows as in [14, 15], but

for Hermitian matrices. Carry out eigendecomposition of Σ̂x and

Σ̂y as Σ̂x = QxDxQ
H
x , QxQ

H
x = I and Σ̂y = QyDyQ

H
y ,

QyQ
H
y = I , where Dx and Dy are diagonal matrices. Then ∆̂

that minimizes La(∆) is given by

∆̂ =Qx

[

D ◦ [QH
x

(

Σ̂x − Σ̂y +
ρ

2
(W (i) −U

(i))
)

Qy]
]

Q
H
y

(7)

where the symbol ◦ denotes the Hadamard product and D ∈ R
p×p

organizes the diagonal of (Dy ⊗ Dx + ρ
2
I)−1 in a matrix with

Djk = 1/([Dx]jj [Dy]kk + ρ
2
). Note that the eigendecomposition

of Σ̂x and Σ̂y has to be done only once. Thus

∆
(i+1) =Qx

[

D ◦ [QH
x p

(

Σ̂x − Σ̂y +
ρ

2
(W (i) −U

(i))
)

Qy]
]

Q
H
y

(8)

Update (b): Here we have the lasso solution [12, Lemma 1]

W
(i+1)
kℓ =

(

1− (λ/ρ)

|[∆(i+1) +U (i)]kℓ|
)

+
[∆(i+1) +U

(i)]kℓ (9)
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where (a)+ = max(0, a). It results from separable optimization of

Lb(W ) =
∑p

k,ℓ=1

{

λ|Wkℓ|+ ρ
2
|∆(i+1)

kℓ −Wkℓ + U
(i)
kℓ |2

}

.

Convergence. A stopping (convergence) criterion follow-

ing [23, Sec. 3.3.1] can be devised. The stopping criterion is based

on primal and dual residuals being small where, in our case, at

(i+1)st iteration, the primal residual is given by ∆
(i+1)−W (i+1)

and the dual residual by ρ(W (i+1) − W (i)). Convergence cri-

terion is met when the norms of these residuals are below some

threshold. The objective function Lλ(∆, Σ̂x, Σ̂y), given by (3), is

strictly convex. It is also closed, proper and lower semi-continuous.

Hence, for any fixed ρ > 0, the ADMM algorithm is guaranteed to

converge [23, Sec. 3.2], in the sense that we have primal residual

convergence to 0, dual residual convergence to 0, and objective

function convergence to the optimal value.

3. DIFFERENTIAL TIME SERIES GRAPHS

We will address the problem via a frequency-domain formulation.

For simplicity, we take nx = ny = n. Given x(t) and y(t) for

t = 1, 2, · · · , n, define their respective (normalized) DFTs

dx(fm) =
1√
n

n
∑

t=1

x(t) exp (−j2πfm(t− 1)) , (10)

dy(fm) =
1√
n

n
∑

t=1

y(t) exp (−j2πfm(t− 1)) , (11)

fm =
m

n
, m = 0, 1, · · · , n− 1. (12)

The set of complex-valued random vectors {dx(fm), dy(fm)}n/2
m=0

is a sufficient statistic for any inference problem based on data set

{x(t), y(t)}nt=1 [12]. Suppose Sx(fk) is locally smooth, so that

Sx(fk) is (approx.) constant over K = 2mt + 1 consecutive fre-

quency points fm’s, mt > 0. Pick M =
⌊

(n
2
−mt − 1)/K

⌋

and

f̃k = ((k − 1)K + mt + 1)/n for k = 1, 2, · · · ,M yielding M

equally spaced frequencies f̃k in the interval (0, 0.5). It turns out

that for “large” n, the DFT dx(fm) is a complex-valued proper (i.e.,

circularly symmetric) Gaussian vector ∼ Nc(0,Sx(fm)), and (mu-

tually) independent for m = 1, 2, · · · , (n/2)−1, (n even) [24, The-

orem 4.4.1], though not identically distributed, so long as the auto-

correlation function of x(t) is absolutely summable. Similar com-

ments apply to dy(fm). By local smoothness, Sx(f̃k,ℓ) = Sx(f̃k)

for ℓ = −mt,−mt + 1, · · · ,mt, where f̃k,ℓ = (k−1)K+mt+1+ℓ
n

.

Define

Ŝxk =
1

K

mt
∑

ℓ=−mt

dx(f̃k,ℓ)d
H
x (f̃k,ℓ) (13)

Ŝyk =
1

K

mt
∑

ℓ=−mt

dy(f̃k,ℓ)d
H
y (f̃k,ℓ) (14)

where Ŝxk and Ŝyk represent PSD estimators at frequency f̃k
using unweighted frequency-domain smoothing [24]. By lo-

cal smoothness, dx(f̃k,ℓ) ∼ Nc(0,Sx(f̃k), ) and dy(f̃k,ℓ) ∼
Nc(0,Sy(f̃k), ).

Henceforth we will denote the true values of Sx(f̃k) and Sy(f̃k)
as S0xk and S0yk, respectively, with their respective sample esti-

mates Ŝxk and Ŝyk, k = 1, 2, · · · ,M . Let ∆0k = S−1
0yk − S−1

0xk.

By local smoothness assumption, we apply the approach of Sec. 2.1

to estimate the differences ∆0k, k = 1, 2, · · · ,M , together with

a group-lasso penalty to enforce a common edgeset across the M
frequency points. Define

∆̃ =[∆1, ∆2, · · · , ∆M ] ∈ C
p2M , (15)

∆
(ij) =

[

[∆1]ij , [∆2]ij , · · · , [∆M ]ij
]

∈ C
M . (16)

We propose to estimate ∆k’s by minimizing

Lf (∆̃) =

M
∑

k=1

L(∆k, Ŝxk, Ŝyk) + λ

p
∑

i,j=1

‖∆(ij)‖ (17)

In the estimated differential graph, {i, j} ∈ E∆̂ ⇔ ‖∆̂(ij)‖ 6= 0.

3.1. Optimization

As in Sec. 2.2, we use an ADMM approach. Using variable splitting,

the scaled augmented Lagrangian for this problem is

Lρ(∆̃, W̃ , Ũ) = Lf (∆̃)

+ λ

p
∑

i,j=1

‖W (ij)‖+ ρ

2

M
∑

k=1

‖∆k −Wk +Uk‖2F (18)

where W̃ = [W1 · · · WM ], Ũ = [U1 · · · UM ] is the dual

variable, and ρ > 0 is the penalty parameter. Given the results

∆̃
(m), W̃ (m), Ũ (m) of the mth iteration, in the (m+1)st iteration,

an ADMM algorithm executes the following three updates:

(a) ∆̃
(m+1) ← argmin

∆̃

∑M
k=1 Lak(∆k), Lak(∆k) =

L(∆k, Ŝxk, Ŝyk) +
ρ
2
‖∆k −W

(m)
k +U

(m)
k ‖2F .

(b) W̃ (m+1) ← argmin
W̃

Lb(W̃ ), Lb(W̃ ) =

λ
∑p

i,j=1 ‖W (ij)‖+ ρ
2

∑M
k=1 ‖∆

(m+1)
k −Wk +U

(m)
k ‖2F

(c) Ũ (m+1) ← Ũ (m) + ∆̃
(m+1) − W̃ (m+1).

Update (a): Optimization in step (a) is separable in ∆k, and the

solution discussed in Sec. 2.2 applies. Therefore, with notational

changes, for k = 1, 2, · · · ,M , we have

∆
(m+1)
k =Qxk

[

D
(k) ◦

[

Q
H
xk

(

Ŝxk − Ŝyk

+
ρ

2
(W

(m)
k −U

(m)
k )

)

Qyk

]

]

Q
H
yk (19)

where we have the eigendecomposition of Ŝxk and Ŝyk as Ŝxk =

QxkDxkQ
H
xk and Ŝyk = QykDykQ

H
yk, and D(k) ∈ R

p×p or-

ganizes the diagonal of (Dyk ⊗ Dxk + ρ
2
I)−1 in a matrix with

[D(k)]ij = 1/([Dxk]ii[Dyk]ii +
ρ
2
).

Update (b): Optimization in step (b) is separable in W (ij), and the

group lasso solution [12, Lemma 1] applies. With Ak = ∆
(m+1)
k +

U
(m)
k , and for k = 1, · · · ,M and i, j = 1, · · · , p,

[W
(m+1)
k ]ij =

(

1− λ

ρ‖A(ij)‖

)

+

[Ak]ij , (20)

where A
(ij) =

[

[A1]ij , · · · , [AM ]ij
]

∈ C
M . (21)

4. THEORETICAL ANALYSIS

Here we analyze consistency of ∆̂ by following the approach of

[26]. The i.i.d. results of [14,15,22] follow the method of [25] which
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requires an irrepresentability condition that we do not impose. De-

fine the true differential edgeset

E∆0
=
{

{i, j} : [S−1
0y (f)− S

−1
0x (f)]ij 6≡ 0,

i 6= j, 0 ≤ f ≤ 0.5
}

, s = |E∆0
| . (22)

Let Rxx(τ) = E{x(t + τ)xT (t)} and Ryy(τ) = E{y(t +
τ)yT (t)}. In the rest of this section, we allow p, K = 2mt + 1,

M , s and λ to be a functions of sample size n, denoted as pn, Kn,

Mn, sn and λn, respectively.

Define

M0 = max
{

max
f∈[0,0.5]

max
ij

|[S0x(f)]ij | ,

max
f∈[0,0.5]

max
ij

|[S0y(f)]ij |
}

, (23)

φ0,min = min
{

min
f∈[0,0.5]

φmin(S0x(f)) , min
f∈[0,0.5]

φmin(S0y(f))
}

,

(24)

Md = max
f∈[0,0.5]

max
ij

∣

∣

∣
[S−1

0y (f)− S
−1
0x (f)]ij

∣

∣

∣
, (25)

C0 = 80 max
ℓ,f

{

[S0x(f)]ℓℓ, [S0y(f)]ℓℓ
}

×
√

2
(

ln(16pτnMn)/ ln(pn)
)

(26)

where τ > 2.

Let
ˆ̃
∆ = argmin

∆̃
Lf (∆̃).

Theorem 1 : Assume that
∑

∞

τ=−∞
|[Rxx(τ)]kℓ| < ∞ and

∑

∞

τ=−∞
|[Ryy(τ)]kℓ| < ∞ for every k, ℓ ∈ [p], Under (22),

if

λn ≥ 2
√
Mn(3M0snMd + 2)C0

√

ln(pn)

Kn
, (27)

Kn >
(96MnM0sn

φ0,min

)2

C2
0 ln(pn) , (28)

then with probability > 1− 2/pτ−2
n , for any τ > 2, we have

‖ ˆ̃∆− ∆̃0‖F ≤ 12
√
sn λn

φ0,min
• (29)

The proof of Theorem 1 is omitted for lack of space.

Remark 1: Convergence Rate. If M0, Md, φ0,min and C0 stay

bounded with increasing sample size n, we have ‖ ˆ̃
∆ − ∆̃0‖F =

OP (s
1.5
n

√

Mn ln(pn)/Kn). Therefore, for ‖ ˆ̃
∆ − ∆̃0‖F → 0 as

n → ∞, we must have s1.5n

√

Mn ln(pn)/Kn) → 0. �

5. NUMERICAL EXAMPLE

Consider p = 128, 16 clusters (communities) of 8 nodes each, where

nodes within a community are not connected to any nodes in other

communities. Within any community of 8 nodes, the x-data are gen-

erated using a vector autoregressive (VAR) model of order 3. Con-

sider community q, q = 1, 2, · · · , 16. Then x(q)(t) ∈ R
8 is gener-

ated as x(q)(t) =
∑3

i=1 A
(q)
i x(q)(t − i) + w(q)(t). Only 15% of

entries of A
(q)
i ’s are nonzero and the nonzero elements are indepen-

dently and uniformly distributed over [−0.6, 0.6]. We then check

if the VAR(3) model is stable with all eigenvalues of the compan-

ion matrix ≤ 0.95 in magnitude; if not, we re-draw randomly till

this condition is fulfilled. The overall data x(t) is given by x(t) =

[x(1)⊤(t) · · · x(16)⊤(t) ]⊤ ∈ R
p with w(q)(t) as i.i.d. zero-mean

Gaussian with identity covariance matrix. To generate y-data, we

randomly eliminate one of the 16 clusters of x(t) and replace it

with an independently generated y(q)(t) mimicking generation of

x(q)(t). First 100 samples are discarded to eliminate transients. This

set-up leads to a differential time series graph with one cluster dif-

ference (82 edges out of 1282 edges). We generate n = nx = ny

observations for x(t) and y(t), with n ∈ {512, 2048, 4096}.

Simulation results based on 100 runs are shown in Fig. 1. By

changing the penalty parameter λ and determining the resulting

edges over 100 runs, we calculated the true positive rate (TPR)

which calculates true edges correctly detected (‖∆̂(ij)‖ 6= 0 and

‖∆̃(ij)
0 ‖ 6= 0), and false positive rate 1-TNR (where TNR is the true

negative rate) which are the edges {i, j} for which ‖∆̂(ij)‖ 6= 0

but ‖∆̃(ij)
0 ‖ = 0. (Estimated ∆̂k’s are not necessarily Hermitian.

We use (∆̂k + ∆̂
H
k )/2 as the Hermitian estimate.) The receiver

operating characteristic (ROC) is shown in Fig. 1 for our proposed

approach (labeled “DTS”) as well as for an approach that assumes

the data is i.i.d. (labeled “IID”), based on [15] which minimizes

lasso-penalized (1) based on difference of precision matrices. For

the proposed approach we used M = 2 and K = 127, 511, 1023
for n = 512, 2048, 4096, respectively. It is seen from Fig. 1 that

our approach significantly outperforms the IID approach, yielding

much higher TPR for a given 1-TNR.
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Fig. 1: ROC curves: DTS is the proposed approach and IID is the

approach of [15]. TPR=true positive rate, TNR=true negative rate

6. CONCLUSIONS

We addressed the problem of estimating differences in two time se-

ries Gaussian graphical models (TSGGMs) which are known to have

similar structure, via estimation of the difference in their IPSD’s.

We analyzed a group lasso penalized D-trace loss function approach

in the frequency domain. An ADMM algorithm was presented to

optimize the convex objective function. Theoretical analysis es-

tablishing consistency of the estimator of IPSD difference in high-

dimensional settings was performed. We illustrated our approach

via a numerical example.
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