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ABSTRACT

We consider the problem of inferring the conditional independence
graph (CIG) of a sparse, high-dimensional, stationary matrix-variate
Gaussian time series. The correlation function of the matrix se-
ries is Kronecker-decomposable. Unlike most past work on matrix
graphical models, where independent and identically distributed
(i.i.d.) observations of matrix-variate are assumed to be available,
we allow time-dependent observations. We follow a time-delay
embedding approach where with each matrix node, we associate
a random vector consisting of a scalar series component and its
time-delayed copies. A group-lasso penalized negative pseudo log-
likelihood (NPLL) objective function is formulated to estimate a
Kronecker-decomposable covariance matrix which allows for in-
ference of the underlying CIG. The NPLL function is bi-convex
and the Kronecker-decomposable covariance matrix is estimated
via flip-flop optimization of the NPLL function. Each iteration of
flip-flop optimization is solved via an alternating direction method
of multipliers (ADMM) approach. Numerical results illustrate the
proposed approach which outperforms an existing i.i.d. modeling
based approach as well as an existing frequency-domain approach
for dependent data, in correctly detecting the graph edges.
Keywords: Sparse graph learning; matrix graph estimation; matrix
time series; undirected graph; delay embedding.

1. INTRODUCTION

In graphical models, graphs display the conditional independence
structure of the random variables [1]. While vector graphical models
have been extensively studied [2—4], much less attention has been
given to matrix-valued graphical models, the need for which arises
in several applications [5—14].

In a vector graphical model, the conditional statistical depen-
dency structure among p random variables x1, x1, - - - , Tp, 1S repre-
sented using an undirected graph G = (V, £) with a set of p vertices
(nodes) V' ={1,2,--- ,p} = [p], and a corresponding set of (undi-
rected) edges € C [p] x [p]. There is no edge between nodes ¢ and
7 iff ; and x; are conditionally independent given the remaining
p-2 variables. Suppose x has positive-definite covariance matrix 3
with precision matrix & = X7'. Then ., the (i, j)-th element
of €2, is zero iff x; and x; are conditionally independent [1]. In
matrix graphs, we observe matrix-valued time series { Z (¢)} where
Z(t) € RP*1. If one vectorizes using vec(Z), then use of vec(Z)
will result in a pg-node vector graph with (pq) X (pq) precision ma-
trix, which could be ultra-high-dimensional and moreover, it ignores
any structural information among rows and columns of the matrix
observations [5]. The basic idea in matrix-valued graphs is to model
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the covariance of vec(Z) as ¥ ® X (¥ is ¢ X g and X is p X p),
reducing the number of unknowns from O(p?q¢?) in the precision
matrix for the “full” vectorized model to O(p* + ¢*) for the matrix
model, while also preserving the structural information.

Prior work [5—14] on matrix (or tensor) graphs all assume that
i.i.d. observations of Z are available for graphical modeling. Our
objective in this paper is to learn the matrix graph associated with
time-dependent matrix-valued p x ¢ Gaussian sequence Z (t), given
observations of Z(t) fort =1,2,--- ,n.

Notation: |A| and tr(A) denote the determinant and the trace
of the square matrix A, respectively, and etr(A) = exp(tr(A)).
[B];; denotes the (7, j)-th element of B, and so does B;;. I, is
the m x m identity matrix. & ~ N (m,3X) denotes a Gaussian
random vector & with mean m and covariance X, and ® denotes
the Kronecker product.

2. SYSTEM MODEL AND PRIOR WORK

Random matrix Z € RP*7 is said to have a matrix normal (Gaus-
sian) distribution if its pdf f(Z|M, X, ¥), characterized by M €
RPX4 3 € RP*P, ¥ € R9%? is given by [15, Chap. 2]

etr( —YZ-M)T (2 - M)Tz—l)

(27r)pq/2|2|q/2|\11|17/2 ’
ey

where etr(A) = exp(tr(A)). Equivalently, z = vec(Z) ~
N(Vec(M),\Il ® E). Here ¥ is the row covariance matrix
and X is the column covariance matrix [15] since the kth column
Z . ~ N(0,[¥],X) and the ith row Z;| ~ N(0, [Z]:®).

Graphical modeling of random vectors to characterize condi-
tional dependence of its components [1,2] was extended to matrix
data with structured information [5,7,8,11,12]. With Z ¢ R?*¢
modeled as zero-mean matrix normal, and z = vec(Z), we have
E{zz"} = ¥ ® X, implying a separable covariance structure [16].
Let Q = X !'and T' = ¥ ! denote the respective precision ma-
trices. Then Z;; and Zj, are conditionally independent given re-
maining entries in Z iff (i) at least one of €2;; and I'j, is zero
when ¢ # k, j # £, (ii)) Qi = 0 when i # k, j = ¢, and (iii)
T'j;, = 0wheni = k, j # £ [5]. Prior work [5-14] assumes that
i.i.d. observations of Z are available for graphical modeling. Re-
cently in [17] time-dependence was introduced, modeling the time-
dependent zero-mean matrix-valued, stationary, p X ¢ Gaussian se-
quence Z(t), z(t) = vec(Z(t)), as having the separable covariance
structure given by

f(ZIM, 2, ¥) =

E{z(t+7)z (1)} =¥ (1)@ = )

where ¥(7), 7 = 0, %1, - - - models time-dependence while 3 > 0
is fixed. With {e(t)} i.i.d., e(t) ~ N;(0, Ip,q), a generative model

ICASSP 2024

Authorized licensed use limited to: Auburn University. Downloaded on July 01,2024 at 13:31:36 UTC from IEEE Xplore. Restrictions apply.



for z(t) is given by
L
z(t) =) (B:® Fle(t—i), B; € R, F ¢ RP*?, (3

=0
L
¥(r)=)Y BB/, and X =FF'. 4)

=0

.

The power spectral density (PSD) of {z(t)} is S.(f) = S(f)®
S where S(f) = 3, ¥(r)e 7>™/7. Then S;'(f) = S7'(f) ®
3!, and by [18], in the pg—node graph G = (V, &), |V| = pq. as-
sociated with {z(t)}, edge {i,5} & £ iff [S7'(f)]:; = O for every
f. This does not account for the separable structure of the model.
Noting that S~'(f), f € [0,0.5], plays the role of I' = ¥~ us-
ing [5, 18], it follows that { Z;; (¢)} and {Zy(¢)} are conditionally
independent given remaining entries in {Z(¢)} iff (i) at least one
of Q and [S™'(f)]je, f € [0,0.5] is zero when i # k, j # £,
(i) Qi = 0 when i # k, j = £, and (iii) [S™*(f)];¢ = O for
f€10,0.5] wheni =k, j # {.

In [17] the objective was to learn the graph associated with time-
dependent sequence {Z(¢)}, given observations t = 1,2,--- n,
under some sparsity constraints on € and S~'(f), f € [0,0.5].
In this paper we follow a time-domain approach using a time-delay
embedding approach (called a “multi-attribute formulation” in [19]
in the context of graphical modeling of dependent time series). The
name delay embedding originates from [20] in the context of chaos
detection where such embeddings reveal the dynamic structure of
the underlying system, and such embeddings have been employed in
other contexts, e.g., [21,22].

2.1. Gaussian Graphical Models
2.1.1. Vector Graphical Model

Given an undirected graph G = (V, E), |V| = p, in a vector graph-
ical model for zero-mean Gaussian & € R”, component x; is asso-
ciated with node ¢ of the graph, and the conditional independence
relationships among x;’s are encoded in €. Let @ _;; = {z) : k €
V\{i,5}} € RP~2 denote the vector a after deleting z; and x; from
it where V'\{7,j} denotes the set V' with nodes i and j deleted. De-
fine ei|—ij = T; — E{xz|w,”} and eﬂ_ij = Tj — E{mj|a:,ij}.
Then we have the following equivalence [1]

edge {Z,]} g £ & Qi]' =0 < E{€i|,¢j6j‘,¢j} =0. 5)

2.1.2. Vector Time Series Graphical Model

In this model for a stationary zero-mean Gaussian time series
{z(t)}, (t) € RP, component series {z;(t)} is associated with
node ¢ of the graph, and the conditional independence relationships
among series components are encoded in £. Define e;_;;(t) =
zi(t) — E{wi(t)|@—ijz}, ejj—i;(t) = x;(t) = E{x;(t)|@—ij2}
where ;7 = {xzk(t) : k € V\{i,j}, t € Z}. Then we have the
following equivalence [18] (Z is the set of integers)

edge {i,j} € & [S:' ()] =0Yf €0,1]
= E{ei\,ij(t + T)ej‘,ij(t)} =0VreZ. (6)

2.1.3. Vector Multi-Attribute Graphical Model

In this model for p jointly Gaussian vectors z; € R™, i € [p], z;
is associated with node i of G = (V,&), V = [p]. We now have
m attributes per node. Let & = [z{ 23 < zy]" € R™. Let

Q = (E{xx'})"" assuming E{zz "} = 0. Define the m x m
subblock ©(17) of € as

[Q(ij)]rs = [Q](i—l)m+r,(7—l)m+s y s =12, m. (N

Let z_i; = {zx : k € V\{ij}} € R™®~2 denote the vector
x after deleting vectors z; and z; from it. Define e;)_;; = z; —
E{zi|z_;} and e;|_;; = z; — E{z;j|z_i;}. Then we have the
following equivalence [23, Sec. 2.1, Appendix B.3]

edge {i,j} ¢ € & Q) =0 & E{ej_ye) ;1 =0. 8

3. TIME-DELAY EMBEDDING

Define the time-delay embedded vector y(t) € R™?? as

yt) =270, 2Tt —1), -, 2 (- (m—1)) O
and the corresponding delay embedded matrix Y (¢) € R?*™9

Y(t)=[2(t), Z(t-1), ---, Z(t—(m—=1))] (10)

such that y(t) = vec(Y (¢)). By assumption, {Z(t)} is a matrix
normal sequence with Kronecker-decomposable covariance struc-
ture specified by (2). We have

E{lytyy (1)} =%, & e R™™ S cRPP, (1)

@(0) (1) T(m—1)
3 T(-1) ¥ (0) T(m—2)
= : : - : 12)
T(-m+1) T(-m+2) @(0)

Define T' = W' and let, as before, @ = $71. Define the
m X m matrix I‘<“~), comprised of certain m? elements of T', with
(r, s)th element of T'*9) as

[f‘(ke>]rs :[f‘}k+(r71)q,l+(571)q7 r,Ss S [m} . (13)

Lemma 1. Suppose that the stationary zero-mean matrix normal se-
quence { Z(t)} is generated via (3). Then { Z;; (u), t—m+1 < u <
t}and { Zpe(u), t—m+1 < u < t} are conditionally independent
giVCH {ZTS(U)v t—m + 1 S u S t7 (T7S) ¢ {(7‘7.])7 (k7£)}7 T e
[pl, s € [q]} iff
(i) atleast one of €5, and |[T'VU9 || ¢ is zero when i # k, j # £,
(i) Qix =O0wheni £k, j=1,
(i) [TY9||p =0wheni=~Fk,j#( o
Proof. Associate z(t) = vec(Z(t)) with graph G = (V,€), |[V| =
pq. In order to exploit the formulation of Sec. 2.1.3, define
20 = [zi(t), zi(t—1), -, z(t—(m—1)]", (14
g0 =107, EPe)T, -, G0 as)
where 29 (t) € R™ and §(t) € R™P4. The graph G = (V, £) also
describes g(t) as a multi-attribute graphical model. Original y(t)

and new g(t) are related by an mpgq X mpq permutation matrix P
with g(t) = Py(t). Let

Z_vw(t) :{2((1)@) ag V\{va}}v v, w € [pq] , o (16)
eul-uvw(t) =20 (8) = B{z" (H)|2-0u(t)}, (17
ewl—uw(t) =2 (t) = B{Z" (1) 20w (t)} . (18)
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By Sec. 2.1.3 (fl?(fw) is similar to (7) except that now |V'| = pq),
{fv,w}g& = Q") =0 (19)
where Q, = (E{g(t)g " (t)})~". Define

éf'uw;t,m :{Za(s) rac V\{v,w}, t—m+ 1 S S S t}7

(20)
ezv|—vw(t/) :Zv(t/) - E{Zv(t/”i—vw;t,m} s (21)
ezw|7vw(t,) :zv(t,) - E{Zw(t/)lzfvw;t,m} . (22)

Notice that e.,|_ ., (t") above is an element of €,|_,,, (¢) defined in
(17) for any t — m + 1 < ¢’ < t. Then by (8) and (19), we have

Q;:(va) =0 & E{ezv\f'uw(tl)ezw|7vw(t2)} - 07 (23)
for t—m+1<ty,ts <t.

With @, = (E{y(t)y " ()}) ' = (T ® £)~! = ' ® N2, we have
Q, = P(T ® Q)P since §(t) = Py(t) and PP" = I. Hence
Q' =0 & (POeQPT)"™ =0 < {v,w} ¢E. The
conclusions of Lemma 1 parts (i)-(iii) then follow by using the Kro-
necker product structure I' ® €2, and exploiting the correspondence
between the entries of g(¢) and y(¢). O

Remark 1. If we let m 1 oo, the Lemma 1 implies that check-
ing if |[T*9 ||z = 0 and/or Q;; = 0 to ascertain (19) becomes a
surrogate for checking if the last equivalence in (6) holds true for
graph structure estimation for time series {vec(Z(t)} without using
frequency-domain methods. In (23), |7| = [t1 — t2] < m — 1,
and as m 1T oo, we approach (6) for edge {u,w} of the graph for
{vec(Z(t)}. O

4. PENALIZED PSEUDO LOG-LIKELIHOOD

Given data Z(t), t = 1,2,--- ,n, form Y (¢) as in (10) for t =
m,m+ 1,--- ,n. By (11), y(t) = vec(Y (t)) ~ N(0,¥ @ ).
Therefore, pdf of Y (¢) is given by

etr( - %Y(t)f‘YT(t)Q)

(Y (1)) = @mymea/2| S| mal2 |G ri2 @

However, {Y (¢)} is not an independent sequence. We will pretend
that is an i.i.d. sequence and define a pseudo likelihood function for
dataset Y = {Y () }i as fy (V) = [[1—,.. [y (Y (1)), result-
ing in a negative pseudo log-likelihood (NPLL) function L(£2, T) x
—In(fy(Y)), up to a constant, as (ns = n —m + 1)

Z2 () ~ % In(|T))

n % ti tr(Y(t)fYT(t)Q) . 25)

L(Q,T)=—

In the high-dimension case, one needs to use penalty terms to enforce
sparsity and to make the problem well-conditioned. Our proposed
penalized (scaled) NPLL function is

1

nsmgp

n

S u(vEy T (me) - %m(m\)

t=m

L(Q,T) =

1 ~ P q ~
— —In(|T]) + A Qij| +V/m A r*pr 26
p (rn pm_Z:ll il+vm qk,;l“ lr (26)
where Ap, Ay > 0 are tuning parameters, we have lasso penalty on
€2 and group lasso penalty on T with /m reflecting the number of
group variables. The cost (26) modifies the cost in [5] to allow for
delay embeddings resulting in group lasso.

5. OPTIMIZATION

The objective function £(£2, f‘) in (26) is biconvex: (strictly) convex
in T, }:‘ > 0, for fixed €2, and (strictly) convex in €2, 2 > 0, for
fixed I'. As in [5,7] (and others) pertaining to the i.i.d. observations
case, and as is a general approach for biconvex function optimization
[24, Sec. 4.2.1], we will use an iterative and alternating minimization
approach where we optimize w.r.t. {2 with I fixed, and then optimize
w.r.t. T with € fixed at the last optimized value, and repeat the two
optimizations (flip-flop). There is no guarantee that the algorithm
converges to the global minimum, however, the algorithm converges
to a local stationary point of £(€2, I") [24, Sec. 4.2.1].

With T denoting the estimate of T', fix T' = T and let £ (£2) de-
note £(€2, I') up to some irrelevant constants. We minimize £1(€2)
w.r.t. £ to obtain estimate €2, where

1 1o -
L1(9) =~ n(2) + u (28) + > 194G, @

ij=1

1

S = YWOTY'(t), ne=n—m+1. (28
mq;n 1% QG (28)

Ns

Fix @ = Q and and let £2(T") denote £(2, T") up to some irrelevant

constants. We minimize £o(T') w.r.t. T to obtain estimate T', where

=1 = 1 =& Sk
£o(f) = — () + (rs) +Vm A g::l 50| 5,
29)

S’:

! i YT(t)QY(t) . (30)

n
sP t=m

Our optimization algorithm (used in our simulations) is as follows
for a pre-chosen m > 1 (maximum time delay m — 1).

1. Initialize r = 1, Q® = 1,, T = I,,,,.

2. Set 2 = QD ip (30). Use the iterative alternating direc-
tion method of multipliers (ADMM) algorithm [25] to mini-
mize Lo (f‘) (given by (29)) w.r.t. T to obtain estimates ™,
[We used the ADMM algorithm of [26, Sec. III] (with a = 0
therein, no lasso penalty). Cost (7) in [26] (after setting o« =
0) corresponds to (28) of this paper.]

3. SetT = I'™ in (28). Use the ADMM algorithm to mini-
mize £1(£2) w.r.t. £2, to obtain estimate (™). [We used the
ADMM algorithm of [26, Sec. IlI] (with o = 1 therein, no
group-lasso penalty). Cost (7) in [26] (after setting o = 1)
corresponds to (27) of this paper.]

4. To resolve a scaling ambiguity, set Q" = Q) /||Q") || .

5. Repeat steps 2 and 4 until convergence.

6. NUMERICAL RESULTS

We use model (3)-(4) to generate synthetic data where ¥ (7) is con-
trolled via a vector autoregressive (VAR) model impulse response
and X is determined via an Erdos-Renyi graph. We take p = ¢ =
15. Consider the impulse response H ™ () € R®*® generated as
H" =532  AVHD, + I:6, where H™ = 0 fori < 0,
d; is the Kronecker delta, » = 1,2,3, and only 5% of entries of
AET) ’s are nonzero and the nonzero elements are independently and
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Approach F score (£0)

timing (s) (£o)

TPR (£o) I-TNR (£0)

n =64

IID [5-7]
Freq-domain [17]
Delay Embedding (proposed)

0.3970 £0.1119
0.7320 £0.1056
0.8122 £0.0792

0.0052 £0.0011
0.2001 £0.0393
0.0635 £0.0189

0.2842 £0.1031
0.6321 £0.1438
0.7450 £0.1291

0.0015 £0.0014
0.0009 £0.0011
0.0010 £0.0013

n =256

IID [5-7]
Freq-domain [17]
Delay Embedding (proposed)

0.4383 £0.1323
0.8154 £0.0911
0.8722 £0.0767

0.0122 £0.0042
0.2278 £0.0340
0.1181 £0.0623

0.3068 £0.1191
0.7782 £0.1323
0.8693 £0.1016

0.0008 £0.0008
0.0017 £0.0015
0.0017 £0.0017

Table 1: Comparisons among three approaches: n = 64, 256, p = q = 15. Tuning parameters \p, \q picked to yield the highest Fy score.

Results based on 100 runs.
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Fig. 1: ROC curves for n = 64: plots labeled “IID” are from the
approach of [5-7], those labeled “freq.” are from [17], and the ones
labeled “embed” are from our proposed approach. TPR=true posi-
tive rate, TNR=true negative rate

uniformly distributed over [—0.8, 0.8]. We then check if the VAR(3)
model is stable with all eigenvalues of the companion matrix < 0.95
in magnitude; if not, we re-draw randomly till this condition is ful-
filled. The impulse response B; € R*** in (3) is given by B; =
block-diag{ H'" , H'* , H®}, for 0 < i < L = 40, otherwise
it is set to zero. Thus B;’s in (3) have a block-diagonal structure
with 3 blocks, each block is 5 x 5. In the Erdos-Renyi graph with
p = 15 nodes, the nodes are connected with probability p., = 0.05.
In the upper triangular 2, Q;; = 0 if {i,5} € S,, Qi; is uni-
formly distributed over [—0.4, —0.1] U [0.1,0.4] if {4, j} € Sp, and
Qi = 0.5. With @ = Q7, add xT to © with x picked to make
minimum eigenvalue of 2 = er w1 equal to 0.5. Let 2 = F'F
(matrix square-root), then F' = F~' in (3).

We applied our proposed approach with n = 64 or 256, m = 4
(maximum delay 3), and compared with the approach of [17] (M =
2, K =15 forn = 64 and K = 63 for n = 256) and the approach
of [5] (which is also the approach of [6,7], all of whom assume i.i.d.
observations and have two lasso penalties one each on 2 and T,
counterpart to our I' with no delays). By changing the penalty pa-
rameters and determining the resulting edges, we calculated the true
positive rate (TPR) and false positive rate 1-TNR (where TNR is the
true negative rate) over 100 runs, separately for €2 and I'/{® }/T’
({®} are the inverse PSD’s in [17]). The receiver operating char-
acteristic (ROC) is shown in Figs. 1 and 2 based on 100 runs. Figs.
1- 2 show that the i.i.d. modeling of [5-7] is unable to capture the

“dependent” edges (cf. (3)) via I whereas it has no issues with €.
Our embedding approach as well as the frequency-domain approach
of [17], both work well for both components of the graph Kronecker
product, with our embedding approach being better (higher TPR for
a given 1-TNR).

In Table 1, we compare the three approaches in terms of the F
score, execution time (based on tic-toc functions in MATLAB), TPR
and 1-TNR, for fixed penalty parameter A selected from a grid of
values (the same as for computing the ROC curves) to maximize the
F score averaged over 100 runs. It is seen that the delay embedding
approach is faster than the frequency-domain approach.

1 A G iyl
o
0.9 AT T e T
- 1 .
<, - »
0.8 ; /,5/
07 S
v/’

06 o

o o
-

o 05 e
[= y

04 e “ 60 freq, =256

o — % — ®;: freq, n=256
0.3 i's —&—Q: 1D, n=256 |
g —-p-—T: 1ID, n=256
02 - —8— 2 embed, n=256 | -
W —-&-—T: embed, n=256
7/
0.1?
o .
0 0.

A 02 03 04 05 06 07 08 09 1
1-TNR

Fig. 2: ROC curves for n = 256. Other description as for Fig. 1.

7. CONCLUSIONS

Inference of the conditional independence graph of a sparse, high-
dimensional, stationary matrix-variate Gaussian time series was
considered under the assumption that the correlation function of the
matrix series is Kronecker-decomposable. A time-delay embedding
approach was proposed where with each matrix node, we associate
a random vector consisting of a scalar series component and its
time-delayed copies. A group-lasso penalized negative pseudo log-
likelihood (NPLL) objective function was formulated and optimized
via flip-flop minimization. We illustrated our approach using a nu-
merical example where our approach significantly outperformed an
existing i.i.d. modeling-based approach [5—7] as well as an existing
frequency-domain approach [17] for dependent data, in correctly
detecting the graph edges with ROC as the performance metric.

Future work includes performance analysis and application to
real data.
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