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ABSTRACT

We consider the problem of inferring the conditional independence

graph (CIG) of a sparse, high-dimensional, stationary matrix-variate

Gaussian time series. The correlation function of the matrix se-

ries is Kronecker-decomposable. Unlike most past work on matrix

graphical models, where independent and identically distributed

(i.i.d.) observations of matrix-variate are assumed to be available,

we allow time-dependent observations. We follow a time-delay

embedding approach where with each matrix node, we associate

a random vector consisting of a scalar series component and its

time-delayed copies. A group-lasso penalized negative pseudo log-

likelihood (NPLL) objective function is formulated to estimate a

Kronecker-decomposable covariance matrix which allows for in-

ference of the underlying CIG. The NPLL function is bi-convex

and the Kronecker-decomposable covariance matrix is estimated

via flip-flop optimization of the NPLL function. Each iteration of

flip-flop optimization is solved via an alternating direction method

of multipliers (ADMM) approach. Numerical results illustrate the

proposed approach which outperforms an existing i.i.d. modeling

based approach as well as an existing frequency-domain approach

for dependent data, in correctly detecting the graph edges.

Keywords: Sparse graph learning; matrix graph estimation; matrix

time series; undirected graph; delay embedding.

1. INTRODUCTION

In graphical models, graphs display the conditional independence

structure of the random variables [1]. While vector graphical models

have been extensively studied [2–4], much less attention has been

given to matrix-valued graphical models, the need for which arises

in several applications [5–14].

In a vector graphical model, the conditional statistical depen-

dency structure among p random variables x1, x1, · · · , xp, is repre-

sented using an undirected graph G = (V, E) with a set of p vertices

(nodes) V = {1, 2, · · · , p} = [p], and a corresponding set of (undi-

rected) edges E ⊆ [p] × [p]. There is no edge between nodes i and

j iff xi and xj are conditionally independent given the remaining

p-2 variables. Suppose x has positive-definite covariance matrix Σ

with precision matrix Ω = Σ
−1. Then Ωij , the (i, j)-th element

of Ω, is zero iff xi and xj are conditionally independent [1]. In

matrix graphs, we observe matrix-valued time series {Z(t)} where

Z(t) ∈ R
p×q . If one vectorizes using vec(Z), then use of vec(Z)

will result in a pq-node vector graph with (pq)× (pq) precision ma-

trix, which could be ultra-high-dimensional and moreover, it ignores

any structural information among rows and columns of the matrix

observations [5]. The basic idea in matrix-valued graphs is to model
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the covariance of vec(Z) as Ψ ⊗ Σ (Ψ is q × q and Σ is p × p),

reducing the number of unknowns from O(p2q2) in the precision

matrix for the “full” vectorized model to O(p2 + q2) for the matrix

model, while also preserving the structural information.

Prior work [5–14] on matrix (or tensor) graphs all assume that

i.i.d. observations of Z are available for graphical modeling. Our

objective in this paper is to learn the matrix graph associated with

time-dependent matrix-valued p× q Gaussian sequence Z(t), given

observations of Z(t) for t = 1, 2, · · · , n.

Notation: |A| and tr(A) denote the determinant and the trace

of the square matrix A, respectively, and etr(A) = exp(tr(A)).
[B]ij denotes the (i, j)-th element of B, and so does Bij . Im is

the m × m identity matrix. x ∼ N (m,Σ) denotes a Gaussian

random vector x with mean m and covariance Σ, and ⊗ denotes

the Kronecker product.

2. SYSTEM MODEL AND PRIOR WORK

Random matrix Z ∈ R
p×q is said to have a matrix normal (Gaus-

sian) distribution if its pdf f(Z|M ,Σ,Ψ), characterized by M ∈
R

p×q , Σ ∈ R
p×p, Ψ ∈ R

q×q , is given by [15, Chap. 2]

f(Z|M ,Σ,Ψ) =
etr

(

− 1
2
(Z −M)Ψ−1(Z −M)⊤Σ−1

)

(2π)pq/2|Σ|q/2|Ψ|p/2 ,

(1)

where etr(A) = exp(tr(A)). Equivalently, z = vec(Z) ∼
N
(

vec(M),Ψ ⊗ Σ
)

. Here Ψ is the row covariance matrix

and Σ is the column covariance matrix [15] since the kth column

Z·k ∼ N (0, [Ψ]kkΣ) and the ith row Z⊤
i· ∼ N (0, [Σ]iiΨ).

Graphical modeling of random vectors to characterize condi-

tional dependence of its components [1, 2] was extended to matrix

data with structured information [5, 7, 8, 11, 12]. With Z ∈ R
p×q

modeled as zero-mean matrix normal, and z = vec(Z), we have

E{zz⊤} = Ψ⊗Σ, implying a separable covariance structure [16].

Let Ω = Σ
−1 and Γ = Ψ

−1 denote the respective precision ma-

trices. Then Zij and Zkℓ are conditionally independent given re-

maining entries in Z iff (i) at least one of Ωik and Γjℓ is zero

when i 6= k, j 6= ℓ, (ii) Ωik = 0 when i 6= k, j = ℓ, and (iii)

Γjℓ = 0 when i = k, j 6= ℓ [5]. Prior work [5–14] assumes that

i.i.d. observations of Z are available for graphical modeling. Re-

cently in [17] time-dependence was introduced, modeling the time-

dependent zero-mean matrix-valued, stationary, p × q Gaussian se-

quence Z(t), z(t) = vec(Z(t)), as having the separable covariance

structure given by

E{z(t+ τ)z⊤(t)} =Ψ(τ)⊗Σ (2)

where Ψ(τ), τ = 0,±1, · · · models time-dependence while Σ ≻ 0

is fixed. With {e(t)} i.i.d., e(t) ∼ Nr(0, Ipq), a generative model
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for z(t) is given by

z(t) =

L
∑

i=0

(Bi ⊗ F )e(t− i) , Bi ∈ R
q×q , F ∈ R

p×p , (3)

Ψ(τ) =

L
∑

i=0

BiB
⊤
i−τ and Σ = FF

⊤ . (4)

The power spectral density (PSD) of {z(t)} is Sz(f) = S̄(f)⊗
Σ where S̄(f) =

∑

τ Ψ(τ)e−j2πfτ . Then S−1
z (f) = S̄−1(f) ⊗

Σ
−1, and by [18], in the pq−node graph G = (V, E), |V | = pq, as-

sociated with {z(t)}, edge {i, j} 6∈ E iff [S−1
z (f)]ij = 0 for every

f . This does not account for the separable structure of the model.

Noting that S̄−1(f), f ∈ [0, 0.5], plays the role of Γ = Ψ
−1, us-

ing [5, 18], it follows that {Zij(t)} and {Zkℓ(t)} are conditionally

independent given remaining entries in {Z(t)} iff (i) at least one

of Ωik and [S̄−1(f)]jℓ, f ∈ [0, 0.5] is zero when i 6= k, j 6= ℓ,
(ii) Ωik = 0 when i 6= k, j = ℓ, and (iii) [S̄−1(f)]jℓ = 0 for

f ∈ [0, 0.5] when i = k, j 6= ℓ.
In [17] the objective was to learn the graph associated with time-

dependent sequence {Z(t)}, given observations t = 1, 2, · · · , n,

under some sparsity constraints on Ω and S̄−1(f), f ∈ [0, 0.5].
In this paper we follow a time-domain approach using a time-delay

embedding approach (called a “multi-attribute formulation” in [19]

in the context of graphical modeling of dependent time series). The

name delay embedding originates from [20] in the context of chaos

detection where such embeddings reveal the dynamic structure of

the underlying system, and such embeddings have been employed in

other contexts, e.g., [21, 22].

2.1. Gaussian Graphical Models

2.1.1. Vector Graphical Model

Given an undirected graph G = (V, E), |V | = p, in a vector graph-

ical model for zero-mean Gaussian x ∈ R
p, component xi is asso-

ciated with node i of the graph, and the conditional independence

relationships among xi’s are encoded in E . Let x−ij = {xk : k ∈
V \{i,j}} ∈ R

p−2 denote the vector x after deleting xi and xj from

it where V \{i,j} denotes the set V with nodes i and j deleted. De-

fine ei|−ij = xi − E{xi|x−ij} and ej|−ij = xj − E{xj |x−ij}.

Then we have the following equivalence [1]

edge {i, j} 6∈ E ⇔ Ωij = 0 ⇔ E{ei|−ijej|−ij} = 0 . (5)

2.1.2. Vector Time Series Graphical Model

In this model for a stationary zero-mean Gaussian time series

{x(t)}, x(t) ∈ R
p, component series {xi(t)} is associated with

node i of the graph, and the conditional independence relationships

among series components are encoded in E . Define ei|−ij(t) =
xi(t) − E{xi(t)|x−ij,Z}, ej|−ij(t) = xj(t) − E{xj(t)|x−ij,Z}
where x−ij,Z = {xk(t) : k ∈ V \{i,j}, t ∈ Z}. Then we have the

following equivalence [18] (Z is the set of integers)

edge {i, j} 6∈ E ⇔ [S−1
x (f)]ij = 0 ∀f ∈ [0, 1]

⇔ E{ei|−ij(t+ τ)ej|−ij(t)} = 0 ∀τ ∈ Z . (6)

2.1.3. Vector Multi-Attribute Graphical Model

In this model for p jointly Gaussian vectors zi ∈ R
m, i ∈ [p], zi

is associated with node i of G = (V, E), V = [p]. We now have

m attributes per node. Let x = [z⊤
1 z⊤

2 · · · z⊤
p ]⊤ ∈ R

mp. Let

Ω = (E{xx⊤})−1 assuming E{xx⊤} ≻ 0. Define the m × m

subblock Ω
(ij) of Ω as

[Ω(ij)]rs = [Ω](i−1)m+r,(j−1)m+s , r, s = 1, 2, · · · ,m . (7)

Let z−ij = {zk : k ∈ V \{i,j}} ∈ R
m(p−2) denote the vector

x after deleting vectors zi and zj from it. Define ei|−ij = zi −
E{zi|z−ij} and ej|−ij = zj − E{zj |z−ij}. Then we have the

following equivalence [23, Sec. 2.1, Appendix B.3]

edge {i, j} 6∈ E ⇔ Ω
(ij) = 0 ⇔ E{ei|−ije

⊤
j|−ij} = 0 . (8)

3. TIME-DELAY EMBEDDING

Define the time-delay embedded vector y(t) ∈ R
mpq as

y(t) = [z⊤(t), z⊤(t− 1), · · · , z⊤(t− (m− 1))]⊤ (9)

and the corresponding delay embedded matrix Y (t) ∈ R
p×mq

Y (t) = [Z(t), Z(t− 1), · · · , Z(t− (m− 1))] (10)

such that y(t) = vec(Y (t)). By assumption, {Z(t)} is a matrix

normal sequence with Kronecker-decomposable covariance struc-

ture specified by (2). We have

E{y(t)y⊤(t)} = Ψ̃⊗Σ , Ψ̃ ∈ R
mq×mq , Σ̃ ∈ R

p×p , (11)

Ψ̃ =











Ψ(0) Ψ(1) · · · Ψ(m− 1)
Ψ(−1) Ψ(0) · · · Ψ(m− 2)

...
...

. . .
...

Ψ(−m+ 1) Ψ(−m+ 2) · · · Ψ(0)











(12)

Define Γ̃ = Ψ̃
−1, and let, as before, Ω = Σ

−1. Define the

m × m matrix Γ̃
(kℓ), comprised of certain m2 elements of Γ̃, with

(r, s)th element of Γ̃(kℓ) as

[Γ̃(kℓ)]rs =[Γ̃]k+(r−1)q,ℓ+(s−1)q, r, s ∈ [m] . (13)

Lemma 1. Suppose that the stationary zero-mean matrix normal se-

quence {Z(t)} is generated via (3). Then {Zij(u), t−m+1 ≤ u ≤
t} and {Zkℓ(u), t−m+1 ≤ u ≤ t} are conditionally independent

given {Zrs(u), t−m+ 1 ≤ u ≤ t, (r, s) 6∈ {(i, j), (k, ℓ)}, r ∈
[p], s ∈ [q]} iff

(i) at least one of Ωik and ‖Γ̃(jℓ)‖F is zero when i 6= k, j 6= ℓ,

(ii) Ωik = 0 when i 6= k, j = ℓ,

(iii) ‖Γ̃(jℓ)‖F = 0 when i = k, j 6= ℓ. •
Proof. Associate z(t) = vec(Z(t)) with graph G = (V, E), |V | =
pq. In order to exploit the formulation of Sec. 2.1.3, define

z̃
(i)(t) = [zi(t), zi(t− 1), · · · , zi(t− (m− 1))]⊤ , (14)

ỹ(t) = [(z̃(1)(t))⊤, (z̃(2)(t))⊤, · · · , (z̃(pq)(t))⊤]⊤ (15)

where z̃(i)(t) ∈ R
m and ỹ(t) ∈ R

mpq . The graph G = (V, E) also

describes ỹ(t) as a multi-attribute graphical model. Original y(t)
and new ỹ(t) are related by an mpq × mpq permutation matrix P

with ỹ(t) = Py(t). Let

z̃−vw(t) ={z̃(a)(t) : a ∈ Ṽ \{v, w}} , v, w ∈ [pq] , (16)

ev|−vw(t) =z̃
(v)(t)− E{z̃(v)(t)|z̃−vw(t)} , (17)

ew|−vw(t) =z̃
(w)(t)− E{z̃(w(t)|z̃−vw(t)} . (18)
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Authorized licensed use limited to: Auburn University. Downloaded on July 01,2024 at 13:31:36 UTC from IEEE Xplore.  Restrictions apply. 



By Sec. 2.1.3 (Ω̃
(vw)
y is similar to (7) except that now |V | = pq),

{v, w} 6∈ E ⇔ Ω̃
(vw)
y = 0 (19)

where Ω̃y = (E{ỹ(t)ỹ⊤(t)})−1. Define

ž−vw;t,m ={za(s) : a ∈ Ṽ \{v, w}, t−m+ 1 ≤ s ≤ t} ,
(20)

ezv|−vw(t
′) =zv(t

′)− E{zv(t′)|ž−vw;t,m} , (21)

ezw|−vw(t
′) =zv(t

′)− E{zw(t′)|ž−vw;t,m} . (22)

Notice that ezv|−vw(t
′) above is an element of ev|−vw(t) defined in

(17) for any t−m+ 1 ≤ t′ ≤ t. Then by (8) and (19), we have

Ω̃
(vw)
y =0 ⇔ E{ezv|−vw(t1)ezw|−vw(t2)} = 0, (23)

for t−m+ 1 ≤ t1, t2 ≤ t.

With Ωy = (E{y(t)y⊤(t)})−1 = (Ψ̃⊗Σ)−1 = Γ̃⊗Ω, we have

Ω̃y = P (Γ̃ ⊗Ω)P⊤ since ỹ(t) = Py(t) and PP⊤ = I . Hence

Ω̃
(vw)
y = 0 ⇔ (P (Γ̃ ⊗Ω)P⊤)(vw) = 0 ⇔ {v, w} 6∈ E . The

conclusions of Lemma 1 parts (i)-(iii) then follow by using the Kro-

necker product structure Γ̃ ⊗Ω, and exploiting the correspondence

between the entries of ỹ(t) and y(t). �

Remark 1. If we let m ↑ ∞, the Lemma 1 implies that check-

ing if ‖Γ̃(kℓ)‖F = 0 and/or Ωij = 0 to ascertain (19) becomes a

surrogate for checking if the last equivalence in (6) holds true for

graph structure estimation for time series {vec(Z(t)} without using

frequency-domain methods. In (23), |τ | = |t1 − t2| ≤ m − 1,

and as m ↑ ∞, we approach (6) for edge {u,w} of the graph for

{vec(Z(t)}. �

4. PENALIZED PSEUDO LOG-LIKELIHOOD

Given data Z(t), t = 1, 2, · · · , n, form Y (t) as in (10) for t =

m,m + 1, · · · , n. By (11), y(t) = vec(Y (t)) ∼ N (0, Ψ̃ ⊗ Σ).
Therefore, pdf of Y (t) is given by

fY (t)(Y (t)) =
etr

(

− 1
2
Y (t)Γ̃Y ⊤(t)Ω

)

(2π)mpq/2|Σ|mq/2|Ψ̃|p/2
. (24)

However, {Y (t)} is not an independent sequence. We will pretend

that is an i.i.d. sequence and define a pseudo likelihood function for

dataset Y = {Y (t)}nt=m as fY(Y) =
∏n

t=m fY (t)(Y (t)), result-

ing in a negative pseudo log-likelihood (NPLL) function L(Ω, Γ̃) ∝
− ln(fY(Y)), up to a constant, as (ns = n−m+ 1)

L(Ω, Γ̃) =− mqns

2
ln(|Ω|)− pns

2
ln(|Γ̃|)

+
1

2

n
∑

t=m

tr
(

Y (t)Γ̃Y ⊤(t)Ω
)

. (25)

In the high-dimension case, one needs to use penalty terms to enforce

sparsity and to make the problem well-conditioned. Our proposed

penalized (scaled) NPLL function is

L(Ω, Γ̃) =
1

nsmqp

n
∑

t=m

tr
(

Y (t)Γ̃Y ⊤(t)Ω
)

− 1

p
ln(|Ω|)

− 1

mq
ln(|Γ̃|) + λp

p
∑

i,j=1

|Ωij |+
√
mλq

q
∑

k,ℓ=1

‖Γ̃(kℓ)‖F (26)

where λp, λq > 0 are tuning parameters, we have lasso penalty on

Ω and group lasso penalty on Γ̃ with
√
m reflecting the number of

group variables. The cost (26) modifies the cost in [5] to allow for

delay embeddings resulting in group lasso.

5. OPTIMIZATION

The objective function L(Ω, Γ̃) in (26) is biconvex: (strictly) convex

in Γ̃, Γ̃ ≻ 0, for fixed Ω, and (strictly) convex in Ω, Ω ≻ 0, for

fixed Γ̃. As in [5, 7] (and others) pertaining to the i.i.d. observations

case, and as is a general approach for biconvex function optimization

[24, Sec. 4.2.1], we will use an iterative and alternating minimization

approach where we optimize w.r.t. Ω with Γ̃ fixed, and then optimize

w.r.t. Γ̃ with Ω fixed at the last optimized value, and repeat the two

optimizations (flip-flop). There is no guarantee that the algorithm

converges to the global minimum, however, the algorithm converges

to a local stationary point of L(Ω, Γ̃) [24, Sec. 4.2.1].

With
ˆ̃
Γ denoting the estimate of Γ̃, fix Γ̃ = ˆ̃

Γ and let L1(Ω) de-

note L(Ω, Γ̃) up to some irrelevant constants. We minimize L1(Ω)

w.r.t. Ω to obtain estimate Ω̂, where

L1(Ω) = −1

p
ln(|Ω|) + 1

p
tr
(

ΩS̄
)

+ λp

p
∑

i,j=1

|Ωij | , (27)

S̄ =
1

nsmq

n
∑

t=m

Y (t) ˆ̃ΓY ⊤(t) , ns = n−m+ 1 . (28)

Fix Ω = Ω̂ and and let L2(Γ̃) denote L(Ω, Γ̃) up to some irrelevant

constants. We minimize L2(Γ̃) w.r.t. Γ̃ to obtain estimate
ˆ̃
Γ, where

L2(Γ̃) = − 1

mq
ln(|Γ̃|) + 1

mq
tr
(

Γ̃S̃
)

+
√
mλq

q
∑

k,ℓ=1

‖Γ̃(kℓ)‖F ,

(29)

S̃ =
1

nsp

n
∑

t=m

Y
⊤(t)Ω̂Y (t) . (30)

Our optimization algorithm (used in our simulations) is as follows

for a pre-chosen m > 1 (maximum time delay m− 1).

1. Initialize r = 1, Ω(0) = Ip, Γ̃(0) = Imq .

2. Set Ω̂ = Ω
(r−1) in (30). Use the iterative alternating direc-

tion method of multipliers (ADMM) algorithm [25] to mini-

mize L2(Γ̃) (given by (29)) w.r.t. Γ̃ to obtain estimates Γ̃(r).

[We used the ADMM algorithm of [26, Sec. III] (with α = 0
therein, no lasso penalty). Cost (7) in [26] (after setting α =
0) corresponds to (28) of this paper.]

3. Set Γ̃ = Γ̃
(r) in (28). Use the ADMM algorithm to mini-

mize L1(Ω) w.r.t. Ω, to obtain estimate Ω
(r). [We used the

ADMM algorithm of [26, Sec. III] (with α = 1 therein, no

group-lasso penalty). Cost (7) in [26] (after setting α = 1)

corresponds to (27) of this paper.]

4. To resolve a scaling ambiguity, set Ω(r) = Ω
(r)/‖Ω(r)‖F .

5. Repeat steps 2 and 4 until convergence.

6. NUMERICAL RESULTS

We use model (3)-(4) to generate synthetic data where Ψ(τ) is con-

trolled via a vector autoregressive (VAR) model impulse response

and Σ is determined via an Erdös-Rènyi graph. We take p = q =
15. Consider the impulse response H(r)(t) ∈ R

5×5 generated as

H
(r)
i =

∑3
k=1 A

(r)
k H

(r)
i−k + I5δi, where H

(r)
i = 0 for i < 0,

δi is the Kronecker delta, r = 1, 2, 3, and only 5% of entries of

A
(r)
i ’s are nonzero and the nonzero elements are independently and

6182
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Approach F1 score (±σ) timing (s) (±σ) TPR (±σ) 1-TNR (±σ)

n = 64

IID [5–7] 0.3970 ±0.1119 0.0052 ±0.0011 0.2842 ±0.1031 0.0015 ±0.0014

Freq-domain [17] 0.7320 ±0.1056 0.2001 ±0.0393 0.6321 ±0.1438 0.0009 ±0.0011

Delay Embedding (proposed) 0.8122 ±0.0792 0.0635 ±0.0189 0.7450 ±0.1291 0.0010 ±0.0013

n = 256

IID [5–7] 0.4383 ±0.1323 0.0122 ±0.0042 0.3068 ±0.1191 0.0008 ±0.0008

Freq-domain [17] 0.8154 ±0.0911 0.2278 ±0.0340 0.7782 ±0.1323 0.0017 ±0.0015

Delay Embedding (proposed) 0.8722 ±0.0767 0.1181 ±0.0623 0.8693 ±0.1016 0.0017 ±0.0017

Table 1: Comparisons among three approaches: n = 64, 256, p = q = 15. Tuning parameters λp, λq picked to yield the highest F1 score.

Results based on 100 runs.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1-TNR

0
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0.3
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1

T
P

R
 

Fig. 1: ROC curves for n = 64: plots labeled “IID” are from the

approach of [5–7], those labeled “freq.” are from [17], and the ones

labeled “embed” are from our proposed approach. TPR=true posi-

tive rate, TNR=true negative rate

uniformly distributed over [−0.8, 0.8]. We then check if the VAR(3)

model is stable with all eigenvalues of the companion matrix ≤ 0.95
in magnitude; if not, we re-draw randomly till this condition is ful-

filled. The impulse response Bi ∈ R
15×15 in (3) is given by Bi =

block-diag{H(1)
i ,H

(2)
i ,H

(3)
i }, for 0 ≤ i ≤ L = 40, otherwise

it is set to zero. Thus Bi’s in (3) have a block-diagonal structure

with 3 blocks, each block is 5 × 5. In the Erdös-Rènyi graph with

p = 15 nodes, the nodes are connected with probability per = 0.05.

In the upper triangular Ω̄, Ω̄ij = 0 if {i, j} 6∈ Sp, Ω̄ij is uni-

formly distributed over [−0.4,−0.1] ∪ [0.1, 0.4] if {i, j} ∈ Sp, and

Ω̄ii = 0.5. With Ω̄ = Ω̄
⊤, add κI to Ω̄ with κ picked to make

minimum eigenvalue of Ω = Ω̄ + κI equal to 0.5. Let Ω = F̃ F̃

(matrix square-root), then F = F̃−1 in (3).

We applied our proposed approach with n = 64 or 256, m = 4
(maximum delay 3), and compared with the approach of [17] (M =
2, K = 15 for n = 64 and K = 63 for n = 256) and the approach

of [5] (which is also the approach of [6,7], all of whom assume i.i.d.

observations and have two lasso penalties one each on Ω and Γ,

counterpart to our Γ̃ with no delays). By changing the penalty pa-

rameters and determining the resulting edges, we calculated the true

positive rate (TPR) and false positive rate 1-TNR (where TNR is the

true negative rate) over 100 runs, separately for Ω and Γ̃/{Φk}/Γ

({Φk} are the inverse PSD’s in [17]). The receiver operating char-

acteristic (ROC) is shown in Figs. 1 and 2 based on 100 runs. Figs.

1- 2 show that the i.i.d. modeling of [5–7] is unable to capture the

“dependent” edges (cf. (3)) via Γ whereas it has no issues with Ω.

Our embedding approach as well as the frequency-domain approach

of [17], both work well for both components of the graph Kronecker

product, with our embedding approach being better (higher TPR for

a given 1-TNR).

In Table 1, we compare the three approaches in terms of the F1

score, execution time (based on tic-toc functions in MATLAB), TPR

and 1-TNR, for fixed penalty parameter λ selected from a grid of

values (the same as for computing the ROC curves) to maximize the

F1 score averaged over 100 runs. It is seen that the delay embedding

approach is faster than the frequency-domain approach.
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Fig. 2: ROC curves for n = 256. Other description as for Fig. 1.

7. CONCLUSIONS

Inference of the conditional independence graph of a sparse, high-

dimensional, stationary matrix-variate Gaussian time series was

considered under the assumption that the correlation function of the

matrix series is Kronecker-decomposable. A time-delay embedding

approach was proposed where with each matrix node, we associate

a random vector consisting of a scalar series component and its

time-delayed copies. A group-lasso penalized negative pseudo log-

likelihood (NPLL) objective function was formulated and optimized

via flip-flop minimization. We illustrated our approach using a nu-

merical example where our approach significantly outperformed an

existing i.i.d. modeling-based approach [5–7] as well as an existing

frequency-domain approach [17] for dependent data, in correctly

detecting the graph edges with ROC as the performance metric.

Future work includes performance analysis and application to

real data.
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