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ABSTRACT  
Landslides along Alabama highways are a relatively common occurrence in many regions 
of the state. These landslides can lead to damage to transportation infrastructure and 
significant traffic disruptions. The current practice identifies landslide locations primarily 
through maintenance personnel reports or motorist complaints. Once an unstable region is 
identified, the suspected slide area is commonly instrumented with inclinometers, which 
are then read at regular intervals to understand the slide plane location and identify changes 
in behavior. This inclinometer data has been collected at unstable sites across the state for 
many years and provides a unique dataset to understand how precipitation events influence 
landslide behavior along highways. Previously developed precipitation thresholds 
considering storm magnitude and duration were consistent with landslide events observed 
around the state, but there are many non-triggering events that fall above the thresholds 
(false positives). Approximately 70% of false positive storm events occurred during drier 
than average periods based on normalized soil moisture data from NASA’s SMAP 
instrument, while large movements occurred primarily during periods of average or above 
average soil moisture. This suggests that adding soil moisture data to landslide threshold 
predictions may help to reduce false positive events and to assess the likelihood of large 
movements occurring. These findings are now being used to develop improved warning 
thresholds that can highlight when landslides are likely to occur, allowing inspections and 
preventative maintenance to be prioritized.  

INTRODUCTION 
Landslides are a common geohazard across the world and can have major economic 
impacts on transportation infrastructure (Klose 2015). The likelihood of a landslide 
occurring in a given location depends on many factors, including the topography, geology, 
and climatic conditions in the region. The likelihood of rainfall-induced landslides is 



2 
 

commonly assessed using statistically-based thresholds based on factors like the mean 
rainfall intensity (I), rainfall duration (D), and/or cumulative rainfall (E) from a storm event 
(e.g., Rossi et al. 2017). These threshold relationships can be developed using local, 
regional, or global databases of landslide events. Ground-based observations are frequently 
combined with remote sensing and statistical analysis to provide precipitation datasets 
(Guzetti 2016, Xie et al. 2017, Kirschbaum et al. 2020). Precipitation intensity-duration 
(ID) thresholds are among the most common types used for landslide predictions, but 
multiple studies have highlighted limitations in the use of these thresholds, including many 
false positives (e.g., Bogaard and Greco 2018, Segoni et al. 2018). Including antecedent 
rainfall (rainfall occurring prior to a landslide) can improve predictions in some cases, but 
antecedent rainfall is a proxy for the subsurface moisture and matric suction conditions, 
which are the more critical factors in predicting landslide occurrence (Mirus et al. 2018).  

Previous studies have shown that including soil moisture data can improve 
predictions of rainfall-induced landslides compared with precipitation-only thresholds 
(Ray and Jacobs 2007, Mirus et al. 2018, Yang et al. 2019, Marino et al. 2020, Stanley et 
al. 2021). Soil moisture can be estimated using site-specific instrumentation data (Mirus et 
al. 2018, Babaeian et al. 2019), but this can be expensive if a large number of sites need to 
be monitored. Recently, remote sensing-based soil moisture datasets have become more 
common (Ray and Jacobs 2007, Rodriguez-Fernández et al. 2017, Reichle et al. 2018, 
Wang et al. 2022, Skulovich and Pierre 2023) and have been used to improve landslide 
predictions at regional and global scales (Marino et al. 2020, Stanley et al. 2021). These 
remote sensing-based products tend to measure shallow soil moisture (depths of ~1 m). 

Landslides are a common phenomenon in most regions of Alabama (Montgomery 
et al. 2019, Knights et al. 2020) and landslides along highways can lead to damage to 
roadways and disruption to traffic (Figure 1a). Many of these landslides have occurred 
during periods of heavy precipitation, but no previous study has examined the predictability 
of these landslides using ID thresholds or examined soil moisture conditions at the time of 
these failures. For this study, inclinometer data were collected from unstable sites across 
Alabama and processed to identify periods where movement was occurring (landslide 
events) and without observable movement (non-landslide events). Precipitation data for 
these monitoring periods were obtained from NOAA and soil moisture measurements were 
obtained from NASA SMAP L4 (Richle et al. 2018). The precipitation data were separated 
into individual storms and used to compare with existing ID thresholds. The comparisons 
show that the ID thresholds do a good job of predicting the landslide events, but there are 
a large number of non-landslide events that fall above the thresholds (false positives). The 
normalized SMAP data show that approximately 70% of these false positive events 
occurred during drier than average periods, while 72% of the landslide events occurred 
during wetter than average periods. The combination of rainfall data and soil moisture 
information is now being used to develop warning thresholds for highways in Alabama.  
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             (a)       (b) 
Figure 1. Photos from a landslide on AL-35 in Jackson County, north of Section, AL 
showing (a) settlement in the road and (b) an inclinometer casing along a highway. 

METHODOLOGY 

This study used three main sources of data: (1) a database of inclinometer readings 
provided by the Alabama Department of Transportation (ALDOT); (2) Precipitation data 
for the state of Alabama; and (3) satellite-based soil moisture measurements. Each of these 
data sources along with the necessary processing are discussed in the following sections. 
All processing was done using ArcGIS Pro (v3.0, ESRI) and Python (v3.10). 

Inclinometer Data. ALDOT commonly uses inclinometers (Figure 1b) to monitor 
potentially unstable sites. Multiple inclinometer casings are normally installed within the 
suspected slide area and are read quarterly or more frequently using a digital inclinometer 
probe. The full database contains readings from 157 inclinometers installed at 54 sites 
across the state. For this study, inclinometers were selected that have at least one year of 
readings after March 2015 (the start date for the soil moisture data) and that show a single 
well-defined slide plane (as opposed to multiple slide planes or no clear slide plane). Future 
studies will consider cases with multiple slide planes. This reduces the available data to 20 
inclinometers from nine sites (Figure 2).  

The inclinometers for the nine sites considered in this study are all embankment 
sections, but the slide planes are located in the native material under the roadway fill. The 
nine sites split evenly into three geologic settings with three of the sites having failure 
planes in interbedded sand and clay deposits, three with failure planes in Prairie Clays 
(Montgomery et al. 2023), and three with failure planes in weathered shale layers. 
Landslides can be categorized into three general groups: slides occurring within weathered 
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shale layers, slides occurring within interbedded sands and clays, and slides within high-
plasticity clays. The average slope at the site ranges from 15 – 30% and the slide planes 
are located at depths of 2.4 to 11.5 meters below the ground surface with an average depth 
of 5.2 meters. 

The inclinometer data provided by ALDOT provides profiles of casing 
displacement in both the A- and B- directions for each reading date. Inclinometer readings 
have multiple sources of noise, including variability in casing measurements near the 
ground surface, measurement errors, and possible issues with initial readings of the 
displacement profiles. This study filtered erroneous readings by removing readings with 
significant changes in displacement (>2.5 mm) at the bottom of the casing and readings 
with spikes in displacement at a single depth without movement at other depths. Other 
sources of error can be more difficult to quantify. Mikkelsen (2003) provided a review of 
sources of error in inclinometer measurements and estimates that the random error in 
inclinometer readings is + 0.16 mm for an individual reading, but these errors accumulate 
over the entire length of the casing. For a 30-meter casing with readings every 0.5 meters, 
Mikkelsen (2003) estimates that the accumulated random error at the top of the casing 
would be + 1.24 mm with the total error (random and systemic sources) being as high as + 
7.8 mm. These numbers offer some insight into how much movement is needed to 
distinguish sliding from measurement uncertainty.  

  

 
(a)      (b)  

Figure 2. Example of extracted data from January 3, 2020 for (a) CPS NOAA 
Precipitation and (b) SMAP Soil Moisture. Landside locations are shown as red 

points and the Alabama boundary file from USGS (2023). 

(b)                                   
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After removing potentially erroneous readings, the depth of the slide plane was 
manually identified for each inclinometer and casing displacements were extracted from 
the top of the slide plane. The displacements at the slide plane were used instead of surface 
displacements as they were less variable throughout the year. The cumulative distribution 
of the change in displacement at the top of the slide plane for all readings is shown in Figure 
3a. Approximately 50% of the readings showed changes in displacements at the slide plane 
less than 1 mm (likely within the measurement uncertainty of the instrument), while 13% 
have displacements greater than 5 mm. These two thresholds will be used to distinguish 
between landslide events (>= 5 mm of movement between two readings) and periods of 
little to no movement (< 1 mm of movement between two readings). Events with 
displacements between 1 and 5 mm could be due to small landslide events or could be 
measurements with larger errors. There was not a clear way to separate these two 
possibilities and so these readings were not included in this comparison. 

 

Figure 3. Histograms of the inclinometer data collected from this study showing (a) 
the cumulative frequency of changes in displacement between two subsequent 

readings and (b) the distribution during the monitoring period of slide events with 
greater than 5 mm of displacement. 

Precipitation Data. The precipitation dataset used in this project is the CPC Unified 
Gauge-Based Analysis of Daily Precipitation over CONUS data provided by the NOAA 
PSL, Boulder, Colorado (https://psl.noaa.gov). The product has a coverage cell range of 28 
km by 28 km (Figure 2). Daily precipitation from CPC NOAA was grouped into discrete 
storm events by using a rainy-day threshold of 1 mm, as is commonly used for ID threshold 
development (e.g., Leonarduzzi et al. 2017). Consecutive days with rainfall were classified 

https://psl.noaa.gov/
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as the same storm event and the cumulative rainfall and the number of days of each storm 
were calculated. The data was not normalized by mean annual precipitation as the annual 
precipitation is relatively constant across Alabama (127 – 152 cm or 50 – 60 inches per 
year) with the exception of the Mobile area, but none of the sites are located in this region.  

Soil Moisture Data. Soil moisture data from NASA Soil Moisture Active Passive (SMAP) 
(https://appeears.earthdatacloud.nasa.gov) were used for this project. The Level 4 product 
was used (Richle et al. 2018), which has a 9-km by 9-km resolution. The root zone moisture 
with the vertical average of soil moisture between 0 to 100cm, was used as this was found 
to be the most applicable to shallow landslides by Marino et al. (2020). Note that this depth 
is far shallower than the range of slide planes at the sites in the database and the scale of 
the measurement (9-km by 9-km) means that it is more of a regional measurement of 
average wetness instead of a site-specific measure of matric suction. Figure 2 shows an 
example of the soil moisture data for a single day in Alabama.  

RESULTS 

The comparison between precipitation, soil moisture, and inclinometer displacement for a 
landslide site on State Route AL-219 south of Centreville, AL is shown in Figure 4a. Both 
the precipitation and soil moisture data show wetter periods in the late winter and early 
spring and drier periods occurring in the fall as expected for this region. The periods of 
significant movement qualitatively agree with this pattern with larger movements 
occurring in the early part of the year. The seasonal change in shallower soil moisture is 
consistent with observations from other remote sensing studies and with shallow in-situ 
measurements at nearby sites within International Soil Moisture Network (ISMN) (Dorigo 
et al. 2011). The magnitude of fluctuation in soil moisture is higher than would likely be 
observed at larger depths (closer to the slide plane) and so is considered to be more of an 
index for the wetness of the region rather than a quantitative measurement of the effective 
stress conditions within the landslide. Similar patterns can be seen for AL-69 (Figure 4b), 
although the movements are smaller, and the moisture contents are generally lower. Figure 
3b shows a histogram of landslide events with more than 5 mm of displacement for all of 
the inclinometers in the database and confirms the pattern shown for these two sites of 
more landslide events occurring in the late winter and early spring.  

Figure 4 highlights one of the challenges with using soil moisture data across 
multiple sites as the two sites have both different average values and magnitudes of 
fluctuation. In order to develop a consistent index, the soil moisture values at each site were 
normalized by the mean moisture content from the entire monitoring period. A normalized 
moisture content less than 1.0 indicates drier than average conditions, while a moisture 
content greater than 1.0 indicates wetter than average conditions. As previously discussed, 
drier than average conditions are common in late summer and fall in Alabama with wetter 
conditions in the late winter and early spring.  
 

https://appeears.earthdatacloud.nasa.gov/


7 
 

 
Figure 4. Time series of inclinometer displacement, daily rainfall (purple bars), and 
soil moisture (SMAP L4, blue line) for (a) AL219 Inclinometer 40003 and (b) AL 69 

Inclinometer 13002. 

Figure 5 shows the relationship between accumulated precipitation, observed 
movements, and normalized moisture content. The points in this figure are shown for the 
storm with the largest accumulated precipitation during the reading interval. The color and 
shape of the symbol indicates the normalized moisture content. The average normalized 
moisture content for events with displacements greater than 5 mm is 1.12, while the 
average for events with displacements less than 1 mm is 0.97. For movements greater than 
20 mm, all but two of the points had above average moisture contents (normalized value 
greater than 1.05). This indicates that there is likely some association between larger 
movements and higher moisture content. 
 

 

 

(a)                                   

(b)                                   
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Figure 5. The relation between the maximum accumulated precipitation in a single 
storm and the change in displacement in inclinometer over that reading interval is 

shown by the points. The color of the points represents the normalized soil moisture 
content at the start of the storm. 

Figure 6 compares the inclinometer database processed in this study with three 
previously developed ID thresholds (Guzzetti et al. 2008, Godt et al. 2006, Marino et al. 
2020). These thresholds are commonly used to assess which storms are likely to trigger 
landslides. Figure 6a shows data for non-slide events (less than 1 mm in displacement), 
while Figure 6b shows the data for the slide events (> 5 mm in displacement). The symbol 
for each point represents the normalized moisture content measured on the first day of the 
storm, with hollow symbols used for non-landslides and filled symbols for landslides. 

The landslide events are remarkably well fit by the relationship developed by Godt 
et al. (2006) for the Seattle region. As Figure 6b shows, the two points that fall below the 
Godt et al. threshold have average and above average moisture contents, respectively, 
which likely made movements more likely even with a less intense storm. On the other 
hand, there are many non-landslide points that fall above the thresholds, which would 
indicate false positives. For both the Godt et al. (2006) and the Marino et al. (2020) 
relationships, approximately 70% of the false positive points had moisture contents that 
were drier than average (less than 1.0). Taken together these figures suggest that threshold 
curves that can account for moisture conditions may be better able to differentiate between 
storms that are more or less likely to cause landslides. This conclusion is similar to that 
reached by Stanley et al. (2021) for their global landslide prediction model. Future work 
will focus on developing region-specific thresholds for Alabama that can directly 
incorporate the effects of soil moisture.  
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  (a)                                                                      (b) 

Figure 6. Intensity and duration data from the current database are shown along 
with three ID threshold curves for (a) non-landslide events (displacements less than 

1 mm) and (b) landslide events (displacements greater than 5 mm). 
  
CONCLUSION 

Inclinometer data collected from nine sites along Alabama highways were analyzed to 
determine how well previously developed intensity-duration (ID) thresholds fit the 
observations and what role soil moisture may have played in the observed movements. 
Displacements at the depth of the slide plane were extracted from the inclinometer data 
and two thresholds were established to define non-landslide events (changes in 
displacement of less than 1 mm) and landslide events (changes in displacement greater than 
5 mm). Movements between these thresholds were small enough to be within the 
uncertainty range in the data and were not considered in the database. The processed 
displacement data were correlated with precipitation data from NOAA and soil moisture 
data from NASA’s SMAP instrument. The ID threshold curve proposed by Godt et al. 
(2006) provides a very good fit for the landslide data. The two false negative points had 
higher than average soil moisture values, while approximately 70% of the false positive 
points had drier than average soil moisture. This indicates that including soil moisture may 
improve predictions of rainfall events that are likely to cause movements at potential 
landslide sites. More work is needed to develop and test new thresholds. 

ACKNOWLEDGMENTS 

This material is based upon work funded by the Alabama Department of Transportation 
under grant number 931-054 and the National Science Foundation under grant number 
CMMI 2047402. Inclinometer data was provided by Brannon McDonald (ALDOT). Any 



10 
 

opinions, findings, conclusions, or recommendations are those of the author(s) and do not 
necessarily reflect the views of ALDOT or the National Science Foundation.  

REFERENCES 

Babaeian, E., Sadeghi, M., Jones, S.  B., Montzka, C., Vereecken, H., and Tuller. M ,. 
(2019). “Ground, proximal, and satellite remote sensing of soil moisture.” Reviews of 
Geophysics 57(2):530-616. https://doi.org/10.1029/2018RG000618 

Bogaard, T. and Greco, R. (2018). “Invited perspectives: Hydrological perspectives on 
precipitation intensity-duration thresholds for landslide initiation: Proposing hydro-
meteorological thresholds.” Natural Hazards and Earth Sys. Sci. Copernicus GmbH, 
pp. 31–39. https://doi.org/10.5194/nhess-18-31-2018. 

Dorigo, W. A., et al. (2021). "The International Soil Moisture Network: serving Earth 
system science for over a decade." Hydrology and Earth Sys. Sci. 25.11: 5749-5804. 

Godt J.W., Baum, R. L., and Chleborad, A. F. (2006). “Rainfall Characteristics for 
shallow landsliding in Seattle, Washington USA”, Earth Surface Processes and 
Landforms, volume 31, Issue 1, pp 97-110. https://doi.org/10.1002/esp.1237. 

Guzzetti F., Peruccacci, S., Rossi, M., and Stark, C. (2008). “The rainfall intensity-duration 
threshold of shallow landslide and debris flows: An update.” Landslides, 3-17, 5(1).  

Kirschbaum, D. B., Y. B. Lim, and Wilson. T., M. (2020). “Changes in extreme 
precipitation and landslide over High Mountain Asia.” Geophysical Research Letters 
47(4): e2019GL085347. https://doi.org/10.1029/2019GL085347. 

Klose M., (2015). “Landslide Databases as Tools for Integrated Assessment of Landslide 
Risk.” Dissertation, University of Vechta, Germany. 

Knights, M. J., Montgomery, J., and Carcamo, P. S. (2019). “Database of slope failures 
along Alabama highways.” Bulletin of Engineering Geology and the Environment. 
doi: 10.1007/s10064-019-01543-w 

Leonarduzzi, E., Molnar, P., and McArdell, B. W. (2017). “Predictive performance of 
rainfall threshold for shallow landslides in Switzerland from gridded daily data.” AGU 
Publications, https://doi.org/10.1002/2017WR021044 

Marino, P., Peres, D. J., Cancelliere, Greco, R., and Bogaard, T. A. (2020). “Soil Moisture 
information can improve shallow landslide forecasting using the hydrometeorological 
threshold approach.” Landslides, 17:2041-2054.  

Mikkelsen, P.E. (2003). ‘Advances in Inclinometer Data Analysis’, Symposium on Field 
Measurements in Geomechanics, FMGM,Oslo, 13 pp. 

Mirus, B.B., Becker, R.E., Baum, R.L. et al. (2018). “Integrating real-time subsurface 
hydrologic monitoring with empirical rainfall thresholds to improve landslide early 
warning.” Landslides, 15, 1909–1919. 

Montgomery, J., Knights, M., Xuan, M., and Carcamo, P. (2019). “Evaluation of 
Landslides along Alabama Highways.” Report to the AL Department of 
Transportation. Highway Research Center, Auburn University. 



11 
 

Ray, R. L., and Jacobs, J. M. (2007). “Relationships among remotely sensed soil moisture, 
and precipitation, and landslide events.” Natural Hazards, 43(2), 211-222. 

Reichle, R., Lannoy, G., Koster, R. D., Crow, W. T., Kimball, J. S., and Liu, Q. (2018). 
“SMAP L4 Global 3-hourly 9 Km EASE-Grid Surface and Root Zone Soil 
Moisture Geophysical Data.” NASA National Snow and Ice Data Center 
Distributed Active Archive Center. Version 4. doi:10.5067/KPJNN2GI1DQR 

Rodríguez-Fernández, N. J., Munoz Sabater, J., Richaume, P., de Rosnay, P., Kerr, Y. H., 
Albergel, C., Drush, M. and Mecklemburg, S. (2017). “SMOS near-real-time soil 
moisture product” processor overview and first validation results.” Hydrology and 
Earth System Sciences. 21(10):5201-5216.  

Rossi, M., Luciani, S., Valigi, D., Kirschbaum, D., Brunetti, M. T., Peruccacci, S., and 
Guzzetti, F. (2017). “Statistical approaches for the definition of landslide rainfall 
thresholds and their uncertainty using rain gauge and satellite data”, 
Geomorphology, 285, pp. 16–27. https://doi.org/10.1016/j.geomorph.2017.02.001. 

Segoni, S., Rosi. A., Lagomarsinio, D., Fanti, R., and Casagli, N. (2018). “Brief 
communication: Using averaged soil moisture estimates to improve the 
performances of a regional-scale landslide early warning system”, Natural Hazards 
and Earth System Sciences, 18(3), pp. 807–812. 

Skulovich, O. and P. Gentine. (2023). A Long-term Consistent Artificial Intelligence and 
Remote Sensing-based Soil Moisture Dataset. Scientific Data 10.1: 154.  

Stanley, T.A., Kirschbaum, D.B., Benz, G., Emberson, R.A., Amatya, P.M., Medwedeff 
W, and Clark. M. K. (2021). Data-Driven Landslide Nowcasting at the Global Scale. 
Front. Earth Sci. 9:640043. doi: 10.3389/feart.2021.640043 

U.S. Geological Survey (2023). “USGS National Boundary Dataset (NBD) in Alabama 
State of Territory.” National Geospatial Technical Operations Center. Shapefile. 
https://www.sciencebase.gov/catalog/item/59fa9f59e4b0531197affb0f  

Wang, S., Wu, Y., Li. R., and Wang, X. (2023). “Remote sensing‐based retrieval of soil 
moisture content using stacking ensemble learning models”. Land Degradation & 
Development 34.3 (2023): 911-925. https://doi.org/10.1002/ldr.4249. 

Yang, Z., Cai, H., Shao, W., Huang, D., Uchimua, T., Lei, X., and Qiao, J. (2019). 
“Clarifying the hydrological mechanisms and thresholds for rainfall-induced 
landslide: in situ monitoring of big data to unsaturated slope stability analysis.” 
Bulletin of Engineering Geology and the Environment 78: 2139-2150.  

Xie, P., Chen. M., Yang, S., Yatagai, A., Hayasaka, T., Fukushima, Y., and Liu, C. (2007). 
A gauge-based analysis of daily precipitation over East Asia. Journal of 
Hydrometeorology 8, 607. 626. https://doi.org/10.1175/JHM583.1. 

Xuan, M., Montgomery, J., Anderson, J. B., and Kiernan, M. (2023). “Characterizing 
strength loss in high plasticity clays along Alabama highways.” Report to the AL 
Department of Transportation. Highway Research Center, Auburn University. 

https://www.sciencebase.gov/catalog/item/59fa9f59e4b0531197affb0f
https://doi.org/10.1175/JHM583.1

