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ABSTRACT

Landslides along Alabama highways are a relatively common occurrence in many regions
of the state. These landslides can lead to damage to transportation infrastructure and
significant traffic disruptions. The current practice identifies landslide locations primarily
through maintenance personnel reports or motorist complaints. Once an unstable region is
identified, the suspected slide area is commonly instrumented with inclinometers, which
are then read at regular intervals to understand the slide plane location and identify changes
in behavior. This inclinometer data has been collected at unstable sites across the state for
many years and provides a unique dataset to understand how precipitation events influence
landslide behavior along highways. Previously developed precipitation thresholds
considering storm magnitude and duration were consistent with landslide events observed
around the state, but there are many non-triggering events that fall above the thresholds
(false positives). Approximately 70% of false positive storm events occurred during drier
than average periods based on normalized soil moisture data from NASA’s SMAP
instrument, while large movements occurred primarily during periods of average or above
average soil moisture. This suggests that adding soil moisture data to landslide threshold
predictions may help to reduce false positive events and to assess the likelihood of large
movements occurring. These findings are now being used to develop improved warning
thresholds that can highlight when landslides are likely to occur, allowing inspections and
preventative maintenance to be prioritized.

INTRODUCTION

Landslides are a common geohazard across the world and can have major economic
impacts on transportation infrastructure (Klose 2015). The likelihood of a landslide
occurring in a given location depends on many factors, including the topography, geology,
and climatic conditions in the region. The likelihood of rainfall-induced landslides is
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commonly assessed using statistically-based thresholds based on factors like the mean
rainfall intensity (I), rainfall duration (D), and/or cumulative rainfall (E) from a storm event
(e.g., Rossi et al. 2017). These threshold relationships can be developed using local,
regional, or global databases of landslide events. Ground-based observations are frequently
combined with remote sensing and statistical analysis to provide precipitation datasets
(Guzetti 2016, Xie et al. 2017, Kirschbaum et al. 2020). Precipitation intensity-duration
(ID) thresholds are among the most common types used for landslide predictions, but
multiple studies have highlighted limitations in the use of these thresholds, including many
false positives (e.g., Bogaard and Greco 2018, Segoni et al. 2018). Including antecedent
rainfall (rainfall occurring prior to a landslide) can improve predictions in some cases, but
antecedent rainfall is a proxy for the subsurface moisture and matric suction conditions,
which are the more critical factors in predicting landslide occurrence (Mirus et al. 2018).
Previous studies have shown that including soil moisture data can improve
predictions of rainfall-induced landslides compared with precipitation-only thresholds
(Ray and Jacobs 2007, Mirus et al. 2018, Yang et al. 2019, Marino et al. 2020, Stanley et
al. 2021). Soil moisture can be estimated using site-specific instrumentation data (Mirus et
al. 2018, Babaeian et al. 2019), but this can be expensive if a large number of sites need to
be monitored. Recently, remote sensing-based soil moisture datasets have become more
common (Ray and Jacobs 2007, Rodriguez-Fernandez et al. 2017, Reichle et al. 2018,
Wang et al. 2022, Skulovich and Pierre 2023) and have been used to improve landslide
predictions at regional and global scales (Marino et al. 2020, Stanley et al. 2021). These
remote sensing-based products tend to measure shallow soil moisture (depths of ~1 m).
Landslides are a common phenomenon in most regions of Alabama (Montgomery
et al. 2019, Knights et al. 2020) and landslides along highways can lead to damage to
roadways and disruption to traffic (Figure 1a). Many of these landslides have occurred
during periods of heavy precipitation, but no previous study has examined the predictability
of these landslides using ID thresholds or examined soil moisture conditions at the time of
these failures. For this study, inclinometer data were collected from unstable sites across
Alabama and processed to identify periods where movement was occurring (landslide
events) and without observable movement (non-landslide events). Precipitation data for
these monitoring periods were obtained from NOAA and soil moisture measurements were
obtained from NASA SMAP L4 (Richle et al. 2018). The precipitation data were separated
into individual storms and used to compare with existing ID thresholds. The comparisons
show that the ID thresholds do a good job of predicting the landslide events, but there are
a large number of non-landslide events that fall above the thresholds (false positives). The
normalized SMAP data show that approximately 70% of these false positive events
occurred during drier than average periods, while 72% of the landslide events occurred
during wetter than average periods. The combination of rainfall data and soil moisture
information is now being used to develop warning thresholds for highways in Alabama.
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Figure 1. Photos from a landslide on AL-35 in Jackson County, north of Section, AL
showing (a) settlement in the road and (b) an inclinometer casing along a highway.

METHODOLOGY

This study used three main sources of data: (1) a database of inclinometer readings
provided by the Alabama Department of Transportation (ALDOT); (2) Precipitation data
for the state of Alabama; and (3) satellite-based soil moisture measurements. Each of these
data sources along with the necessary processing are discussed in the following sections.
All processing was done using ArcGIS Pro (v3.0, ESRI) and Python (v3.10).

Inclinometer Data. ALDOT commonly uses inclinometers (Figure 1b) to monitor
potentially unstable sites. Multiple inclinometer casings are normally installed within the
suspected slide area and are read quarterly or more frequently using a digital inclinometer
probe. The full database contains readings from 157 inclinometers installed at 54 sites
across the state. For this study, inclinometers were selected that have at least one year of
readings after March 2015 (the start date for the soil moisture data) and that show a single
well-defined slide plane (as opposed to multiple slide planes or no clear slide plane). Future
studies will consider cases with multiple slide planes. This reduces the available data to 20
inclinometers from nine sites (Figure 2).

The inclinometers for the nine sites considered in this study are all embankment
sections, but the slide planes are located in the native material under the roadway fill. The
nine sites split evenly into three geologic settings with three of the sites having failure
planes in interbedded sand and clay deposits, three with failure planes in Prairie Clays
(Montgomery et al. 2023), and three with failure planes in weathered shale layers.
Landslides can be categorized into three general groups: slides occurring within weathered
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shale layers, slides occurring within interbedded sands and clays, and slides within high-
plasticity clays. The average slope at the site ranges from 15 — 30% and the slide planes
are located at depths of 2.4 to 11.5 meters below the ground surface with an average depth
of 5.2 meters.

The inclinometer data provided by ALDOT provides profiles of casing
displacement in both the A- and B- directions for each reading date. Inclinometer readings
have multiple sources of noise, including variability in casing measurements near the
ground surface, measurement errors, and possible issues with initial readings of the
displacement profiles. This study filtered erroneous readings by removing readings with
significant changes in displacement (>2.5 mm) at the bottom of the casing and readings
with spikes in displacement at a single depth without movement at other depths. Other
sources of error can be more difficult to quantify. Mikkelsen (2003) provided a review of
sources of error in inclinometer measurements and estimates that the random error in
inclinometer readings is + 0.16 mm for an individual reading, but these errors accumulate
over the entire length of the casing. For a 30-meter casing with readings every 0.5 meters,
Mikkelsen (2003) estimates that the accumulated random error at the top of the casing
would be + 1.24 mm with the total error (random and systemic sources) being as high as +
7.8 mm. These numbers offer some insight into how much movement is needed to
distinguish sliding from measurement uncertainty.
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Figure 2. Example of extracted data from January 3, 2020 for (a) CPS NOAA
Precipitation and (b) SMAP Soil Moisture. Landside locations are shown as red
points and the Alabama boundary file from USGS (2023).
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After removing potentially erroneous readings, the depth of the slide plane was
manually identified for each inclinometer and casing displacements were extracted from
the top of the slide plane. The displacements at the slide plane were used instead of surface
displacements as they were less variable throughout the year. The cumulative distribution
of the change in displacement at the top of the slide plane for all readings is shown in Figure
3a. Approximately 50% of the readings showed changes in displacements at the slide plane
less than 1 mm (likely within the measurement uncertainty of the instrument), while 13%
have displacements greater than 5 mm. These two thresholds will be used to distinguish
between landslide events (>= 5 mm of movement between two readings) and periods of
little to no movement (< 1 mm of movement between two readings). Events with
displacements between 1 and 5 mm could be due to small landslide events or could be
measurements with larger errors. There was not a clear way to separate these two
possibilities and so these readings were not included in this comparison.
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Figure 3. Histograms of the inclinometer data collected from this study showing (a)
the cumulative frequency of changes in displacement between two subsequent
readings and (b) the distribution during the monitoring period of slide events with
greater than 5 mm of displacement.

Precipitation Data. The precipitation dataset used in this project is the CPC Unified
Gauge-Based Analysis of Daily Precipitation over CONUS data provided by the NOAA
PSL, Boulder, Colorado (https://psl.noaa.gov). The product has a coverage cell range of 28
km by 28 km (Figure 2). Daily precipitation from CPC NOAA was grouped into discrete
storm events by using a rainy-day threshold of 1 mm, as is commonly used for ID threshold
development (e.g., Leonarduzzi et al. 2017). Consecutive days with rainfall were classified
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as the same storm event and the cumulative rainfall and the number of days of each storm
were calculated. The data was not normalized by mean annual precipitation as the annual
precipitation is relatively constant across Alabama (127 — 152 ¢cm or 50 — 60 inches per
year) with the exception of the Mobile area, but none of the sites are located in this region.

Soil Moisture Data. Soil moisture data from NASA Soil Moisture Active Passive (SMAP)
(https://appeears.earthdatacloud.nasa.gov) were used for this project. The Level 4 product
was used (Richle et al. 2018), which has a 9-km by 9-km resolution. The root zone moisture
with the vertical average of soil moisture between 0 to 100cm, was used as this was found
to be the most applicable to shallow landslides by Marino et al. (2020). Note that this depth
is far shallower than the range of slide planes at the sites in the database and the scale of

the measurement (9-km by 9-km) means that it is more of a regional measurement of
average wetness instead of a site-specific measure of matric suction. Figure 2 shows an
example of the soil moisture data for a single day in Alabama.

RESULTS

The comparison between precipitation, soil moisture, and inclinometer displacement for a
landslide site on State Route AL-219 south of Centreville, AL is shown in Figure 4a. Both
the precipitation and soil moisture data show wetter periods in the late winter and early
spring and drier periods occurring in the fall as expected for this region. The periods of
significant movement qualitatively agree with this pattern with larger movements
occurring in the early part of the year. The seasonal change in shallower soil moisture is
consistent with observations from other remote sensing studies and with shallow in-situ
measurements at nearby sites within International Soil Moisture Network (ISMN) (Dorigo
et al. 2011). The magnitude of fluctuation in soil moisture is higher than would likely be
observed at larger depths (closer to the slide plane) and so is considered to be more of an
index for the wetness of the region rather than a quantitative measurement of the effective
stress conditions within the landslide. Similar patterns can be seen for AL-69 (Figure 4b),
although the movements are smaller, and the moisture contents are generally lower. Figure
3b shows a histogram of landslide events with more than 5 mm of displacement for all of
the inclinometers in the database and confirms the pattern shown for these two sites of
more landslide events occurring in the late winter and early spring.

Figure 4 highlights one of the challenges with using soil moisture data across
multiple sites as the two sites have both different average values and magnitudes of
fluctuation. In order to develop a consistent index, the soil moisture values at each site were
normalized by the mean moisture content from the entire monitoring period. A normalized
moisture content less than 1.0 indicates drier than average conditions, while a moisture
content greater than 1.0 indicates wetter than average conditions. As previously discussed,
drier than average conditions are common in late summer and fall in Alabama with wetter
conditions in the late winter and early spring.
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Figure 4. Time series of inclinometer displacement, daily rainfall (purple bars), and
soil moisture (SMAP L4, blue line) for (a) AL219 Inclinometer 40003 and (b) AL 69
Inclinometer 13002.

Figure 5 shows the relationship between accumulated precipitation, observed
movements, and normalized moisture content. The points in this figure are shown for the
storm with the largest accumulated precipitation during the reading interval. The color and
shape of the symbol indicates the normalized moisture content. The average normalized
moisture content for events with displacements greater than 5 mm is 1.12, while the
average for events with displacements less than 1 mm is 0.97. For movements greater than
20 mm, all but two of the points had above average moisture contents (normalized value
greater than 1.05). This indicates that there is likely some association between larger
movements and higher moisture content.
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Figure 5. The relation between the maximum accumulated precipitation in a single
storm and the change in displacement in inclinometer over that reading interval is
shown by the points. The color of the points represents the normalized soil moisture
content at the start of the storm.

Figure 6 compares the inclinometer database processed in this study with three
previously developed ID thresholds (Guzzetti et al. 2008, Godt et al. 2006, Marino et al.
2020). These thresholds are commonly used to assess which storms are likely to trigger
landslides. Figure 6a shows data for non-slide events (less than 1 mm in displacement),
while Figure 6b shows the data for the slide events (> 5 mm in displacement). The symbol
for each point represents the normalized moisture content measured on the first day of the
storm, with hollow symbols used for non-landslides and filled symbols for landslides.

The landslide events are remarkably well fit by the relationship developed by Godt
et al. (2006) for the Seattle region. As Figure 6b shows, the two points that fall below the
Godt et al. threshold have average and above average moisture contents, respectively,
which likely made movements more likely even with a less intense storm. On the other
hand, there are many non-landslide points that fall above the thresholds, which would
indicate false positives. For both the Godt et al. (2006) and the Marino et al. (2020)
relationships, approximately 70% of the false positive points had moisture contents that
were drier than average (less than 1.0). Taken together these figures suggest that threshold
curves that can account for moisture conditions may be better able to differentiate between
storms that are more or less likely to cause landslides. This conclusion is similar to that
reached by Stanley et al. (2021) for their global landslide prediction model. Future work
will focus on developing region-specific thresholds for Alabama that can directly
incorporate the effects of soil moisture.
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Figure 6. Intensity and duration data from the current database are shown along
with three ID threshold curves for (a) non-landslide events (displacements less than
1 mm) and (b) landslide events (displacements greater than S mm).

CONCLUSION

Inclinometer data collected from nine sites along Alabama highways were analyzed to
determine how well previously developed intensity-duration (ID) thresholds fit the
observations and what role soil moisture may have played in the observed movements.
Displacements at the depth of the slide plane were extracted from the inclinometer data
and two thresholds were established to define non-landslide events (changes in
displacement of less than 1 mm) and landslide events (changes in displacement greater than
5 mm). Movements between these thresholds were small enough to be within the
uncertainty range in the data and were not considered in the database. The processed
displacement data were correlated with precipitation data from NOAA and soil moisture
data from NASA’s SMAP instrument. The ID threshold curve proposed by Godt et al.
(2006) provides a very good fit for the landslide data. The two false negative points had
higher than average soil moisture values, while approximately 70% of the false positive
points had drier than average soil moisture. This indicates that including soil moisture may
improve predictions of rainfall events that are likely to cause movements at potential
landslide sites. More work is needed to develop and test new thresholds.

ACKNOWLEDGMENTS

This material is based upon work funded by the Alabama Department of Transportation
under grant number 931-054 and the National Science Foundation under grant number
CMMI 2047402. Inclinometer data was provided by Brannon McDonald (ALDOT). Any

9



opinions, findings, conclusions, or recommendations are those of the author(s) and do not
necessarily reflect the views of ALDOT or the National Science Foundation.

REFERENCES

Babaeian, E., Sadeghi, M., Jones, S. B., Montzka, C., Vereecken, H., and Tuller. M ,.
(2019). “Ground, proximal, and satellite remote sensing of soil moisture.” Reviews of
Geophysics 57(2):530-616. https://doi.org/10.1029/2018RG000618

Bogaard, T. and Greco, R. (2018). “Invited perspectives: Hydrological perspectives on
precipitation intensity-duration thresholds for landslide initiation: Proposing hydro-
meteorological thresholds.” Natural Hazards and Earth Sys. Sci. Copernicus GmbH,
pp- 31-39. https://doi.org/10.5194/nhess-18-31-2018.

Dorigo, W. A, et al. (2021). "The International Soil Moisture Network: serving Earth
system science for over a decade." Hydrology and Earth Sys. Sci. 25.11: 5749-5804.

Godt J.W., Baum, R. L., and Chleborad, A. F. (2006). “Rainfall Characteristics for

shallow landsliding in Seattle, Washington USA”, Earth Surface Processes and
Landforms, volume 31, Issue 1, pp 97-110. https://doi.org/10.1002/esp.1237.

Guzzetti F., Peruccacci, S., Rossi, M., and Stark, C. (2008). “The rainfall intensity-duration
threshold of shallow landslide and debris flows: An update.” Landslides, 3-17, 5(1).

Kirschbaum, D. B., Y. B. Lim, and Wilson. T., M. (2020). “Changes in extreme
precipitation and landslide over High Mountain Asia.” Geophysical Research Letters
47(4): e2019GL085347. https://doi.org/10.1029/2019GL0O85347.

Klose M., (2015). “Landslide Databases as Tools for Integrated Assessment of Landslide
Risk.” Dissertation, University of Vechta, Germany.

Knights, M. J., Montgomery, J., and Carcamo, P. S. (2019). “Database of slope failures
along Alabama highways.” Bulletin of Engineering Geology and the Environment.
doi: 10.1007/s10064-019-01543-w

Leonarduzzi, E., Molnar, P., and McArdell, B. W. (2017). “Predictive performance of
rainfall threshold for shallow landslides in Switzerland from gridded daily data.” AGU
Publications, https://doi.org/10.1002/2017WR021044

Marino, P., Peres, D. J., Cancelliere, Greco, R., and Bogaard, T. A. (2020). “Soil Moisture
information can improve shallow landslide forecasting using the hydrometeorological
threshold approach.” Landslides, 17:2041-2054.

Mikkelsen, P.E. (2003). ‘Advances in Inclinometer Data Analysis’, Symposium on Field

Measurements in Geomechanics, FMGM,Oslo, 13 pp.

Mirus, B.B., Becker, R.E., Baum, R.L. et al. (2018). “Integrating real-time subsurface
hydrologic monitoring with empirical rainfall thresholds to improve landslide early
warning.” Landslides, 15, 1909-1919.

Montgomery, J., Knights, M., Xuan, M., and Carcamo, P. (2019). “Evaluation of
Landslides along Alabama Highways.” Report to the AL Department of
Transportation. Highway Research Center, Auburn University.

10



Ray, R. L., and Jacobs, J. M. (2007). “Relationships among remotely sensed soil moisture,
and precipitation, and landslide events.” Natural Hazards, 43(2), 211-222.
Reichle, R., Lannoy, G., Koster, R. D., Crow, W. T., Kimball, J. S., and Liu, Q. (2018).
“SMAP L4 Global 3-hourly 9 Km EASE-Grid Surface and Root Zone Soil
Moisture Geophysical Data.” NASA National Snow and Ice Data Center

Distributed Active Archive Center. Version 4. doi:10.5067/KPINN2GI1DQR

Rodriguez-Fernandez, N. J., Munoz Sabater, J., Richaume, P., de Rosnay, P., Kerr, Y. H.,
Albergel, C., Drush, M. and Mecklemburg, S. (2017). “SMOS near-real-time soil
moisture product” processor overview and first validation results.” Hydrology and
Earth System Sciences. 21(10):5201-5216.

Rossi, M., Luciani, S., Valigi, D., Kirschbaum, D., Brunetti, M. T., Peruccacci, S., and
Guzzetti, F. (2017). “Statistical approaches for the definition of landslide rainfall
thresholds and their uncertainty using rain gauge and satellite data”,
Geomorphology, 285, pp. 16-27. https://doi.org/10.1016/j.geomorph.2017.02.001.

Segoni, S., Rosi. A., Lagomarsinio, D., Fanti, R., and Casagli, N. (2018). “Brief
communication: Using averaged soil moisture estimates to improve the

performances of a regional-scale landslide early warning system”, Natural Hazards
and Earth System Sciences, 18(3), pp. 807-812.

Skulovich, O. and P. Gentine. (2023). A Long-term Consistent Artificial Intelligence and
Remote Sensing-based Soil Moisture Dataset. Scientific Data 10.1: 154.

Stanley, T.A., Kirschbaum, D.B., Benz, G., Emberson, R.A., Amatya, P.M., Medwedeff
W, and Clark. M. K. (2021). Data-Driven Landslide Nowcasting at the Global Scale.
Front. Earth Sci. 9:640043. doi: 10.3389/feart.2021.640043

U.S. Geological Survey (2023). “USGS National Boundary Dataset (NBD) in Alabama
State of Territory.” National Geospatial Technical Operations Center. Shapefile.
https://www.sciencebase.gov/catalog/item/59fa9f59e4b0531197affbOf

Wang, S., Wu, Y., Li. R., and Wang, X. (2023). “Remote sensing-based retrieval of soil
moisture content using stacking ensemble learning models ”. Land Degradation &
Development 34.3 (2023): 911-925. https://doi.org/10.1002/1dr.4249.

Yang, Z., Cai, H., Shao, W., Huang, D., Uchimua, T., Lei, X., and Qiao, J. (2019).
“Clarifying the hydrological mechanisms and thresholds for rainfall-induced
landslide: in situ monitoring of big data to unsaturated slope stability analysis.”
Bulletin of Engineering Geology and the Environment 78: 2139-2150.

Xie, P., Chen. M., Yang, S., Yatagai, A., Hayasaka, T., Fukushima, Y., and Liu, C. (2007).
A gauge-based analysis of daily precipitation over East Asia. Journal of
Hydrometeorology 8, 607. 626. https://doi.org/10.1175/JHM583.1.

Xuan, M., Montgomery, J., Anderson, J. B., and Kiernan, M. (2023). “Characterizing
strength loss in high plasticity clays along Alabama highways.” Report to the AL
Department of Transportation. Highway Research Center, Auburn University.

11


https://www.sciencebase.gov/catalog/item/59fa9f59e4b0531197affb0f
https://doi.org/10.1175/JHM583.1

