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Abstract

We study the probability that a random walk started inside a subgraph of a larger
graph exits that subgraph (or, equivalently, hits the exterior boundary of the subgraph).
Considering the chance a random walk started in the subgraph never leaves the
subgraph leads to a notion we call “survival” transience, or S-transience. In the case
where the heat kernel of the larger graph satisfies two-sided Gaussian estimates, we
prove an upper bound on the probability of hitting the boundary of the subgraph.
Under the additional hypothesis that the subgraph is inner uniform, we prove a two-
sided estimate for this probability. The estimate depends upon a harmonic function in
the subgraph. We also provide two-sided estimates for related probabilities, such as
the harmonic measure (the chance the walk exits the subgraph at a particular point
on its boundary).
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1 Introduction

In the study of Markov chains, questions about hitting times (or exit times) of certain
subsets are natural. In this paper, we are interested in discrete time random walks
on countable graphs such as the square grid Z¢. Namely, we are motivated by the
problem of studying random walks on graphs that are obtained by gluing simpler graphs
along particular subsets of vertices (as an example, think of Z* and Z° glued along their
respective first coordinate axes). With this in mind, we investigate hitting times, hitting
probabilities, and a related notion of transience for subgraphs of a larger graph (think
7*\ Z where Z = 7. is embedded nicely into Z*) when the random walk on the underlying
larger graph is assumed to have an iterated transition kernel satisfying (discrete) two-
sided Gaussian estimates. We will call a graph satisfying such two-sided Gaussian
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S-transient subgraphs

estimates a Harnack graph (see Theorem 1.9). There is much literature discussing
two-sided Gaussian estimates on graphs and equivalent properties. See e.g., [2, 4, 5, 7]
and the references therein.

The examples we consider here stem from our goal to apply these results to the
problem of gluing graphs along infinite subsets. In such settings, we are interested
in whether it is certain the random walk will hit a subset K or not. We consider this
as a sort of recurrence/transience question, although it is important to be careful with
what is meant by these definitions. Here we define a notion of “S-transience” based
on the probability ¥k (x) that a random walk started at vertex z hits K in finite time.
This probability is of course 1 — Escy (x), where Esck (x) is the probability K is never
hit. Considering the quantity Esck () is related to the harmonic measure from infinity,
Hy (z), particularly in the case where K is finite. Such questions are addressed for z?
in Chapter 2 of [16] and Section 25 of [18]. Work of Boivin and Rau [3] considers the
harmonic measure from infinity on weighted graphs; see also the references therein.
Moreover, questions of recurrence/transience are related to Wiener’s test. However,
none of these related results cover the precise situation of interest to us.

One of our main theorems, Theorem 2.9, gives an upper bound on the hitting proba-
bility of a subset of a Harnack graph in terms of a ratio of volumes. Although this bound
is not always optimal, it makes no assumptions about the geometry of the set we want
to hit. This bound can be computed using only volume functions (which in practice are
often easier to compute than other quantities).

Our other main theorem, Theorem 3.15, gives two-sided bounds on the hitting
probability in terms of volumes and the harmonic profile h (a special harmonic function).
This theorem requires an additional significant geometric assumption (inner uniformity).
We then obtain a partial analog to a well-known theorem that states that a Harnack
space is transient (in the classical sense) if and only if

[ R <

for some/all points . Further, we can apply the same ideas as in the proof of Theo-
rem 3.15 to get two-sided bounds on related quantities, such as the harmonic measure.

The paper proceeds as follows. The rest of this section describes the setting of
interest and introduces notation. Section 2 carefully defines what we mean by transience
and gives an upper bound for the hitting probability of a set (Theorem 2.9). It concludes
with several examples of applying the theorem to demonstrate its practicality. Section 3
introduces the well-known notion of h-transform which is used to give an upper and
lower bound on the hitting probability in Theorem 3.15. We also state several related
corollaries and apply the theorem and corollaries to examples. Section 4 gives remarks
on the relation between our results and Wiener’s test.

1.1 General graph notation and random walks

Let ' = (V, E) be a connected graph, where F is a subset of the pairs of elements in
V. In other words, T is a simple graph that does not contain loops or multiple edges. Any
graphs appearing will be assumed to be simple and connected unless stated otherwise.

On I" we take the usual graph distance d based on the shortest path of edges between
vertices, and we consider closed balls with respect to this distance:

B(z,r)={y eV :d(z,y) <r} VzeV,r>0.

We also assume I' has a random walk structure given by edge weights (conductances)
Lzy and vertex weights (measure) 7(x) with the following properties:
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* Ugy #0 <= {z,y} € E and gy = py, (the edge weights are adapted to the edges
and symmetric)

. Zywm Pzy < m(x) Ya €V (the edge weights are subordinate to the measure/vertex
weights).

The notation y ~ x means that the unordered pair {z,y} belongs to the edge set E. The
notation y ~ x means either y ~ z or y = . We will use V(z,r) to denote the volume
(with respect to 7) of B(x,r).

Given a graph, we can always impose such a random walk structure on it; for example,
we can take ., = 1V{z,y} € E and n(x) = deg(x) Yx € V. We will refer to this particular
structure as simple weights.

Under the above assumptions, we define a Markov kernel K on I via:

Hay
@) r#y

far
1_§:7r(x)7 =y

T

K(z,y) = (1.1)

Hence loops are not allowed in I', but the random walk is allowed to stay in place. Note
that the Markov kernel K is reversible with respect to the measure w, that is,

K(z,y)n(z) = K(y,2)n(y) Yo,y eT.

The random walk structure on I' may be equivalently defined by either a given u, 7, in
which case K is as in (1.1), or by a given Markov kernel X with reversible measure .

Let K™ (x,y) denote the n-th convolution power of (z,y). Then if (X,,),>o denotes
the random walk on T" driven by K, we have K" (z,y) = P*(X,, = y). The quantity K" (z,y)
is not symmetric (in particular, K itself need not be symmetric), so we will often be
interested in studying instead its transition density, the heat kernel of the random walk,
given by
K" (z,y)

m(y)

There are various hypotheses one may make about the weights that have nice
consequences. Here we will make the hypothesis of controlled weights.

p(n,x,y) = pp(z,y) =

Definition 1.1 (Controlled Weights). We say a graph I' has controlled weights if there
exists a constant C,. > 1 such that

= 1
Poy > — Weel, y~u. (1.2)

This assumption implies that I' is locally uniformly finite (that is, there is a uniform
bound on the degree of any vertex) and that for z ~ y, we have pu,, =~ 7(z) = 7(y).
Unless stated otherwise, we will assume all graphs appearing have controlled
weights.

1.2 Harnack graphs
In this section we describe several further properties graphs (T, 7, 4) may possess
and some of the consequences of these properties.
Definition 1.2 (Doubling). A graph is said to be doubling if there exists a constant D
such that forallr > 0, z €T,
V(z,2r) < DV (x,r). (1.3)
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Definition 1.3 (Poincaré Inequality). We say that I" satisfies the Poincaré inequality
if there exist constants C, > 0, ¥ > 1 such that for all »r > 0,z € I, and functions f
supported in B(x, k),

ST - P <Gt Y 1) = FE)P e

yE€B(z,r) y,2€B(x,KkT)

where fg is the (weighted) average of f over the ball B = B(z,r), that is,

Z fly

yeB(r T)

fB

Under doubling, the Poincaré inequality with constant x > 1 (which appears in
B(x, kr) on the right hand side) is equivalent to the Poincaré inequality with « = 1.

Definition 1.4 (Uniformly Lazy). We say a pair (m, 1) is uniformly lazy if there exists
C. € (0,1) such that

ZMW— (1-Con(z) VeeV, y~ua.

y~z

We say a Markov kernel K is uniformly lazy if there exists C. € (0,1) such that

K(m,x)zl—z:&z) >C, Vzxel.

These two conditions are equivalent. In this case, the Markov chain is aperiodic. For
instance, to turn a simple random walk (p;, = 1 and n(z) = deg(x)) into a lazy walk,
just take p,, = 1, m(x) = 2deg(x). Unless stated otherwise, we will consider all
random walk structures appearing to be uniformly lazy.

zZ~T

Definition 1.5 (Harmonic Function). A function h : I' — R is harmonic (with respect to
K) if
x) = ZIC(:C,y)h(y) Vo el (1.4)
yel

Given a subset ) of I" (usually a ball), h is harmonic on that set if (1.4) holds for all points
in §; this requires that h be defined on {v € T': Jw € Q,v ~ w}.

As K(z,y) = 0 unless y ~ x, the sum over y € I' in (1.4) can be replaced by a sum
over y ~ .
Definition 1.6 (Elliptic Harnack Inequality). A graph (T, 7, 1) satisfies the ellliptic Har-
nack inequality if there exist n € (0,1), Cy > 0 such that for all r > 0, z¢ € ', and all
non-negative harmonic functions h on B(x,r), we have

sup h<Cpyx inf h.
B(zg,nr) B(zo,nr)

Definition 1.7 (Solution of Discrete Heat Equation). A functionu : Z4y x I' — R solves
the discrete heat equation if

u(n+1,z) —u(n,x) ZIny ,y) —u(n,z)] Yn>1, zel. (1.5)
yel’

Given a discrete space-time cylinder () = I x B, u solves the heat equation on @ if (1.5)
holds there (this requires that for eachn € I, u(n,-) isdefinedon{z € I": 3z € B,z ~ x}).

Definition 1.8 (Parabolic Harnack Inequality). A graph (T, 7, u) satisfies the (discrete
time and space) parabolic Harnack inequality if: there existn € (0,1), 0 < 0; < 03 <
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03 < 64 and Cp > 0 such that for all s,r > 0, zy € I', and every non-negative solution u
of the heat equation in the cylinder Q = (Z N [s, s + 047%]) x B(xg,r), we have

u(n_,x_) <Cp u(n+,x+) V(TZ_,Z‘_) € Q—a (n+,x+) € Q+ s.t. d('r—ax-i-) < Ny —N—,

where Q_ = (Zy N [s + 0172, 5 + 02r?%]) x B(zg,nr) and Q1 = (Zy N [s + 03r%, s + 047%]) x
B(zg, nr).

The parabolic Harnack inequality obviously implies the elliptic version. The following
theorem relates several of the above concepts.
Theorem 1.9 (Theorem 1.7 in [7]). Given (T, 7, ) (or (T, KC, 7)) where T" has controlled
weights and K is uniformly lazy, the following are equivalent:

(a) T" is doubling and satisfies the Poincaré inequality
(b) T satisfies the parabolic Harnack inequality

(c) T satisfies two-sided Gaussian heat kernel estimates, that is there exists constants
1,9, ¢3,¢4 > 0 such that forall z,y € V, n > d(z,y),

e (- T srnen < men(-S28). a9

Definition 1.10 (Harnack Graph). If (T',w, u) satisfies any of the conditions in Theo-
rem 1.9, we call T' a Harnack graph.

Remark 1.11. The uniformly lazy assumption avoids problems related to parity (such as
those that appear in bipartite graphs). Without this assumption, it may be that (a) holds
but p(n,z,y) = 0 for some n > d(z,y), and then (b) and the lower bound in (c) do not
hold. Here we avoid such difficulties by assuming the graph is uniformly lazy; another
solution to this problem is to state (b) and (c) for the sum over two consecutive discrete
times n, n+ 1, e.g., for (c), p(n,z,y) + p(n + 1, z,y).

Definition 1.12 (The notation ~). For two functions of a variable x, the notation f ~ g
means there exist constants cy, co (independent of x) such that

e f(z) < g(x) < cag(x).

Definition 1.13 (Abuse of ). We will often abuse the notation ~ in the case of heat
kernel and hitting probability estimates to write formulas more compactly. For instance,
we will write (1.6) as

p(n,z,y) ~ WGXP ( B dQ(Zay))

Note this use of ~ means there are different constants in the upper and lower bounds
both inside and outside the exponential. In the event that we chain such notations
together, all constants may change from line to line.

1.3 Subgraphs of a larger graph

Sometimes we think of I' as a subgraph of a larger graph I' = (17, E). If given T,
then for any subset of V of V, we can construct a graph I' with vertex set V and edge
set E where {z,y} € F if and only if z,y € V and {z,y} € E. On occasion, we will
abuse notation and use the same symbol to denote both a subset of V and its associated
subgraph.
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Further, a subgraph I' inherits a random walk structure from I'. We set 7 (z) = ()

and ,ugy = ,ugy for all z,y € V, {x,y} € E. (Hence we may simply use 7, u without
indicating the whole graph versus the subgraph, provided that z,y € T'".)

Then we may define a Markov kernel on I' as in (1.1); we call ths Markov kernel the
Neumann Markov kernel of I' (with respect to f) and denote it by Kr n. To be precise,

r T
Mmy:umy» r#y, r,yeV
m(x) 7w(x)
Kr.n(z,y) = P s (1.7)
1 _ xTrz — 1 _ xTrz — V
> () > S €
2T z~x,z€V
We can also define the Dirichlet Markov kernel of I' (with respect to f) by
Yo TEy yeV
Kr p(z,y) = Ka(z,y) v (x)lv(y) = 5 (1.8)

F
1- Zzwz,ze‘A/ TI:(I;V r=yeV,

where 1y (z) = 1if x € V and zero otherwise. When V' £ XA/, Kr,p is only a subMarkovian
kernel.

A subgraph I" comes with its own notion of distance dr, where dr(z,y) is the length
of the shortest path between = and y of edges contained in I'. It is always true that
d’f(.’lﬁ, y) < dp($7 y)

There are two natural notions for the boundary of I', both of which are useful to us
here.

Definition 1.14 (Exterior/Inner Boundary). The (exterior) boundary of I is
or ={y € f\F :3w eI st dp(z,y) =1},

in other words, the set of points that do not belong to I' with neighbors in T'.
The inner boundary of I is the set of points inside I" with neighbors outside of T,

o' ={x el :3Jy ¢TI st dp(x,y) =1}.
Forz € IT" and y € JI" (¢ '), we extend the definition of dr(z, -) by setting

dr(z,y) =14 min dp(z,z).
zelzry
This extension is not a distance function as it need not satisfy the triangle inequality. The
correct way to think of adding points in OI" to I' is to think of them as multiple points as
described in Figure 1. If the boundary points are duplicated appropriately, this extension
can be made into a distance function.

2 Hitting probabilities and S-transient graphs
2.1 Hitting probability upper bound

For this section, consider a graph ' = (17, E) with controlled and uniformly lazy
weights (u, 7). Let K be a subset of V, where we abuse notation to let K indicate both
this set of vertices and the subgraph of [ induced by these vertices. Set I' := r \ K,
that is, we think of T' as the subgraph of I’ with vertex set V \ K. We are interested in
transience properties of I' and the hitting probability of K. We will assume f, I" to be
infinite and connected; K may be either finite or infinite and connected or disconnected.

We are used to thinking of Markov (or subMarkovian) kernels as recurrent if random
walks return to their starting points infinitely often and transient if they do not. However,
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Figure 1: Let T be the full ten edges by ten edges square as on the left. Take I" to
be T minus the red points. The red points are JI', and the blue points are 0;I'. Then
d(z,0T") = 4 and d(y, OT") = 3, and both of these distances are achieved by the same point
in JT', call it z. Note dr(z,y) = 19 > dr(x, z) + dr(y, z) = 7. The correct way to think of
this is duplicating the red points of " as shown in the right figure.

in the present setting of a subgraph which inherits a random walk structure from a
larger graph, there are several natural ways to think of transience/recurrence.

Definition 2.1 (/N-transience). A subgraph I" of (f,lC,w) is N-transient (“Neumann”-
transient) if (I', Kr n,7) is transient, that is, with probability one, a random walk on T’
only returns to its starting point finitely often.

Being N-transient is an intrinsic property of the subgraph I', which is in some sense
independent of T. A similar definition could be given using (I', Kr p, ) instead to define
D-transience. The killing present in the subMarkovian kernel Kr p makes D-transience
more likely.

However, in this paper, the main definition of transience we will be concerned with is
S-transience, or “survival”-transience, defined below. The explanation for the name is
that a subgraph of a larger graph is survival-transient if there is positive probability that
a random walk started inside the subgraph never sees vertices that do not belong to the
subgraph, hence survives forever.

Definition 2.2 (Hitting Time, Hitting Probability). Consider a graph (fJC,w) with random
walk denoted by (X,,)n>0. Then we denote the first hitting time of a subset of vertices K
by 7k :=min{n >0: X, € K} and the first return time to K by 7}t := min{n > 1: X,, €
K}. If Xy ¢ K, then 7k and T;g are the same. Further, denote the hitting probability of
K by ¢ (z) = P* (1 < +00).
Definition 2.3 (S-transience). Let (f, K, ) be a connected graph with controlled weights
and K be a subset of I such thatT := T \ K is connected. We say the subgraph I is
S-transient (“survival”-transient) or that the graph T is S-transient with respect to the
set K if there exists = € I such that Vi (x) < 1.

If this is not the case, then we say I' is S-recurrent (or that T is S-recurrent with
respect to K).
Lemma 2.4 (Equivalent Definitions of S-transience). Let (f,ICJr) be a connected graph
with controlled weights and K be a subset of T such thatT :=T' \ K is connected. Then

the following are equivalent
(a) There exists x € T such that Vi (z) < 1.

(b) Forallz €T, g (z) < 1.
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(c) Forally € dT, PY(1if < +o0) < 1.

Proof. Clearly (b) implies (a). That (a) implies (b) follows from the maximum principle:
By the definition of a hitting probability, 1k is a harmonic function on I" := r \ K’; thus so
is 1 — ¢k, which is non-negative. By the maximum principle, if there exists some z € T’
such that 1 — ¢ (x) = 0, then 1 — ¢y = 0 on I'. Hence if Y (x) < 1 for a single z € T,
this must be true of all z € T'.

We now show the equivalence of (a)-(b) and (c). If y € OI', then using the Markov
property,

IPy(T; < +OO) = ZIPy(TIt < 400, Xy = I) = Z Ey(ﬂ{)ﬁ:z}EXl (]]‘{TK<+OO}))

Y

= 3 Ky, 0)P" (i < +00) = 3 ek (@)K (y, ).

Since y € OT', there exists z € I" such that z ~ y. If (b) holds, then ¢ i (z) < 1 so

PY(rf < 400) < ¥ K(y,z) =1

Ty

and (c) holds. Conversely, if (c) holds, then

Zl/)K(x)IC(x,y) <1l= Z K(z,y).

T~y T~y
Thus there exists some z ~ y such that ¢k (z) < 1, so (a) holds. O

Note the lemma does not contain some of the other usual equivalent definitions of
transience as allowing for K to be infinite can cause difficulties. For example, whether
K is hit infinitely often or not can depend upon the precise choice of K as well as upon
if the walk starts inside or outside of K. A graph is transient in the classical sense if and
only if it is S-transient with respect to any finite set.

Example 2.5 (Lattices Z™). The lattice Z™ with simple weights is (classically) transient
or, equivalently, S-transient with respect to any finite set, if and only if m > 3.

Example 2.6 (Lattices in lattices, Z™ \ Z*). Consider a copy of a k-dimensional lattice
7ZF inside of Z™, where we assume k < m and m > 3.

If k <m—3, then Z™\ 7ZF is connected, N-transient, and S-transient.

If k = m — 2, then Z™ \ Z* is connected and N-transient, but it is not S-transient,
since the set Z* will be visited infinitely often with probability one (and hence certainly
l/JZk =1).

If Kk =m —1, then Z™ \ 7* is disconnects into two half-spaces (see Example 2.7
below).

Example 2.7 (Half-space Z''). Consider the upper half-space I' = Z7" = {(z1,...,Zm—1,
Tpm) € Z™ : x,, > 0} inside of Z™ with simple weights. Then Z'! is N-transient if and
only if m > 3, and it is always transient if we kill the walk along the set {z,, = 0}.
However, Z" is never S-transient, since as the walk on 7 escapes to infinity, it hits the
set {z,, = 0} with probability one.

Definition 2.8 (Uniform S-transience). Let (f, m, ) be a graph and T := f\K a subgraph.
We say I is uniformly S-transient, or that T is uniformly S-transient with respect to K, if
there exist L,e > 0 such that d(x, K) > L implies that ¢i (x) <1 —e.

The following theorem gives an upper bound on the hitting probability of K. This
bound can be useful for showing S-transience.

EJP 29 (2024), paper 80. https://www.imstat.org/ejp
Page 8/33


https://doi.org/10.1214/24-EJP1141
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

S-transient subgraphs

Theorem 2.9 (Hitting Probability Upper Bound). Let (F T H) have controlled weights
that are uniformly lazy. Let K be a subset/subgraph of . Setl :=T \ K and note
OI' C K. Assume that T is Harnack. Define

Bor(z,7) = Ba(z,r)NOI' and Vpr(z,r) = w(Bar(z,7)) Vo e T,

that is, Var is the volume of traces of T-balls in OT.
Foranyx e ' =T\ K, set
VF(I r)

W(x,r) = 7V8F(5L' M

Then, ifd, := d(z, K), there exists a constant C' (depending on the constants appearing
in the controlled weights, uniformly lazy, and Harnack assumptions) such that

C
<N % veer\or. (2.1)
Vi () nzzdg e \ Or

The theorem does not discuss = € 9;T, since in this case ¥k (z) ~ 1, independently of
x, due to the controlled weights hypothesis.

Using the theorem, it is easy to verify that Z™ \ Z* is uniformly S-transient when
k < m — 3 (see Example 2.13 below).

Proof. Forany x € T'\ 9;T, d(z, K) > 2, we have
’(/JK(LL‘)::IPQE(TK<+OO Z TK—’rL ZZIPL TK—’I’LXTK: )

n>1veK
=22 D Kip (@ kel v).

n>2vedl’ Z/N”

(2.2)

Since Ks(y,v) is a probability, it is at most one. The Dirichlet Markov kernel on I is
less than the Markov kernel on all of f which is Harnack. Hence

=22 D Kip@ykplyo) <) > > K (@)

n>2vedl’ ygv n>2 vE@F y~v

S3p Py (”)

n>2vedl ?/N”

Now 7(y) =~ 7(v) and the number of y ~ v is uniformly bounded above. Moreover, as
any of the above 3’ s belong to 9;T" while x does not, it is impossible that 2 = y. Hence
dp(z,y) > 1. Thus we can replace dg(z,y) via dp(z,v) since

di(z,v) < dp(z,y) + 1 < 2dp(z, y).

We have
B d%(m,v)
)<C § Z() f p( cn )

Let d := dp(z,v). We sum first in time. First we split the sum into two, noting that the
exponential is large for large n; recall the notation = is as in Definition 1.13 and means
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we have matching upper/lower bounds with different constants inside and outside the
exponential:

7exp(— )% 7exp(— )—l— —_— .

We compute the first piece of the sum by arranging a dyadic decomposition with
d/y/n < 2!, where the notation < means 2! < d/,/n < 2/*!. The quantity d//n ranges
from 1 to d here. Let [, , be the integer such that d(z,v) = 2l=» Then, with constants
C, c changing from one inequality to the next,

C d( 2
n; Ve (z, /) eXp(_ o ) ;%f;m Vi, eXp(_ 07)
& C & 41
= W@ e (=)

=0

IN

lev 2
C Zexp( ) CVf(dx,d)'

In the last line we used the doubling of T (a consequence of the assumption that T is
Harnack).
It is easy to see the sum we just computed is dominated by the tail sum (n > d%(am v))
as
4d?

Vale,vm) Ve, d)

n=d?

due to the doubling of T. Recall here the exponential is large.
Let d, := d(z, K) and note d(z, K) < d(z,v) for all v € 9I'. Switching the order of
summation in the upper bound above, we find

<CZZVFQZZVFQ%

veAl n>d2(z,v) n>d2  vedl: ’

dg(z v)<n
v
-C Z 81‘ n Z W

n>d2 n>d2

O

In the case the volume of traces of [-balls in T are doubling, the theorem simplifies.
It is important that in the corollary we only consider traces whose centers belong to oT'.

Definition 2.10 (Doubling Boundary). Consider a graph (f“,w, u) and subgraph T’ of T
with exterior boundary OI'. We say Vyr is doubling if there exists a constant D > 0 such
that for all z € OT', r > 0, Var(z,2r) < DVpr(z,r).

Corollary 2.11. Under the assumptions of Theorem 2.9 and the additional assumption
that Vsr is doubling (as in Definition 2.10), then the upper bound of Thggrem 2.9
has the following simplified form. Let v, € OI' achieve d(z,K) and set W(z,r) :=
Va(z,r)/Var (vs,r).

Then there exists a constant C' (depending on D from Definition 2.10 and the constants
from the assumptions as in Theorem 2.9) such that

n>Zd2 N( 7\F)
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Proof. Return to the point in the proof of Theorem 2.9 where

WCY T v

vedl’ n>d2 (z,v)

Then dg(z,v,) < dp(z,v) by definition of v, and dp(vy,v) < dp(ve, ) + d(z,v) <
2dz(z,v). Therefore da(v,z) > 1(da(,v,) + dp(vs,v)), and we can replace dn(v, z) with
this sum, that is,
m(v)
<C —_— .
D=C 2 2 Voo, Vi)

vEOT n> 4 (d2 (2,00)+d2 (vg,0)) 1

Again interchanging the order of summation, noting that the time sum for a particular
v requires n > gd%(v;, v), we have

@< S Y xw)
Vi, /)

n
n>id2(zv,) T vedT:
r éd%(vm,u)gn

SC, V?;(v:mg\/{ﬁ) SC Z F(Uz7f)7
N I DN S D
where we used the doubling of both Vsr and V; in the last line. O

Remark 2.12.1f {} ., (W (x, \/ﬁ))_l}wep (or the sum with W) converges uniformly,
that is, for all € > 0, there exists N (independent of x) such that

Z e (2.3)

n>N

then it follows from Theorem 2.9 that T is uniformly S-transient with respect to K. In
fact, in this case, ¥k (z) — 0 uniformly as dn (2, K) — oo

In the S-recurrent case, Y, (W(z, \/ﬁ))_1 need not converge. We will also see
examples where this sum converges, but not uniformly in z. In certain regimes of the
latter type of example, we may be able to use (2.1) to see that 95 < 1 for some x
(and hence show S-transience). In other regimes and in the recurrent case, this bound
is not useful. (Recall ¢¥(x) < 1 Vz since ¢ is a probability.) Observe that the above
theorem is not strong enough to conclude thatif ), -, (W(m, \/ﬁ)) - converges for some

(any) z € T \ K then T is S-transient with respect to K. This is because in the bound
given by the theorem, the start of tail of the sum depends on the point x, so although
s (W(z, \/ﬁ))_l may converge, that does not guarantee that - - .. (W(z,/n)) s
sufficiently small to make 1k (z) < 1. -7

2.2 Examples

In this section we give examples of applying Theorem 2.9 or Corollary 2.11 to
demonstrate S-transience or uniform S-transience. Below we frequently use ~ from
Definition 1.12.

Example 2.13 (Lattices in lattices). We verify that Z™ is uniformly S-transient with
respect to 7ZF whenever m — k > 3.

Consider I' = Z™ with K = 0T = Z* = {(z1,...,24,0,...,0) € Z™ : 21, ..., 24 € Z}

the k-dimensional sublattice made up of the first k-coordinates. Assume m — k > 3.
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Suppose Z™ has simple weights or a variation thereof (such as taking bounded weights
or taking the lazy SRW on Z™). With these weights, Z™ is Harnack, and Byr(z,r) =
Bzm(z,7) N ZF = By (z,r) for all z € Z*, so it is clear Vi is doubling. Thus all the
hypotheses of Theorem 2.9 and Corollary 2.11 are satisfied. We compute

- VZWL (x, T) T _k
W =L~ — =7""
(@.7) Vi (Vg, 1) 7k "

Hence,

C | 1
@) < S =~ x50 asd— oo
n>zd W (x, /1) n>zd n(m=R)/2 = dm=h=2

since (m — k)/2 > 1 as m — k > 3. Here there is only dependence on d, the distance to
K = 7%, and not on z itself. Hence Z™ is uniformly S-transient with respect to Z*. In
fact, in this case {}, -, (W (z, \/ﬁ))_l}xef\x converges uniformly.

If instead m — k£ < 3, then the series fails to converge, and Theorem 2.9 gives the
pointless bound of ¢ < co.

Remark 2.14. In our examples, it is common that K = 0I'. Theorem 2.9 is useful for
showing that T is transient with respect to a subset K of its vertices, and we have the
idea that transient sets tend to be “thin” or of smaller dimension, as we saw above, so
the set K doesn’t have a much of an “interior” in the larger graph.

However, for future applications involving gluing graphs, thinking of the set K as

having some “thickness” may be useful. Consider [ = Z™ and take K to be a cylinder,
say K = {& € Z™ : |z,»| < r}, so that K is the set of all points within distance r from
the z,,-axis. Thenif r > 1 and I' = Z™ \ K, OI' # K. However, the chance we hit K is
essentially the same as the chance we hit a single line in Z™, so I' is S-transient if and
only if m > 4.
Example 2.15 (Sparse line in Z3). In Example 2.13, we could not use Theorem 2.9
to decide the S-transience/S-recurrence of a copy of Z in Z3. The same can be said
for a halfline in Z3. Now consider the sparse half-line in Z?* given by dyadic points:
K =0r = {(2%,0,0) € Z3 : k € Z>0}. Take the lazy SRW on Z3.

The hypotheses of Theorem 2.9/Corollary 2.11 are satisfied; to verify doubling of
Or', note that Vyr(z,r) =~ logy(r) for z € dI'. Further note for any v, € 0I', we have
Var (ve, ) < Var(0,7). We now compute, for any x € Z3, where C can change from step
to step,

Vor (ve, v Var (0, f Var (0, v/n)
—_ = C
v~ S Vol < X Tista i) Zfz B

[+1 l+1 Z+1
SCZ Z 931 SCZ 931 2% = ‘

1>0 /m=2! 1>0 1>0

This is a convergent sum that is independent of z. Therefore Z? is uniformly S-transient
with respect to the sparse line K.

Example 2.16 (Weighted half-spaces). Consider ' = 77 ={(x1,...,2m) €Z" : xy > 0}
where 7(z1,...,2m) = (1 +2,)* and a > 1. Let K = 0" = {(21,...,2y) € Z7 : x, = 0}.
Let ICZL? denote the Markov kernel on Z" where at each vertex away from the edge, the
walk stays in place with probability 1/2 or moves to a neighbor uniformly at random,
and, at vertices on the boundary, the walk moves to a neighbor with probablhty 5— and
otherwise stays in place (the probability of staying in place is > 1/2.). Deﬁne a new
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Markov kernel on Z" by

KJZT (x,y) min{lv %}a T 7é Yy
1=, o Mzr(z,2), z=y.

Then this is a Markov kernel, and we consider the graph (Z,, MZT)' Since Kzm is
symmetric with respect to the vertex measure that is identically 1, it is easy to verify
MZT is symmetric with respect to =.

The appropriate edge weights that give the same Markov kernel are

Koy = W(‘r)MZT (ZL’, y)

As ICZT was uniformly lazy and had controlled weights, MZT inherits these properties.

That Z'' is Harnack with respect to this random walk structure can be verified by
directly showing it is doubling and satisfies the Poincaré inequality or by using arguments
similar to those in Section 4.3 of [12]. Note the measure 7 here is not bounded above.

Mzn(z,y) =

On K, we have 7 = 1 and Vpr((21,...,2m_1,0),7) ~ r™ ! is doubling. Further,
[T |* 7™ 7 < 2]
Va((1y ooy xm), 7)) =
F(( ! ) ) {Tm+a7 r> |l'm|.
points in B((z1, ..., %), ), each of which has weight approximately |z,,|*. [t is clear we

can get such an upper bound; for the lower bound, note the ball of radius r contains the
ball of radius /2 which again has approximately ™
points have weight approximately |z,,|*.
a ball of radius r with center on JI'. As 7 is constant except in the z,, direction, the
volume of such a ball is approximately 71 (194 .. +7r%). As (g)ag S g e
the desired volume estimate follows.

Therefore

—~ a <
W((,’L‘17,_. ,xm)ﬂ") ~ {|xM| e ‘377”‘

rlte > T

Note that in this example, the family of sums {an(W(x, \/ﬁ))il}zeZi\K does not
converge uniformly as

|’Km|2

ZN Z |l’ |an1/2 Z 1+a)/2

n>1 7 n>|a:m\2

1 1

2 .
S |xm‘a [2|$,n‘ — 2} + (E)W (Slnce o > 1),

which depends on x.
However, this example is still uniformly S-transient because d, = d(z, K') = |z,,| and
the form of W changes based on comparing r to |z,,| in a convenient way so that

S~y Lol 0 asdowx
—_ ~ . ~ a—1 xT .
n>d2 Wiz, vn) S i)z dg

Therefore for any ¢ > 0, we can choose L > 0 such that whenever d(z, K) > L, we
have 1 1 1
VY (r) < —
> =

= doz—l < [a—1
S W) &

that is, the weighted half-space Z'! (with « > 1) is uniformly S-transient with respect to
K for all m.

<e,
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3 Harmonic profiles and hitting probability estimates

The previous section obtained an upper bound for the hitting probability ¥k . In this
section, we obtain two-sided bounds on ¥ x. Getting a lower bound requires a better
estimate on Kr p, which we will give in terms of a nice harmonic function (a harmonic
profile) on I'. To guarantee such harmonic functions exist, we will make geometric
assumptions about I'.

Recall all graphs (I', 7, 1) are assumed to be uniformly lazy and have controlled
weights.

Definition 3.1 (Uniform). A subgraph I' of a graph [ is uniform in [ if there exist
constants 0 < ¢,, Cy < +oo such that for any z,y € T there is a path v,, = (o =
x,21,...,2, =y) between x and y in I such that

(@) k < Cydg(z,y)
(b) Foranyj € {0,...,k},

da(x7,00) = da(z, T\ T) > ¢,(1 + min{j, k — j}).

Definition 3.2 (Inner Uniform). A subgraph T’ of T is inner uniform in T if there exist
constants 0 < ¢,, Cy < +oco such that for any x,y € T there is a path ~,, = (zo =
x,x1,...,2, = y) between x and y in T such that

(@) k < Cydr(z,y)
(b) Foranyj € {0,...,k},

da(x7,00) = da(z, T\ T) > ¢,(1 + min{j, k — j}).

The only difference between a uniform domain and an inner uniform domain is that
uniform domains require the length of the path in I" to be comparable to the distance
between z and y in the larger graph f while an inner uniform domain requires the
length of the path to be comparable to distance in I'. This somewhat subtle difference is
key. Recall dr(z;,dl') = dp(z;,0T) if we extend dr to OI'. We refer the reader to [9] and
the references therein for more details on such geometric assumptions on domains in
the discrete space setting; in particular, Section 8.1 gives many examples of finite (inner)
uniform domains. Condition (b) in these definitions can be thought of as a “banana” or
“cigar” condition and says that it must be possible to fit a linearly growing “banana” (with
respect to the distance to the end points) around all paths from z to y. This “banana”
must stay inside the domain.

All uniform domains are inner uniform. Domains above Lipschitz functions in Z¢
are uniform. A slit two-dimensional lattice is the typical example of a domain that is
inner uniform but not uniform. Similarly, the complement of a discrete parabola in
Z? is inner uniform but not uniform. In general, slits and “bottlenecks” are obstacles
to uniformity. An example of a domain that is neither inner uniform nor uniform is
{(z,y) € 7% : © < 2} U{(z,y) € Z* : © > 2} U {(~1,0),(0,0),(1,0)}, considered as
a subgraph of Z2. There is no criterion to determine (inner) uniformity, and proving
whether a given set is (inner) uniform should be thought of as difficult.

Inner uniform domains are useful because they allow us to transfer the Harnack
inequality from a larger graph to a subgraph.

Theorem 3.3 (Theorem 1.10 of [14]). Let (f, K, ) be a Harnack graph and I" be an inner
uniform subgraph of I'. Then (I', Kr v, ) is also a Harnack graph.
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Remark 3.4. The converse of Theorem 3.3 is not true. For instance, consider the
traces of two parabolas in Z? (with the lazy simple random walk) connected by a finite
number of edges. One such example is I' = {(z,y) € Z* : y > 2®> + 1} U {(=,y) € Z* :
y < —22 — 1} U {(0,0)}, where this denotes the vertex set of a subgraph of Z?. The
continuous version of this example is Harnack by Theorem 7.1 of [12]. Therefore, the
discrete version is also Harnack by results of [6]. This is an example of a subgraph of a
Harnack graph where the subgraph is neither uniform nor inner uniform but (I', Kr x, 7)
is nonetheless Harnack.

Definition 3.5 (Harmonic Profile). A function h is an harmonic profile for an infinite
graph I' that is a subgraph of I if it satisfies the following properties:

1. h>0inTl
2. h =0 on the exterior boundary of I'

3. h is harmonic in T', that is,

h(z) = Kp(,y)h(y) = > Krp(z,y)h(y) Ve eT. (3.1)

yel’ yel’

(Note Kr p(z,y) =0 unlessy ~ z and h(y) =0 ify ¢ T.)

On finite graphs, there is no such function satisfying properties 1., 2., and 3. above
since any harmonic function that is zero on the exterior boundary of I' (which we assume
to be non-empty) is zero everywhere.

We would like to appeal to a variety of pre-existing results about the existence of
harmonic profiles and their properties in inner uniform domains. In the continuous
space setting, the desired results are found in [13]. These results were transferred to
the graph setting in the case of infinite graphs in [14, Chapter 5]; see also [9, Chapter 8].
In general, the technique of [14] is to associate with any given graph its cable process.
The cable process takes place in a continuous space with a nice Dirichlet form, so the
results of [13] apply to it, and there is a one-to-one correspondence between a profile of
the cable process and a profile of the graph.

Proposition 3.6 (Prop. 5.1, Corollary 5.3 of [14]). Suppose I is a proper infinite subgraph
of (I', 7, ). Then there exists a harmonic profile h for I'. Moreover, if T is inner uniform

A X

inI" and I' is Harnack, then the profile h of I is unique up to multiplication by a constant.

The existence of h is straightforward. The uniqueness of h is more subtle and can be
obtained from [13, Theorem 4.1] via the cable process.

3.1 h-transform on graphs

The existence of the profile h for a graph I" (considered as a subgraph of a graph f)
allows us to consider a reweighted version of I', which we will refer to as the h-transform
space. Recall a graph and the random walk structure on it may be given by triples of the
form (T, 7, u) or (T, IC, 7).

Reweight the measure 7 on I' by h? to obtain the measure 7, (z) = h?(z)7(x). As
h > 0on T, 7, remains a positive function on the vertices of I'. Define a Markov kernel
by

1
K =—K h(y). 3.2
h(.’t,y) h(l‘) F,D(x7y) (y) ( )
That this is a Markov kernel follows since h is harmonic as, forall x € T,
1 h(x)
K = —K h(y) = ——= =1.
Z h(x7y) Z h(x) F,D(x7y) (y) h(m)
yel’ yel
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Notice K}, is a Markov kernel, despite that not being the case for Kr p. Thus one
effect of the h-transform is to return us to the setting of Markov kernels as opposed to
subMarkovian ones.

Moreover, K, is reversible with respect to 7, since Kr p is reversible with respect to

Kz, y)mn(x) = Kp(z,y)h(z)n(x) = h(z)h(y)Kr,p(z, y)m(x)
= h(z)h(y)Kr,p(y, 2)7(y) = Kn(y, ©)h*(y)m(y)
= Kn(y,z)mn(y)-

Directly giving a formula for K} as in (3.2) is equivalent to taking reweighted con-
ductances !, = h(z)h(y)pey on T and then defining the Markov kernel as in Section 1.3.
Note that ugy = 0 if at least one of z,y ¢ I, so it does not matter whether we think of
the Neumann or Dirichlet kernel. Considering the graph this way, the weights u’;y are
subordinate to the measure 7, due to the harmonicity of h. Further, if T has controlled
weights, the same holds for the h-transform space since h(y)/h(z) is bounded below
for x ~y (z,y € I'). Note Ky (z,z) = Kr,p(z,x) = Ka(x,z), so the h-transform graph is
uniformly lazy if and only if that is true of L.

The heat kernel py(n,x,y) on the h-transform of I' is the transition density of K,
and is given by K} (z,y)/7mx(y). The h-transform heat kernel on I" and the Dirichlet heat
kernel on I" have the following relationship:

LK) Kiplw) -
ph( ) 7y)* ﬂ_h(y) = h(a:)h(y)ﬂ'(y) = h(x)h(y)pF’D( ’ 7y)'

Under certain conditions, we have good two-sided estimates for the heat kernel of
the h-transform of I', which is the content of the next theorem.

Theorem 3.7 (Theorem 1.11 and Corollary 5.8 of [14]). Suppose (f,w,u) is a Harnack
graph and T is an inner uniform subgraph of T'. Then (T, K, ) is also a Harnack
graph. Consequently, there exist constants cy, cs, c3,cq4 > 0 such that, for all x,y € I" and
n > dr(z,y),

&,
ALY <y ) <

TaERvr R S

d(z,y)
Vi Vi) P (-=7)

or, equivalently,

c1h(z)h(y) ( d%(x,y)) czh(x)h(y) ( d%(wyy))
T\ AT _ < < 2\TAIT _
Vi(z, \/n) P com Sprop(nz,y) < Vi(x, /1) P cyn
Here V), denotes the volume in I" with respect to the measure .
The following lemma is useful for computing V},.
Lemma 3.8 ([14, Proposition 5.5]). Let I" be inner uniform in a Harnack graph (f, ).
Foranyxz €T, r > 0, let z,- € T be a point such that dr(x, z,) < r/4 and d(z,.,0T") > c,r/8

(recall ¢, is one of the inner uniformity constants). Then there exist constants c,C
(independent of x,r) such that

ch(xr)QVp(;v,r) < Vip(z,r) < Ch(xr)QVp(:rm).

Remark 3.9. The existence of points z, as in the lemma above is a relatively straightfor-
ward consequence of the inner uniform assumption (see [13, Lemma 3.20], [14, Lemma
4.7]).
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Remark 3.10. The definition of such points z,. is motivated by the following key property
of h: There exists a constant A such that

h(y) < Ah(x,) Vr >0, y € Br(z,r).

This property is called a Carleson estimate, and it follows from arguments given in
Section 4.3.3 (in particular (4.28)) of [13], Chapter 8 of [9], and Theorem 2 of [1]. This
property is crucial to Lemma 3.8.

Moreover, due to the harmonicity of 4 and the inner uniform property, h(zs,.) = h(x,),
and Vr is doubling.

Remark 3.11. In the situation where we can compute h, the above abstract examples
become concrete. For example, if ' = Z™ and T = {(21,...,2m) € Z™ : 2, > 0} is the
upper half-space, then h(z1,...,z,) = x,. It is easy to verify the above claims about A
for this example. However, there are only a few situations where exact formulas for h
are known, and, in general, estimating h is a hard problem.

The following theorem holds for continuous spaces and is discussed in Chapter 4 of

[13]. Once again, the theorem can be transferred to the discrete setting using the cable
process (see [14]).
Theorem 3.12 (Boundary Harnack Principle [13, Theorem 4.18]). Assume I' is an inner
uniform subgraph of the Harnack graph (f, 7, p). Then there exist constants Ay, A1 €
(1,00) such that for any & € 0;T" and any two positive harmonic functions f, g on Br (&, Aor)
that are zero along OT' N By (€, Agr), we have

f(@) g(z) /
@) < A Va,z' € Br(§,r).

3.2 Hitting probabilities and Dirichlet kernels in the inner uniform case

Theorem 3.7 gave two-sided estimates of pr p in terms of h; whenever we can
estimate  on part (or all) of I, the abstract estimate of pr p becomes more concrete.

Lemma 3.13 (Behavior of h in transient case). Let " := T \ K be inner uniform in the
Harnack graph (T, m, u). IfT is S-transient with respect to K, then the profile h of T is
given by 1 — ¢ k. If T is uniformly S-transient with respect to K, then h ~ 1.

Proof. Since 1 is the hitting probability of K, and the exterior boundary of T' is
contained in K, ¥k is harmonic in I". Further, 0 < ¢ < 1onI'and ¥x =1 on K. Hence
h =1 — ¢k is a harmonic function inside of I" that is zero on the exterior boundary of I'.
Since I is S-transient with respect to K, there exists some y € I" such that ¢k (y) < 1.
Thus h(y) > 0, and, by the maximum principle, h(x) > 0 for all = € I". Therefore h is the
profile of T".

Now suppose Tis uniformly S-transient with respect to K. Then there exist L, > 0
such that ¢k (z) < 1 — ¢ whenever d(z, K) > L. (Note the distance from z to K is the
same whether considered in all of ' or only in I'.) Hence for d(z, K) > L, we have
e <1—4¢g(x) = h(z). From the definition of a harmonic function, h(z) > (1/C.)h(y)
for x ~ y, x,y € I', where C. is the constant for controlled weights. Applying this
inequality a finite number of times (since d(z, K) > 1 Vz € '), there exists ¢, > 0 such
thate, < h(z) <1forallx eT. O

Corollary 3.14. Assume that T is a Harnack graph that is uniformly S-transient with
respect to K and thatI" := I\ K is inner uniform. Then there exist constants 0 < ¢, C <
+o00 such that

CpF’N(CTL, x, y) S pr.p (’I’L, €, y) S pF,N(n7 x, y)
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IfT is S-transient with respect to K, then the Neumann and Dirichlet heat kernels
are comparable in the region where h ~ 1.

In other words, adding killing along I'" does not significantly alter the behavior of the
heat kernel in this setting. The corollary above can be compared with Theorem 3.1 of
[10], where a similar result is obtained for Riemannian manifolds when K is compact
and the manifold is transient.

Proof. The upper bound is immediate. Since we are in the setting where I is an inner
uniform subgraph of a Harnack I', by Theorem 3.3, (I', Kr n, 7) is a Harnack graph. Thus
there exist constants ¢y, ¢g, ¢z, ¢4 > 0 such that for all z,y € T and all n > d(z,y),

C1 dlz"(xv y)
V(x,y/n) P ( can

From Theorem 3.7, we also know that the h-transform of I" is Harnack. In the uniformly
S-transient setting, h &~ 1 by Lemma 3.13. Therefore h(z) ~ h(y) ~ 1 and V;, = V. Hence
there exist constants b1, by, b3, by > 0 such that

bl d%(l‘,y)
Viz,/n) ( ban

¢ 2(x,
V(m,g\/ﬁ) P ( a ch(4ny) )

) S pF,N(nax7y) S

b3 di(z,y)
< pro(n o) € e (- EED)
) S prop(n2,y) < e exp ban
Hence pr v, pr,p satisfy two-sided Gaussian estimates and we obtain the desired lower
bound. This argument holds whenever h(z),h(y) ~ 1, so the statement about the
transient case follows. O

Theorem 3.15 (Two-sided estimates on i ). Suppose that ' := r \ K is inner uniform
in the Harnack graph (f, T ).

Then, where the constants for ~ depend on the constants appearing in the inner
uniform, Harnack, controlled weights, and uniformly lazy assumptions,

h(z) h(y)  7(y)
vl VeeT\oI. (3.3
) nzd%%:,azr) yeza:r h(@ym) h(yym) Ve(z, vn) !

If, in addition, I is uniformly S-transient, then the two-sided bound

m(y)
Vi (x) = E E — (3.4)
n>d2(2,0,T) yeO;L: Ve (z,v/n)
d2(z,y)<n

holds, where the constants in ~ are as above and also depend upon L,ec from the
uniformly S-transient assumption.

Remark 3.16. In Theorem 2.9, the main step of the proof that resulted in an upper
bound (without a matching lower bound) came from using the inequality K} ) < Kt y-
In Theorem 2.9, no assumptions about the geometry of I' (or K) were macfe, and fhe
proof uses df. Theorem 3.15 instead uses the distance dr, so while these theorems are
similar, the main objects differ. If I" is uniform in f then dr ~ df. However, even under
uniformity, the upper bounds of Theorem 2.9 and Theorem 3.15 only clearly agree up to
a constant if there is also some sort of doubling of the set OI" as in Corollary 2.11.
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Proof. For x ¢ T'\ T, dr(z,K) > 2 and

Vi (z) =P (1 < +00) =Y Y N K{ ) (2, y)Ke(y, v)

n>2 'UESF y"’”

=y ”;K“ Y, y)Ka (y, v)

n>2vedl’ ?JNU

~ Z Z Z Vh exP (_d%T(L%y))

n>2vedl’ y~v

¥ S i)

n>2yecorl’

where we have used that ICs(y,v) is roughly constant (by the controlled weight hypoth-
esis), the result of Theorem 3.7 for ICZ*I, and that each y € 9;I is adjacent to at least
one, but at most finitely many, v € JI' (uniformly over y).

Since (T, K}, m,) is a Harnack graph, it must be doubling and satisfy the Poincaré
inequality. Taking the sum in time n and using Lemma 3.8 to estimate V},

L dr@y)y I N 1
HE:ZQVh(JUa\/ﬁ) p( n ) Z Vi (z, /) Z h(z )2 Ve(z,v/n)’

n>dZ (z,y) n>d? (z,y)

where the upper bound follows from the same argument as in Theorem 2.9 and the lower
bound comes from forgetting the earlier terms of the sum.
If dr(x,y) < v/n, then h(z /) = h(y, /). This follows from the inequality

Wy ) Ve (y, v/n) < CVi(y, vn) < CVi(2,2v/n) < Ch(z /) Ve (2, 2v/n)
< Ch(z s7)* Ve (y, Vn),
where we have used the relationship between V; and Vr and that both of these are

doubling.
Hence

h(z)  h(y) (y)
ugr n>d§2(:g: Wz z) Myym) Ve(z,vn)

Now interchange the order of summation. Noting the set {y € ;T : di(z,y) < n} is
nonempty if and only if n > d2(z,y.),

2. X > X

y€OIT n>d2 (z,y) n>di(z,y,) veOrl:
dr(x,y)gn

Thus

N h(z) h(y)  7w(y)
bre(a) dZ() 2 o) W) ol v

dr (w,y)gn

The result for the uniformly S-transient case follows from the above and Lemma 3.13.
O

Remark 3.17. Recall from Remark 3.10 that the Carelson estimate h(z) < Ah(x,) holds
forallr > 0, z € Br(x,r). Therefore the terms h(z)/h(x /) and h(y)/h(y, ) are bounded
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and, essentially, add additional decay to the sum. Thus Theorem 3.15 has additional
decay that is not present in Theorem 2.9. However, if h ~ 1, dr =~ d=, and the boundary
is doubling, then these bounds are the same.

In the S-recurrent case, ¥k = 1, so the two-sided bound above yields constants; see
Example 3.29 below.

Theorem 3.18. Suppose thatT' .= r \ K is an inner uniform subgraph of the Harnack
graph (f, T H0).

Let By, (x,r) := Br(z,r) N 0/ denote the trace of I'-balls in ;" and Vy, (z,r) =
7w(Bg, (z,r)) for any « € I'. Define

Vr(z,r
Wy, (x,r) := VM vr eT.

Then:

(1) IfT is uniformly S-transient, there exists some L', ¢’ > 0 such that

1 /

dz,K)> L = Y  ————<¢.
n>d2(z,8;T) W, (z, v/n)
(2) If for any € > 0, there exists L. > 0 such that
1
dlz,K)> L. = —— <g,
( ) ) Z Wa[ (1’, \/ﬁ)

n>d(z,0;T)
then I' is uniformly S-transient.

Proof. (1): Suppose that I' is uniformly S-transient, so there exist €, L > 0 such that
i (x) <1—¢e whenever d(z, K) > L. By Lemma 3.13, we have h ~ 1. Using the result
of Theorem 3.15,

- W) ) < 1
2 Wo, (x,v/n) 2 > Vr(x7\/ﬁ)§CwK()§C(1 B

n>d2(z,0T) n>d2(x,0;T) y€OI:
di(z,y)<n
whenever d(z, K) > L. Setting ¢’ = C(1 — ¢) gives the result.
(2): Set d, 1 := d(z,0;T"). Now suppose that for any € > 0, there exists L. > 0 such
that > .- I(W@, (z,+/n))~! < e whenever d(z, K) > L.. Using Theorem 3.15 and the

fact that h(z)/h(z ) < 1forallz € T',\/n > 1,

i h(z) hly)  w(y)
vl KCW%M 2 o) W) Vel )

di (z,y)<n

m(y)
<C E E —_—
n>d2(x,0;T) y€OT: Ve (a, v/n)
di-(z,y)<n

C
2 Waterv) =

n>d%(z,0rT)

Taking e sufficiently small, there exists ¢/, L’ > 0 such that ¢x () < 1 — & whenever
d(x, K) > L', which is precisely the definition of I" being uniformly S-transient. O

Remark 3.19. Theorem 3.18 relies upon the lower bound of Theorem 3.15 in (1) and
the upper bound in (2). An analogous statement of (2) could be obtained in the setting of
Theorem 2.9 using the function W as opposed to the function Wj, .
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3.3 Two-sided bounds on hitting probabilities accounting for time or vertex hit

When I' is an inner uniform subgraph of a Harnack graph f Theorem 3.15 gives
matching upper and lower bounds on the probability of leaving I' (i.e. the probability
of hitting I'°). Other questions of natural interest include the likelihood of exiting T’
at a particular point v € 9T, or the chance of exiting I" (in general, or at a particular
point) at or before time n. While in the recurrent case ¢k (z) = 1, this is not the case
for the probabilities in the previous sentence, and these questions remain interesting.
Bounds on these probabilities can be given using the same ideas and reasoning we have
already seen. We collect these results below as corollaries. In particular, Corollaries 3.23
and 3.24 can be seen as discrete versions of the results of [11].

Definition 3.20 (Various Hitting Probabilities). Given a graph (f,w,u) with subgraph
r=r \ K, recall tix denotes the first hitting time of K /first exist time of I". Define the
following hitting probabilities, where x € T',v € 9T', and n > dr(x,v):

e Y (x) = P*(1x < 400), the chance of hitting K, given the walk starts at

e Y (z,v) =P* (X, =v, Tk < +00), the chance of hitting K for the first time at the
point v, given the walk starts at x

e Y (n,x,v) =P*( X, =v, 7k <n), the chance of hitting K for the first time at the
point v € JT', and doing so in time less than or equal to n

o Y (m,x,v) =Yg (m,z,v) — Yr(m —1,z,v) = P*(X,. =v, Tk =m), the chance of
hitting K for the first time at v at the time m

e Yi(n,x) = P*(1x < n) the chance of hitting K at time less than or equal to n

e Y (m,x) = Yr(m,x) —Yr(m—1,2) = P*(rx = m), the chance of hitting K for the
first time at time m.

There are various relationships between these quantities, for example

m=0

'l/)K(nvx) = Z 77[/1((mvm) = Z Z w/K(mvxvv) = Z ¢K(n7$70)~
m=0

veIl m=d(z,v) vedl’

Our theorems above dealt with ¥ i (z); the corollaries below provide estimates for
some of these other quantities. These corollaries use the symbol ~ from Definitions 1.12
and 1.13 where constants are allowed both inside and outside exponentials. These
constants depend on the constants appearing in the definitions of controlled weights,
uniformly lazy, inner uniform, and Harnack graphs, and, in the case of uniform S-
transience, on L, ¢.

Corollary 3.21 (Estimate on Hitting at a Point v). Assume I' := T \ K is an inner uniform
subgraph of a Harnack graph (T, 7, ). Then

1
Vi (z,0) = Y h(@)hy)rly) > Vi v Ve e\ 9T, v e dr. (3.5)
qéeN];} n>dz(z,y) hi%

In the event that I' is uniformly S-transient, then

m(v)
v) & _mv) (3.6)
YK (x,v) nz(%(:w) Vi (x, /1)
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Proof. Reasoning as in Theorem 3.15, but without summing over all points of the
boundary of I yields

7;2 J; 36(7y\)/7%()y) exp ( _ d%(:y))

~ 3 h@hrly) Y m

yer: n>dz(z,y)
Yy~v

If T is uniformly transient, the result follows as h ~ 1 by Lemma 3.13. O

Remark 3.22. In (3.6), a sum over the neighbors of v that belong to 9,;I" appears. For
any z, v there is always a point y,,, € 9;I" such that dr(z,y,.,) + 1 = dr(z, v), but there
may be multiple points that achieve this or other neighbors of v that are further away
from z in I'. In the lower bound, we may keep only the point y, ,, but, in the upper bound,
we do not know a relationship that would allow us to replace a generic h(y) by h(yy ). If
h =~ 1, or if we know all y ~ v are close in I" (not just in f) this is not a problem and only
one y, , counts. However, if v can be approached from multiple “sides,” this is not the
case, and in fact h may be very different on the different sides. (Consider a slit domain
or two sides of a boundary with a “corner.”)

We are, however, always free to replace n(y) by 7(v) due to the assumption of
controlled weights.

Corollary 3.23 (Hitting at time m at v, rates of convergence). Assume I := r \ K is an
inner uniform subgraph of a Harnack graph (I, 7, ). Then

Wi (m, x,v) ~ Z Wexp(%) Ve e T\ 9/T,v € OT',m > dr(z,v)

yET g Vh(.%', \/’I’TL
(3.7)
and forn > d2(z,v),
> 1
Vi (z,v) — YK (n,z,v) Z h(x 7(y) Z —_— (3.8)
yely~v m=n ‘/h’ (l‘, \/ﬁ)
IfT is uniformly S-transient, then
, . m(v) _ di(z,v)
Y (m,x,v) ~ Ve, Vi) exp( — ), (3.9)
and when n > d&(z,v),
= 1
- ~ —_— 3.10
7/’K(CU»U) 1/)K(7%$»U) ﬂ-(fv) Z Vl"(.f, \/ﬁ) ( )

m=n

Proof. Proceeding as in the proof of Theorem 3.15, but summing in neither time nor
space, forz € T'\ 9;T",v € T,

Ve (m,w,0) = P* (X = v, =m) = > KP5! (@, y)Ke(y, 0)
yely~v
~ % h(@)h(y)7(yo) di(z,y)
~ Vi(z, ym) P m
yely~v h ’
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Note points y in the sum above will only appear if m > dr(z,y) (there is always at
least one such y since m > dr(x,v) by assumption).
To obtain (3.8), use (3.7) to find

oo

¢K(I’7U) 777[}1((”71‘71)) = Z ZZ/K(masz)

> Mah(wr() Y g e

yely~v h

%

p<_ d%(%ﬂ))_

m

When n > d%(x,y), the exponential does not count.

In the uniformly S-transient case, we know h =~ 1. For the lower bounds, discard
any inconvenient terms; for the upper bounds, recall the number of neighbors y of v is
bounded above and all such neighbors satisfy dr(z,y) + 1 > dr(z,v) > 2. O

Corollary 3.24 (Hitting at v by time n). Assume I' := r \ K is an inner uniform subgraph
of a Harnack graph (I', 7, u). Forallxz € T'\ 9;T',v € o', n > dr(z,v),

N h@h()r(y)di (.y) ¢ di(z,y) —~  h(x)h(y)r(y)
D M R R O AP o |

yeliy~v m=dr(z,y)?
(3.11)
In the uniformly S-transient case,
m(v)di(z,v) d3(z,v) - m(v)
N —— - —_ 12
k(e ~ o @) O (- X Ve (@, /m) (3.12)

m=dr(z,v)?

Proof. This quantity is like that of Theorem 3.15, except that the sum in time stops at a
value n instead of continuing to infinity. We are forced to consider several cases about
the relationship between the size of n and dr(x, v). As before, the uniformly S-transient
case will follow by recalling » ~ 1 and that only one y ~ v counts.

In all cases, using Corollary 3.23,

n) = 3 e (my 2, 0) h@h)r() o dR(@.y)
wK( Pd] ) mz::O'(/) ;m %:zy) Vh(ﬂj,\/ﬁ) p( m )

We now compute the inner sum in time m above. For simplicity, we will often
abbreviate dr(z,y) by d in the rest of the proof.

Case 1: Total time n is small compared to distance, that is dr(z,y) ~ n; say dr(z,y) <
n < 2dr(z,y).

Then the inner sum is roughly

- 2 X T
h@hy)r(y) Y — L)~ M) oy g,

ﬁmww@m%‘d Vi(e,d)

In this situation the exponential is very small, so any powers of d that appear by taking
the sum or adjusting the radius of V}, can be fed to the exponential by changing the
constant. Recall V}, is doubling (see Theorem 3.7).

Case 2: The intermediate case, 2dr(z,y) < n < da(z,y).

We use a dyadic decomposition and cut the sum into pieces where d27!~! < /m <
d27!. Recall we use = to denote such decomposition. Let a denote the integer such that
Vi = d27%, or a < log,(d/+/n) and b be the integer such that v/d =< d2~° or b < log,(v/d).
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Since d/\/n < V/d in this case, we have a < b. Hence using the same tools to compute
the sum as above, where the constants C, ¢ can change from line to line,

So OMDMr() (i)

m=dr(z,y) Vi(z,vm) cm
b . .
< Ch(z)h(y)n(y) ; Va o ( 7)
=a /mx<d2~!
b d? 1 4!
< Ch(x)h(y)m(y) £ al Vi (, d2-1) p ( ;)
Ch(z)h(y)m(y)d® 4l
- Vi (z, d) ;ex? ( - ;)
Ch(z)h(y)n(y)d> a
< a7

The last line follows from bounding the sum from above by },. ., and recalling 4* ~ d?/n.
For the lower bound, repeat the same series of steps, except in the last line keep only
the first term [ = a.

We have found

" h(z)h d? h(x)h d? d?
S M) o d@py BTS2y
m=dr(z,y) n(z,v/m) m w(z,d) n
Case 3: The case where time is large compared to the distance squared, n > d%(a:, Y).
Cut the sum into two pieces: where m < d? and where m > d2. For the first piece,
apply the previous case. Here the exponential is large, so we may always ignore it. We
find

~  h(@)h(y)n(y) di(z,y)\ _ h@)h(y)m(y)d® = h(@)h(y)r(y)
> Vi (2, v/m) exP(‘ m )” Vi (2, d) +ZF Vi(z,/m)

m=dr(z,y) m=

To finish estimating ¥ (n, z, v), take the sum in points y. Different points y ~ v may
fall into different cases above, but in all cases the expression found matches that of
(3.11). O

Corollary 3.25 (Hittiﬂg K attime m). Assume I' := r \ K is an inner uniform subgraph
of a Harnack graph (I', w, ). Forallx € T'\ 9;I" and all m > dr(z, K),

h(z)h(y)7(y) —di(z,y)
/ ~ _ )
Vi (m,x) =~ Z Vi (@, /) exp ( - ) (3.13)
yeorl’
dr(z,y)<m
IfT is uniformly S-transient, then
’ N m(y) . d%(%y)
Y (m,x) ~ Z Vito, Vi) exp ( o ) (3.14)
yeoT
dr(z,y)<m

The corollary follows from similar arguments as above. There are no particularly
nice simplifications for any of these expressions since the sums in space rely on A, 7, and
dF (Iv y)

Note either of the previous two corollaries could be used to get an estimate on

Vi (n,x).
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3.4 Examples

In this section we apply the results of previous sections to various examples.

Recall we have already seen that Z™ \ Z* is uniformly S-transient when k < m — 3.
Further, it is not too difficult to verify that Z™ \ 7* is uniform if and only if k <m — 2, so
that the results of the previous section also apply. This example generalizes as follows.

Example 3.26 (Examples with regular volume growth). Let I' := r \ K be inner uniform
inside the Harnack graph (T, 7, ;1). Assume there exists a > 0 such that Vi (z,7) ~ r* for
all x € I',» > 0. Further assume that Vj,r is doubling in the sense of Definition 2.10 and
that 0;T is regular in the sense that there exists 3 > 0 such that Vy,r(y,r) ~ r? for all
y € 0rI',r > 0. Assume o — 3 > 2.

Then we may use Corollary 2.11 to justify that I" is uniformly S-transient, in which
case h ~ 1 and (3.4) gives us a two-sided bound on vk as a function of x:

~ Vo,r (Y=, V1) ~ 1 ~ 1
UNOEEEDY Vi(z, vn) > D@ B2~ r(z, o) B2

nZd%(z,BIF) nZd%(x,BIF)

Example 3.27 (Half-space, Z™ \ Z™~!). Consider upper half-space I' = Z7" = {(z1,.. .,
Tp) € Z% : x,,, > 0} inside of Z™ with the lazy simple random walk. Let & = (z1,...,2,,) €
I'. We consider the chance a walk hits ¥ = (vy,...,v,-1,0) from Z. Clearly I is inner
uniform in Z™, which is Harnack. In this case, h(Z) = z,,. Let ¢, := (v1,...,Um—1, 1).

Letx = (z1,...,Zm-1), v = (V1,...,0m—1) and d(z,v) = |z1 —v1|+ -+ |Tm-1 — Vm—1]-
Applying various corollaries from the previous section (and assuming n > d2(Z, 7) where
sensible),

Tm Tn

[d(l‘, yv)}m (d(x,v) + |1‘m — ll)m

P o T ([d(z, v)] + |zm|?)
K (N, T, 0) ~ (Zm + /1)? nm/2 exp ( - n )

o R X
¢K(l‘7v) —¢K(n75f%v) ~ nTn;Q

2

f ) n R(.7)
ol 50~ e (= S0 o

1 1 }
[dr(‘f” ﬁ)]m nm/2

’ - Em
Y (n, T) ~ 372

o _ Tm
¢K($) - ¢K(n7 x) ~ n1/2

Vi (n, ) =z, [11/2 — 7111/2]
Tm
The above estimate for ¢k (Z, ¥) is essentially a (multivariate) Cauchy distribution
as expected. This is clearer to see if we take m = 2, ¥ = (0,2), and ¥ = (v,0) so that
VY (T, 7) ~ W ~ 1757 Further, notice that the rate of convergence of ¢ (n, &, 7) in
time to ¢ (¥, ¥) is dependent on the dimension, but convergence of ¥ (n, &) to Y (¥) = 1

has the same rate in all dimensions.

Example 3.28 (Cones in Z?). Let [ = 72 and T be the lattice points lying inside of a
cone of aperture « € (0, 27) with vertex at (0,0) and one side of the cone lying along the
x-axis. Note this is a case where K # OI'. As the cone is inner uniform, the results of the
previous section apply.

In the continuous case, it is known that the profile of such a cone is h(r,0) =
7/ sin (g(&)) where (r,0) € R? are polar coordinates. Since a cone can be thought
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of as the graph above a Lipschitz domain, a result of Varopoulos [20] says harmonic
functions in the discrete (lattice) and continuous versions of a space are similar away
from the boundary. For further discussion of harmonic functions in cones see [8] and
references therein.

Therefore, assuming & € Z? is away from the boundary of our discrete cone and
¥ € 7?2 lies along the boundary of the cone, by Corollary 3.21,

||/ sin (7 (02)) 7™/ sin (% (95,))
[dr (%, §iz)]>™/ ’

where iz ~ ¢ and belongs to I'. One can verify this result matches that of the half-plane
in the previous example (o = 7, m = 2).

We can also express ¢k (%, ¥) in terms of distances to the edges of the cone. Let
the edge of the cone that lies along the z-axis be Ly and the other edge be ;. Then
|Z| ~ d(Z, Lo) + d(Z, L) and, for « fixed, sin (Z(0z)) ~ (Tmfo) d(T -L1) " (Note one of these
factors is always roughly constant.) Thus

1/1}((5, 17) ~

[d(fv LO) +d(f7L1)] [

Lo) +d(¥, Ly)]a~ d(x,L0)7d(:v,L1).

wK(fu 77) ~ )]27r/a

(U,
[dr (Z,
Example 3.29 (A line in Z3, e.g. Z™ \ Z™~2). Consider I' = Z3 and K = {(0,0, z3) : 23 €
Z}, the x3-axis. The arguments below apply more generally to Z™ \ Z™~2. The harmonic
profile is the same as the harmonic profile of a single point in Z?, and consequently
h(z1,zo,23) =~ log(|x1]| + |z2| + 1) (see e.g. [18, Section 11]). Given & = (x1,x9,23) € I' :=
73\ K, then dz := d(&,0;T) = |z1| + |v2| — 1. We can use Theorem 3.15 to check that
Vi (T) =

~

o h(Z)h(F (%)
wK(x)~n>Zd% E;F W@ ) (7 ) V(@ /)
T (@<

S

log(dz)
22 2 log(dz + v/n) log(v/n)n?/?

n>d2 §:d2(7,7)<
~ Y log(dz) _ log(dz) _
(log(n))?n  log(dz)

n>d2
20%

The above calculation used that he number of 3’s in the x3-axis at distance less than
v/n from Z is about /n — dz ~ /n. This is sensible if we replace the exterior sum n > d
by n > cd%; for the lower bound, we can throw this away, and, in the upper bound, the
sum over d% <n< cd% is can be controlled by later pieces of the sum. This might seem
simple, but the fact that we can make manipulations like this in our calculations relies
on the fact the boundary is doubling. (See Remark 3.30 below.)

It is more interesting to compute ¢k (Z, ¥) where ¥ = (0,0,v) € K. Then via Corol-
lary 3.21:

o U ool o
2, M) 2. Glm <) 2 ot

yel:g~u n>d2(Z,7) n>d2(Z,7)
N log(d(Z, Uz))
(dr (&, Uz) + dr (U, 9))(log(dr (%, Uz) + dr (U7, 7))

Remark 3.30. Given z € I', y € 9,1, it is always true that dr(z,y) =~ dr(z,y.) + dr(yz, v),
where y, € 9;T" achieves dr(z,d;T") (and that y, ~ v, € O that achieves d(z,dT)).
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Provided changing the “radius” by a constant does not really change how many points
y € O are at a particular distance from y,, € 9;T', then when n is sufficiently large, the
inner sums in our theorems/corollaries can be taken over y € ;T : d*(y, y,) < n. This
remark is similar in spirit to Corollary 2.11; Example 3.32 below gives an example where
such assumptions do not hold.

Example 3.31 (Weighted half-spaces). This example is a continuation of Example 2.16.
Once again we consider I' = {¥ = (z1,...,2,) € Z™ : z,, > 0} inside Z7, with weight
(1 + 2,,). Provided o > —m, then Z, with this weight is Harnack, which can be shown
using similar arguments to those given in Section 4.3 of [12]. The profile for such a
space clearly only depends on the z,, coordinate and reduces to computing the profile
on the weighted half-line. Using the definition of harmonic and choosing the scaling by

setting h(z1,...,Zm,,1) = 1, we can compute
Tm 1
4 >0
1=1T=> @z 1—
h(zl, cee 71‘m) = ot 9o =T, @
Do oy € (=N,0)

If « > 1, then 1 — a < 0 and it is clear A is uniformly bounded above and below. In
Example 2.16, we already saw that Z"" was uniformly S-transient with such weights.
Using Theorem 3.15 gives us a lower bound that matches the upper bound found in

—

Example 2.16, and we can also find ¢k (Z, ¥)

1 1

[d(Z, D)2 7 [lag —vi] 4+ + [Tme1 — Vm—1| + |@m [ F2

<
ol
8

,0) &

Now consider « € (=N, 1]. Using our Theorem 3.15, we find that ¢k (Z) is roughly

constant and can compute ¢ (%, V)

. x’]r.n—an(m—l)/2 x}n—a x}n—a
Vi (T) ~ >d2§(;ar) l—apmia)z ; nG-a)/z ¥ 1= ~1
n>d?(Z, n>x2,
xlfa xlfa
Vi (7. 7) ~ —2m _ .
&0~ G@ o=~ ool F oot — oma] ¥ ][

Substituting « = 0 into the expression for ¢k (Z, ) above, we recover the formula
from Example 3.27.

In general knowing 9 (Z) ~ 1 is not sufficient to conclude a subgraph is S-recurrent,
as this does not necessarily imply ¢k () = 1. However, in this specific case, we can use
symmetry to argue that the half-space cannot be S-recurrent and have ¢k (%) uniformly
bounded below away from zero. Clearly, ¢k (%) only depends on z,, = d(&Z,dT"). Also,
by using repeated applications of the Markov property, if x,, = d, then in order for the
random walk to hit the set {z,, = 0}, it must first hit the set {z,, = d — 1}, then the set
{x;m = d—2}, and so on, so the probability of hitting {x,, = 0} decomposes into a product
of probabilities of hitting a set that is distance 1 away from the starting point. Although
the weights are different if we consider hitting {x,, = 0} from a point where z,, = 1
in the usual half-space versus hitting {x,, = k} from a point where z,, = k + 1 in the
half-space {z,, > k}, the weights will be uniformly comparable. Since vk is the chance
of hitting K before time oo, a bounded change of weights will not change it. Hence if
Y (Z) < 1 everywhere, there must be points where ¢k is arbitrarily close to zero. Hence
knowing ¢k (%) ~ 1 shows that these weighted half-spaces are in fact S-recurrent.

Example 3.32 (“Flyswatter”). In Z*, consider K to be a two-dimensional infinite “fly-
swatter” as in Figure 2 below. A key point is that the flyswatter has long “handles” and
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Figure 2: The blue “flyswatter," which we imagine continues infinitely in both directions
in a similar manner. Although this picture is in two dimensions, we think of this in a
higher dimensional space. Note how there are black points in-between the blue points,
and it is easy to see distance in Z¢ would not be changed significantly by avoiding the
blue points when d > 4.

“mesh parts” at every scale; this causes K = JI  to fail to be doubling in Z*. However,
I' = Z*\ K is uniform as one can always use the extra two dimensions to move away
from the flyswatter, and dr =~ dz+ since the flyswatter is either thin or has frequent holes.
While Theorem 3.15 and associated corollaries apply to this example, we do not know
how to compute h. This situation is typical.

3.5 Example: A set that is S-transient but not uniformly so

In this section, we discuss an example that turns out to be S-transient, but not uni-
formly so, illustrating the distinction between these notions. We apply both Theorems 2.9
and 3.15 and discuss what we can say about its harmonic profile h.

Let T = Z4. Think of x € Z* as x = (1,72, 73,74). In the z179-plane, let K = oI be
the set of lattice points that lie inside the graph of z; = 2§ for a € (0,1), 21 € Z>o.
In the case o« = 1/2, we have a parabola whose axis of symmetry is the z;-axis; we
may often refer to the points of K as a “parabola” regardless of the value of « (or the
fact that we are only considering a discrete analog of a parabola). Note that K is a
two-dimensional object in four-dimensional space, so I' := Z* \ K is inner uniform.

If we consider the lazy simple random walk on Z*, then it has controlled weights, is
uniformly lazy, and is Harnack. Hence we can apply any of our results to this example.

T2

o\eo o o ¢ o o o o o
oo o o o 0o o 0o o o
o ole o o o o o o o
o ole o ¢ o o 0o 0o o
o o ol e o o o o o o
o o ole o o o o o o
e o olle ¢ ¢ o o o o
o o o le ¢ o o 0o o o
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Figure 3: For o = 1/2, we take the lattice points inside of the parabola z; = 3 as our
set K. This figure is the x;x5-plane that lives inside Z*.
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We first use Theorem 2.9 to show that Z* is S-transient with respect to K. Doubling
of traces of balls in JI" can be seen by the following formula for Vjr:

2, r < |aq|®

Vap(x, T) ~ |1‘1|O‘r, ‘x1|°‘ <r< |x1| forx = (1’1,1:2,0,0) c K.

7,04+1’ r Z |5C1‘

For any point x € T, we have Va(x,7) =~ r*. For any x € I' := Z*\ K, let x* =
(x%, x5, x5, x}) denote the unique point in K that achieves d(x, K'). Thus for any » > 0 and
anyx €T,

r?, < el
—~ 3
W(X’T) ~ JW? |mf|a <r< |x>1k|

3T > |2y

Lemma 3.33. The graph Z* is S-transient with respect to the parabola K. Moreover,
for a given € > 0, we can pick L. = L sufficiently large so that in the regime where
dy :=dgza(x,K) > |z}| > L, we have i (x) <1 —e.

Proof. Recall x* = (x7, 3, x5, x}) is the point that achieves dza(x, K). When dx > |z}
C

1 1 o0 1 1
) < S — 2 -~ N L
( ) n>Zd)2( W(X, \/’ﬁ) n>Zd)2( n(3—a)/2 t(1—a)/2 t=d2 d)lc 1«

’

Thus ¥k (x) < 1 — € for L. sufficiently large. O

A key component of the proof of the above lemma was the assumption that dy > |z7].
If instead |z7|* < dx < |zf|, then we have the bound

o |2

C Clat]® C
br(x) < Y == + Y (3.15)
nzaz W V) 2 n n>laj|2 nfame2
Colz7]™ Cq Cp
= - 3.16
N (310

where the constants ¢,, ¢, depend on the approximation of W and on the estimation of
the sums above. We write these constants to emphasize that the |2}|*~! terms do not
cancel. If instead dx < |xf|%, then there is a third term appearing in the estimate for ¢k
given by Theorem 2.9/Corollary 2.11.

Lemma 3.33 does not show that Z* is uniformly S-transient with respect to the
parabola K since dy and |z}| are related. Indeed, it is possible to pick a sequence of
points {x},,>¢ such that dxm — oo, but the bound in Theorem 2.9 does not give useful
information. To that end, consider points x™ = (27", 5", 2", 2*) that lie directly above
the parabola so that dym ~ 25" + 2}*, which is independent of z7* = (2]")*. Further, take
dym = |(2*)*|* for all m. Then we are in the situation of (3.15) so that

Cal (27")"]" Ca b Ca o

Uk (") < e T T T e T e
o @ T )T T e e

Thus ¥ (x™) = ¢, as dym = |(27")*|* — oo. From this, we cannot conclude that ¢k (x™)
tends to zero as dy= — o0, and if ¢, > 1, this tells us no information on vk at all. Indeed,
the appearance of the constant ¢, (essentially “1”) in the computation of the above sum
indicates that Theorem 2.9 will not give a useful bound in this regime.
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From Lemma 3.33, we know that I' is S-transient and that 4 ~ 1 in the region where
d(x, K) > |z7|, since ¢k (x) < 1 — ¢ in this region. The two lemmas below capture how
the results of Section 3 can improve our knowledge of h as we approach the parabola in
certain ways.

Lemma 3.34. For any x € I satisfying dyx > |z5|* > L, we have h(x) ~ 1.

Lemma 3.35. Let u* = (u1,0,0,0) € K and B = Br(u*, |u1|*). Then there exists a
constant 0 < a < 1 such that

h(x) ~ log(dx)

~c———— Vx € Bp(u', ).
Clog(é|u1|“) X r(u”, alui|")

Proof of Lemma 3.34. We already know this result for x € I satisfying dy > |z7| due to
Lemmas 3.33 and 3.13. Therefore it suffices to consider x € I such that dx ~ ¢&z7|* for
some constant ¢. In this region, by (3.15) and Lemma 3.13,
Ca—Cp _  |2f]*
hix)=1- >1 —Cq .
(%) Y (u) > 1+ |zt 1— ¢ dy

If ¢, > ¢, we can ignore the middle term; otherwise, assume |z}|* > L where L is large
enough to ensure (¢, — ¢)/|z5|' ™ > —1/4. Also choose ¢ so that ¢, /¢ < 1/4. With these
choices, for x satisfying dyx ~ |z7|* > L,

Thus h ~ 1 whenever dx > |z7|® > L as desired. O

Proof of Lemma 3.35. As this result is about points near the parabola K, we use the
boundary Harnack inequality. Given u* = (u1,0,0,0) € K, take u = (u1,0,u3,u4) such
that dy, ~ |u1|* and h(u) ~ 1 as in Lemma 3.34. Note u* is the projection of u onto K.

AsT is Harnack and A is harmonic inside T, by applying the elliptic Harnack inequality
a finite number of times, we find a point (which we continue to call u) such that A(u) ~ 1
and u lies in B = Bp(u*, 3|u|*).

From the perspective of B, we cannot tell that K is not the entire x;x--plane. As in
B we are looking at a two-dimensional ball inside of four-dimensional space, we know
there is a positive harmonic function f in B that is zero on the intersection of B with K
such that f(x) ~ log(|z3]? 4 |z4|?) ~ log(d(x, K)?).

Therefore, by the boundary Harnack inequality (Theorem 3.12),

f(x) h(x) log(d3) log (dx) 1
——< <A X = <h % B(u*, ——|u|%).
fw =R = log(@) ~ “Tog(efuny =" P gl
As we may also apply boundary Harnack in the other direction, we conclude
1
h(X) ~ Og(dx)

= log(éfua )
on a ball of radius strictly smaller than that of B (but comparable to |uj|*). O

The two lemmas above give a wide region where we understand h. However, there is
still a “bad region” of points where the behavior of h remains unknown. For any x € T,
recall x* = (z7,x%, 2%, 2}) is its projection on to K. The behavior of % is not known for
points x € I where dx < |z7|® and |z}| > |z}|*, that is for points that neither Lemma 3.34
nor Lemma 3.35 apply to. (Lemma 3.35 can be applied to points near the parabola but
that do not get too close to its “edge.” Repeated applications of boundary Harnack could
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get similar results to hold in balls with centers of the form u* = (u3, u9,0,0) as long as us
is sufficiently small compared to u;.) These bad points lie in a tube around the parabola
of radius comparable to |x}|*.

Lemma 3.35 shows that A % 1 for points close to the middle of the parabola, so
along with Lemma 3.13, this shows Z* is not uniformly S-transient with respect to the
parabola.

4 Connections with Wiener’s test

In many situations, Wiener’s test gives an optimal way for determining classical
transience/recurrence of a set S C I', where transience is taken to mean P*(X,, €
Si.0.) = 0 and recurrence means P?(X,, € Si.o.) > 0. In many cases (such as for the
SRW on Z%), a 0 — 1 law holds for these probabilities, but such a 0 — 1 law does not hold
in the general setting considered in this paper.

Below we give the version of Wiener’s test in the case of interest to us. See, for
example, [2, 15, 17, 19] for statements of Wiener’s test in various settings.

Theorem 4.1 (Wiener's test for Harnack Graphs). Let (I', K, ) be a Harnack graph with
controlled weights. Let (X,,),>0 denote the process on the graph.

Assume that T is transient in the sense that P*(X,, = x i.0.) = 0 for some/all z € T'.
Fix o € T and let Ay, := Br(o0,a**)\ Br(o,a*) for some constant a.

Then there exists a > 1 such that for any set S C T,

2. Cap(S N Ayg)

P°(X,, € Sio.)=0 < — = < +00. 4.1
( io.) ; Can(AL) 00 (4.1)

Here Cap denotes the capacity, defined as

Cap(S) = Y es(y),

yEeS

where
P¥(Vn>1, X, &5), yes
es(y) =
0, ygs

is the equilibrium potential of S.
Further, if V denotes the volume function on T', and y € A;, such that d(y,0A;) ~ a”,
then -
1

Cap(Ay) ~ [ Z W}_l.

n=a?2k

(4.2)

This theorem follows by repeating the proof of Theorem 7.23 in [2] with a few
modifications to account for the different form of assumed heat kernel bounds on I" here.

There are key differences between Wiener’s test and the questions we addressed in
the main part of the paper. First, the definitions of transience used do not align. In this
paper, we defined transience as ¥k (z) < 1 for some/all z € T := r \ K. Wiener’s test
takes transience to be P*(X,, € K i.0.) =0forall x € T. These may not be the same, and
Wiener’s test does not account for uniform S-transience (see Example 4.2 below), which
is of much interest to us. Further, Wiener’s test does not care about where the walk is
started. However, we are only interested in starting the walk outside of the set K. There
may be cases where the random walk started well inside of K is unlikely to ever leave
K, but a random walk started outside of K may have a positive chance to never visit K.

Example 4.2 (Applying Wiener’s test to the parabola example). Again, consider the
“parabola” K inside a lattice Z* as in Section 3.5.
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In the case of the lattice Z%, we can take a = 2. We do this here to emphasize
Theorem 4.1 is a generalization of the classical formulation of Wiener’s test for Z<.
First, by (4.2), we have

o0 oo

Cap(4g) =~ [ Z m}*l ~ [ Z %}*1 ~ 92k

n=22k n=22k

The intersection of the parabola and the (4-dimensional) annulus, K N Ak, is con-
tained inside a two-dimensional rectangle R;, of length approximately 2 and width
approximately 2°*, where o determines the shape of the parabola, i.e. a = 1/2 for an
actual parabola. Since in Z* the capacity of a point is a positive constant, if | R;| denotes
the number of points in Ry, then

Cap(S N Ay) < Cap(Ry) < ¢|Ry| < 28,

Therefore
— Cap(SNQy) _ 2Hhe &K1 .
ZTSCZQT:CZW<OO Slnce@e(o,l).
k=0 k=0 k=0

Therefore Z* \ K is transient in the sense of Wiener’s test and is S-transient, but
it is not uniformly S-transient. This shows that Wiener’s test is not sufficient for our
purposes.
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