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An approach is presented for simulating multipulse Nuclear Magnetic Resonance (NMR) spectra of poly-
crystalline solids directly in the frequency domain. The approach integrates the symmetry pathway concept
for multipulse NMR with efficient algorithms for calculating spinning sideband amplitudes and performing
interpolated finite-element numerical integration over all crystallite orientations in a polycrystalline sample.
The numerical efficiency is achieved through a set of assumptions used to approximate the evolution of a
sparse density matrix through a pulse sequence as a set of individual transition pathway signals. The utility
of this approach for simulating spectra of complex materials, such as glasses and other structurally disordered
materials, is demonstrated.

I. INTRODUCTION

Nuclear Magnetic Resonance (NMR) spectroscopy1–5

has long played an essential role in determining the struc-
ture and dynamics of matter on various length scales. At
the atomic scale, such information is encoded in the ten-
sorial interactions between the electromagnetic moments
of the nucleus and its surrounding magnetic and electric
fields. In fluid phases, the effect of these anisotropic inter-
actions on the NMR transition frequency is averaged out
by rapid molecular tumbling, leaving only isotropic con-
tributions to the NMR spectrum. In solid phases, how-
ever, these anisotropic interactions are preserved.6–8 This
leads to a richer array of spectral features in solids that
can reveal significantly more details about the structure
and dynamics of the solid. Unfortunately, the presence of
these anisotropic frequency contributions also increases
the level of complexity of the measurements and the in-
terpretation of results. For this reason, solid-state NMR
measurements often require the expertise of a solid-state
NMR spectroscopist to set up, process, and interpret.
Compared to the liquid state, solid-state NMR has never
been a technique that can be approached casually, even
on commercial instruments.

The ability to simulate solid-state NMR spectra is cen-
tral to their analysis and interpretation. It also plays a
vital role in developing new solid-state NMR methods.
Currently, there are two approaches to simulating solid-
state NMR spectra. The first numerically solves a quan-
tum master equation, e.g., the Louiville von Neumann
equation, to simulate a time-domain signal whose Fourier
transform gives the frequency-domain spectrum.9–19 This
first-principles approach can be highly versatile in its
ability to simulate multi-pulse NMR methodologies in
rotating samples, but it is computationally expensive.
Consequently, it is often not practical for simulating
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the spectra of disordered materials, where the num-
ber of unique spin systems can be large. The second
and more approximate approach focuses on spin sys-
tems with non-degenerate eigenvalues where analytical
expressions for the NMR transition frequencies and am-
plitudes for each spin system can be summed to obtain
the frequency-domain spectrum directly. While exist-
ing software packages implementing this approximate ap-
proach are significantly faster than the first-principles ap-
proach, they are often hard-coded for a small subset of
NMR methods.20–27

In principle, implementing a general-purpose multi-
pulse NMR simulation directly in the frequency domain
should be no more challenging than in the time domain,
although admittedly, there are few examples in the liter-
ature of numerical algorithms being developed for such
cases.17 Here, we present a theoretical approach support-
ing algorithms for a general-purpose multi-pulse NMR
simulation of solid-state NMR spectra directly in the fre-
quency domain. In this effort, we combine concepts from
the symmetry pathway approach to multi-pulse NMR
experiments28, with efficient algorithms for calculating
spinning sideband amplitudes29 and for performing nu-
merical integration of the spectra over all crystallite ori-
entations in a polycrystalline sample.20 In the symme-
try pathway approach, a multi-pulse NMR method is de-
scribed in terms of a set of transition symmetry path-
ways, which, when combined with a given spin system,
are mapped into a set of transition pathways. Each
transition pathway corresponds to a single resonance in
a multi-dimensional NMR spectrum in a static sample
or a single centerband resonance flanked by a series of
spinning sideband resonances in a rotating sample. By
focusing on individual transition pathways, the finite-
element integration and interpolation algorithm of Al-
derman, Solum, and Grant20 (ASG) for rapid simula-
tion of one-dimensional NMR spectra of polycrystalline
sample in the frequency domain can be extended to the
simulation of multidimensional NMR spectra. Taken to-
gether, this frequency domain approach can perform sim-
ulations of multi-pulse NMR spectra in polycrystalline
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solids in significantly less time than conventional time
domain simulations. The theoretical approach and al-
gorithms described here are implemented in the Python
package MRSimulator for simulating multi-dimensional
NMR spectra of polycrystalline solids and will be de-
scribed elsewhere.

II. THEORETICAL APPROACH

A. Fundamental assumptions

The state of a quantum-mechanical system of a set I

of nI coupled spins can be described by a vector in a
⌥-dimensional Hilbert space according to

| (t)i =
⌥X

i=1

ci(t)|ii, where ⌥
{I1,I2,...,InI}

=
nIY

u=1

(2Iu+1),

(1)
where |ii is the ith eigenstate of the (Zeeman) Hamil-
tonian, and ci(t) is the complex amplitude of the ith

eigenstate. Here, Iu is the total spin angular momen-
tum quantum number of the uth nucleus.

For an ensemble of identical quantum-mechanical sys-
tems, we can define the density operator

⇢̂(t) = | (t)i h (t)| =
⌥X

j=1

⌥X

i=1

cj(t)c⇤i (t) |ji hi|, (2)

where the ci(t)c⇤i (t) represent the population of the ith

stationary eigenstate, and the cj(t)c⇤i (t) represent the
complex amplitude of the i ! j transition. The i ! j
transition is one of ⌥!/(⌥ � 2)! possible transitions be-
tween ⌥ levels. Here, we count i ! j and j ! i as
different transitions.

We assume that the equilibrium density operator is di-
agonal in the Zeeman eigenstates with populations given
by the Boltzmann distribution. In the high-temperature
approximation, the density operator at thermal equilib-
rium is approximated according to

⇢̂eq =
e�Ĥ/kBT

Z
⇡ �

nIX

u=1

~!0,u

kBT (2Iu + 1)
Îu,z, (3)

where Ĥ is the Hamiltonian, Z = Tr(e�Ĥ/kBT ) is the
partition function, kB is the boltzmann constant, T is the
thermodynamic temperature, ~Îu,z is the z-component of
the angular momentum operator for the uth nucleus, and
!0,u is the Larmor frequency of the uth nucleus.

At the most general level, the theoretical description
of an NMR experiment starts with the time evolution
of the density operator, ⇢̂(t), through a quantum master
equation. The form of this equation can vary depending
on the application.30–32 We focus on applications where
relaxation processes can be neglected, allowing the quan-
tum master equation to be reduced to the Louiville von

Neumann equation3

d⇢̂(t)

dt
= �

i

~

h
Ĥ(t), ⇢̂(t)

i
, (4)

where Ĥ(t) is a Hamiltonian having only coherent time
dependences due to radio-frequency (RF) excitation and
sample rotation, such as magic-angle33,34 (MAS) and
variable-angle35,36 (VAS) sample spinning. It has the
general form

Ĥ(t) = ĤZ + ĤRF(t) +
X

�2�

Ĥ
(1)
� (t), (5)

where HZ is the Zeeman Hamiltonian, ĤRF(t) is the RF
excitation Hamiltonian, and Ĥ

(1)
� (t) are the parts of the

Hamiltonian arising from some set � of nuclear spin cou-
plings internal to the sample. In NMR, the Ĥ(1)

� are often
expressed in terms of irreducible tensor elements of ranks
L = 0, 1, and 2 in the lab coordinate system6 as

Ĥ
(1)
� = ⇤{�}

2X

L=0

LX

m=�L

(�1)mR{�}
L,�m T̂ {�}

L,m( ~̂U, ~V ). (6)

Here, the ⇤{�} depend on the identity of the nuclei in-
volved in the interaction and are given in Table S7 of
the Supplementary Material. The R{�}

L,�m are the spher-

ical tensor elements, and T̂ {�}
L,m( ~̂U, ~V ) are the irreducible

spherical tensor element operators, formed from the ten-
sor product of two vectors ~U and ~V . The vector ~̂U is a
nuclear spin vector operator, whereas the vector ~V can
be the same nuclear spin vector operator (quadrupolar
interaction), another nuclear spin vector operator (dipo-
lar and J coupling), or the external magnetic field vector
(Zeeman, paramagnetic shift, and nuclear shielding inter-
actions). Further details on the Cartesian and spherical
tensor conventions are given in the Supplementary Ma-
terial. We further assume that ||ĤZ || � ||

P
� Ĥ

(1)
� (t)||,

and the time-dependence due to sample rotation is in the
adiabatic limit,37 allowing the Hamiltonian to be written
in a series expansion

Ĥ(t) ⇡ ĤZ+ĤRF(t)+
X

�2�

D̂(1)
� (t)+

X

�2�

X

�02�

D̂(2)
�,�0(t)+· · · ,

(7)
where D̂(1)

� (t) and D̂(2)
�,�0(t) are the first- and second-order

perturbation theory corrections.37
An ndim-dimensional multi-pulse NMR experiment can

be modeled using the density operator according to

⇢̂(t1, . . . , tndim) = Û(t1, . . . , tndim) ⇢̂(0) Û
†(t1, . . . , tndim),

(8)
where

Û(t1, . . . , tndim) =
ndimY

v=1

Ûv(tv), (9)
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3

and Ûv(tv) is the spectral dimension propagator modeling
the evolution through the vth spectral dimension.

Each spectral dimension propagator can be further
broken down into a product of nv events, given by

Ûv(tv) =
nvY

k=1

Ûv,k, (10)

where Ûv,k is either a free evolution propagator,
Ûv,k(⌧v,k) or Ûv,k(xv,ktv), or a mixing propagator,
P̂v,k(⌧v,k). The P̂v,k(⌧v,k) and Ûv,k(⌧v,k) are propaga-
tors of constant duration ⌧v,k, which we will refer to as
a mixing event and delay event propagator, respectively.
The Ûv,k(xv,ktv) denotes a variable duration free evolu-
tion propagator, which we will refer to as a spectral event
propagator and xv,k is the fraction of the free evolution
period tv that the kth propagator is active in Ûv(tv). We
define xv,k = 0 whenever the kth propagator is not a spec-
tral event propagator, and require

nvX

k=1

xv,k = 1. (11)

The assumptions made so far are similar to those found
in many conventional NMR simulations and are com-
monly used to analyze high-field solid-state NMR spec-
tra. In developing our frequency domain simulation ap-
proach, we obtain significant efficiency gains in the simu-
lation algorithms by making the following additional as-
sumptions:

I. There are no degeneracies in the eigenvalues of Ĥ(t)
for all t, i.e., all the dipolar and J couplings remain
in the weak limit.

II. Time dependences in Ĥ
(1)
� (t) are not on or near

resonant with any NMR transition frequencies.38–40

III. Internal couplings can be neglected during RF exci-
tation, i.e., ||ĤRF(t)|| � ||

P
� Ĥ

(1)
� (t)||. Therefore,

for the mixing propagator, P̂v,k, the effect of an RF
pulse on the density operator is approximated by
a pure rotation of ✓ about an axis defined by  in
the x-y plane.

IV. Transition frequencies can be calculated analyti-
cally.

Assumptions I and II are essential for reducing the den-
sity operator to a set of individual transition pathway sig-
nals with no mixing among transitions during free evolu-
tion periods, i.e., the free evolution propagator matrices,
Ûv,k(⌧v,k) or Ûv,k(xv,ktv), remain diagonal. Assumptions
III and IV are not essential but are made to reduce com-
putational overhead in calculating the transition path-
way signals. While these four assumptions might be
considered restrictive for a general-purpose NMR simula-
tion package, they are not uncommon for many high-field
solid-state NMR experiments, where the dipolar and J
couplings are weak and the RF excitation is strong.

B. Transition Pathways

When simulating the solid-state NMR spectrum aris-
ing from a multi-pulse sequence, it is helpful to keep
in mind that NMR experiments are typically performed
as a set of difference measurements designed to iso-
late the signal from a specific set of transition path-
way signals.28,41–43 Much of the experimental design
and implementation of an NMR method is identifying
the desired transition pathways and finding ways to ac-
quire their signals while eliminating all undesired tran-
sition pathway signals. Transition pathway signal isola-
tion is experimentally accomplished through various ap-
proaches, such as RF phase cycling, pulse length opti-
mizations, selective pulses, multiple quantum filters, or
field gradients.

In numerical simulations of multi-pulse NMR experi-
ments, the undesired transition pathway signals in the
density matrix are eliminated by zeroing the correspond-
ing undesired matrix elements. The density matrix can
become sparse in this process, making it computationally
inefficient to propagate the full density matrix through
the pulse sequence. In such cases, it is more efficient to
propagate the single transition operators through each
transition pathway separately.

Consider the illustration of a 2D pulse sequence
shown in Fig. 1, where the desired signal for the
method is associated with a particular transition path-
way, �̂A ! �̂B ! �̂C ! �̂D. Here �̂A and �̂B are the
transitions associated with the two spectral events in the
t1 spectral dimension with xA + xB = 1. The �̂C is the
transition associated with the delay event with constant
delay ⌧ , and �̂D is the transition associated with the spec-
tral event, with xD = 1, along the t2 spectral dimension,
respectively. The pulses shown as solid black rectangles
are the four mixing events. Through the first spectral
dimension, we can write the evolution as

(u0A)e
�i⌦AxAt1 �̂A ! (u0AuAB)e

�i(⌦AxA+⌦BxB)t1 �̂B .
(12)

Here, u0A is the amplitude of the initial single transition
operator �̂A, and uAB is the mixing amplitude for the
transfer from �̂A to �̂B . The Fourier transform of the
transition pathway signal as a function of t1 derives its
average frequency, ⌦1, from a weighted average of the �̂A

and �̂B transition frequencies. After reaching the final
transition, �̂D,

· · · !
⇥
(u0AuABuBCuCD)e�i⌦C⌧

⇤
| {z }

s(0,0)

e�i⌦1t1e�i⌦Dt2 �̂D,

(13)
the transition pathway signal has acquired a t1 and t2
dependent phase modulation, e�i⌦1t1e�i⌦Dt2 , and a com-
plex amplitude, s(0, 0), where uBC and uCD are the mix-
ing amplitudes for the transfer from �̂B to �̂C and �̂C to
�̂D, respectively. A 2D Fourier transform of the transi-
tion pathway signal gives

s(!1,!2) = s(0, 0)�(!1 � ⌦1)�(!2 � ⌦D), (14)
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Transition
pathway
signal

FIG. 1. An illustration of a two-dimensional NMR pulse se-

quence leading up to the acquisition of the signal from a single

transition pathway.

where �(x) is the Dirac delta function. This process can
be repeated for other desired transition pathway signals,
which are summed to the total signal,

S(!1,!2) =
X

z2T

sz(!1,!2), (15)

where T is the set of all desired transition pathways. This
approach is advantageous when the number of desired
transition pathways is significantly less than the total
number of possible transition pathways. Further details
on how the transition pathway signals are calculated are
provided in the following sections.

C. Transition Frequencies

Calculating the desired transition pathway spectrum
is more efficient when analytical expressions for transi-
tion frequencies are available. This section briefly reviews
these expressions for a spin-system with nI sites. For a
detailed overview of their derivation, see the Supplemen-
tary Material.

Here, we consider frequency contributions arising from
the first- and second-order perturbation terms, which are
summed to give the total transition frequency, ⌦(⇥, i, j),
for the i ! j transition as28

⌦(⇥, i, j) =
X

k

!k ⌅(k)
L (⇥) ⇠(k)(i, j), (16)

where !k is the size, ⌅(k)
L (⇥) is the sample’s spatial ori-

entation function corresponding to the Lth rank spa-
tial irreducible spherical tensor, and ⇠(k)(i, j) is the
spin transition symmetry function of the kth frequency
contribution28. A review of spin transition symmetry
functions is given in Appendix A.

The spatial orientation functions, ⌅(k)
L (⇥), in Eq. (16),

are defined in the laboratory frame, where the z-axis
is the direction of the external magnetic field. Here,
⇥(t) are the Euler angles that determine the sample’s
lattice spatial orientation, which can carry a time de-
pendence due to sample rotation. We can expand the
orientation dependence of a given transition frequency
using a series of rotations from the common frame of
each frequency contribution to the laboratory frame and
re-express Eq. (16) as

⌦(t, i, j) =
X

k

"
LkX

m0=�Lk

D
(Lk)
m0,0(!Rt+ �, ✓R, 0)

LkX

m1=�Lk

D
(Lk)
m1,m0

(↵,�, �)�{k}
Lk,m1

#

| {z }
!k ⌅(k)

L (⇥)

⇠(k)(i, j), (17)

where D
(L)
m,m0(↵,�, �) are Wigner rotation matrix ele-

ments, given by

D
(L)
m,m0(↵,�, �) = e�im↵ d(L)

m,m0(�) e�im0� , (18)

d(L)
m,m0(�) are the reduced Wigner rotation matrix ele-

ments, !R is the rotor frequency, � is the initial rotor
phase, ✓R is the rotor angle, (↵,�, �) are the Euler angles
relating the common frame to the rotor frame, and �{k}

Lk

is the frequency-scaled spatial spherical (fsSST) tensor
part of the kth frequency contribution of rank Lk in the
common frame.44 For frequency contributions involving
a single interaction, the components of �{�}

L in the com-

mon frame are given by

�{�}
L,m =

LX

m0=�L

D
(L)
m,m0(⇥

{�}
PAS) &

{�}
L,m0 , (19)

where &{�}L is an fsSST part of rank L in the PAS of the
single interaction spatial tensor, and ⇥{�}

PAS is the orien-
tation of the PAS relative to the common frame. The
components of &{�}L for each single interaction fsSST are
expanded and given in Table I.

In the Supplementary Material, we further derive the
fsSST in the common frame for the second-order per-
turbation theory corrections involving the quadrupolar
interaction of spin I, with (1) the shielding interaction
of spin I, i.e., (�qI), (2) the weak J coupling interaction
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5

Interaction &{�}L,n

quadrupolar &{q}2,0 = !q
1p
6

&{q}2,±2 = �!q
⌘q
6

&{qq}0,0 =
!2
q

!0

1

6
p
5

✓
⌘2
q

3
+ 1

◆

&{qq}2,0 =
!2
q

!0

p
2

6
p
7

✓
⌘2
q

3
� 1

◆
&{qq}2,±2 = �

!2
q

!0

⌘q

3
p
21

&{qq}4,0 =
!2
q

!0

1p
70

✓
⌘2
q

18
+ 1

◆
&{qq}4,±2 = �

!2
q

!0

⌘q

6
p
7

&{qq}4,±4 =
!2
q

!0

⌘2
q

36

shielding &{�}
0,0 = �!0�

0
iso

&{�}
2,0 = �!0⇣� &{�}

2,±2 = !0⇣�
⌘�p
6

dipolar &{d}2,0 = 2!d &{d}2,±2 = 0

J &{J}
0,0 = 2⇡Jiso

&{J}
2,0 = 2⇡⇣J &{J}

2,±2 = �2⇡⇣J
⌘Jp
6

TABLE I. Frequency-scaled spatial spherical tensor elements in the principal axis system for the various NMR interactions.

For all interactions, &{�}L,±1 = &{�}L,±3 = 0. The ⌘� are the asymmetry parameters for the symmetric tensor associated with each

nuclear spin interaction. For the Larmor frequency, !0 = ��IB0, where �I is the magnetogyric ratio and B0 is the external

static magnetic flux density. For the quadrupolar coupling, !q =
6⇡Cq

2I(2I � 1)
where I is the nuclear angular momentum

quantum number, Cq =
qeQI

h
⇣q, qe is the fundamental unit of charge, QI is the nuclear electric quadrupolar moment, h is

the planck constant, and ⇣q is the electric field gradient at the nucleus. For the nuclear magnetic shielding, �0
iso = �iso � �ref

iso
is the isotropic nuclear shielding relative to the reference nucleus, and ⇣� is the shielding anisotropy defined according to the

Haeberlen convention. For the dipolar coupling, !d = �µ0

4⇡
�1�2~
r3

, where �1 and �2 are the gyromagnetic ratios of the two

coupled nuclei, r is the distance between the two nuclei, ~ is the reduced planck constant, and µ0 is the magnetic permeability

constant. For the J coupling, Jiso is the isotropic J coupling, and ⇣J is the J coupling anisotropy defined according to the

Haeberlen convention.

to spin S, i.e., (JqI), and (3) the weak dipolar coupling
interaction to spin S, i.e., (dqI). These contributions can
be generically written for � 2 {�, J, d}, as

�{�qI}
L,m = �

h{�qI}
L

!0,I

X

m0

hL m|2 2 m0 m�m0
i

⇥�{�}
2,m0�

{qI}
2,m�m0 , (20)

where hL M |`1 `2 m1 m2i are the Clebsch-Gordon coef-
ficients, and

h{�qI}
0 = �

r
9

5
, h{�qI}

2 =

r
9

14
, h{�qI}

4 =

r
72

35
. (21)

The product of each �L with its corresponding spin
transition function for each perturbation term creates a
frequency tensor contribution. The transition frequency
tensor contributions considered here are given in Table II.
All the frequency tensor contributions of similar ranks are
summed together into total transition frequency tensors
of rank L, as illustrated below:
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6

F0(i, j) = �{�}
0 pu +�{J}

0 (pp)u,u0 +�{qq}
0 c0,u +�{�q}

0 du +�{dq}
0 (dp)u,u0 +�{Jq}

0 (dp)u.u0 , (22)

F2(i, j) = �{�}
2 pu +�{J}

2 (pp)u,u0 +�{dIS}

2 (pp)u,u0 +�{q}
2 du +�{qq}

2 c2,u +�{�q}
2 du

+�{dq}
2 (dp)u,u0 +�{Jq}

2 (dp)u,u0 , (23)

F4(i, j) = �{qq}
4 c4,u +�{�q}

4 du +�{dq}
4 (dp)u,u0 +�{Jq}

4 (dp)u,u0 . (24)

Contributions can be included or excluded as desired dur-
ing each spectral or delay event. We obtain the total
transition frequency in the lab frame from the total tran-
sition frequency tensor in the common frame, FL, as

⌦(t, i, j) =
X

L=0,2,4

LX

m=�L

e�im(!Rt+�)d(L)
m,0(✓R)

⇥

LX

m0=�L

e�im0↵d(L)
m0,m(�)e�im�FL,m0(i, j). (25)

D. Mixing Amplitudes

1. Pure rotations

The set of nuclei, I, in a spin system can be partitioned
into nc disjoint subsets of {I1, I2, . . . , Inc}, called chan-
nels, where Ic is the set of nuclei in the cth subset, i.e.,
the cth channel. This partitioning is useful for separating
nuclei into subsets of nuclei of the same isotope, although
it could also be used to separate nuclei into subsets for
other purposes, such as selective excitation of a subset of
nuclei within a specific excitation bandwidth. Following
these definitions, a single-transition operator is written
as the direct product

�̂ =
ncO

c=1

O

u2Ic

|Iu,mu,ji hIu,mu,i|. (26)

Assuming that nuclei in each channel have the same
gyromagnetic ratio, the RF Hamiltonian in Eq. (5) after
transforming into the multiply rotating interaction frame
of the nuclei in each channel, can be written

ĤRF/~ =
ncX

c=1

X

u2Ic

!1,c

h
Îu,x cos c + Îu,y sin c

i
, (27)

where !1,c and  c are the RF amplitude and phase for
the nuclei in the cth channel, respectively, and Îu,x and
Îu,y are the x and y components of the spin operator
for the uth nucleus. By adopting assumption III, where
evolution due to all spin couplings internal to the sample
is neglected during the pulse, the effect of an RF pulse
of duration tp on the density operator can be calculated

analytically as pure rotations about an axis in the x-y
plane of each channel’s rotating frame defined by a given
rotation angle, ✓c = !ctp, and phase,  c. The mixing
amplitude for the coherence transfer from �̂ to �̂0 by a
rotation is given by

u�0,� =
ncY

c=1

Y

u2Ic

d(Iu)m0
u,j ,mu,j

(✓c)d
(Iu)
m0

u,i,mu,i
(✓c)e

�i�pu c(i)�pu ,

(28)
where pu = mu,j �mu,i (Eq. (A2)) and �pu = p0

u � pu.
We note two interesting and useful cases. One is that

coherence transfer under a ⇡ rotation simplifies to

|Iu,mu,ji hIu,mu,i|
⇡ 
�!

|Iu,�mu,ji hIu,�mu,i|e
�i�pu (i)�pu , (29)

i.e., a ⇡ rotation can make only one connection between
transitions in adjacent spectral or delay events. It is also
a special connection because the pu transition symme-
try value for the two transitions are equal but opposite
in sign. Additionally, the du transition symmetry, given
in Eq. (A3), remains unchanged (�du = 0) for the two
transitions. The other interesting case is that, while a
rotation can transfer a transition into many other tran-
sitions, the du transition symmetry value cannot remain
unchanged (�du 6= 0) between two connected transitions
under a ⇡/2 rotation. This is similarly true for the two-
spin symmetry transition function (pp)u,u0 , also given in
Appendix A.

2. Total Mixing

It is helpful to define an artificial total mixing operator,
where selected transitions are transferred to all selected
transitions in the following spectral or delay event with
100% efficiency. For example, suppose the first of two
adjacent spectral or delay events has three selected tran-
sitions, and the second has two selected transitions. In
that case, a total mixing operation will make 2 ⇥ 3 = 6
connections, i.e., six transition pathways passing from the
first to second spectral or delay event. This total mixing
assumes that every connection has a mixing amplitude
of 1. While the total mixing operation is unphysical, it
can be numerically efficient and, when used with caution,
yields fast and accurate simulations.
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7

Contribution SPT FL(i, j)
order contribution

shielding 1st �{�}
0 pu

shielding 1st �{�}
2 pu

weak J 1st �{J}
0 (pp)u,u0

weak J 1st �{J}
2 (pp)u,u0

weak dipolar 1st �{dIS}
2 (pp)u,u0

quadrupolar 1st �{q}
2 du

quadrupolar 2nd �{qq}
0 c0,u

quadrupolar 2nd �{qq}
2 c2,u

quadrupolar 2nd �{qq}
4 c4,u

quadrupolar-shielding 2nd �{�q}
0 du

quadrupolar-shielding 2nd �{�q}
2 du

quadrupolar-shielding 2nd �{�q}
4 du

quadrupolar-weak dipole 2nd �{dq}
0 (dp)u,u0

quadrupolar-weak dipole 2nd �{dq}
2 (dp)u,u0

quadrupolar-weak dipole 2nd �{dq}
4 (dp)u,u0

quadrupolar-weak J 2nd �{Jq}
0 (dp)u,u0

quadrupolar-weak J 2nd �{Jq}
2 (dp)u,u0

quadrupolar-weak J 2nd �{Jq}
4 (dp)u,u0

TABLE II. Frequency tensor contributions from the first- and

second-order perturbation terms. Here, SPT is the static per-

turbation theory order. The �{k}
L are the Lth

-rank frequency-

scaled spatial spherical (fsSST) tensor part of the contribu-

tion defined in section IIC. The pu and du are the single-spin

transition symmetry functions defined in Eq. (A7). The cL,u

are the single-spin transition symmetry functions of rank L
defined in Eqs. (A5). The (pp)u,u0 and (dp)u,u0 are the two-

spin transition symmetry functions defined in Eq. (A8).

E. Selecting Transition Pathways

In a coupled spin system, it is helpful to define the
transition symmetry functions for the channel as

pc =
X

u2Ic

pu, and dc =
X

u2Ic

du, (30)

where pu and du are the transition symmetry functions
evaluated on the uth spin, and Ic is the subset of spins
in the cth channel. Furthermore, we define the transition
symmetry functions for the entire spin system as

pT =
ncX

c=1

pc, and dT =
ncX

c=1

dc. (31)

While these functions are not used in evaluating fre-
quency contributions, they can be useful for selecting sets
of transitions. In designing an experimental NMR pulse
sequence, NMR spectroscopists use RF phase cycling to
select a set of transition pathways based on the pc sym-
metry pathways. In a numerical simulation of the same
NMR pulse sequence, one can select the same transition
pathways by retaining only the density matrix elements
in each evolution period that follow the desired pc sym-
metry pathways. That is, it is unnecessary to simulate
the RF phase cycling used in an experiment when mod-
eling its spectrum.

Identifying a specific transition by its row and col-
umn index in a density matrix requires a detailed de-
scription of the spin system and how the eigenstates
are assigned to the indexes. Alternatively, the transi-
tion symmetry functions can identify transitions with-
out such details. For example, a single-spin transition
in a spin I > 1/2 nucleus can be identified from its
pu and du values. This is illustrated in Fig. S2 of the
Supplementary Material for the transitions of integral
and half-integral spin nuclei. Note, for simplifying nota-
tion in this section’s discussion, we use the integer-scaled
transition symmetry functions, defined by Eqs. (A9) and
(A10). Among the set of pu = �1 transitions, a transi-
tion will be uniquely identified with a du value that is
one of du = 0,±2, ±4, . . . ,±(2Iu � 1) for half-integral
spins, or du = ±1,±3, . . . ,±(2Iu � 1) for integral spins.
One can also identify whether the nucleus has an inte-
gral or half-integral spin by the pu and du values of any
transition.

As a simple illustration of this approach, consider the
four different NMR “methods,” in Fig. 2, which are distin-
guished by their different pu and du symmetry pathways.
Designing a numerical method to simulate the Hahn echo
experiment in Fig. 2A and not the Hahn-solid echo exper-
iment in Fig. 2B, requires selecting the symmetry path-
ways

(pu, du) =

8
><

>:

(+1,+1)
✓2
�! (�1,+1),

(+1,�1)
✓2
�! (�1,�1).

Hahn Echo

(32)
As mentioned in the previous section, coherence transfer
with �du = 0 between the first and second evolution pe-
riods can be enforced by using ✓2 = ⇡. Similarly, design-
ing a numerical method to simulate the solid echo exper-
iment in Fig. 2C and not the solid anti-echo experiment

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

02
09

88
7



8

0
1

–1

0
1

–1

RF

Hahn Echo Method

0
1

–1

0
1

–1

Solid Echo Method

0
1

–1

0
1

–1

Solid Anti-Echo Method

0
1

–1

0
1

–1

Hahn-Solid Echo Method

RF

RF

(A)

(C) (D)

(B)

FIG. 2. Two-pulse methods on an I = 1 spin system, which are distinguished by their pI and dI pathways. These are (A)

the Hahn echo experiment, (B) the Hahn-solid echo experiment, (C) the solid echo experiment, and (D) the solid anti-echo

experiment. A filled diamond represents a contribution to a directly observable echo. An open triangle represents a contribution

to an indirectly observable free induction decay.

in Fig. 2D, requires selecting the symmetry pathways

(pu, du) =

8
><

>:

(�1,+1)
✓2
�! (�1,�1),

(�1,�1)
✓2
�! (�1,+1).

Solid Echo (33)

Here, coherence transfer with �du 6= 0 between the first

and second evolution periods can be enforced by using
✓2 = ⇡/2.

A transition in a multi-site system can also be iden-
tified by its transition symmetry function values. For
example, one can readily verify that a transition in a
two weakly coupled spin 1/2 nuclei (AX) system can be
identified by its pA, pX , (pp)AX values, as illustrated
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in Fig. S3 of the Supplementary Material. This is simi-
larly illustrated in a three weakly coupled spin 1/2 nuclei
(AMX) system, where a transition can be identified by
its pA, pM , pX , (pp)AX , (pp)AM , and (pp)MX values, as
illustrated in Tables S4, S5 and S6 of the Supplementary
Material.

For example, for the subset of nuclei in a given channel,
u 2 Ic, one can use the channel symmetry function, pc,
defined in Eq. (30), to select the subset of single-spin
transitions with pu = �1 for all nuclei in a channel with
the additional constraint that pc = �1, i.e.,

pu = �1 while pu0 = 0 8u0
6= u. (34)

In another example, the subset of homonuclear three-spin
single-quantum transitions in a channel are selected with
the constraints that pc = �1 and

pu = +1, pu0 = �1, pu00 = �1,

while pu000 = 0 8u000
6= u, u0, u00. (35)

One can also identify heteronuclear multi-spin transitions
using multiple channels. For example, a two-spin het-
eronuclear coherence with pT = �3 is identified by the
transition symmetry functions

pc = �1, pc0 = �2, while pc00 = 0, 8c00 6= c, c0,
(36)

and

pu = �1, pu0 = �2,

while pu00 = 0 8u00
6= u, u0, u 2 Ic, u

0
2 Ic0 . (37)

For coupled nuclei with spin I > 1/2, the du transition
symmetry can be employed to distinguish subsets of tran-
sitions further.

F. Transition Pathway Spectrum in a Rotating Solid

The time-dependent frequency for a transition
�̂ = |ji hi| due to rotor modulation in Eq. (25) can be
separated into static and rotor-modulated frequency con-
tributions as

⌦�(t, i, j) =
X

L=0,2,4


$L,0(✓R,↵,�)

+
LX

m=�L
m 6=0

$L,m(✓R,↵,�)e
�im(!Rt+�+�)

�
, (38)

where

$L,m(✓R,↵,�) = d(L)
m,0(✓R)

⇥

LX

m0=�L

e�im0↵d(L)
m0,m(�)FL,m0(i, j). (39)

Using this expression, we write the accumulated phase of
the �̂ transition coherence during a free evolution period
as given by

�(t1, t0) =

Z t1

t0

⌦�(s)ds = W�(✓R,↵,�)(t1 � t0)

+
4X

m=�4
m 6=0

Wm,�(✓R,↵,�)e
�im(�+�)

�
e�im!Rt1 � e�im!Rt0

 
,

(40)

where

W�(✓R,↵,�) =
X

L=0,2,4

$L,0(✓R,↵,�), (41)

and

Wm,�(✓R,↵,�) =
X

L=2,4

$L,m(✓R,↵,�)

im!R
. (42)

With our theoretical assumptions, the signal for an in-
dividual crystallite with orientation (↵,�, �) from a tran-
sition pathway through n transitions can be written as

s(t,↵,�, �) =
nY

"=1

u"(t", t"�1,↵,�, �)u","�1(↵,�, �),

(43)
where t = (t0, t1, . . . , tn), u","�1(↵,�, �) is the com-
plex amplitude of the �̂"�1 ! �̂" coherence transfer, and
u"(t", t"�1,↵,�, �) is the free evolution “propagator” for
the �̂" transition, given by

u"(t", t"�1) =
X

N,N 0

A"(N)A⇤

"(N
0)ei(N

0
�N)(�+�)

⇥ ei(N
0
�N)!Rt"�1e�i(W"+N!R)�t" . (44)

Here, � is the rotor phase at the beginning of the se-
quence, and A"(N) is the spinning sideband amplitude.
In this and the following expressions, we have dropped
the explicit dependences on rotor angle, rotor frequency,
and orientation, i.e., A"(N") ⌘ A"(N"|✓R,!R,↵,�), and
W" ⌘ W"(✓R,↵,�).

There is a discrete Fourier relationship between the
amplitude of the spinning sideband and the rotor pitch,29
which is given by

A(N) =
1

2⇡

Z ⇡

�⇡
a(�)eiN�d�. (45)

Thus, the sideband amplitude, A"(N"), is obtained from

a"(�) = exp

8
><

>:
�i

4X

m=�4
m 6=0

Wm,"(✓R,↵,�)e
im�

9
>=

>;
(46)
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with respect to �, the rotor pitch. For a given value of ↵
and �, this function is numerically evaluated from � = 0
to 2⇡ with a �� increment, and Fourier transformed into
A(N |↵,�). To avoid aliasing of signals in the sideband
order dimension, the �� increment must be smaller than
⇡/|Nband|, where |Nband| is the highest order sideband
present in the sideband pattern.

We assume that u","�1(↵,�, �) = u","�1 are indepen-
dent of orientation, substitute the above equations in
Eq. (43), and perform a partial integration over �, to ob-
tain the n-dimensional signal from free evolution through
n transitions as given by

hs(t)i� = hs(0)i�
X

N1

· · ·

X

Nn

X

N 0
2

· · ·

X

N 0
n

I(N,N0)

⇥exp

(
�i

nX

"=1

"
W"+

 
N" �

nX

"0="+1

(N 0

"0 �N"0)

!
!R

#
�t"

)
,

(47)

where N 0

1 = N1 �
Pn
"=2(N

0

" �N"), and

I(N,N0) = 2⇡
nY

"=1

A"(N"|✓R,!R)A
⇤

"(N
0

"|✓R,!R), (48)

with N = (N1, N2, . . . , Nn) and N0 = (N 0

1, N
0

2, . . . , N
0

n).
The total number of free evolution events (i.e., delay

and spectral events) is given by n =
Pndim

v=1 (n
de
v + nse

v ).
The free evolution events, ordered by time and in-
dexed by " = 1 . . . n, are partitioned into disjoint subsets
of delay events, D1,D2, . . . ,Dndim and spectral events,
S1,S2, . . . ,Sndim . The total number of mixing events is
given by m =

Pndim
v=1 nmx

v , and are similarly ordered by
time and indexed by µ = 1 . . .m. We assume that mix-
ing events occur instantaneously, with no rotor phase ad-
vance and no free evolution of transitions. Furthermore,
we assume that mixing events are independent of ↵, �,
and �, and thus define

hs(0)i� =
nY

j=1

uj,j�1 =
mY

µ=1

uµ. (49)

Reexpressing Eq. (47) in terms of delay and spectral
event durations and taking the ndim-dimensional Fourier
transform with respect to �t gives

hs(!, ⌧ )i� = hs(0)i�
X

N1

· · ·

X

Nn

X

N 0
2

· · ·

X

N 0
n

I(N,N0) exp

(
�i

ndimX

v=1

X

"2Dv

 
W" �

 
N" �

nX

"0="+1

(N 0

"0 �N"0)

!
!R

!
⌧"

)

⇥

ndimY

v=1

�

 
X

"2Sv

 
x"W" �

 
N" �

nX

"0="+1

(N 0

"0 �N"0)

!
x"!R

!
� !v

!
, (50)

where ! = (!1, . . . ,!ndim) and x" is assigned to the cor-
responding fraction xv,k for the kth propagator in the
vth spectral dimension. Only a numerical integration
over the angles ↵ and � remains to obtain the transi-
tion pathway spectrum from a polycrystalline sample.
From Eq. (50), one also sees for evolution periods divided
among multiple spectral events that a complex sideband
pattern can emerge with sidebands flanking the center-
band at non-integer multiples of the rotor frequency,45–47
depending on the values of x".

G. Numerical integration over polycrystalline orientations

An n-dimensional anisotropic NMR spectrum of a
polycrystalline sample is obtained by the integral

hs(⌫)i =

Z

U
hs(⌫,↵,�)i� d�, (51)

where U is the unit sphere in R3 and ⌫ = !/(2⇡).
This integral is approximated using a finite element
integration,48

hs(⌫)i =
M�X

r=1

Z

�r

hs(⌫,↵,�)i�d�r =
M�X

r=1

s�r (⌫), (52)

where {�1, . . . ,�M�} is a triangulation of U into M�

triangles with vertices

�r = {~er,A,~er,B ,~er,C} =

{(↵r,A,�r,A), (↵r,B ,�r,B), (↵r,C ,�r,C)}, (53)

and s�r (⌫) is the spectrum obtained after integration
over the solid angle of the rth finite element.

As described by Alderman, Solum, and Grant
(ASG)20, the triangulation of U is approximated by first
inscribing an octahedron inside a unit sphere. The equi-
lateral triangle faces of the octahedron are further trian-
gulated into M� = N2 equilateral triangles as illustrated
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in Fig. 3 of the ASG paper20. The total number of ori-
entations, N⇥, is defined as,

N⇥ = F(N+ 1)(N+ 2)/2, (54)

where F is the number of octant faces.
In a one-dimensional anisotropic spectrum, the fre-

quencies and amplitudes evaluated at the three vertices
of a triangle are denoted as (fA, aA), (fB , aB), (fC , aC).
For this case, ASG20 developed a finite element interpo-
lation algorithm. In this approach, the frequencies are
labeled in ascending order and assigned to fmin, fmid, and
fmax, respectively, and the finite element spectrum is ap-
proximated as

s�r (⌫) = f(aA, aB , ac,�r) tri(⌫, fmin, fmid, fmax), (55)

where tri(⌫, fmin, fmid, fmax) is a normalized triangular
distribution function given by

tri(⌫, fmin, fmid, fmax) =
2

(fmax � fmin)

⇥

8
><

>:

(⌫ � fmin)/(fmid � fmin), fmin  ⌫ < fmid,

(fmax � ⌫)/(fmax � fmid), fmid  ⌫ < fmax,

0, otherwise.
(56)

and f(aA, aB , ac,�r) is a scaling factor that accounts
for the area of the planar triangle projected onto the
surface of the sphere. The triangular line shape assumes
that the transition frequencies vary linearly across the
triangle’s surface and that the differences in amplitude
at the vertices are minor. This approximation becomes
valid in the limit of large M�.

Recently, Srivastava et al.49 developed an algorithm
for the finite element integration of 2D NMR spectra
correlating dimensions with anisotropic frequency contri-
butions. In the finite-element integration of a 2D spec-
trum, the correlated frequency pairs and amplitudes eval-
uated at the three vertices of a triangle are (f1A, f2A, aA),
(f1B , f2B , aB), (f1C , f2C , aC). In this approach, the 2D
spectrum is obtained by applying the ASG 1D algorithm
to each one-dimensional cross-section, represented as the
sum of two triangular line shapes. This algorithm can be
used for the finite element integration of 2D spectra. It
is possible to extend the approach of Srivastava et al. to
higher dimensional NMR spectra correlating anisotropic
dimension.

H. Affine Transformation of Spectrum

The ability to refocus different spatial and transition
symmetries into echoes with different paths in time-
resolved NMR experiments creates opportunities for gen-
erating multi-dimensional spectra that correlate different
interactions. These spectra can be made easier to inter-
pret through similarity transformations. Most similarity
transformations in NMR are affine transformations, as

they preserve the colinearity of points and ratios of dis-
tances. An active affine transformation of the signal can
be performed according to

S(!0) = S(A !), (57)

where A is a ndim ⇥ ndim matrix representing the affine
transformation. In some cases, simulating S(!) and ob-
taining S(!0) through application of the affine transfor-
mation in Eq. (57) can reduce the number of spectral
event propagators that would have been needed to simu-
late S(!0) directly.

III. RESULTS AND DISCUSSION

A major motivation for the approach presented here
is to provide a theoretical framework for rapidly simulat-
ing one- and higher-dimensional NMR spectra of complex
materials in the solid state, i.e., structurally disordered,
amorphous, and heterogenous samples. Depending on
the NMR method and the relative sizes of the different
interaction tensors, the nuclear spin network of the ma-
terial’s full structure can often be described by a dis-
tribution of smaller spin subsystems, each described by
a set of interaction tensor parameters, R. This set of
reduced spin subsystems can be used to generate a sub-
spectra basis, K(!,R), for a given NMR method. Taken
together with the spin subsystem populations, f(R), the
predicted spectrum, S(!), is given by

S(!) =

Z

R
f(R)K(!,R) dr. (58)

The spin subsystem populations, f(R), are often ob-
tained from a structural hypothesis for the material, such
as a molecular cluster model, a crystallographic model,
or a molecular dynamics (MD) simulation. Alternatively,
with a limited number of parameters in R, it is possible
to perform a direct inversion of the spectrum50 to obtain
f(R). In either case, it is essential to have efficient nu-
merical algorithms for the simulation of large subspectra
bases, K(!,R), for the NMR method from the desired
transition pathways of the spin subsystem.

To demonstrate the significance of our approach for
such purposes, we present a few examples of spec-
tra predicted using the Czjzek and extended-Czjzek
tensor parameter distributions for f(R). The Czjzek
distribution51–53—originally developed to model random
distributions of electric field gradient (EFG) tensors in
glasses—is a general model for simulating anisotropic line
shapes arising from a random distribution of second-rank
NMR tensors deviating from a mean anisotropy of zero.
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It is given by

f(⇣, ⌘|�⇣) =
⇣4⌘

p
2⇡�5

⇣

✓
1�

⌘2

9

◆

⇥ exp

8
>><

>>:
�

⇣2
✓
1 +

⌘2

3

◆

2�2
⇣

9
>>=

>>;
, (59)

where ⇣ and ⌘ are the two independent parameters of
the second-rank traceless symmetric tensor, and �⇣ is the
width parameter. The Czjzek distribution assumes un-
correlated Gaussian distributions of second-rank spheri-
cal tensor components with a single width parameter. See
the recent work of Werner-Zwanziger et al.53 for its math-
ematical derivation and more illustrative experimental
examples.

In modeling the magic-angle spinning spectrum from
a sample with a Czjzek distribution of 2nd-rank tensors,
we further assume an uncorrelated Gaussian distribution
of isotropic chemical shifts, �isocs ,

f(�isocs |�0,��) =
1

p
2⇡��

exp

⇢
�
(�isocs � �0)2

2�2
�

�
, (60)

where �0 is the mean isotropic chemical shift, and ��
is the standard deviation of the isotropic chemical shift.
Taken together, the full distribution of spin system pa-
rameters is given by

f(�isocs , ⇣, ⌘|�⇣ , �0,��) = f(⇣, ⌘|�⇣)f(�
iso
cs |�0,��). (61)

The distribution in Eq. (61) is often used when mod-
eling the distribution of EFG tensors of tetrahedrally
and octahedrally coordinated aluminum sites in oxide
glasses.54 An example of such a distribution is illus-
trated in Fig. 3. In presenting this distribution, we have
reparameterized the Cq and ⌘q coordinate values onto
the more numerically stable grid of xq and yq coordi-
nates, following Srivastava et al.50. Further details on
the xq and yq definitions are given in the Supplemen-
tary Material. From this distribution, the spin inter-
action parameters for Nsys = 3667 unique spin systems
for 27Al are extracted, i.e., only those whose probabil-
ity exceeds a minimum threshold of 0.1% are accepted.
This spin system set is used to simulate the 27Al MAS
spectrum presented in Fig. 4A, following the numerical
approach outlined in the previous section. The spec-
trum of each spin system is numerically integrated and
interpolated over M� = 4900 triangular elements, i.e.,
N = 70 in section II G. The full simulation, required
N⇥⇥2Nband⇥Nsys = (2 556)(8)(3 667) = 74, 982, 816 fre-
quency and amplitude calculations, and was completed
in 2.5 s on a laptop computer (Apple MacBook Air, 3.49
GHz M2 processor with eight cores and 24 GB RAM).

Using the same set of spin systems, we also simulate
the 27Al 3Q-MAS NMR correlation spectrum of an amor-
phous sample, presented in Fig. 4B, using our numerical

FIG. 3. The 3D probability distribution of
27

Al spin system

parameters, R = (�iso
cs , xq, yq), obtained from Eqs. (59), (60),

and (61). The second-rank EFG tensor anisotropy parame-

ters xq and yq are distributed according to the Czjzek dis-

tribution with a width parameter
53

of �Cq = 2.5 MHz (see

Eq. S343 in the Supplementary Material). The isotropic

chemical shift parameter, �iso
cs , is distributed normally with a

mean of �0 = 58 ppm and a standard deviation of �� = 2 ppm.

From this 3D distribution, the spin interaction parameters of

unique spin systems are extracted and used for the simula-

tions presented in Fig. 4.

approach. This simulation required 3.2 s on the same
laptop computer. We present this simulation with the
caveat that it assumes a uniform excitation and mixing
of triple-quantum transitions for all crystallite orienta-
tions. Thus, it gives an approximate representation of
the distribution of 3Q-MAS NMR spectral amplitudes.
While this is a consequence of Assumption III, it is not a
strict limitation, and our approach could be adapted to
include the effects of non-uniform excitation and mixing
of transitions.

Another example of a spin system distribution for
modeling disorder in materials is the extended-Czjzek
distribution.55 The extended-Czjzek distribution is a gen-
eralization of the Czjzek distribution and is given by

ST = S(0) + ⇢Sc(�c = 1), (62)

where ST is the total tensor, S(0) is the dominant ten-
sor, Sc(�c = 1) is the Czjzek random model attributing
to the random perturbation of the tensor about the dom-
inant tensor, S(0). Here �c is not the Czjzek width from
Eq. (60) but the standard deviation of the underlying
5D multi-variate normal distribution. In the extended-
Czjzek distribution, the size of the random perturbations
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aid in pulse sequence design by identifying how different
frequency contributions refocus through the transition
pathways.28,60,62–66 We emphasize spin transition func-
tion symmetries by replacing the symbol ⇠`(i, j) for irre-
ducible spherical tensor operators of rank ` = 1, 2, 3, . . .
with the lower-case symbols p(i, j), d(i, j), f(i, j), . . ., i.e.,
we follow the spectroscopic sub-shell letter designations.
The ` = 0 function is dropped as it evaluates to zero.

For a single spin, I, a complete set of spin-transition
symmetry functions is defined up to ` = 2I. In the case
of a single spin system, {I}, the first three integer-scaled
transition symmetry functions evaluate to

pI(mi,mj) = mj �mi, (A2)

dI(mi,mj) =

r
3

2

�
m2

j �m2
i

�
, (A3)

fI(mi,mj) =
1

p
10


5(m3

j �m3
i )

+ (1� 3I(I + 1))(mj �mi)

�
. (A4)

For 2nd-order quadrupolar coupling frequency contribu-
tions, it is convenient to define “hybrid” spin transition

functions as linear combinations of the spin transition
functions

c0 =
4

p
125

[I(I + 1)� 3/4]pI +

r
18

25
fI ,

c2 =
2

p
175

[I(I + 1)� 3/4]pI �
6

p
35

fI ,

c4 = �
184
p
875

[I(I + 1)� 3/4]pI �
17

p
175

fI .

(A5)

For nI weakly coupled nuclei, we define the transition
symmetry functions

⇠`1,`2,...,`nI
(i, j) = hj| T̂`1,0(~I1) T̂`2,0(~I2) . . . T̂`n,0(~InI ) |ji

� hi| T̂`1,0(~I1) T̂`2,0(~I2) . . . T̂`n,0(~InI ) |ii . (A6)

Replacing the symmetry function symbol using sub-shell
letter designations becomes more cumbersome in this
case. When the ` values are zero on all nuclei except
one, we identify these single-spin functions as

p1 = ⇠1,0,...,0(i, j), p2 = ⇠0,1,...,0(i, j), . . . , pnI = ⇠0,0,...,1(i, j),

d1 = ⇠2,0,...,0(i, j), d2 = ⇠0,2,...,0(i, j), . . . , dnI = ⇠0,0,...,2(i, j),

f1 = ⇠3,0,...,0(i, j), f2 = ⇠0,3,...,0(i, j), . . . , fnI = ⇠0,0,...,3(i, j),
...

...
...

(A7)

When the ` values are zero on all nuclei except two, then we identify these two-spin functions using a con-
catenation of sub-shell letter designations, e.g.,

(pp)1,2 = ⇠1,1,0,...,0(i, j), (pp)1,3 = ⇠1,0,1,...,0(i, j), . . . , (pp)1,nI = ⇠1,0,0,...,1(i, j),

(pd)1,2 = ⇠1,2,0,...,0(i, j), (pd)1,3 = ⇠1,0,2...,0(i, j), . . . , (pd)1,nI = ⇠1,0,...,2(i, j),

(dp)1,2 = ⇠2,1,0,...,0(i, j), (dp)1,3 = ⇠2,0,1...,0(i, j), . . . , (dp)1,nI = ⇠2,0,...,1(i, j),
...

...
....

(A8)

Two-spin functions are needed for frequency contribu-
tions arising from cross-terms involving dipolar couplings
in a second-order perturbation theory treatment of a size-
able quadrupolar coupling. Three- or higher-spin func-
tions occur in higher-order perturbation theory cross-

terms, which are not considered here.

For the sole purpose of simplifying notation in discus-
sions and figures, we scale the single-spin transition sym-
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metry functions to integer values according to

pu = pu, du =

r
2

3
du, fu =

r
10

9
fu, · · · (A9)

and scale the two-spin transition symmetry functions to

integer values according to

(pp)u,u0 = 2(pp)u,u0 , (dp)u,u0 = 2
p

6 (dp)u,u0 . (A10)

Setting u ⌘ I and u0
⌘ S, the scaled two-spin functions

are given by

(pp)IS(mI,i,mS,i,mI,j ,mS,j) = 2mI,jmS,j � 2mI,imS,i for I �
1

2
, S �

1

2
, (A11)

(dp)IS(mI,i,mS,i,mI,j ,mS,j) = 6
�
m2

I,jmS,j �m2
I,imS,i

�
� 2I(I + 1)(mS,j �mS,i), for I � 1, S �

1

2
, (A12)

(pd)IS(mI,i,mS,i,mI,j ,mS,j) = 6
�
m2

S,jmI,j �m2
S,imI,i

�
� 2S(S + 1)(mI,j �mI,i). for I �

1

2
, S � 1. (A13)

Section IIC gives the analytical expressions for the fre-
quency contributions obtained from perturbation theory.
These expressions, given in Table II, are defined in terms
of the unscaled symmetry functions, which we consis-
tently denote using a lower-case blackboard bold font.

Appendix B: Extended Czjzek Distribution Computation

The tensor distribution of the extended Czjzek model
is given in Eq (62), where

S(0) =

2

4
�⇣ (⌘ + 1)/2 0 0

0 ⇣ (⌘ � 1)/2 0
0 0 ⇣

3

5 (B1)

and

Sc =

2

4
�U1 +

p
3U5

p
3U4

p
3U2p

3U4 �U1 �
p
3U5

p
3U3p

3U2

p
3U3 2U1

3

5 . (B2)

Here, Ui is a random number sampled from a nor-
mal distribution with a unit standard deviation. To
determine the extended Czjzek distribution, fext(⇣, ⌘),
the eigenvalues, �k (k = 0, 1, 2), of ST are first
evaluated using numerical diagonalization. Next, the
eigenvalues are sorted according to the Haeberlen con-
vention, |�0| � |�1| � |�2|, to determine ⇣ = �0 and
⌘ = (�1 � �2)/�0. This process is repeated over millions
of random tensors, ST , and the resulting (⇣, ⌘) coordi-
nates are binned over a pre-determined grid.

Numerical diagonalizations can be computationally in-
tensive, particularly in iterative algorithms like the least-
squares minimization. An alternative is to find the ana-
lytical eigenvalues of ST by determining the roots of the
determinant,

|ST � �I| = 0. (B3)

This determinant is a cubic equation of the form

�3 + a�+ b = 0, (B4)

and its analytical roots are given as

�k = 2
p

a0 cos


✓ab �

2⇡k

3

�
, (B5)

where a0 = �a/3, b0 = �b/2, k = (0, 1, 2), and

✓ab =
1

3
arccos

✓
b0

a0
p
a0

◆
. (B6)

For the Eq. (B4), the values of a and b are given as the
scalar dot product,

a = acoeff · abasis (B7)
b = bcoeff · bbasis. (B8)

We define the vectors acoeff and bcoeff as the coefficients,
which are listed in the first column of Table III and Ta-
ble IV, respectively. Similarly, we define the vectors abasis
and bbasis as the basis, which are listed in the second col-
umn of Table III and Table IV, respectively. Note that
the basis is composed purely of Ui and only requires a
one-time computation in an iterative algorithm, while the
coefficients update at each iteration.

For the Haeberlen convention, ⇣ is the maximum abso-
lute eigenvalue. By analyzing the three roots, we can de-
termine that when 0  ✓ab < ⇡/6, the (⇣, ⌘) coordinates
are

⇣ = �0 = 2
p

a0 cos ✓ab, (B9)

⌘ = (�1 � �2)/�0 =
p

3 tan ✓ab, (B10)

and for ⇡/6  ✓ab  ⇡/3, the coordinates are

⇣ = �2 = �2
p

a0 sin(✓ab + ⇡/6), (B11)

⌘ = (�1 � �0)/�2 =

p
3

tan(✓ab + ⇡/6)
, (B12)

which reduces the computational cost of sorting the
eigenvalues. Figure 7 compares the numerical diagonal-
ization method to the algorithm proposed in this work,
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5.0 5.5 6.0 6.5 7.0 7.5
log10 ( )

FIG. 7. Comparison between computation time for generating

Extended Czjzek distribution via random sampling of NST

tensors using conventional numerical approach vs. proposed

algorithm. The proposed algorithm is over 10x faster.

TABLE III. Coefficients and basis for a in the cubic equation

in Eq. (B4).

acoeff abasis

⇢2 �3(U2
1 + U2

2 + U2
3 + U2

4 + U2
5 )

⇣⇢ �3U1

⇣⌘⇢
p
3U5

⇣2(3 + ⌘2) �1/4

demonstrating that the proposed algorithm is an or-
der of magnitude faster than the conventional numerical
method.
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TABLE IV. Coefficients and basis for b in the cubic equation in Eq. (B4).
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S1 Cartesian Tensor Definitions and Conventions

A real second-rank Cartesian tensor R
{λ}
ik can be decomposed into irreducible representations with respect to the full

three-dimensional rotation group O(3) according to

Rik = Eδik +Aik + Sik, (S.1)

where

E =
1

3
kj{R}, Aik =

1

2
(Rik −Rki) , Sik =

1

2
(Rik +Rki)−

1

3
kj{R}δik. (S.2)

Here E is invariant, and Aik and Sik are equivariant under rotations of the system.1 The A tensor is the traceless
anti-symmetric part and is equivalent to an axial (or pseudo-) vector and S tensor is the traceless symmetric part
of the tensor. Unlike a polar (or true) vector, the components of the axial vector, A, do not change sign under an
inversion of the coordinate system, i.e., the parity operator.

The second-rank Cartesian tensor, R, cannot be diagonalized if it is not symmetric. While the anti-symmetric
part of a second-rank interaction tensor can play a role in NMR relaxation, it rarely contributes to any observable
NMR frequency shifts. We will use the notation

{ES}ik = Eδik + Sik, (S.3)

to denote the symmetric part of the tensor that includes the invariant contribution. Both (ES) and (S) can be
diagonalized, i.e., there is a coordinate transformation (rotation) that will make the tensor diagonal.

We adopt the convention that our coordinate systems and rotations follow the right-hand rule. For right-handed
coordinates, your right thumb points along the z axis in a positive z direction, and the curl of your fingers represents
a motion from the x axis to the y axis. A right-handed rotation about the z-axis carries the x-axis into the original
position of the y-axis. Throughout this document, we attempt to follow the rotation conventions summarized in the
text Quantum Theory of Angular Momentum by Varshalovich et al.[38].

S1.1 Irreducible spherical tensors

The second-rank Cartesian tensor, R
{λ}
ik , can be decomposed into irreducible spherical tensor components given by[8]

R0,0 = − 1√
3
[Rxx +Ryy +Rzz], (S.4)

R1,0 = − i√
2
[Rxy −Ryx], R1,±1 = −1

2
[Rzx −Rxz ± i(Rzy −Ryz)], (S.5)

R2,0 =
1√
6
[3Rzz − (Rxx +Ryy +Rzz)], R2,±1 = ∓1

2
[Rxz +Rzx ± i(Ryz +Rzy)],

R2,±2 =
1

2
[Rxx −Ryy ± i(Rxy +Ryx)]. (S.6)

Calculated in terms of E, Aik, and Sik the irreducible spherical tensor components are given by

R0,0 = −
√
3 E, (S.7)

R1,0 = −i
√
2 Axy, R1,±1 = −(Azx ∓ iAyz), (S.8)

R2,0 =

√
3

2
Szz, R2,±1 = ∓(Szx ± iSzy), R2,±2 =

1

2
(Sxx − Syy ± i2Sxy). (S.9)

The inverse relation between spherical tensor and second-rank symmetric Cartesian tensor elements are

E = − 1√
3
R0,0 (S.10)

Axy =
i√
2
R1,0, Azx = −1

2
(R1,1 +R1,−1), Ayz = −

i

2
(R1,1 −R1,−1), (S.11)

1For third rank decomposition, see https://physics.stackexchange.com/questions/635248/rank-3-tensor-decomposition
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and

Sxx = 1
2 (R2,2 +R2,−2)− 1√

6
R2,0, Sxy = Syx = i

2 (R2,−2 −R2,2), Syy = − 1
2 (R2,2 +R2,−2)− 1√

6
R2,0,

Sxz = Szx = 1
2 (R2,−1 −R2,1), Szz =

√
2
3R2,0, Syz = Szy = i

2 (R2,−1 +R2,1).
(S.12)

The RL are called irreducible because of the invariance of the rank, L, during rotations about the x, y, or z axis.
When expressed in terms of spherical tensor elements, rotations of the coordinate frame, i.e., passive rotations, can
be carried out according to

R′
L,m =

L∑
m′=−L

D
(L)
m,m′(α, β, γ)RL,m′ , (S.13)

where D
(L)
m,m′(α, β, γ) are Wigner rotation matrix elements, given by

D
(L)
m,m′(α, β, γ) = e−imα d

(L)
m,m′(β) e

−im′γ , (S.14)

and d
(L)
m,m′(β) are the reduced Wigner rotation matrix elements. For example, spherical tensor elements in an arbitrary

coordinate system can be related to ρL,m′ , the elements in the PAS, according to

RL,m =

L∑
m′=−L

D
(L)
m,m′(α, β, γ) ρL,m′ , (S.15)

A useful relationship between reduced Wigner rotation matrix elements is

d
(L)
m,m′(β) = (−1)m−m′

d
(L)
−m,−m′(β) = (−1)m−m′

d
(L)
m′,m(β) = d

(L)
−m′,−m(β). (S.16)

S1.2 Principal Axis System Conventions For Cartesian Tensors

While a Cartesian second-rank tensor that is not symmetric cannot be diagonalized, we can still speak of principal
axis systems for the anti-symmetric and symmetric parts of the tensor separately.

A Cartesian pseudo-tensor of rank one, i.e., a vector with even parity, has a length of

ζ(a) =
√
A2
yz +A2

zx +A2
xy. (S.17)

With a rotation of the coordinate system, the Cartesian vector is described in its principal axis system and becomes

LT (ϕ, θ)A = ζ(a)e⃗z. (S.18)

Here ϕ and θ are the angles of the rotation matrix L(ϕ, θ), and e⃗z is the unit vector along the z-axis. In NMR, ζ(a)

is the antisymmetric first-rank tensor anisotropy. In the principal axis system of A, the spherical tensor elements
are given by

ρ1,0 = −i
√
2 ζ(a), ρ1,±1 = 0. (S.19)

Keep in mind, however, that an anti-symmetric tensor in its principal axis system remains as an off-diagonal element
of the Cartesian tensor, as indicated by Eq. (S.8).

Through a rotation of the coordinate system, a Cartesian traceless symmetric tensor of rank two in its principal
axis system becomes

LT (α, β, γ) {ES} L(α, β, γ) = ΛES , or LT (α, β, γ) S L(α, β, γ) = ΛS , (S.20)

where ΛES and ΛS are the diagonalized symmetric and traceless symmetric tensors, respectively, and L(α, β, γ) is
a rotation matrix which holds the eigenvectors of {ES} or S. Here, LT (α, β, γ) is the transpose of L(α, β, γ). Both
the ith column in L and the ith row in LT are the eigenvector associated with its eigenvalue λi. The convention in
spectroscopy and quantum mechanics is to use a proper Euler angle with the composite rotation z-y-z. When using
Euler angles to describe a coordinate system rotation, i.e., a passive rotation, the fixed coordinate system, x,y,z, is
rotated through three positive angles, the Euler angles, α, β, and γ. Each rotation produces a new set of axes, which
we label with a successively more unwieldy number of primes. The three stages of a passive Euler angle rotation are

1. Rotate the (unprimed) fixed axes through an angle α (0 ≤ α ≤ 2π) about e⃗z, taking the x-y-z coordinate
system into the x′-y′-z system.
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2. Rotate the primed axes from step 1 through β (0 ≤ β ≤ π) about e⃗y′ , taking the x′-y′-z system into the
x′′-y′-z′′ system.

3. Rotate the double primed axes from step 2 through γ (0 ≤ γ ≤ 2π) about e⃗z′′ , taking the x′′-y′-z′′ coordinate
system into the final x′′′-y′′′-z′′ system.

N

y

N

x

z

N

Rotate about y’ Rotate about z’’Rotate about z

y

In the example above, the three rotations are applied about axes of the rotated coordinate systems. This is called an
intrinsic rotation. Alternatively, the three rotations can be applied about the three original axes of an x-y-z frame
fixed in space. This is called an extrinsic rotation. Any intrinsic rotation can be converted to its extrinsic equivalent
and vice-versa by reversing the order of elemental rotations.

Therefore, the rotation L(α, β, γ) can be constructed from the product of three extrinsic rotation matrices,

L(α, β, γ) =

 cosα − sinα 0
sinα cosα 0
0 0 1


︸ ︷︷ ︸

Lz(α)

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ


︸ ︷︷ ︸

Ly(β)

 cos γ − sin γ 0
sin γ cos γ 0
0 0 1


︸ ︷︷ ︸

Lz(γ)

=

cosα cosβ cos γ − sinα sin γ − cosα sin γ − sinα cosβ cos γ cosα sinβ
sinα cosβ cos γ + cosα sin γ − sinα sin γ + cosα cosβ cos γ sinα sinβ

− sinβ cos γ sinβ sin γ cosβ

 . (S.21)

After a numerical diagonalization of the symmetric Cartesian tensor, the Euler angles (α, β, γ) can be extracted
from the eigenvector matrix L, according to

β = arccos (l33) , β ∈ [0, π], (S.22)

α = arctan2(l23, l13), α ∈ [−π, π], (S.23)

γ = arctan2(l32,−l31), γ ∈ [−π, π]. (S.24)

Using the arctan2(y, x) function is essential to ensure that the resulting angles correctly represent the orientation and
direction of the rotations. When performing a numerical diagonalization of a tensor, the eigenvectors returned by
the routine are normalized to 1, but the sign of the eigenvectors is not fixed. This means that if li is an eigenvector,
−li is also an eigenvector with the same eigenvalue. This can lead to a discrepancy when converting the eigenvectors
to Euler angles and back to a rotation matrix because the Euler angles can represent a rotation equivalent to the
original rotation but with the eigenvectors flipped in sign. To resolve this issue, flip the sign of the eigenvectors if
the determinant of the rotation matrix is negative. This ensures that the rotation matrix is a proper rotation (i.e., a
rotation without reflection). This allows the Euler angles to be correctly extracted from the eigenvector matrix. It
is also essential to be aware of the gimbal lock issue when β is 0 or π. In such cases, α and γ become dependent on
each other, and it’s impossible to determine them uniquely. In this case, we can arbitrarily set α = 0 and calculate
γ from Eq. (S.24).
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There are six different orientations in which a symmetric Cartesian tensor will be diagonal. Thus, if
(α, β, γ) diagonalizes a symmetric Cartesian tensor, then so will (α+ π, β, γ + π), (α+ π,−β, γ), (α,−β, γ + π),
(α+ π, π − β, γ + π), and (α, π − β, γ). Which Euler angles in this set are chosen to define ΛPAS

S depends on the
convention used to order the principal components of the tensor. In NMR, there are two common conventions,
Haeberlen and Mehring. For the reasons given below, the Haeberlen convention is preferred.

S1.2.1 Haeberlen Convention

Through a rotation of a coordinate system, a traceless symmetric Cartesian tensor of rank two in its principal axis
system becomes

LT (αh, βh, γh) S L(αh, βh, γh) = ΛPAS
S , (S.25)

where ΛPAS
S is a diagonal matrix with the principal components, λ

(s)
a , λ

(s)
b , and λ

(s)
c , and corresponding eigenvectors

are ordered according to the Haeberlen convention[19] such that∣∣∣λ(s)c ∣∣∣ ≥ ∣∣∣λ(s)a ∣∣∣ ≥ ∣∣∣λ(s)b ∣∣∣ . (S.26)

Since S is traceless, we have

λ(s)a + λ
(s)
b + λ(s)c = 0. (S.27)

In the Haeberlen principal axis system of S, the spherical tensor elements are given by

ρ2,0 =

√
3

2
λ(s)c , ρ2,±1 = 0, ρ2,±2 =

1

2
(λ(s)a − λ

(s)
b ). (S.28)

Additionally, we define the second-rank symmetric tensor anisotropy, ζ, and asymmetry, η, parameters according to

ζ = λ(s)c , and η =
λ
(s)
b − λ

(s)
a

ζ
, with ρ2,0 =

√
3

2
ζ, ρ2,±1 = 0, ρ2,±2 = −1

2
ζη. (S.29)

Conversely, we have

λ(s)c =

√
2

3
ρ2,0 = ζ, λ(s)a = ρ2,±2 −

1√
6
ρ2,0 = −ζ

2
(1 + η), λ

(s)
b = −ρ2,±2 −

1√
6
ρ2,0 = −ζ

2
(1− η). (S.30)

While a common choice for representing a distribution of ζ and η parameters is a 2D Cartesian grid where the
coordinates ζ and η span the orthogonal dimensions, this coordinate system is numerically unstable since η becomes
undefined as ζ → 0; this is indicated as black-filled circles in Fig. S1A. Additionally, anisotropic NMR line shapes
are invariant of the sign of ζ when η = 1, forming a degenerate system of line shapes; this is depicted with colored
circles in Fig. S1A. To overcome these issues, Srivastava et al.[34] propose an approach, similar to Czjzek[9], that
re-expresses the coordinates ζ and η in the first quadrant of a polar coordinate system, (rζ , θ), where

r = |ζ| and θ =


π

4
η : ζ ≤ 0,

π

2

(
1− η

2

)
: ζ > 0.

(S.31)

They choose an x-y Cartesian grid over the r-θ polar grid because Cartesian grids are more manageable for numerical
implementations. It is given by

x = r cos θ and y = r sin θ : 0 ≥ θ ≥ π/2. (S.32)

As shown in Fig. S1B, the magnitude of ζ forms the radial dimension while η forms the angular dimension. The line
|x| = |y| corresponds to η = 1. When progressing towards the x or y-axis from this line, η uniformly decreases from
1 to 0, where η = 0 is along the x or y-axis, depending on the sign of ζ. The undefined condition for η when ζ → 0 is
true irrespective of the choice of the coordinate system; however, this representation confines ζ = 0 to a single point
located at the origin. Additionally, since positive and negative values of ζ correspond to the same (r, θ) coordinate
when η = 1, the x-y representation also removes the anisotropic line shape degeneracy associated with the ζ-η grid.

For the nuclear shielding anisotropy, an xσ-yσ Cartesian grid is used and is given by

xσ = rσ cos θ and yσ = rσ sin θ : 0 ≥ θ ≥ π/2, (S.33)

where rσ = |ζσ|. For the quadrupolar coupling anisotropy, it is more convenient to use an xq-yq Cartesian grid is
given by

xq = rq cos θ and yq = rq sin θ : 0 ≥ θ ≥ π/2, (S.34)

where rq = |Cq|.
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Figure S1: (A) A schematic representation of the ζ-η Cartesian grid system depicting the undefined regions, shown
in black circles, and redundant indistinguishable regions, shown in colored circles, of the coordinate system. (B) The
positive quadrant of the x-y grid. Here, the magnitude of ζ is the radial dimension, while η is the angular dimension.
The blue and red shading indicate regions of positive and negative ζ, respectively.

S1.2.2 Mehring Convention

The Mehring tensor parameters use the principal components of the chemical shift tensor, which are related to the
nuclear magnetic shielding tensor by

δi =
σref
iso − σi

(1− σref
iso)

, (S.35)

where σref
iso is the isotropic nuclear magnetic shielding of a reference resonance. Since σref

iso ≪ 1, we can write

δi ≈ σref
iso − σi = −σ′

i, where σ′
i = σi − σref

iso. (S.36)

In the case of a single resonance in a spectrum of a static polycrystalline sample with only isotropic and anisotropic
contributions from the nuclear magnetic shielding interaction, the principal components of the chemical shift tensor
can be read off the spectrum as the frequency position in chemical shift of the three singularities ordered according
to

δ3 ≤ δ2 ≤ δ1. (S.37)

This results in the opposite ordering of the nuclear magnetic shielding tensor principal components, i.e.,

σ′
3 ≥ σ′

2 ≥ σ′
1. (S.38)

In an unfortunate choice of notation, Mehring[24] represents the principal components of the chemical shift tensor
with the same Greek letter as the principal components of the nuclear magnetic shielding tensor, i.e., σii. To
compound this confusion, he tabulates the principal components of the chemical shift tensor in his text and refers
to them as “shieldings.” What Mehring refers to as σ11, σ22, and σ33 are actually the principal components of the
chemical shift tensor, which we indicate as δ1, δ2, and δ3, respectively.

In the Mehring convention[19], after a rotation of the coordinate system, a second-rank symmetric Cartesian
tensor in its principal axis system becomes

LT (αm, βm, γm) {ES} L(αm, βm, γm) = ΛPAS
ES , (S.39)

where σ′ = {ES} and ΛPAS
ES is a diagonal matrix with the principal components, λ

(es)
1 , λ

(es)
2 , and λ

(es)
3 , ordered, such

that
λ
(es)
3 ≥ λ(es)2 ≥ λ(es)1 . (S.40)

Since {ES} is not traceless we have

λ
(es)
iso =

1

3

(
λ
(es)
1 + λ

(es)
2 + λ

(es)
3

)
.

S7



The Mehring ordering of the principal components of the symmetric tensor, {ES} is not consistent with the Hae-
berlen ordering of the principal components of the traceless symmetric tensor, S. That is, subtracting the isotropic
component from the eigenvalues of {ES} does not follow the same ordering of the eigenvalues of S in the Haeberlen
convention, i.e., ∣∣∣λ(es)3 − λ(es)iso

∣∣∣ ̸ ≥ ∣∣∣λ(es)1 − λ(es)iso

∣∣∣ ̸ ≥ ∣∣∣λ(es)2 − λ(es)iso

∣∣∣ . (S.41)

For this reason, the Euler angles that give the Mehring ordering of the principal components will not be the same as
those that give the Haeberlen ordering.

To convert between the two conventions, the isotropic component of the symmetric tensor is subtracted from
the Mehring principal components of the symmetric tensor, i.e., λi − λiso, and assigned to λa, λb, and λc according
to the Haeberlen convention in Eq. (S.26). Converting from the Euler angles (αm, βm, γm) that give the Mehring
ordering of the principal components to the Euler angles (αh, βh, γh) that give the Haeberlen ordering of the principal
components is not as straightforward. One could reorder the column eigenvectors in L(αm, βm, γm) to match the
reordering as the eigenvalues, and then apply Eqs. (S.22)-(S.24) used to extract (αh, βh, γh). Alternatively, one could
rotate the Mehring PAS tensor back to the fixed coordinate system, diagonalize the tensor into the Haeberlen PAS
system, and then extract the Euler angles from the eigenvector matrix.

S1.3 Spherical tensor products

Products of irreducible spherical tensors can be reduced with the aid of the Clebsch-Gordon coefficients[14, 32, 33]
according to

Uℓ1,m1Vℓ2,m2 =

|ℓ1+ℓ2|∑
L=|ℓ1−ℓ2|

⟨L m1+m2|ℓ1 ℓ2 m1 m2⟩XL,m1+m2 , (S.42)

where

XL,M = { ⃗̂U (ℓ1) ⊗ ⃗̂
V (ℓ2)}L,M =

∑
m

⟨LM |ℓ1 ℓ2mM−m⟩Uℓ1,mVℓ2,M−m. (S.43)

A few helpful symmetry properties of the Clebsch-Gordon coefficients are

⟨LM |ℓ1 ℓ2m1m2⟩ = (−1)ℓ1+ℓ2−L⟨LM |l2 ℓ1m2m1⟩, (S.44)

⟨LM |ℓ1 ℓ2m1m2⟩ = (−1)ℓ1+ℓ2−L⟨L−M |ℓ1 ℓ2 −m1 −m2⟩, (S.45)

⟨LM |l1 ℓ2m1m2⟩ = ⟨L−M |ℓ2 ℓ1 −m2 −m1⟩. (S.46)

Since second-order energy corrections are needed for terms involving the quadrupolar coupling, we can narrow

our focus to spatial tensor products of the form R
{λ}
ℓ1,−mR

{q}
2,m, which can be expanded as

R
{λ}
ℓ1,−mR

{q}
2,m =

1

2

|ℓ1+2|∑
L=|ℓ1−2|

(
1 + (−1)ℓ1−L

)
⟨L 0|ℓ1 2 −mm⟩R{λq}

L,0 . (S.47)

For even values of ℓ1, only terms in the sum with even values of L survive, and vice versa. Thus, we consider the
two cases separately. For the odd value of ℓ1 = 1, we have

R
{λ}
1,−mR

{q}
2,m = ⟨1 0|1 2 −mm⟩A{λq}

1,0 + ⟨3 0|1 2 −mm⟩A{λq}
3,0 , (S.48)

and for the even value of ℓ1 = 2, we have

R
{λ}
2,−mR

{q}
2,m = ⟨0 0|2 2 −mm⟩R{λq}

0,0 + ⟨2 0|2 2 −mm⟩R{λq}
2,0 + ⟨4 0|2 2 −mm⟩R{λq}

4,0 . (S.49)

In either case, the tensor is related to the tensor elements in the sample holder frame using Eq. (S.13), e.g.,

A
{λq}
L,0 =

L∑
m=−L

D
(L)
0,m(ϕ, θR, 0)A

′{λq}
L,m and R

{λq}
L,0 =

L∑
m=−L

D
(L)
0,m(ϕ, θR, 0)R

′{λq}
L,m . (S.50)

The tensor elements are further related to the elements in the principal axis of the {q} tensor according to

A′{λq}
L,m =

L∑
m′=−L

D
(L)
m′,m(Θq)A

′′{λq}
L,m′ and R′{λq}

L,m =

L∑
m′=−L

D
(L)
m′,m(Θq)R

′′{λq}
L,m′ , (S.51)
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λ q σ dII dIS JII JIS

S{λ}/R
{λ}
0,0 - − 1

σiso

√
1

3
- - - − 1

Jiso

√
1

3

P{λ}/R
{λ}
1,0 - - - - − 1

ζ
(a)
J

-

D{λ}/R
{λ}
2,0

1

3ζq

1

ζσ

√
2

3

2

ζd

2

ζd

√
2

3

1

ζJ

1

ζJ

√
2

3

S{λqI}/R
{λqI}
0,0

1

9ζ2q

1

ζσ

1

3ζq

√
6

5
-

2

ζd

1

3ζ
{I}
q

√
6

5
-

1

ζJ

1

3ζ
{I}
q

√
6

5

D{λqI}/R
{λqI}
2,0

1

9ζ2q
− 1

ζσ

1

3ζq

√
3

7
- − 2

ζd

1

3ζ
{I}
q

√
3

7
- − 1

ζJ

1

3ζ
{I}
q

√
3

7

G{λqI}/R
{λqI}
4,0

1

9ζ2q

1

ζσ

1

3ζq

√
48

35
- − 2

ζd

1

3ζ
{I}
q

√
48

35
- − 1

ζJ

1

3ζ
{I}
q

√
48

35

Table S1: Proportionality constants between Ξ{λ}(Θ) and the irreducible tensor element R
{λ}
L,0 (Θ) for various nuclear

spin interactions. Here q ≡ electric quadrupole coupling, σ ≡ nuclear shielding, dII ≡ strong dipolar coupling, dIS ≡
weak dipolar coupling, JII ≡ strong J coupling, and JIS ≡ weak J coupling.

where Θq = (αq, βq, γq) are the Euler angles relating the principal axis system of the {q} tensor to the sample holder
frame. Here, we can use Eq. (S.42) to obtain

A′′{λq}
L,M =

∑
m

⟨LM |1 2mM−m⟩R{λ}
1,m[q] ρ

{q}
2,M−m and R′′{λq}

L,M =
∑
m

⟨LM |2 2mM−m⟩R{λ}
2,m[q] ρ

{q}
2,M−m, (S.52)

where R
{λ}
1,m[q] and R

{λ}
2,m[q] are the spherical tensor elements of the {λ} tensor in the PAS of the {q} tensor.

Conversely, the tensor elements, R′{λq}
L,m , can be related to the elements in the principal axis of the {λ} tensor

according to

A′{λq}
L,m =

L∑
m′=−L

D
(L)
m′,m(Θλ)A

′′′{λq}
L,m′ and R′{λq}

L,m =

L∑
m′=−L

D
(L)
m′,m(Θλ)R

′′′{λq}
L,m′ , (S.53)

where Θλ = (αλ, βλ, γλ) are the Euler angles relating the principal axis system of the {λ} tensor to the sample holder
frame. Here, we can use Eq. (S.42) to obtain

A′′′{λq}
L,M =

∑
m

⟨LM |1 2mm′−m⟩ρ{λ}1,mR
{q}
2,M−m and R′′′{λq}

L,M =
∑
m

⟨LM |2 2mM−m⟩ρ{λ}2,mR
{q}
2,M−m, (S.54)

where R
{q}
1,m[λ] and R

{q}
2,m[λ] are the spherical tensor elements of the {q} tensor in the PAS of the {λ} tensor.

To emphasize spatial symmetries we classify the spatial functions using the upper-case symbols S, P(Θ), D(Θ),
F(Θ), and G(Θ) according to:

S{λ} ∝ R{λ}
0,0 , P{λ}(Θ) ∝ R{λ}

1,0 (Θ), D{λ}(Θ) ∝ R{λ}
2,0 (Θ), F{λ}(Θ) ∝ R{λ}

3,0 (Θ), G{λ}(Θ) ∝ R{λ}
4,0 (Θ), (S.55)

where the R
{λ}
L,0 (Θ) are elements of irreducible tensors of rank L in the laboratory frame describing the spatial part of a

frequency component arising from a given nuclear spin interaction, here generically labeled as λ. The proportionality
constants are interaction specific, derived in section S5, and are given in Table S1.
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S2 Spherical tensor operators, products, and commutators

S2.1 Irreducible spherical tensor operators

In 1942, Racah[31] introduced the concept of irreducible spherical tensor operators, T̂ℓ,m(I⃗), of rank (or degree) ℓ

and order m for angular momentum operators I⃗. These operators are defined by the property that they satisfy the
same commutation rules with respect to I⃗ as the spherical harmonic operators, i.e.,

[Îz, T̂ℓ,m(I⃗)] = mT̂ℓ,m(I⃗) and [Î±, T̂ℓ,m(I⃗)] =
√
ℓ(ℓ+ 1)−m(m± 1)T̂ℓ,m±1(I⃗). (S.56)

TJ,M (I⃗) =
∑
m

⟨J M |ℓ1 ℓ2mM−m⟩T̂ℓ1,m(I⃗)T̂ℓ2,M−m(I⃗). (S.57)

Under an SO(3) rotation of the coordinate system, i.e., a passive rotation, the irreducible spherical tensor operators
transform according to

T̂
′(ℓ)(I⃗) = D̂(α, β, γ)T̂(ℓ)(I⃗)D̂−1(α, β, γ). or T̂L,m =

L∑
m′=−L

D
(L)
m,m′(α, β, γ) T̂

′
L,m′ , (S.58)

where
D̂(α, β, γ) = e−iαÎze−iβÎye−iγÎz and D̂−1(α, β, γ) = eiγÎzeiβÎyeiαÎz . (S.59)

Note, that D̂−1(α, β, γ) is the conjugate transpose of D̂(α, β, γ)—see chapter 4 of Varshalovich et al.[38]. In contrast,
an active SO(3) rotation of the irreducible spherical tensor operators is given by

T̂(ℓ)(I⃗) = D̂−1(α, β, γ)T̂
′(ℓ)(I⃗)D̂(α, β, γ) or T̂L,m =

L∑
m′=−L

D
∗(L)
m′,m(α, β, γ) T̂ ′

L,m′ . (S.60)

S2.2 Irreducible spherical tensor operator products

The product of irreducible spherical tensor operators, which are consistently normalized, can be generally expanded[7,
23, 5, 6] as

T̂ℓ1,m1
(I⃗)T̂ℓ2,m2

(I⃗) =

|ℓ1+ℓ2|∑
J=|ℓ1−ℓ2|

J∑
M=−J

B(ℓ1, ℓ2, J, I)⟨J M |ℓ1 ℓ2 m1 m2⟩T̂J,M (I⃗), (S.61)

where the T̂J,M (I⃗) for J = 0 to J = 3 are given in Table S3, and

B(ℓ1, ℓ2, J, I) = (2J + 1)1/2(−1)J+2I

{
ℓ1 ℓ2 J
I I I

}
⟨I||T̂(ℓ1)(I⃗)||I⟩⟨I||T̂(ℓ2)(I⃗)||I⟩

⟨I||T̂(J)(I⃗)||I⟩
. (S.62)

Here, the term in curly brackets is a 6-j symbol, and the reduced matrix elements are given by

⟨I||T̂(ℓ)(I⃗)||I⟩ =
[
ℓ!ℓ!(2I + ℓ+ 1)!

2ℓ(2ℓ)!(2I − ℓ)!

]1/2
. (S.63)

M T0,M (U⃗ , V⃗ ) T1,M (U⃗ , V⃗ ) T2,M (U⃗ , V⃗ )

0 − 1√
3
U⃗ · V⃗ − 1

2
√
2
[U+V− − U−V+]

1√
6

[
3UzVz − U⃗ · V⃗

]
±1 - 1

2 [UzV± − U±Vz] ∓ 1
2 [UzV± + U±Vz]

±2 - - 1
2U±V±

Table S2: Irreducible spherical tensors, TJ,M (U⃗ , V⃗ ), formed from the tensor product of two vectors U⃗ and V⃗ , and
expressed in terms of their Cartesian components for J ≤ 2.
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k T̂0,k(I⃗) T̂1,M (I⃗) T̂2,M (I⃗) T̂3,M (I⃗)

0 1̂ Îz
(
1
6

)1/2
[3Î2z − I(I + 1)]

(
1
10

)1/2
[5Î2z − (3I(I + 1)− 1)]Îz

±1 - ∓
(
1
2

)1/2
Î± ∓ 1

2

{
Îz, Î±

}
∓
(

3
10

)1/2 1
4

{(
5Î2z − I(I + 1)− 1

2

)
, Î±

}
±2 - - 1

2 Î
2
±

(
3
4

)1/2 1
2

{
Îz, Î

2
±

}
±3 - - - ∓ 1

2

(
1
2

)1/2
Î3±

Table S3: Irreducible spherical tensor operators, T̂J,M (I⃗) formed from the tensor product with the same vector

and expressed in terms of Cartesian operators for J ≤ 3 after Buckmaster et al.[7, 5]. Here {Â, B̂} represents the
anticommutator of operators Â and B̂.

S2.3 Irreducible spherical tensor operator commutators

The commutator, [T̂l1,m1
(I⃗), T̂l2,m2

(I⃗)], can be written as

[T̂l1,m1
(I⃗), T̂l2,m2

(I⃗)] =

|ℓ1+ℓ2|∑
J=|ℓ1−ℓ2|

J∑
M=−J

B(ℓ1, ℓ2, J, I)

[
⟨J M |ℓ1 ℓ2 m1 m2⟩ − ⟨J M |ℓ2 ℓ1 m2 m1⟩

]
T̂J,M (I⃗). (S.64)

From Eq. (S.44) this simplifies to

[T̂l1,m1
(I⃗), T̂l2,m2

(I⃗)] =

|ℓ1+ℓ2|∑
J=|ℓ1−ℓ2|

J∑
M=−J

B(ℓ1, ℓ2, J, I)

[
1− (−1)ℓ1+ℓ2−J

]
⟨J M |ℓ1 ℓ2 m1 m2⟩T̂J,M (I⃗). (S.65)

We narrow our focus to the specific commutator for non-zero values of m,

[T̂l1,m(I⃗), T̂2,−m(I⃗)] =

|ℓ1+2|∑
J=|ℓ1−2|

B(ℓ1, 2, J, I)

[
1− (−1)ℓ1−J

]
⟨J 0|ℓ1 2 m −m⟩T̂J,0(I⃗). (S.66)

Equation (S.66) shows that the coefficient vanishes when l1 + J is an even value. Thus, for even values of l1, only
terms in the sum with odd values of J survive, and vice versa. Thus, we consider the two cases separately. For the
odd value of ℓ1 = 1, we have

[T̂1,m(I⃗), T̂2,−m(I⃗)] = 2B(1, 2, 2, I)⟨2 0|1 2 m −m⟩ T̂2,0(I⃗), (S.67)

and

[T̂2,m(I⃗), T̂2,−m(I⃗)] = 2B(2, 2, 1, I) ⟨1 0|2 2 m −m⟩ T̂1,0(I⃗) + 2B(2, 2, 3, I)⟨3 0|2 2 m −m⟩ T̂3,0(I⃗). (S.68)

Focusing on B(1, 2, 2, I) we have

B(1, 2, 2, I) = [I(I + 1)(2I + 1)]1/2(−1)2I
√
5

{
1 2 2
I I I

}
. (S.69)

Using a symmetry property of the 6-j symbols, we can write{
1 2 2
I I I

}
=

{
I I 2
2 1 I

}
, (S.70)

and use the general relationship{
a b c
2 c− 1 b

}
= (−1)s+12(X − c− 1)

[
6(s+ 1)(s− 2c+ 1)(s− 2b)(s− 2a)(2b− 2)!(2c− 3)!

(2b+ 3)!(2c+ 2)!

]1/2
, (S.71)

where s = a+ b+ c and X = −a(a+ 1) + b(b+ 1) + c(c+ 1), to obtain{
I I 2
2 1 I

}
= −

√
3

10
(−1)2I

[
1

I(I + 1)(2I + 1)

]1/2
, (S.72)
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with s = 2(I + 1) and X = 6. Thus, we obtain

B(1, 2, 2, I) = −
√

3

2
, (S.73)

and
[T̂1,m(I⃗), T̂2,−m(I⃗)] = −

√
6 ⟨2 0|1 2 m −m⟩ T̂2,0(I⃗). (S.74)

Similarly, one can show that

B(2, 2, 1, I) =

√
2

5
[I(I + 1)− 3/4], and B(2, 2, 3, I) = −2, (S.75)

and

[T̂2,m(I⃗), T̂2,−m(I⃗)] = 2

√
2

5
[I(I + 1)− 3/4] ⟨1 0|2 2 m −m⟩ T̂1,0(I⃗)− 4⟨3 0|2 2 m −m⟩ T̂3,0(I⃗). (S.76)
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S3 Transition Symmetry Functions

In the symmetry pathway approach,[17], the concept of coherence order is extended to form a set of spin transition
symmetry functions. A complete set of spin transition symmetry functions arising from the irreducible spherical
tensor operators, T̂ℓ,0, are given by

ξℓ(i, j) = ⟨j|T̂ℓ,0|j⟩ − ⟨i|T̂ℓ,0|i⟩, (S.77)

where the T̂ℓ,0 are irreducible tensor operators. The function symbol ξℓ(i, j) is replaced with the lower-case symbols
p(i, j), d(i, j), f(i, j), . . ., i.e., we follow the spectroscopic sub-shell letter designations:

ℓ = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ← number
ξℓ ≡ s p d f g h i k l m o q r t ← symbol

(S.78)

To simplify usage in figures and discussions (but not in frequency expressions!), we scale the transition symmetry
functions to integer values according to

p(i, j) = p(i, j), d(i, j) =

√
2

3
d(i, j), f(i, j) =

√
10

9
f(i, j), · · · (S.79)

The ℓ = 0 function is dropped as it evaluates to zero.

S3.1 Single-spin transition symmetry functions

For a single spin, I, a complete set of functions is defined up to ℓ = 2I. In the case of a single spin system, {I}, the
integer-scaled transition symmetry functions evaluate to

pI(mi,mj) = mj −mi, dI(mi,mj) = m2
j −m2

i ,

fI(mi,mj) =
1

3

[
5(m3

j −m3
i ) + (1− 3I(I + 1))(mj −mi)

]
. (S.80)

Transition symmetry functions can be used to identify transitions in a spin-system agnostic manner. For example,
by selecting only single-spin transitions with pI = −1, you get all the “observed” transitions from the set of all
possible transitions. Similarly, you can use pI to select any subset of single-spin transitions, such as double-quantum
(pI = ±2) transitions, triple-quantum (pI = ±3) transitions, etc. While specifying pI alone is not enough to select
an individual transition, any individual single-spin transition can be identified by a combination of the integer-scaled
transition symmetry functions pI and dI . This is illustrated in Fig. S2A and S2B in the case of an integer spin
nucleus. For single quantum pI = −1 transitions in an integer spin, we find dI = ±1,±3, . . . ,±(2I − 1) with
increasing spin I. While dI = 0 for symmetric m → −m transitions, they remain distinguished by the opposite
signs of pI = ±2. Note that dI values always evaluate to zero for symmetric m→ −m transitions. Similarly, in the
case of the half-integer spins, we find that all transitions can be uniquely identified by their integer-scaled transition
symmetry function values pI and dI , as illustrated in Figs. S2C and S2D, respectively. Here, we find that single
quantum transitions with pI = −1 are distinguished by the opposite signs of dI , which take on values of dI = ±2,
±4, . . . ,±(2I−1) with increasing spin I. When modeling an NMR method, single-spin transitions can be selected in
a spin-system agnostic fashion by specifying the desired pI and dI values. One caveat, however, is that the (pI ,dI)
combination specified for a given mi → mf transition depends on whether the spin is integer or half-integer.

For 2nd-order quadrupolar coupling frequency contributions, it is convenient to define “hybrid” spin transition
functions as linear combinations of the spin transition functions

c0 =
4√
125

[I(I + 1)− 3/4]pI +

√
18

25
fI ,

c2 =
2√
175

[I(I + 1)− 3/4]pI −
6√
35

fI ,

c4 = − 184√
875

[I(I + 1)− 3/4]pI −
17√
175

fI .

(S.81)
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Figure S2: Values of the integer-scaled spin transition symmetry function for (A) pI(mi,mj) and (B) dI(mi,mj) for
integer spin values, and (C) pI(mi,mj) and (D) dI(mi,mj) for half-integer spin values. Values inside black circles
are negative.
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mA,i,mM,i,mX,i → mA,j ,mM,j ,mX,j Label pA pM pX (pp)AM (pp)AX (pp)MX

+ 1
2
,+ 1

2
,+ 1

2
→ − 1

2
,+ 1

2
,+ 1

2
Â1 −1 0 0 −1 −1 0

+ 1
2
,− 1

2
,+ 1

2
→ − 1

2
,− 1

2
,+ 1

2
Â2 −1 0 0 +1 −1 0

+ 1
2
,+ 1

2
,− 1

2
→ − 1

2
,+ 1

2
,− 1

2
Â3 −1 0 0 −1 +1 0

+ 1
2
,− 1

2
,− 1

2
→ − 1

2
,− 1

2
,− 1

2
Â4 −1 0 0 +1 +1 0

+ 1
2
,+ 1

2
,− 1

2
→ + 1

2
,− 1

2
,− 1

2
M̂1 0 −1 0 −1 0 +1

+ 1
2
,+ 1

2
,+ 1

2
→ + 1

2
,− 1

2
,+ 1

2
M̂2 0 −1 0 −1 0 −1

− 1
2
,+ 1

2
,− 1

2
→ − 1

2
,− 1

2
,− 1

2
M̂3 0 −1 0 +1 0 +1

− 1
2
,+ 1

2
,+ 1

2
→ − 1

2
,− 1

2
,+ 1

2
M̂4 0 −1 0 +1 0 −1

− 1
2
,− 1

2
,+ 1

2
→ − 1

2
,− 1

2
,− 1

2
X̂1 0 0 −1 0 +1 +1

− 1
2
,+ 1

2
,+ 1

2
→ − 1

2
,+ 1

2
,− 1

2
X̂2 0 0 −1 0 +1 −1

+ 1
2
,− 1

2
,+ 1

2
→ + 1

2
,− 1

2
,− 1

2
X̂3 0 0 −1 0 −1 +1

+ 1
2
,+ 1

2
,+ 1

2
→ + 1

2
,+ 1

2
,− 1

2
X̂4 0 0 −1 0 −1 −1

+ 1
2
,+ 1

2
,− 1

2
→ − 1

2
,− 1

2
,+ 1

2
Ŝ1 −1 −1 +1 0 0 0

+ 1
2
,− 1

2
,+ 1

2
→ − 1

2
,+ 1

2
,− 1

2
Ŝ2 −1 +1 −1 0 0 0

− 1
2
,+ 1

2
,+ 1

2
→ + 1

2
,− 1

2
,− 1

2
Ŝ3 +1 −1 −1 0 0 0

Table S4: Values of pA, pM, pX, (pp)AM , (pp)AX, and (pp)MX for the pAMX = −1 single quantum transitions of
three weakly coupled spin 1/2 nuclei illustrated in Figs. S4 and S5.

S3.2 Multi-spin transition symmetry functions

For nI weakly coupled nuclei, we define the multi-spin transition symmetry functions

ξℓ1,ℓ2,...,ℓnI
(i, j) = ⟨j| T̂ℓ1,0(I⃗1)T̂ℓ2,0(I⃗2) . . . T̂ℓnI

,0(I⃗nI
) |j⟩ − ⟨i| T̂ℓ1,0(I⃗1)T̂ℓ2,0(I⃗2) . . . T̂ℓnI

,0(I⃗nI
) |i⟩ . (S.82)

S3.2.1 Single-spin transition functions

Replacing the symmetry function symbol using sub-shell letter designations becomes more cumbersome in this case.
When the ℓ values are zero on all nuclei except one, we identify these single-spin functions as

p1 = ξ1,0,...,0(i, j), p2 = ξ0,1,...,0(i, j), . . . , pnI
= ξ0,0,...,1(i, j),

d1 = ξ2,0,...,0(i, j), d2 = ξ0,2,...,0(i, j), . . . , dnI
= ξ0,0,...,2(i, j),

f1 = ξ3,0,...,0(i, j), f2 = ξ0,3,...,0(i, j), . . . , fnI
= ξ0,0,...,3(i, j),

...
...

...

(S.83)

The set of nuclei, I, in a spin system can be partitioned into nI disjoint subsets of {I1, I2, . . . ,InI
}, called

channels, where Ic is the set of nuclei in the cth subset, i.e., the cth channel. This partitioning is useful for separating
nuclei into subsets of nuclei of the same isotope, although it could also be used to separate nuclei into subsets for other
purposes, such as selective excitation of a subset of nuclei within a specific excitation bandwidth. When working
with such subsets, i.e., channels, it is useful to define the functions

pc(i, j) =
∑
u∈Ic

pu(i, j), dc(i, j) =
∑
u∈Ic

du(i, j), fc(i, j) =
∑
u∈Ic

fu(i, j), · · · . (S.84)

While these functions are not used in evaluating frequency contributions, they can be utilized to select sets of
transitions.

These are illustrated in Fig. S3 in the case of two coupled spin I = 1/2 nuclei. For three coupled spin I = 1/2
nuclei, the transition symmetry functions are illustrated in Figs. S4, S5, and S6 and in Tables S4, S5 and S6.
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(A) (B)

(C) (D)

Figure S3: Energy level diagram of two coupled spin I = 1/2 nuclei, where α = m = +1/2 and β = m = −1/2, with
transition labeled according to their transition symmetry function values for (A) pAX = −1 transitions, i.e., Â1, Â2,
X̂1, and X̂2, (B) pAX = −1 transitions, i.e., Â∗

1, Â
∗
2, X̂

∗
1 , and X̂

∗
2 , (C) pAX = −2 transitions, i.e., D̂ and Ẑ, and (D)

pAX = +2 transitions, i.e., D̂∗ and Ẑ∗. Note that each transition has a unique set of transition symmetry function
values, pA, pX , and (pp)AX .

Figure S4: Energy level diagram for three coupled spin I = 1/2 nuclei and the corresponding single-spin single-
quantum transitions. Arrows beginning at the initial state and ending at the final state represent the single-spin
single-quantum transitions. Transitions are labeled with their corresponding single-spin pi transition symmetry
function values.
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Figure S5: Energy level diagram for three coupled spin I = 1/2 nuclei and the corresponding three-site single-
quantum transitions. Arrows beginning at the initial state and ending at the final state represent the single-spin
single-quantum transitions. Transitions are labeled with their corresponding single-spin pi transition symmetry
function values.

mA,i,mM,i,mX,i → mA,j ,mM,j ,mX,j Label pA pM pX (pp)AM (pp)AX (pp)MX

− 1
2
,+ 1

2
,+ 1

2
→ + 1

2
,+ 1

2
,+ 1

2
Â∗

1 +1 0 0 +1 +1 0

− 1
2
,− 1

2
,+ 1

2
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Â∗

2 +1 0 0 −1 +1 0
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,+ 1

2
,− 1

2
→ + 1

2
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Â∗

3 +1 0 0 +1 −1 0
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,− 1

2
,− 1

2
→ + 1

2
,− 1

2
,− 1

2
Â∗

4 +1 0 0 −1 −1 0

+ 1
2
,− 1

2
,− 1

2
→ + 1

2
,+ 1

2
,− 1

2
M̂∗

1 0 +1 0 +1 0 −1

+ 1
2
,− 1

2
,+ 1

2
→ + 1

2
,+ 1

2
,+ 1

2
M̂∗

2 0 +1 0 +1 0 +1

− 1
2
,− 1

2
,− 1

2
→ − 1

2
,+ 1

2
,− 1

2
M̂∗

3 0 +1 0 −1 0 −1

− 1
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,− 1

2
,+ 1

2
→ − 1

2
,+ 1

2
,+ 1

2
M̂∗

4 0 +1 0 −1 0 +1

− 1
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,− 1

2
,− 1

2
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2
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2
,+ 1

2
X̂∗

1 0 0 +1 0 −1 −1

− 1
2
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2
,− 1

2
→ − 1

2
,+ 1

2
,+ 1

2
X̂∗

2 0 0 +1 0 −1 +1

+ 1
2
,− 1

2
,− 1

2
→ + 1

2
,− 1

2
,+ 1

2
X̂∗

3 0 0 +1 0 +1 −1

+ 1
2
,+ 1

2
,− 1

2
→ + 1

2
,+ 1

2
,+ 1

2
X̂∗

4 0 0 +1 0 +1 +1

− 1
2
,− 1

2
,+ 1

2
→ + 1

2
,+ 1

2
,− 1

2
Ŝ∗
1 +1 +1 −1 0 0 0

− 1
2
,+ 1

2
,− 1

2
→ + 1

2
,− 1

2
,+ 1

2
Ŝ∗
2 +1 −1 +1 0 0 0

+ 1
2
,− 1

2
,− 1

2
→ − 1

2
,+ 1

2
,+ 1

2
Ŝ∗
3 −1 +1 +1 0 0 0

Table S5: Values of pA, pM, pX, (pp)AM , (pp)AX, and (pp)MX for the pAMX = +1 single quantum transitions of
three weakly coupled spin 1/2 nuclei.
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Figure S6: Energy level diagram for three coupled spin I = 1/2 nuclei and the corresponding three-spin pAMX = −2
transitions. Arrows beginning at the initial state and ending at the final state represent the three-spin double-
quantum transitions. Transitions are labeled with their corresponding single-spin pi transition symmetry function
values.

mA,i,mM,i,mX,i → mA,j ,mM,j ,mX,j Label pA pM pX (pp)AM (pp)AX (pp)MX pAMX
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2
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2
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2
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2
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2
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2
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2
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2
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2
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2
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2
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2
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2
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2
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2
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2
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2
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2
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2
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2
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2
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2
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2
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2
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2
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− 1
2
,− 1

2
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2
→ + 1

2
,− 1

2
,+ 1

2
D̂∗

2,AX +1 0 +1 −1 0 −1 +2

− 1
2
,− 1

2
,− 1

2
→ + 1

2
,+ 1

2
,− 1

2
D̂∗

2,AM +1 +1 0 0 −1 −1 +2

− 1
2
,− 1

2
,− 1

2
→ − 1

2
,+ 1

2
,+ 1

2
D̂∗

2,MX 0 +1 +1 −1 −1 0 +2

+ 1
2
,+ 1

2
,+ 1

2
→ − 1

2
,− 1

2
,− 1

2
T̂1,AMX −1 −1 −1 0 0 0 −3

− 1
2
,− 1

2
,− 1

2
→ + 1

2
,+ 1

2
,+ 1

2
T̂ ∗
1,AMX +1 +1 +1 0 0 0 +3

Table S6: Values of pA, pM, pX, (pp)AM , (pp)AX, and (pp)MX for the pAMX = ±2 and ±3 transitions of three
weakly coupled spin 1/2 nuclei illustrated in Fig. S6.
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(A) (B)

Figure S7: Energy level diagram for two coupled nuclei with spins I = 1 and I = 1/2. Arrows beginning at the
initial state and ending at the final state represent the single-spin single-quantum transitions (left) and the two-spin
triple-quantum transition. Transitions are labeled with their corresponding pi and di single-spin transition symmetry
function values.

S3.2.2 Two-spin transition functions

When the ℓ values are zero on all nuclei except two, then we identify these two-spin functions using a concatenation
of sub-shell letter designations, e.g.,

(pp)1,2 = ξ1,1,0,...,0(i, j), (pp)1,3 = ξ1,0,1,...,0(i, j), . . . , (pp)1,nI
= ξ1,0,0,...,1(i, j),

(pd)1,2 = ξ1,2,0,...,0(i, j), (pd)1,3 = ξ1,0,2...,0(i, j), . . . , (pd)1,nI
= ξ1,0,...,2(i, j),

(dp)1,2 = ξ2,1,0,...,0(i, j), (dp)1,3 = ξ2,0,1...,0(i, j), . . . , (dp)1,nI
= ξ2,0,...,1(i, j),

...
...

...

(S.85)

As before, to simplify usage in figures and discussions, we further define integer-scaled transition symmetry functions,
e.g.,

(pp)IS(mI,i,mS,i,mI,j ,mS,j) = 2(pp)IS(mI,i,mS,i,mI,j ,mS,j), (S.86)

(dp)IS(mI,i,mS,i,mI,j ,mS,j) = 2
√
6 (dp)IS(mI,i,mS,i,mI,j ,mS,j), (S.87)

(pd)IS(mI,i,mS,i,mI,j ,mS,j) = 2
√
6 (pd)IS(mI,i,mS,i,mI,j ,mS,j), (S.88)

which evaluate to

(pp)IS(mI,i,mS,i,mI,j ,mS,j) = 2mI,jmS,j − 2mI,imS,i for I ≥ 1

2
, S ≥ 1

2
, (S.89)

(dp)IS(mI,i,mS,i,mI,j ,mS,j) = 6
(
m2
I,jmS,j −m2

I,imS,i

)
− 2I(I + 1)(mS,j −mS,i), for I ≥ 1, S ≥ 1

2
, (S.90)

(pd)IS(mI,i,mS,i,mI,j ,mS,j) = 6
(
m2
S,jmI,j −m2

S,imI,i

)
− 2S(S + 1)(mI,j −mI,i). for I ≥ 1

2
, S ≥ 1. (S.91)

The two-spin functions are needed for frequency contributions arising from first-order dipolar and J couplings and
cross-terms involving dipolar couplings in a second-order perturbation theory treatment of a sizeable quadrupolar
coupling. Values of (pp)IS are illustrated in Fig. S3 for two coupled spin 1/2 nuclei, and in Tables S4, S5 and S6.
Again, we see in coupled spin systems that transition symmetry functions can be used to identify transitions in a
spin-system agnostic manner.

Three- or higher-spin functions occur in higher-order perturbation theory cross-terms, which are not considered
here.
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S4 Perturbation theory

In the absence of excitation, the spins evolve under the stationary state Hamiltonian, ĤS , whose representation in
its diagonal frame, D̂S , is related to the laboratory frame representation by

D̂S = V̂ †ĤS V̂ , (S.92)

where V̂ is a unitary transformation between the diagonal and laboratory frames. Here, we consider a Hamiltonian
whose diagonalization transformation, i.e., V̂ , is time-independent. See reference [36] for the case of a time-dependent
diagonalization in the context of rotating samples treated using the adiabatic approximation.

We assume that the Zeeman interaction is the dominant interaction in ĤS ,

ĤS = ℏω0ÎZ + Ĥ
(1)
S , (S.93)

where ω0 = −γB0 and

Ĥ
(1)
S =

∑
λ∈Γ

Ĥ
(1)
λ (S.94)

is the part of the stationary state Hamiltonian arising from a set Γ = {q, σ, J, d} of spin couplings internal to the
sample. Using the static perturbation approach, as outlined by Goldman et al.[16], and limited here to non-degenerate
systems, D̂S and V̂ can be obtained through the perturbation expansion,

D̂S = Ĥ(0) + D̂(1) + D̂(2) + · · · , (S.95)

V̂ = 1̂ + V̂ (1) + V̂ (2) + · · · , (S.96)

with each correction given by

D̂(n) =

Υ∑
i=1

E
(n)
i |i⟩⟨i|, (S.97)

V̂ (n) =

Υ∑
i=1

∣∣∣v(n)i

〉
⟨i|, (S.98)

where Υ is the number of states and the eigenvalues, E
(n)
i , and eigenvectors

∣∣∣v(n)i

〉
, can be obtained with conventional

static perturbation theory[25]:

E
(0)
i = ⟨i|Ĥ(0)|i⟩. (S.99)

E
(1)
i =

∑
λ∈Γ

⟨i|Ĥ(1)
λ |i⟩, (S.100)

E
(2)
i =

∑
λ∈Γ

 Υ∑
i=1
j ̸=i

⟨i|Ĥ(1)
λ |j⟩⟨j|Ĥ

(1)
λ |i⟩

E
(0)
i − E

(0)
j

+
∑
λ∈Γ

∑
λ′∈Γ
λ′ ̸=λ

 Υ∑
i=1
j ̸=i

⟨i|Ĥ(1)
λ |j⟩⟨j|Ĥ

(1)
λ′ |i⟩

E
(0)
i − E

(0)
j

 , (S.101)

∣∣∣v(1)i 〉 =
∑
λ∈Γ

 Υ∑
i=1
j ̸=i

⟨j|Ĥ(1)
λ |i⟩

E
(0)
i − E

(0)
j

|j⟩

 , (S.102)

E
(3)
i =

∑
k ̸=i

∑
j ̸=i

⟨i|Ĥ(1)
λ |i⟩⟨j|Ĥ

(1)
λ |k⟩⟨k|Ĥ

(1)
λ |i⟩(

E
(0)
i − E

(0)
m

)(
E

(0)
i − E

(0)
k

) − ⟨i|Ĥ(1)
λ |i⟩

∑
j ̸=i

|⟨i|Ĥ(1)
λ |j⟩|2(

E
(0)
i − E

(0)
j

)2 . (S.103)

The expression for the third-order correction to the eigenvalues excludes cross-terms.
In NMR, the number of states, Υ, is given by

Υ{I1,I2,...,IN} =

N∏
u=1

(2Iu + 1). (S.104)

Here, Iu is the total spin angular momentum quantum number of the uth nucleus,
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Operators in terms of matrix elements and outer products are obtained when Eqs (S.97) and (S.98) are combined
with Eqs. (S.100)-(S.101). As we show below, these matrix elements and outer products can be readily simplified in
the case of NMR using the general selection rule for irreducible tensors,

⟨j|T̂ℓ,m|i⟩ = δj,i+m⟨i+m|T̂ℓ,m|i⟩, (S.105)

to obtain pure irreducible tensor expansions for the D̂S and V̂ operators[16]. Here, we will consider only fundamental
transitions, that is, Zeeman allowed (∆m = ±1) transitions. For such situations, the transformation, V̂ , between
the laboratory and diagonal frame[16, 36], will, to a good approximation, not need evaluation.

We will only consider the quadrupolar coupling strong enough to require a correction higher than the first order
at conventional NMR magnetic field strengths. Note, however, that the second- and higher-order corrections involve

the product of matrix elements and will mix matrix elements coming from different contributions to Ĥ
(1)
S . While the

second-order terms involving the product of quadrupolar Hamiltonian matrix elements will be the largest, there will
be situations where cross-terms between the quadrupolar coupling and the nuclear shielding, J , or dipolar couplings
will not be negligible[37, 35, 30, 20, 26, 41, 27, 21, 29, 28]. Additionally, there will be situations where third-order
corrections are not negligible, particularly for non-symmetric transitions of quadrupolar nuclei[15, 4, 36].

S5 Hamiltonians and Transition Frequency Contributions

This section summarizes the SPT Hamiltonians and frequency expressions derived in the appendix of our symmetry
pathways paper [17]–updated to include the latest definitions and conventions used here. These expressions also
correct a few typographical errors in the original article[17] appendix.

Using the definitions of this section, including Tables S7 and S2, one can write the NMR Hamiltonian contributions
terms of irreducible tensor elements of ranks L = 0, 1, and 2 in the lab coordinate system as

Ĥλ = Λ{λ}
2∑

L=0

L∑
m=−L

(−1)mR{λ}
L,−m T̂

{λ}
L,m(

⃗̂
U, V⃗ ). (S.106)

Here, R
{λ}
L,−m are the spherical tensor elements, and T̂

{λ}
L,m(

⃗̂
U, V⃗ ) are the irreducible spherical tensor element operators.

With the definitions of the previous sections in place, we give results for various first- and second-order corrections
to the NMR frequency.

S5.1 Zeeman

The Zeeman Hamiltonian is

Ĥz = −⃗̂µ · B⃗ = −ℏγI ⃗̂I · B⃗, (S.107)

where
⃗̂µ = γIℏ⃗̂I. (S.108)

Since B⃗ = (0, 0, B0), we have

Ĥz/ℏ = ω0Îz, (S.109)

where ω0 = −γIB0.

S5.2 Electric quadrupole coupling

In the principal axis system of the EFG tensor, where the principal components of the second-rank symmetric

Cartesian EFG tensor are λ
{q}
xx , λ

{q}
yy , and λ

{q}
zz , we define

ρ
{q}
2,0 =

√
3

2
ζq, ρ

{q}
2,±1 = 0, ρ

{q}
2,±2 = −ηqζq/2, (S.110)

where the second-rank symmetric EFG tensor anisotropy, ζq, is defined as

ζq = λ{q}zz , (S.111)

S21



quadrupolar nuclear shielding dipolar J

λ q σ d J

⃗̂
U

⃗̂
I

⃗̂
I

⃗̂
I1

⃗̂
I1

V⃗
⃗̂
I B⃗

⃗̂
I2

⃗̂
I2

Λ{λ} qeQI
2I(2I − 1)

γI −(µ0/4π)γ1γ2ℏ 2π

ρ
{λ}
0,0 0 −

√
3 σiso 0 −

√
3 Jiso

ρ
{λ}
1,0 0 −i

√
2 ζ

(a)
σ 0 −i

√
2 ζ

(a)
J

ρ
{λ}
1,±1 0 0 0 0

ρ
{λ}
2,0

√
3
2 ζq

√
3
2 ζσ

√
3
2 ζd

√
3
2 ζJ

ρ
{λ}
2,±1 0 0 0 0

ρ
{λ}
2,±2 −ηqζq/2 −ησζσ/2 0 −ηJζJ/2

Table S7: Definitions for the irreducible spherical tensor elements for the quadrupolar, nuclear shielding, and dipolar
coupling tensors in the principal axis system (PAS) for a Hamiltonian in the form of Eq. (S.106). Here, we define
the first rank nuclear shielding or J antisymmetric tensor in its PAS as ρ1,0, which is related to its value, r1,m, in

the PAS of the second rank symmetric tensor by r1,m =
∑
m

D
(2)
0,m(0, θ, ϕ) ρ1,0.
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and the second-rank symmetric EFG tensor asymmetry parameter is defined as

ηq =
λ
{q}
yy − λ{q}xx

ζq
. (S.112)

The quadrupolar coupling constant is given by

Cq =
qeQI
h

ζq, (S.113)

and the quadrupolar splitting is given by

ωq =
6πCq

2I(2I − 1)
= Λ{q} · 3ζq

ℏ
=

qeQγI
2I(2I − 1)

· 3ζq
ℏ
. (S.114)

For convenience, in the derivations to follow, we express the quadrupole Hamiltonian as

Ĥq/ℏ = ωq

2∑
m=−2

(−1)m
R

{q}
2,−m

3ζq
T̂2,m(I⃗). (S.115)

S5.2.1 First-order electric quadrupole coupling correction

Using static perturbation theory and Eq. (S.105), we obtain the first-order contribution of the quadrupolar Hamil-
tonian in the tilted rotating frame

D̂(1)
q /ℏ = ωq

R
{q}
2,0

3ζq
T̂2,0(I⃗). (S.116)

The first-order contribution to the transition frequency between levels j and i is given by

Ω(1)
q (Θq,mi,mj) = ωq D{q}(Θq) dI(mi,mj), (S.117)

where

D{q}(Θq) =
R

{q}
2,0 (Θq)

3ζq
, (S.118)

and

dI(mi,mj) = ⟨I,mj |T̂2,0(I⃗)|I,mj⟩ − ⟨I,mi|T̂2,0(I⃗)|I,mi⟩ =
√

3

2
(m2

j −m2
i ). (S.119)

S5.2.2 Second-order electric quadrupole coupling correction

The second-order contribution of the quadrupolar Hamiltonian in the tilted rotating frame is given by

D̂(2)
q,q/ℏ =

ω2
q

ω0

2∑
m=1

R
{q}
2,mR

{q}
2,−m

9ζ2q

[T̂2,m(I⃗), T̂2,−m(I⃗)]

m
. (S.120)

Within the second-order quadrupole Hamiltonian in Eq. (S.120), we find the product of two second-rank spherical

tensors, i.e., R
{q}
2,mR

{q}
2,−m and the commutator of two second-rank spherical tensor operators, i.e., [T̂2,m(I⃗), T̂2,−m(I⃗)].

Using the results of Section S2, we can write the second-order quadrupolar Hamiltonian in the rotating tilted frame:

D̂(2)
q,q//ℏ =

ω2
q

ω0

∑
L=0,2,4

R
{qq}
L,0

9ζ2q

∑
J=1,3

π
{2,2}
L,J T̂J,0(I⃗) =

ω2
q

ω0

∑
L=0,2,4

R
{qq}
L,0

9ζ2q
ĈL(I⃗), (S.121)

where

π
{2,2}
L,J = 2B(2, 2, J, I)

2∑
m=1

⟨L 0|2 2m −m⟩ ⟨J 0|2 2m −m⟩
m

, (S.122)

and
ĈL(I⃗) =

∑
J=1,3

π
{2,2}
L,J T̂J,0(I⃗). (S.123)
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π
{2,2}
L,J J=1 J=3

L=0
4√
125

[I(I + 1)− 3/4]
√
18/25

L=2

√
2

175
[I(I + 1)− 3/4] −6/

√
35

L=4 −
√

18

875
[I(I + 1)− 3/4] −17/

√
175

Table S8: π
{2,2}
L,J coefficients in second-order electric quadrupole coupling Hamiltonian.

Values of the π
{2,2}
L,J are given in Table S8, and the ĈL operators are given by

Ĉ0(I⃗) =
4√
125

[I(I + 1)− 3/4] T̂1,0(I⃗) +

√
18

25
T̂3,0(I⃗), (S.124)

Ĉ2(I⃗) =

√
2

175
[I(I + 1)− 3/4] T̂1,0(I⃗)−

6√
35
T̂3,0(I⃗), (S.125)

Ĉ4(I⃗) = −
√

18

875
[I(I + 1)− 3/4] T̂1,0(I⃗)−

17√
175

T̂3,0(I⃗). (S.126)

The tensor R
{qq}
L,0 is related to the tensor elements in the sample holder frame, R′{qq}

L,M , using Eq. (S.13). The

tensor R′{qq}
L,M is related to the principal values of the R

{q}
2,m tensor by

R′{qq}
L,M =

L∑
M ′=−L

D
(L)
M ′,M (Θq)σ

{qq}
L,M ′ , (S.127)

where

σ
{qq}
L,M =

2∑
m=−2

⟨L M |2 2 m M −m⟩ ρ{q}2,m ρ
{q}
2,M−m. (S.128)

From Eq. (S.128) we obtain the relationships:

σ
{qq}
0,0 =

9ζ2q

6
√
5

(
η2q
3

+ 1

)
, (S.129)

σ
{qq}
2,0 =

9ζ2q
6

√
2

7

(
η2q
3
− 1

)
, σ

{qq}
2,±2 = −

9ζ2q ηq

3
√
21
, (S.130)

σ
{qq}
4,0 =

9ζ2q√
70

(
η2q
18

+ 1

)
, σ

{qq}
4,±2 = −

9ζ2q ηq

6
√
7
, σ

{qq}
4,±4 =

9ζ2q η
2
q

36
. (S.131)

The second-order contribution to the transition frequency between levels |j⟩ and |i⟩ obtained from Eq. (S.121) is

Ω(2)
q,q(Θq,mi,mj) =

ω2
q

ω0
S{qq} c0(mi,mj) +

ω2
q

ω0
D{qq}(Θq) c2(mi,mj) +

ω2
q

ω0
G{qq}(Θq) c4(mi,mj), (S.132)

where

S{qq} =
R

{qq}
0,0

9ζ2q
=

1

6
√
5

(
η2q
3

+ 1

)
, D{qq}(Θq) =

R
{qq}
2,0 (Θq)

9ζ2q
, G{qq}(Θq) =

R
{qq}
4,0 (Θq)

9ζ2q
, (S.133)

and using cL(i, j) values calculated from

cL(mi,mj) =
∑
J=1,3

π
{2,2}
L,J

{
⟨I,mj |T̂J,0|I,mj⟩ − ⟨I,mi|T̂J,0|I,mi⟩

}
=
∑
J=1,3

π
{2,2}
L,J ξJ(mi,mj). (S.134)
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S5.3 Nuclear shielding

The nuclear shielding Hamiltonian is given by

Ĥσ/ℏ = −ω0

2∑
L=0

1∑
m=−1

(−1)mR{σ}
L,−m ⟨L m|1 1 m 0⟩ T̂1,m(I⃗). (S.135)

Here, we follow the IUPAC definitions for the nuclear shielding interaction[19]. The isotropic nuclear shielding, σiso,
is derived from the trace of the shielding tensor,

σiso =
1

3
(σxx + σyy + σzz). (S.136)

In the principal axis system of the antisymmetric shielding tensor, we define

ρ
{σ}
1,0 = −i

√
2 ζ(a)σ , ρ

{σ}
1,±1 = 0, (S.137)

where

ζ(a)σ =
1

2

√
(σxy − σyx)2 + (σyz − σzy)2 + (σzx − σxz)2. (S.138)

In the principal axis system of the second-rank symmetric Cartesian shielding tensor, where λ
{σ}
a , λ

{σ}
b , and

λ
{σ}
c are the principal components of the symmetric part of the shielding tensor ordered according to the Haeberlen

convention, we define

ρ
{σ}
2,0 =

√
3

2
ζσ, ρ

{σ}
2,±1 = 0, ρ

{σ}
2,±2 = −ησζσ/2, (S.139)

where the second-rank symmetric nuclear shielding tensor anisotropy, ζσ, is defined as

ζσ = λ{σ}c , (S.140)

and the second-rank symmetric nuclear shielding tensor asymmetry parameter is defined as

ησ =
λ
{σ}
b − λ{σ}a

ζσ
. (S.141)

S5.3.1 First-order nuclear shielding correction

The nuclear shielding is generally orders of magnitude smaller in strength than the Zeeman interaction and, therefore,
can be approximated to high accuracy using first-order perturbation theory as

D̂(1)
σ /ℏ = −ω0

{
−
√

1

3
R

{σ}
0,0 +

√
2

3
R

{σ}
2,0

}
T̂1,0(I⃗). (S.142)

We write the first-order nuclear shielding contribution to the |i⟩ → |j⟩ transition frequency as

Ω(1)
σ (Θ,mi,mj) = −ω0 σiso S{σ} pI(mi,mj)− ω0 ζσ D{σ}(Θ)pI(mi,mj). (S.143)

where

S{σ} = −
√

1

3

R
{σ}
0,0

σiso
= 1, D{σ}(Θσ) =

√
2

3

R
{σ}
2,0 (Θσ)

ζσ
, (S.144)

and
pI(mi,mj) = ⟨I,mj |T̂1,0(I⃗)|I,mj⟩ − ⟨I,mi|T̂1,0(I⃗)|I,mi⟩ = mj −mi. (S.145)
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S5.3.2 Nuclear Shielding - Electric Quadrupole Cross Term

The second-order cross-term contribution between the nuclear shielding and the electric quadrupole coupling in the
tilted rotating frame is given by

D̂(2)
σ,q/ℏ = −ωq

2∑
L=1

1∑
m=−1
m̸=0

⟨L m|1 1 m 0⟩
m

R
{σ}
L,−mR

{q}
2,m

3ζq

[
T̂1,m(I⃗), T̂2,−m(I⃗)

]
. (S.146)

Using the results of Sections S1.3 and S2, this expression becomes

D̂(2)
σ,q/ℏ = −ωq

[
π
{1,2}
1,1

A
{σq}
1,0

3ζq
+ π

{1,2}
1,3

A
{σq}
3,0

3ζq
+ π

{1,2}
2,0

R
{σq}
0,0

3ζq
+ π

{1,2}
2,2

R
{σq}
2,0

3ζq
+ π

{1,2}
2,4

R
{σq}
4,0

3ζq

]
T̂2,0(I⃗), (S.147)

where

A
{σq}
L,M =

1∑
m=−1

⟨L M |1 2 m M−m⟩R{σ}
1,mR

{q}
2,M−m, (S.148)

R
{σq}
L,M =

2∑
m=−2

⟨L M |2 2 m M−m⟩R{σ}
2,mR

{q}
2,M−m, (S.149)

and the coefficient π
{1,2}
L,K is given by

π
{1,2}
L,K = −

√
6

1∑
m=−1
m ̸=0

⟨L m|1 1 m 0⟩⟨2 0|1 2 m −m⟩⟨K 0|L 2 −m m⟩
m

. (S.150)

One can show that the anti-symmetric contributions vanish, leaving the second-order correction involving the nuclear
shielding tensor as

D̂(2)
σ,q/ℏ = −ωq

 ∑
K=0,2,4

π
{1,2}
2,K

R
{σq}
K,0

3ζq

 T̂2, 0(I⃗). (S.151)

We can write the contribution to the i→ j transition frequency from the second-order cross term between the nuclear
shielding and quadrupole coupling as

Ω(2)
σ,q(Θ,mi,mj) = −ωq ζσ S{σq} dI(mi,mj)− ωq ζσ D{σq}(Θ) dI(mi,mj)− ωq ζσ G{σq}(Θ) dI(mi,mj), (S.152)

where

S{σq} =

√
6

5

R
{σq}
0,0

3ζqζσ
, D{σq}(Θ) = −

√
3

7

R
{σq}
2,0 (Θ)

3ζqζσ
, G{σq}(Θ) = −

√
48

35

R
{σq}
4,0 (Θ)

3ζqζσ
. (S.153)

S5.4 J coupling

The J Coupling Hamiltonian can be written

ĤJ/ℏ = 2π

2∑
L=0

L∑
m=−L

(−1)mR{J}
L,−mT̂L,m(I⃗1, I⃗2), (S.154)

where the T̂L,m(I⃗1, I⃗2) are formed from the spin angular momentum vectors I⃗1 and I⃗2, given by the expansion

T̂L,m(I⃗1, I⃗2) =

1∑
n=−1

⟨L m|1 1 n+m −n⟩ T̂1,n+m(I⃗1) T̂1,−n(I⃗2). (S.155)

The isotropic J coupling, Jiso, is derived from the trace of the J coupling tensor,

Jiso =
1

3
(Jxx + Jyy + Jzz). (S.156)
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In the principal axis system of the first-rank antisymmetric J coupling tensor, we define

ρ
{J}
1,0 = −i

√
2 ζ

(a)
J , ρ

{J}
1,±1 = 0, (S.157)

where

ζ
(a)
J =

1

2

√
(Jxy − Jyx)2 + (Jyz − Jzy)2 + (Jzx − Jxz)2. (S.158)

In the principal axis system of the second-rank symmetric J coupling Cartesian tensor, where λ
{J}
a , λ

{J}
b , and λ

{J}
c

are principal components ordered according to the Haeberlen convention, we define

ρ
{J}
2,0 =

√
3

2
ζJ , ρ

{J}
2,±1 = 0, ρ

{J}
2,±2 = −ηJζJ/2, (S.159)

where the second-rank symmetric J coupling tensor anisotropy, ζJ , is defined as

ζJ = λ{J}c , (S.160)

the second-rank symmetric J coupling tensor asymmetry parameter is defined as

ηJ =
λ
{J}
b − λ{J}a

ζJ
. (S.161)

S5.4.1 First-Order J-Coupling Correction.

To obtain the first-order Hamiltonian in the weak coupling limit Eq. (S.155) is substituted into Eq. (S.154), replacing
I1 with I and I2 with S, and again eliminating m ̸= 0 terms to obtain

D̂
(1)
JIS

/ℏ = 2π

2∑
L=0

⟨L 0|1 1 0 0⟩R{J}
L,0 T̂1,0(I⃗1) T̂1,0(I⃗2). (S.162)

Since ⟨L 0|1 1 0 0⟩ = 0, the L = 1 term disappears and the first-order energy correction is

D̂
(1)
JIS

/ℏ = 2π
∑
L=0,2

⟨L 0|1 1 0 0⟩R{J}
L,0 T̂1,0(I⃗1) T̂1,0(I⃗2). (S.163)

The first-order weak J coupling correction to the transition frequency is,

Ω
(1)
JIS

(Θ,mI,i,mS,i,mI,j ,mS,j) = 2πJisoS
{JIS} (pp)IS(mI,i,mS,i,mI,j ,mS,j)

+2πζJD{JIS}(Θ) (pp)IS(mI,i,mS,i,mI,j ,mS,j),
(S.164)

where

S{JIS} = −
√

1

3

R
{J}
0,0

Jiso
= 1, D{JIS}(Θ) =

√
2

3

R
{J}
2,0 (Θ)

ζJ
, (S.165)

and the (pp)IS are calculated in the weakly coupled basis set, |mImS⟩,

(pp)IS(mI,i,mS,i,mI,j ,mS,j) =

⟨mI,j ,mS,j |T̂1,0(I⃗)T̂1,0(S⃗)|mI,j ,mS,j⟩ − ⟨mI,i,mS,i|T̂1,0(I⃗)T̂1,0(S⃗)|mI,i,mS,i⟩
= mI,jmS,j −mI,imS,i. (S.166)

S5.4.2 J-Coupling Quadrupolar Cross Term

The second-order cross-term contribution in the weak coupling limit between the J coupling and the electric
quadrupole coupling in the tilted rotating frame is given by

D̂
(2)
J,qI

/ℏ = 2π

(
ωq,I
ω0,I

) 2∑
L=1

1∑
m=−1
m̸=0

⟨L m|1 1 m 0⟩
m

R
{J}
L,−m

R
{qI}
2,m

3ζqI

[
T̂1,m(I⃗), T̂2,−m(I⃗)

]
T̂1,0(S⃗). (S.167)
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Using the results of Sections S1.3 and S2, this expression becomes

D̂
(2)
J,qI

/ℏ = 2π

(
ωq,I
ω0,I

)[
π
{1,2}
1,1

A
{JqI}
1,0

3ζqI
T̂2,0(I⃗)T̂1,0(S⃗) + π

{1,2}
1,3

A
{JqI}
3,0

3ζqI
T̂2,0(I⃗)T̂1,0(S⃗)

+ π
{1,2}
2,0

R
{JqI}
0,0

3ζqI
T̂2,0(I⃗)T̂1,0(S⃗) + π

{1,2}
2,2

R
{JqI}
2,0

3ζqI
T̂2,0(I⃗)T̂1,0(S⃗) + π

{1,2}
2,4

R
{JqI}
4,0

3ζqI
T̂2,0(I⃗)T̂1,0(S⃗)

]
, (S.168)

where the product involving the antisymmetric part of the J tensor is given by

A
{JqI}
L,M =

1∑
m=−1

⟨LM |1 2mM−m⟩R{J}
1,mR

{qI}
2,M−m, (S.169)

and the product involving the symmetric part of the J tensor by

R
{JqI}
L,M =

2∑
m=−2

⟨LM |2 2mM−m⟩R{J}
2,mR

{qI}
2,M−m. (S.170)

As noted earlier, the π
{1,2}
L,K coefficients vanish for odd values of K, leaving only the symmetric tensor contributions

D̂
(2)
J,qI

/ℏ = 2π

(
ωq,I
ω0,I

) ∑
K=0,2,4

π
{1,2}
2,K

R
{JqI}
K,0

3ζqI

 T̂2, 0(I⃗)T̂1,0(S⃗). (S.171)

Using Eq. (S.121), the second-order contribution to the transition frequency between levels |mImS⟩ and |m′
Im

′
S⟩ is

obtained

Ω
(2)
J,qI

(Θ,mI,i,mS,i,mI,j ,mS,j) = 2πζJ

(
ωq,I
ω0,I

)
S{JqI} (dp)IS(mI,i,mS,i,mI,j ,mS,j)

+2πζJ

(
ωq,I
ω0,I

)
D{JqI}(Θ) (dp)IS(mI,i,mS,i,mI,j ,mS,j)

+2πζJ

(
ωq,I
ω0,I

)
G{JqI}(Θ) (dp)IS(mI,i,mS,i,mI,j ,mS,j),

(S.172)

where

S{JqI} =

√
6

5

R
{JqI}
0,0

3ζqI ζJ
, D{JqI}(Θ) = −

√
3

7

R
{JqI}
2,0 (Θ)

3ζqI ζJ
, G{JqI}(Θ) = −

√
48

35

R
{JqI}
4,0 (Θ)

3ζqI ζJ
, (S.173)

and the (dp)IS(mI,i,mS,i,mI,j ,mS,j) are calculated in the weakly coupled basis set, |mImS⟩,

(dp)IS(mI,i,mS,i,mI,j ,mS,j) = ⟨mI,j ,mS,j |T̂2,0(I⃗)T̂1,0(S⃗)|mI,j ,mS,j⟩ − ⟨mI,i,mS,i|T̂2,0(I⃗)T̂1,0(S⃗)|mI,i,mS,i⟩

=

√
3

2

(
m2
I,jmS,j −m2

I,imS,i

)
− 1√

6
I(I + 1)(mS,j −mS,i). (S.174)

Similarly, one obtains

Ω
(2)
J,qS

(Θ,mI,i,mS,i,mI,j ,mS,j) = 2πζJ

(
ωq,S
ω0,S

)
S{JqS} (pd)IS(mI,i,mS,i,mI,j ,mS,j)

+2πζJ

(
ωq,S
ω0,S

)
D{JqS}(Θ) (pd)IS(mI,i,mS,i,mI,j ,mS,j)

+2πζJ

(
ωq,S
ω0,S

)
G{JqS}(Θ) (pd)IS(mI,i,mS,i,mI,j ,mS,j),

(S.175)

where

S{JqS} =

√
6

5

R
{JqS}
0,0

3ζqSζJ
, D{JqS}(Θ) = −

√
3

7

R
{JqS}
2,0 (Θ)

3ζqSζJ
, G{JqS}(Θ) = −

√
48

35

R
{JqS}
4,0 (Θ)

3ζqSζJ
, (S.176)
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and the (pd)IS are calculated in the weakly coupled basis set, |mImS⟩,

(pd)IS(mI,i,mS,i,mI,j ,mS,j) = ⟨mI,j ,mS,j |T̂1,0(I⃗)T̂2,0(S⃗)|mI,j ,mS,j⟩ − ⟨mI,i,mS,i|T̂1,0(I⃗)T̂2,0(S⃗)|mI,i,mS,i⟩

=

√
3

2

(
m2
S,jmI,j −m2

S,imI,i

)
− 1√

6
S(S + 1)(mI,j −mI,i). (S.177)

S5.5 Magnetic dipole coupling

The through-space magnetic dipole coupling Hamiltonian can be written

Ĥd/ℏ = −µ0

4π
ℏγ1γ2

2∑
m=−2

(−1)mR{d}
2,−m T̂2,m(I⃗1, I⃗2). (S.178)

In the principal axis system of the dipolar coupling tensor, we define

ρ
{d}
2,0 =

√
3

2
ζd, ρ

{d}
2,±1 = 0, ρ

{d}
2,±2 = 0, (S.179)

where the second-rank symmetric dipolar coupling tensor anisotropy, ζd, is defined as

ζd = λ{d}c =
2

r3
. (S.180)

The dipolar splitting is given by

ωd = −
µ0

4π

γ1γ2ℏ
r3

= −µ0

8π
ζdγ1γ2ℏ. (S.181)

For convenience, in the derivations to follow, we express the dipole coupling Hamiltonian as

Ĥd/ℏ = ωd

2∑
m=−2

(−1)m
R

{d}
2,−m

ζd/2
T̂2,m(I⃗1, I⃗2). (S.182)

S5.5.1 First-Order Magnetic Dipole Coupling Correction

Like nuclear shielding, the dipolar coupling is generally orders of magnitude smaller in strength than the Zeeman
interaction. Thus, following our earlier approach, the first-order Hamiltonian in the strong coupling limit is obtained
by eliminating m ̸= 0 terms to obtain

D̂
(1)
dII
/ℏ = ωd

R
{d}
2,0

ζd/2
T̂ ◦
2,0(I⃗1, I⃗2). (S.183)

The first-order strong dipolar coupling correction to the transition frequency is,

Ω
(1)
dII

(Θ,Mi,Mj) = ωd D{dII}(Θ) dII(Mi,Mj), (S.184)

where

D{dII}(Θ) =
R

{d}
2,0 (Θ)

ζd/2
, (S.185)

and the dII are calculated in the strongly coupled basis set.
To obtain the first-order Hamiltonian in the weak coupling limit, Eq. (S.155) is substituted into Eq. (S.178),

replacing I1 with I and I2 with S, and again eliminating m ̸= 0 terms to obtain

D̂
(1)
dIS

/ℏ = ωd

√
2

3

A
{d}
2,0

ζd/2
T̂ ◦
1,0(I⃗) T̂

◦
1,0(S⃗). (S.186)

The first-order weak dipolar coupling correction to the transition frequency is,

Ω
(1)
dIS

(Θ,mI,i,mS,i,mI,j ,mS,j) = ωd D{dIS}(Θ) (pp)IS(mI,i,mS,i,mI,j ,mS,j), (S.187)

where

D{dIS}(Θ) =

√
2

3

R
{d}
2,0 (Θ)

ζd/2
, (S.188)

and the (pp)IS(mI,i,mS,i,mI,j ,mS,j) are calculated in the weakly coupled basis set, |mImS⟩.
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S5.5.2 Magnetic Dipole-Electric Quadrupole Coupling Cross Term in Weak Dipole Coupling Limit

The second-order cross-term contribution in the weak coupling limit between the dipolar coupling and the electric
quadrupole coupling in the tilted rotating frame is given by

D̂
(2)
d,qI

/ℏ = ωd

(
ωq,I
ω0,I

) 1∑
m=−1
m ̸=0

⟨2 m|1 1 m 0⟩
m

R
{d}
2,−m

ζd/2

R
{qI}
2,m

3ζqI

[
T̂1,m(I⃗), T̂2,−m(I⃗)

]
T̂1,0(S⃗). (S.189)

Using the results of Sections S1.3 and S2, this expression becomes

D̂
(2)
d,qI

/ℏ = ωd

(
ωq,I
ω0,I

) ∑
J=0,2,4

π
{1,2}
2,J

R
{dqI}
J,0

3ζqI ζd/2

 T̂2,0(I⃗) T̂1,0(S⃗), (S.190)

where

π
{1,2}
2,0 =

√
6

5
, π

{1,2}
2,2 = −

√
3

7
, π

{1,2}
2,4 =

√
48

35
, (S.191)

to obtain

D̂
(2)
d,qI

/ℏ = ωd

(
ωq,I
ω0,I

)(√
6

5

R
{dqI}
0,0

3ζqI ζd/2
−
√

3

7

R
{dqI}
2,0

3ζqI ζd/2
−
√

48

35

R
{dqI}
4,0

3ζqI ζd/2

)
T̂2,0(I⃗) T̂1,0(S⃗).

Using Eq. (S.121) the second-order contribution to the transition frequency between levels |mImS⟩ and |m′
Im

′
S⟩

is obtained

Ω
(2)
d,qI

(Θ,mI,i,mS,i,mI,j ,mS,j) = ωd

(
ωq,I
ω0,I

)
S{dqI} (dp)IS(mI,i,mS,i,mI,j ,mS,j)

+ωd

(
ωq,I
ω0,I

)
D{dqI}(Θ) (dp)IS(mI,i,mS,i,mI,j ,mS,j)

+ωd

(
ωq,I
ω0,I

)
G{dqI}(Θ) (dp)IS(mI,i,mS,i,mI,j ,mS,j),

(S.192)

where

S{dqI} =

√
6

5

R
{dqI}
0,0

3ζqI ζd/2
, D{dqI}(Θ) = −

√
3

7

R
{dqI}
2,0 (Θ)

3ζqI ζd/2
, G{dqI}(Θ) = −

√
48

35

R
{dqI}
4,0 (Θ)

3ζqI ζd/2
. (S.193)

Similarly, one obtains

Ω
(2)
d,qS

(Θ,mI,i,mS,i,mI,j ,mS,j) = ωd

(
ωq,S
ω0,S

)
S{dqS} (pd)IS(mI,i,mS,i,mI,j ,mS,j)

+ωd

(
ωq,S
ω0,S

)
D{dqS}(Θ) (pd)IS(mI,i,mS,i,mI,j ,mS,j)

+ωd

(
ωq,S
ω0,S

)
G{dqS}(Θ) (pd)IS(mI,i,mS,i,mI,j ,mS,j),

(S.194)

where

S{dqS} =

√
6

5

R
{dqS}
0,0

3ζqSζd/2
, D{dqS}(Θ) = −

√
3

7

R
{dqS}
2,0 (Θ)

3ζqSζd/2
, G{dqS}(Θ) = −

√
48

35

R
{dqS}
4,0 (Θ)

3ζqSζd/2
. (S.195)
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S6 Transition Frequency Tensor Contributions

Here, we consider frequency contributions arising from the first- and second-order perturbation terms, which are
summed to give the total transition frequency, Ω(Θ, i, j), for the i→ j transition as[17]

Ω(Θ, i, j) =
∑
k

ωk Ξ
(k)
L (Θ) ξ(k)(i, j), (S.196)

where ωk is the size, Ξ
(k)
L (Θ) is the sample’s spatial orientation function corresponding to the Lth rank spatial

irreducible spherical tensor, and ξ(k)(i, j) is the spin transition symmetry function of the kth frequency contribution.

The spatial orientation functions, Ξ
(k)
L (Θ), in Eq. (S.196), are defined in the laboratory frame, where the z-axis is the

direction of the external magnetic field. Here, Θ(t) are the Euler angles that determine the sample’s lattice spatial
orientation, which can carry a time dependence due to sample rotation.

We can expand the orientation dependence of a given transition frequency using a series of rotations from the
common frame2 of each frequency contribution to the laboratory frame and re-express Eq. (S.196) as

Ω(t, i, j) =
∑
k∈S

[
Lk∑

m0=−Lk

D
(Lk)
m0,0

(ωRt+ ϕ0, θR, 0)

Lk∑
m1=−Lk

D(Lk)
m1,m0

(α, β, γ)∆
{δk}
Lk,m1

]
︸ ︷︷ ︸

ωk
{δ}Ξ

(k)
L (Θ)

ξ(k)(i, j), (S.197)

where ∆
{δk}
L is the frequency-scaled spatial spherical (fsSST) tensor part of the kth frequency contribution of rank

Lk arising from the perturbation term δk in the common frame.

S6.1 Single interaction frequency scaled spatial tensor parts

For frequency contributions from first-order perturbation theory, i.e., involving a single interaction, the components

of ∆
{λ}
L are given by

∆
{λ}
L,m =

L∑
m′=−L

D
(L)
m,m′(Θ

{λ}
PAS) ς

{λ}
L,m′ , (S.198)

where ς
{λ}
L is an fsSST part of rank L in the PAS of the single interaction spatial tensor, and Θ

{λ}
PAS is the orientation

of the PAS relative to the common frame. From Eqs. (S.117) and (S.118), we obtain the fsSSTs for the first-order
and second-order quadrupolar contributions as

ς
{q}
2,m = ωq

ρ
{q}
2,m

3ζq
, and ς

{qq}
L,m =

ω2
q

ω0

σ
{qq}
L,m

9ζ2q
. (S.199)

The transition frequency contributions are obtained from the products ς
{q}
2,mdI(mi,mf ) and ς

{qq}
L,m cL(mi,mf ) trans-

formed into the laboratory frame. We can also rewrite the first and second-order quadrupolar interaction contribu-
tions to the Hamiltonian in terms of the fsSSTs as

D̂(1)
q /ℏ = ωq

R
{q}
2,0

3ζq
T̂2,0(I⃗) = R

{q}
2,0 T̂2,0(I⃗), (S.200)

and

D̂(2)
q,q/ℏ =

∑
L=0,2,4

ω2
q

ω0

R
{qq}
L,0

9ζ2q
ĈL(I⃗),=

∑
L=0,2,4

R
{qq}
L,0 ĈL(I⃗), (S.201)

where

R
{λ}
L,0 =

L∑
n=−L

D
(L)
n,0(ωRt+ ϕ0, θR, 0)∆

{λ}
L,n. (S.202)

From Eqs. (S.117) and (S.118) we obtain the sSST for the first-order shielding contribution as

ς
{σ}
0,0 = −ω0 σiso, and ς

{σ}
2,m = −ω0

√
2

3
ρ
{σ}
2,m. (S.203)

2For crystalline samples, the crystal frame is typically used as the common frame.
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The transition frequency contributions are obtained from the products ς
{σ}
0,0 pI(mi,mf ) and ς

{σ}
2,mp(mi,mf ) trans-

formed into the laboratory frame. The first-order shielding interaction contributions to the Hamiltonian in terms of
the fsSSTs is given by

D̂(1)
σ /ℏ = −ω0

{
−
√

1

3
R

{σ}
0,0 +

√
2

3
R

{σ}
2,0

}
T̂1,0(I⃗) = R

{σ}
0,0 T̂1,0(I⃗) +R

{σ}
2,0 T̂1,0(I⃗), (S.204)

From Eqs. (S.164) and (S.165) we obtain the sSST for the first-order weak J-coupling contribution as

ς
{J}
0,0 = 2πJiso, and ς

{J}
2,m = 2π

√
2

3
ρ
{J}
2,m. (S.205)

The transition frequency contributions are obtained from the products ς
{J}
0,0 (pp)IS(mI,i,mS,i,mI,j ,mS,j) and

ς
{J}
2,m(pp)IS(mI,i,mS,i,mI,j ,mS,j) transformed into the laboratory frame. The first-order weak J interaction contri-
butions to the Hamiltonian in terms of the fsSSTs is given by

D̂
(1)
JIS

/ℏ = R
{J}
0,0 T̂1,0(I⃗) T̂1,0(S⃗) +R

{J}
2,0 T̂1,0(I⃗) T̂1,0(S⃗) (S.206)

From Eqs. (S.187) and (S.188), we obtain the sSST for the first-order weak dipolar-coupling contribution as

ς
{d}
2,m = ωd

√
2

3

ρ
{d}
2,m

ζd/2
. (S.207)

The transition frequency contributions are obtained from the product ς
{d}
2,m(pp)IS(mI,i,mS,i,mI,j ,mS,j) transformed

into the laboratory frame. The first-order weak dipolar interaction contributions to the Hamiltonian in terms of the
fsSSTs is given by

D̂
(1)
dIS

/ℏ = R
{d}
0,0 T̂1,0(I⃗) T̂1,0(S⃗) +R

{d}
2,0 T̂1,0(I⃗) T̂1,0(S⃗) (S.208)

The components of ς
(k)
L for each contribution are expanded and given in Table S9.

S6.2 Cross-term interaction frequency scaled spatial tensor parts

The general expression for the spatial tensor products arising in the cross-term between two interactions is given by

R
{λq}
L,M =

2∑
m=−2

⟨L M |2 2 m M−m⟩R{λ}
2,m R

{q}
2,M−m. (S.209)

S6.2.1 Quadrupolar-Quadrupolar 2nd-order Contributions

From Eqs. (S.132) and (S.133), we obtain the sSST for the quadrupolar-quadrupolar frequency contribution as

∆
{qq}
0,0 =

ω2
q

ω0

R
{qq}
0,0

9ζ2q
=

ω2
q

ω09ζ2q

∑
m

⟨0 0|2 2 m −m⟩R{q}
2,m R

{q}
2,−m, (S.210)

∆
{qq}
2,M =

ω2
q

ω0

R
{qq}
2,M

9ζ2q
=

ω2
q

ω09ζ2q

∑
m

⟨2 M |2 2 m M−m⟩R{q}
2,m R

{q}
2,M−m, (S.211)

∆
{qq}
4,M =

ω2
q

ω0

R
{qq}
4,M

9ζ2q
=

ω2
q

ω09ζ2q

∑
m

⟨4 M |2 2 m M−m⟩R{q}
2,m R

{q}
2,M−m. (S.212)

(S.213)

The scaling factors from the previous page,

R
(q)
2,m =

3ζq
ωq

∆
{q}
2,m, (S.214)

S32



contribution ς
(λ)
L,n

quadrupolar ς
(q)
2,0 = ωq

1√
6

ς
(q)
2,±1 = 0 ς

(q)
2,±2 = −ωq

ηq
6

ς
(qq)
0,0 =

ω2
q

ω0

1

6
√
5

(
η2q
3

+ 1

)

ς
(qq)
2,0 =

ω2
q

ω0

√
2

6
√
7

(
η2q
3
− 1

)
ς
(qq)
2,±1 = 0 ς

(qq)
2,±2 = −

ω2
q

ω0

1

3
√
21
ηq

ς
(qq)
4,0 =

ω2
q

ω0

1√
70

(
η2q
18

+ 1

)
ς
(qq)
4,±1 = 0 ς

(qq)
4,±2 = −

ω2
q

ω0

ηq

6
√
7

ς
(qq)
4,±3 = 0 ς

(qq)
4,±4 =

ω2
q

ω0

η2q
36

shielding ς
(σ)
0,0 = −ω0σiso

ς
(σ)
2,0 = −ω0ζσ ς

(σ)
2,±1 = 0 ς

(σ)
2,±2 = ω0ζσ

ησ√
6

dipolar ς
(d)
2,0 = 2ωd ς

(d)
2,±1 = 0 ς

(d)
2,±2 = 0

J ς
(J)
0,0 = 2πJiso

ς
(J)
2,0 = 2πζJ ς

(J)
2,±1 = 0 ς

(J)
2,±2 = −2πζJ

ηJ√
6

Table S9: Frequency-scaled spatial spherical tensor elements in the principal axis system for the various NMR
interactions.

can be substituted into the above equations to give

∆
{qq}
0,0 =

1

ω0

∑
m

⟨0 0|2 2 m −m⟩∆{q}
2,m ∆

{q}
2,−m, (S.215)

∆
{qq}
2,M =

1

ω0

∑
m

⟨2 M |2 2 m M−m⟩∆{q}
2,m ∆

{q}
2,M−m, (S.216)

∆
{qq}
4,M =

1

ω0

∑
m

⟨4 M |2 2 m M−m⟩∆{q}
2,m ∆

{q}
2,M−m. (S.217)

The transition frequency contributions are obtained from the products ∆
{qq}
L,McL(mi,mj) transformed into the labo-

ratory frame.
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S6.2.2 Quadrupolar-Shielding 2nd-order Contributions

From Eqs. (S.152) and (S.153), we obtain the sSST for the quadrupolar-Shielding Cross Term frequency contribution
as

∆
{σq}
0,0 = −ωq ζσ

√
6

5

R
{σq}
0,0

3ζqζσ
= −

√
6

5

ωq
3ζq

∑
m

⟨0 0|2 2 m −m⟩R{σ}
2,m R

{q}
2,−m, (S.218)

∆
{σq}
2,M = ωq ζσ

√
3

7

R
{σq}
2,M

3ζqζσ
=

√
3

7

ωq
3ζq

∑
m

⟨2 M |2 2 m M−m⟩R{σ}
2,m R

{q}
2,M−m (S.219)

∆
{σq}
4,M = ωq ζσ

√
48

35

R
{σq}
4,M

3ζqζσ
=

√
48

35

ωq
3ζq

∑
m

⟨4 M |2 2 m M−m⟩R{σ}
2,m R

{q}
2,M−m. (S.220)

(S.221)

The scaling factors from the previous page,

R
(q)
2,m =

3ζq
ωq

∆
{q}
2,m and R

{σ}
2,m = − 1

ω0

√
3

2
∆

{σ}
2,m, (S.222)

can be substituted into the above equations to give

∆
{σq}
0,0 =

1

ω0

√
9

5

∑
m

⟨0 0|2 2 m −m⟩∆{σ}
2,m ∆

{q}
2,−m, (S.223)

∆
{σq}
2,M = − 1

ω0

√
9

14

∑
m

⟨2 M |2 2 m M−m⟩∆{σ}
2,m ∆

{q}
2,M−m, (S.224)

∆
{σq}
4,M = − 1

ω0

√
72

35

∑
m

⟨4 M |2 2 m M−m⟩∆{σ}
2,m ∆

{q}
2,M−m. (S.225)

The transition frequency contributions are obtained from the products ∆
{σq}
L,M dI(mi,mj) transformed into the labo-

ratory frame. The second-order quadrupolar-shielding cross-term contributions to the Hamiltonian in terms of the
fsSSTs is given by

D̂(2)
σ,q/ℏ =

(
−
√

6

5

ωq
3ζq

R
{σq}
0,0 +

√
3

7

ωq
3ζq

R
{σq}
2,0 +

√
48

35

ωq
3ζq

R
{σq}
4,0

)
T̂2, 0(I⃗)

=

 ∑
L=0,2,4

L∑
M=−L

D
(L)
M,0(ωRt+ ϕ0, θR, 0)∆

{σq}
L,M

 T̂2, 0(I⃗). (S.226)

S6.2.3 Quadrupolar-weak J 2nd-order Contributions

From Eqs. (S.172) and (S.173) we obtain the sSST for the quadrupolar-weak J cross term frequency contribution as

∆
{JqI}
0,0 = 2πζJ

(
ωq,I
ω0,I

)√
6

5

R
{JqI}
0,0

3ζqI ζJ
=

(
ωq,I
ω0,I

)√
6

5

2π

3ζqI

∑
m

⟨0 0|2 2 m −m⟩R{J}
2,m R

{qI}
2,−m, (S.227)

∆
{JqI}
2,m = −2πζJ

(
ωq,I
ω0,I

)√
3

7

R
{JqI}
2,0

3ζqI ζJ
= −

(
ωq,I
ω0,I

)√
3

7

2π

3ζqI

∑
m

⟨2 M |2 2 m M−m⟩R{J}
2,m R

{qI}
2,M−m, (S.228)

∆
{JqI}
4,M = −2πζJ

(
ωq,I
ω0,I

)√
48

35

R
{JqI}
4,0

3ζqI ζJ
= −

(
ωq,I
ω0,I

)√
48

35

2π

3ζqI

∑
m

⟨4 M |2 2 m M−m⟩R{J}
2,m R

{qI}
2,M−m. (S.229)

The scaling factors from the previous page,

R
(qI)
2,M =

3ζqI
ωq,I

∆
{qI}
2,M and R

{J}
2,M =

1

2π

√
3

2
∆

{J}
2,M , (S.230)
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can be substituted into the above equations to give

∆
{JqI}
0,0 =

1

ω0,I

√
9

5

∑
m

⟨0 0|2 2 m −m⟩∆{J}
2,m∆

{qI}
2,−m, (S.231)

∆
{JqI}
2,M = − 1

ω0,I

√
9

14

∑
m

⟨2 M |2 2 m M−m⟩∆{J}
2,m∆

{qI}
2,M−m, (S.232)

∆
{JqI}
4,M = − 1

ω0,I

√
72

35

∑
m

⟨4 M |2 2 m M−m⟩∆{J}
2,m∆

{qI}
2,M−m. (S.233)

The transition frequency contributions are obtained from the products ∆
{JqI}
L,M (dp)IS(mI,i,mS,i,mI,j ,mS,j) trans-

formed into the laboratory frame. The second-order quadrupolar-J cross-term contributions to the Hamiltonian in
terms of the fsSSTs is given by

D̂
(2)
J,qI

/ℏ =

 ∑
L=0,2,4

L∑
M=−L

D
(L)
M,0(ωRt+ ϕ0, θR, 0)∆

{JqI}
L,M

 T̂2, 0(I⃗)T̂1,0(S⃗). (S.234)

Similarly, one obtains

∆
{JqS}
0,0 =

1

ω0,S

√
9

5

∑
m

⟨0 0|2 2 m −m′⟩∆{J}
2,m∆

{qS}
2,−m, (S.235)

∆
{JqS}
2,M = − 1

ω0,S

√
9

14

∑
m

⟨2 M |2 2 m M−m⟩∆{J}
2,m∆

{qS}
2,M−m, (S.236)

∆
{JqS}
4,M = − 1

ω0,S

√
72

35

∑
m

⟨4 M |2 2 m M−m⟩∆{J}
2,m∆

{qS}
2,M−m′ . (S.237)

The transition frequency contributions are obtained from the products ∆
{JqS}
L,M (pd)IS(mI,i,mS,i,mI,j ,mS,j) trans-

formed into the laboratory frame. The second-order quadrupolar-J cross-term contributions to the Hamiltonian in
terms of the fsSSTs is given by

D̂
(2)
J,qS

/ℏ =

 ∑
L=0,2,4

L∑
M=−L

D
(L)
M,0(ωRt+ ϕ0, θR, 0)∆

{JqS}
L,M

 T̂1,0(I⃗)T̂2, 0(S⃗). (S.238)

S6.2.4 Quadrupolar-Dipolar 2nd-order Contributions

From Eqs. (S.192) and (S.193), we obtain the sSST for the quadrupolar-weak dipolar cross-term frequency contribu-
tion as

∆
{dqI}
0,0 =

1

ω0,I

√
9

5

∑
m

⟨0 0|2 2 m −m⟩∆{d}
2,m∆

{qI}
2,−m, (S.239)

∆
{dqI}
2,M = − 1

ω0,I

√
9

14

∑
m

⟨2 M |2 2 m M−m⟩∆{d}
2,m∆

{qI}
2,M−m, (S.240)

∆
{dqI}
4,M = − 1

ω0,I

√
72

35

∑
m

⟨4 M |2 2 m M−m⟩∆{d}
2,m∆

{qI}
2,M−m. (S.241)

The transition frequency contributions are obtained from the products ∆
{dqI}
L,M (dp)IS(mI,i,mS,i,mI,j ,mS,j) trans-

formed into the laboratory frame. The second-order quadrupolar-dipolar cross-term contributions to the Hamiltonian
in terms of the fsSSTs is given by

D̂
(2)
d,qI

/ℏ =

 ∑
L=0,2,4

L∑
M=−L

D
(L)
M,0(ωRt+ ϕ0, θR, 0)∆

{dqI}
L,M

 T̂2, 0(I⃗)T̂1,0(S⃗). (S.242)
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Similarly, from Eqs. (S.194) and (S.195), we obtain the sSST for the quadrupolar-weak dipolar cross-term fre-
quency contribution as

∆
{dqS}
0,0 =

1

ω0,S

√
9

5

∑
m

⟨0 0|2 2 m −m⟩∆{d}
2,m∆

{qS}
2,−m, (S.243)
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∆
{dqS}
4,M = − 1

ω0,S

√
72

35

∑
m

⟨4 M |2 2 m M−m⟩∆{d}
2,m∆

{qS}
2,M−m. (S.245)

The transition frequency contributions are obtained from the products ∆
{dqS}
L,M (pd)IS(mI,i,mS,i,mI,j ,mS,j) trans-

formed into the laboratory frame. The second-order quadrupolar-dipolar cross-term contributions to the Hamiltonian
in terms of the fsSSTs is given by

D̂
(2)
d,qS

/ℏ =

 ∑
L=0,2,4

L∑
M=−L

D
(L)
M,0(ωRt+ ϕ0, θR, 0)∆

{dqS}
L,M

 T̂1,0(I⃗)T̂2, 0(S⃗). (S.246)

S6.3 Total Transition Frequency Tensor in the Common Frame

The product of each∆L with its corresponding spin transition function for each perturbation term creates a frequency
tensor contribution. The transition frequency tensor contributions currently available in mrsimulator are in Tables 2
of the main article. We can sum all the frequency tensor contributions of similar ranks together into total transition
frequency tensors of rank L, as illustrated below:

F0 = ∆
{σ}
0 pI +∆

{J}
0 (pp)IS +∆

{qq}
0 c0 +∆

{σq}
0 dI +∆

{dq}
0 (dp)IS +∆

{Jq}
0 (dp)IS , (S.247)

F2 = ∆
{σ}
2 pI +∆

{J}
2 (pp)IS +∆

{dIS}
2 (pp)IS +∆

{q}
2 dI

+∆
{qq}
2 c2 +∆

{σq}
2 dI +∆

{dq}
2 (dp)IS +∆

{Jq}
2 (dp)IS , (S.248)

F4 = ∆
{qq}
4 c4 +∆

{σq}
4 dI +∆

{dq}
4 (dp)IS +∆

{Jq}
4 (dp)IS . (S.249)

From the total transition frequency tensor in the common frame, we obtain the total transition frequency in the lab
frame from the total transition frequency tensor in the common frame, FL, as

Ω(t, i, j) =
∑

L=0,2,4

L∑
m=−L

e−im(ωRt+ϕ)d
(L)
m,0(θR)

L∑
m′=−L

e−im1αd
(L)
m′,m(β)e−imγFL,m′(i, j). (S.250)
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S7 Single Transition Coherence Transfer in High ω1 Limit

The RF Hamiltonian after transforming into the multiply rotating interaction frame of the nuclei in each channel,
can be written

ĤRF/ℏ =

nc∑
c=1

∑
u∈Ic

ω1,c

[
Îx,u cosψc + Îy,u sinψc

]
, (S.251)

where ω1,c and ψc are the RF amplitude and phase for the nuclei in the cth channel, respectively, and Îx,u and Îy,u
are the x and y components of the spin operator for the uth nucleus. nI =

∑
c nc

Describing the state space by a direct product space,

|I1, . . . , InI
,m1,i, . . . ,mnI,i⟩ = |I1,m1⟩ ⊗ |I2,m2⟩ ⊗ · · · ⊗ |In,mn⟩ =

nc⊗
c=1

⊗
u∈Ic

|Iu,mu⟩, (S.252)

a single transition operator is written as

χ̂A = |I1, . . . , InI
,m1,j , . . . ,mnI,j⟩ ⟨I1, . . . , InI

,m1,i, . . . ,mnI,i| =

[
nc⊗
c=1

⊗
u∈Ic

|Iu,mu,j⟩ ⟨Iu,mu,i|

]
. (S.253)

The propagator for an ideal pulse in NMR is given by

ÛRF = e−
i
ℏHRF t =

nc⊗
c=1

⊗
u∈Ic

e−iθc(Îu,x cosϕc+Îu,y sinϕc) =

nc⊗
c=1

⊗
u∈Ic

D̂(Iu)
u (αc, βc, γc), (S.254)

where we define θc = ω1,ct is the angle of rotation, and

αc = ψc −
π

2
, βc = θc, γc =

π

2
− ψc, (S.255)

with
D̂(I)(α, β, γ) = e−iαÎze−iβÎye−iγÎz . (S.256)

Thus, we write the propagator as a rotation of the operator, χ̂A, in the Zeeman basis as,

ÛRFχ̂AÛ
†
RF =

nc⊗
c=1

⊗
u∈Ic

D̂(Iu)
u (αc, βc, γc)|Iu∗ ,mu∗,j⟩ ⟨Iu∗ ,mu∗,i|

[
D̂(Iu′ )
u (αc′ , βc′ , γc′)

]−1

(S.257)

where [
D̂(I)(α, β, γ)

]−1

= eiγÎzeiβÎyeiαÎz . (S.258)

We can insert the identity operator in the form of

1̂u =
∑
m′

u,j

∣∣Iu,m′
u,j

〉 〈
Iu,m

′
u,j

∣∣ = ∑
m′

u,i

∣∣Iu,m′
u,i

〉 〈
Iu,m

′
u,i

∣∣ (S.259)

into Eq.(S.257) and obtain,

ÛRFχ̂AÛ
†
RF =

nc⊗
c=1

⊗
u∈Ic

∑
m′

u,j

∑
m′

u,i

∣∣Iu,m′
u,j

〉〈
Iu,m

′
u,j

∣∣D̂(Iu)
u (αc, βc, γc)|Iu,mu,j⟩

⟨Iu,mu,i|D̂−1
u (αc, βc, γc)

∣∣Iu,m′
u,i

〉〈
Iu,m

′
u,i

∣∣. (S.260)

Since

⟨I,mi|D̂−1(α, β, γ)|I,m′
i⟩ = D

∗(I)
m′

i,mi
(α, β, γ), and ⟨I,mj |D̂(α, β, γ)

∣∣I,m′
j

〉
= D

(I)
mj ,m′

j
(α, β, γ), (S.261)

we write Eq.(S.260) as,

ÛRFχ̂AÛ
†
RF =

nc⊗
c=1

⊗
u∈Ic

∑
m′

u,j

∑
m′

u,i

D
(I)
m′

u,j ,mu,j
(αc, βc, γ)D

∗(I)
m′

u,i,mu,i
(αc, βc, γc)

∣∣Iu,m′
u,j

〉 〈
Iu,m

′
u,i

∣∣. (S.262)
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The Wigner D-functions can be written in terms of the reduced Wigner d-functions and exponentials allowing for us
to write Eq.(S.262) as,

ÛRFχ̂AÛ
†
RF =

nc⊗
c=1

⊗
u∈Ic

∑
m′

u,j

∑
m′

u,i

d
(I)
m′

u,j ,mu,j
(βc)d

(I)
m′

u,i,mu,i
(βc)e

−ip′uαce−ipuγc
∣∣Iu,m′

u,j

〉 〈
Iu,m

′
u,i

∣∣, (S.263)

combining terms, defining p′u = m′
u,j−m′

u,i, pu = mu,j−mu,i. Using the definitions in Eq.(S.255) we write Eq.(S.263)
as,

ÛRFχ̂AÛ
†
RF =

nc⊗
c=1

⊗
u∈Ic

∑
m′

u,j

∑
m′

u,i

d
(I)
m′

u,j ,mu,j
(θc)d

(I)
m′

u,i,mu,i
(θc)e

−i(p′u−pu)ψcei(p
′
u−pu)π

2

∣∣Iu,m′
u,j

〉 〈
Iu,m

′
u,i

∣∣. (S.264)

Further defining ∆pu = p′u − pu, Eq.(S.264) becomes,

ÛRFχ̂AÛ
†
RF =

nc⊗
c=1

⊗
u∈Ic

∑
m′

u,j

∑
m′

u,i

d
(I)
m′

u,j ,mu,j
(θc)d

(I)
m′

u,i,mu,i
(θc)e

−i∆puψc(i)∆pu
∣∣Iu,m′

u,j

〉 〈
Iu,m

′
u,i

∣∣. (S.265)

From Eq.(S.265) we find that the efficiency associated with the transition⊗nc

c=1

⊗
u∈Ic

|Iu,mu,j⟩ ⟨Iu,mu,i| →
⊗nc

c=1

⊗
u∈Ic

∣∣Iu,m′
u,j

〉 〈
Iu,m

′
u,i

∣∣ is
nc∏
c=1

∏
u∈Ic

d
(Iu)
m′

u,j ,mu,j
(θc)d

(Iu)
m′

u,i,mu,i
(θc)e

−i∆puψc(i)∆pu . (S.266)
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S8 Transition Pathway Signal in a Rotating Sample

The free evolution of a transition χ̂ = |j⟩ ⟨i| under the quantum mechanical propagator, arising from a Hamiltonian
that is diagonal in the Zeeman basis, is given by

Û(t1, t0|α, β, γ)χ̂Û†(t1, t0|α, β, γ) = exp

{
− i
ℏ

∫ t1

t0

Ĥ(s)ds

}
|j⟩ ⟨i| exp

{
i

ℏ

∫ t1

t0

Ĥ(s)ds

}
= uχ(t1, t0|α, β, γ)|j⟩ ⟨i|, (S.267)

where

uχ(t1, t0|α, β, γ) = exp

{
−i
∫ t1

t0

Ωχ(s)ds

}
. (S.268)

Here, Ωχ(t) = Ej(t) − Ei(t) is the time-dependent frequency for the i → j transition, which we write by recasting
Eq. (S.250) into the form

Ωχ(t) =
∑

L=0,2,4

ϖL,0(θR, α, β) +

L∑
m=−L
m ̸=0

ϖL,m(θR, α, β)e
−im(ωRt+ϕ+γ)

 ,
where ωR is the rotor frequency, ϕ is the initial rotor phase, and

ϖL,m(θR, α, β)e
−im(ωRt+ϕ+γ) = d

(L)
m,0(θR)e

−im(ωRt+ϕ+γ)
L∑

m′=−L
e−im

′αd
(L)
m′,m(β)FL,m′(i, j). (S.269)

Note that
ϖ∗
L,m (θR, α, β) = ϖL,−m (θR, α, β) . (S.270)

Evaluating the integral in Eq. (S.268) gives

Ψ(t1, t0) =

∫ t1

t0

Ωχ(s)ds =Wχ(θR, α, β)(t1 − t0) +
4∑

m=−4
m ̸=0

Wm,χ(θR, α, β)e
−im(γ+ϕ)

{
e−imωRt1 − e−imωRt0

}
,

=Wχ(θR, α, β)(t1 − t0) +
4∑

m=−4
m̸=0

Wm,χ(θR, α, β)e
−im(ωRt1+γ+ϕ) −

4∑
m=−4
m ̸=0

Wm,χ(θR, α, β)e
−im(ωRt0+γ+ϕ), (S.271)

where

Wχ(θR, α, β) =
∑

L=0,2,4

ϖL,0(θR, α, β), and Wm,χ(θR, ωR, α, β) =
∑
L=2,4

ϖL,m(θR, α, β)

imωR
. (S.272)

Also, note that

W ∗
m,χ(θR, ωR, α, β) =

∑
L=2,4

ϖ∗
L,m(θR, α, β)

−imωR
=
∑
L=2,4

ϖL,−m (θR, α, β)

i(−m)ωR
=W−m,χ(θR, ωR, α, β). (S.273)

Following Mehring[24], uχ(t|α, β, γ) can be rewritten using the property of Dirac delta functions of a periodic function∫
all Φ

dΦδ(Φ− θ)f(Φ) = f(θ), (S.274)

to obtain

uχ(t1, t0|α, β, γ) = e−iWχ(θR,α,β)(t1−t0)

× 1

2π

∫ 2π

0

dΦ1δ(Φ1 − ωRt1 − γ − ϕ) exp

−i
4∑

m=−4
m̸=0

Wm,χ(θR, ωR, α, β)e
−imΦ1


× 1

2π

∫ 2π

0

dΦ2δ(Φ2 − ωRt0 − γ − ϕ) exp

i
4∑

m=−4
m̸=0

Wm,χ(θR, ωR, α, β)e
−imΦ2

 . (S.275)
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The Dirac delta functions can then be expanded as sums using the identity

δ(Θ− θ) =
∞∑

N=−∞
e±iN(Θ−θ), (S.276)

giving

uχ(t1, t0|α, β, γ) = e−iWχ(θR,α,β)(t1−t0)

× 1

2π

∫ 2π

0

dΦ1

∞∑
N1=−∞

eiN1(Φ1−ωRt1−γ−ϕ) exp

−i
4∑

m=−4
m ̸=0

Wm,χ(θR, ωR, α, β)e
−imΦ1


× 1

2π

∫ 2π

0

dΦ2

∞∑
N2=−∞

e−iN2(Φ2−ωRt0−γ−ϕ) exp

i
4∑

m=−4
m̸=0

Wm,χ(θR, ωR, α, β)e
−imΦ2

 . (S.277)

After regrouping, we obtain

uχ0(α, β, γ) = e−iWχ(θR,α,β)(t1−t0)

×
∞∑

N1=−∞

 1

2π

∫ 2π

0

dΦ1 exp

iN1Φ1 − i
4∑

m=−4
m ̸=0

Wm,χ(θR, ωR, α, β)e
−imΦ1


 e−iN1(γ+ϕ)e−iN1ωRt1

×
∞∑

N2=−∞

 1

2π

∫ 2π

0

dΦ2 exp

−iN2Φ2 + i

4∑
m=−4
m̸=0

Wm,χ(θR, ωR, α, β)e
−imΦ2


 eiN2(γ+ϕ)eiN2ωRt0 . (S.278)

Thus, we write

uχ0(α, β, γ) = e−iWχ(θR,α,β)(t1−t0)

∞∑
N1=−∞

∞∑
N2=−∞

Aχ(N1|θR, ωR, α, β)A∗
χ(N2|θR, ωR, α, β)e−iN1(γ+ϕ)eiN2(γ+ϕ)e−iN1ωRt1eiN2ωRt0 , (S.279)

defining

Aχ(N |θR, ωR, α, β) =
1

2π

∫ 2π

0

aχ(Φ|θR, ωR, α, β) eiNΦdΦ, (S.280)

where

aχ(Φ|θR, ωR, α, β) = exp

−i
4∑

m=−4
m ̸=0

Wm,χ(θR, ωR, α, β)e
−imΦ

 . (S.281)

From Eq. (S.281) we obtain

a∗(Φ|θR, ωR, α, β) = exp

i
4∑

m=−4
m ̸=0

W ∗
m(θR, ωR, α, β)e

imΦ

 = exp

i
4∑

m=−4
m ̸=0

W−m(θR, ωR, α, β)e
imΦ


= exp

i
4∑

m=−4
m̸=0

Wm(θR, ωR, α, β)e
−imΦ

 . (S.282)

and obtain

A∗
χ(N |θR, ωR, α, β) =

1

2π

∫ 2π

0

a∗χ(Φ|θR, ωR, α, β)e−iNΦdΦ. (S.283)
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Equation (S.280) also reveals the important discrete Fourier relationships[13, 22] between sideband order, N , and
rotor pitch, Φ, i.e.,

A(±N) =
1

2π

∫ π

−π

a(Φ)e±iNΦdΦ. and a(Φ) =

∞∑
N=−∞

A(±N)e∓iNΦ, (S.284)

A∗(±N) =
1

2π

∫ π

−π

a∗(Φ)e∓iNΦdΦ. and a∗(Φ) =

∞∑
N=−∞

A∗(±N)e±iNΦ. (S.285)

The numerical calculation of the A(N |θR, ωR, α, β, 0) proceeds as follows. We expand the ±m pairs in the
exponential term as

W−m(θR, ωR, α, β)e
imθ +Wm(θR, ωR, α, β)e

−imθ

= 2Xm(θR, ωR, α, β) cosmθ − 2Ym(θR, ωR, α, β) sinmθ, (S.286)

to substitute into the expression for a(Φ|θR, ωR, α, β, 0) in Eq. (S.281) to obtain

a(Φ|θR, ωR, α, β) = exp

[
i

4∑
m=1

{2Xm(θR, ωR, α, β) cosmΦ− 2Ym(θR, ωR, α, β) sinmΦ}

]
. (S.287)

For a given value of α and β, this function is numerically evaluated from Φ = 0 to 2π with a ∆Φ increment.
Following Eq. (S.284), we transform a(Φ|θR, ωR, α, β) into A(N |θR, ωR, α, β). To avoid aliasing of signals in the
sideband order dimension, the ∆Φ increment must be smaller than π/|Nband|, where |Nband| is the highest order
sideband present in the sideband pattern.

Further rearranging of Eq. (S.279) gives

uχ(t1, t0|α, β, γ) =
∑
N,N ′

Aχ(N |θR, ωR, α, β)A∗
χ(N

′|θR, ωR, α, β)

× ei(N
′−N)(γ+ϕ)ei(N

′−N)ωRt0e−i(Wχ(θR,α,β)+NωR)∆t1 , (S.288)

where ∆t1 = t1− t0. In the discussions that follow, we drop the explicit orientation and rotor angle dependence, i.e.,
take Aχ(N |ωR) ≡ Aχ(N |θR, ωR, α, β), Wχ ≡Wχ(θR, α, β), uχ(t1, t0|α, β, γ) ≡ uχ(t1, t0) and write the “propagator”
as

uχ(t1, t0) =
∑
N,N ′

Aχ(N |θR, ωR)A∗
χ(N

′|θR, ωR)ei(N
′−N)(γ+ϕ)ei(N

′−N)ωRt0e−i(Wχ+NωR)∆t1 . (S.289)

At infinite spinning speed, i.e., ωR →∞, we have Wm,χ(θR, ωR)→ 0 giving Aχ(0|θR, ωR) = 1 and
Aχ(N ̸= 0|θR, ωR) = 0, and Eq. (S.268) becomes

lim
ωR→∞

uχ(t1, t0) = e−iWχ∆t1 . (S.290)

Also note that when t1 = t0, we expect that

uχ(t0, t0) =
∑
N,N ′

Aχ(N |θR, ωR)A∗
χ(N

′|θR, ωR)ei(N
′−N)(γ+ϕ)ei(N

′−N)ωRt0 = 1. (S.291)

For this to be true for arbitrary γ + ϕ and t0 requires N = N ′, giving

uχ(t0, t0) =
∑
N

Aχ(N |θR, ωR)A∗
χ(N |θR, ωR) = 1. (S.292)

Similarly, at finite spinning speeds with stroboscopic sampling, i.e., t1 − t0 = nτR, we find that
uχ(nτR + t0, t0) = e−iWχnτR .
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S8.1 Evolution through one transition - The χ̂ spectrum

Consider the signal from a transition χ̂

sχ(t1, t0) = uχ(t1, t0)uχ,0(α, β, γ), (S.293)

where uχ,0(α, β, γ) is the initial complex amplitude of the χ̂ transition signal. If we can assume that uχ,0(α, β, γ) =
uχ,0 is independent of orientation, then we can perform the integral over γ analytically. In this case, the signal
becomes

⟨sχ(t1, t0)⟩γ = uχ,0
∑
N

[
Aχ(N |ωR)

∑
N ′

A∗
χ(N

′|ωR)ei(N
′−N)ωRt0

∫ 2π

0

ei(N
′−N)(γ+ϕ)dγ

]
e−i(Wχ+NωR)∆t1 . (S.294)

The integral over γ is non-zero only when N ′ = N . Thus, the signal becomes

⟨sχ(t1, t0)⟩γ = uχ,0
∑
N

I(N)e−i(Wχ+NωR)∆t1 , (S.295)

where I(N) = 2π|Aχ(N |ωR)|2. Defining t = ∆t1, a Fourier transform of ⟨sχ(t)⟩γ gives the χ̂ transition spectrum as

⟨sχ(ω)⟩γ = uχ,0
∑
N

I(N)δ (Wχ +NωR − ω) , (S.296)

and only a numerical integration over the angles α and β remains to obtain the spectrum from the polycrystalline
sample. Notice that the dependence on t0 and the initial rotor phase, ϕ, has been eliminated from the spectrum by
the integral over γ.

S8.2 Free evolution through two transitions - The χ̂A → χ̂B spectrum

Consider a transition pathway, χ̂A → χ̂B signal written as

sAB(t2, t1, t0|α, β, γ) = uB(t2, t1) uBA(α, β, γ) uA(t1, t0) uA,0(α, β, γ), (S.297)

where uA,0(α, β, γ) is the initial complex amplitude of the Â transition signal, uBA(α, β, γ) is the complex amplitude
of the χ̂A → χ̂B coherence transfer, and uA(t1, t0) and uB(t2, t1) are the propagators for the χ̂A and χ̂B transitions,
respectively. Again, assuming there is no advance of the rotor phase during uBA(α, β, γ), and further assume that
uA,0(α, β, γ) = uA,0 and uBA(α, β, γ) = uBA are both independent of orientation, the signal becomes

sAB(t2, t1, t0, α, β, γ) = uBAuA,0

×

 ∑
NB ,N ′

B

AB(NB |θR, ωR)A∗
B(N

′
B |θR, ωR)ei(N

′
B−NB)ωRt1ei(N

′
B−NB)(γ+ϕ)e−i(WB+NBωR)∆t2


×

 ∑
NA,N ′

A

AA(NA|θR, ωR)A∗
A(N

′
A|θR, ωR)ei(N

′
A−NA)ωRt0ei(N

′
A−NA)(γ+ϕ)e−i(WA+NAωR)∆t1

 , (S.298)

where ∆t2 = t2 − t1. We rearrange and perform a partial integration over γ,

⟨sAB(t2, t1, t0, α, β)⟩γ = uBAuA,0

×
∑

NA,NB

∑
N ′

A,N
′
B

e−i(WA+NAωR)∆t1e−i(WB+NBωR)∆t2AA(NA|ωR)A∗
A(N

′
A|ωR)AB(NB |ωR)A∗

B(N
′
B |ωR)

× ei(N
′
A−NA)ωRt0ei(N

′
B−NB)ωRt1ei(N

′
A−NA)ϕei(N

′
B−NB)ϕ

∫ 2π

0

ei(N
′
A−NA)γei(N

′
B−NB)γdγ, (S.299)

which integrates to a non-zero value only when (N ′
A −NA) + (N ′

B −NB) = 0, leaving

⟨sAB(∆t2,∆t1, α, β)⟩γ = uBAuA,0
∑

NA,NB ,N ′
B

I(NA, NB , N
′
A, N

′
B)

× e−i(WA+(NA−(N ′
B−NB))ωR)∆t1e−i(WB+NBωR)∆t2 (S.300)
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where
I(NA, NB , N

′
A, N

′
B) = 2πAA(NA|ωR)A∗

A(N
′
A|ωR)AB(NB |ωR)A∗

B(N
′
B |ωR),

and N ′
A = NA − (N ′

B −NB).
In this example, we can simplify the expression to

⟨sAB(∆t2,∆t1, α, β)⟩γ = uBAuA,0
∑

N ′
A,NB

I(N ′
A, NB)e

−i(WA+N ′
AωR)∆t1e−i(WB+NBωR)∆t2 , (S.301)

where
I(N ′

A, NB) = 2πA∗
A(N

′
A|ωR)AB(NB |ωR)

∑
N ′

B

A∗
B(N

′
B |ωR)AA(N ′

B + (N ′
A −NB)|ωR). (S.302)

We recognize the summation is a discrete convolution of A∗
B(N) and AA(N), where NAB = N ′

A −NB , i.e.,

{A∗
B ⊗AA}(NAB) =

∞∑
N ′

B=−∞

A∗
B(N

′
B)AA(N

′
B +NAB). (S.303)

One can show that the discrete Fourier transform of the convolution is the product of the discrete Fourier transforms
of the individual functions, a∗B(Φ)aA(Φ), i.e.,

∞∑
NAB=−∞

{A∗
B ⊗AA}(NAB)e−iNABΦ =

∞∑
NAB=−∞

 ∞∑
N ′

B=−∞

A∗
B(N

′
B)AA(N

′
B +NAB)

 e−iNABΦ

=

∞∑
N ′

B=−∞

A∗
B(N

′
B)

( ∞∑
NAB=−∞

AA(NAB +N ′
B)e

−iNABΦ

)
=

∞∑
N ′

B=−∞

A∗
B(N

′
B)
(
aA(Φ)e

iN ′
BΦ
)

= aA(Φ)

∞∑
N ′

B=−∞

A∗
B(N

′
B)e

iN ′
BΦ = a∗B(Φ)aA(Φ). (S.304)

Therefore, Eq. (S.302) becomes

I(N ′
A, NB) = 2πA∗

A(N
′
A|ωR)AB(NB |ωR)AAB(N ′

A −NB |ωR), (S.305)

where

AAB(NAB |ωR) = {A∗
B ⊗AA}(NAB) =

1

2π

∫ 2π

0

a∗B(Φ)aA(Φ)e
−iNABΦdΦ. (S.306)

A Fourier transform with respect to tA = ∆t1 and tB = ∆t2 gives the χ̂A → χ̂B transition pathway spectrum for
a given crystallite orientation, (α, β, γ), as

⟨sAB(ωA, ωB , α, β)⟩γ = uBAuA,0
∑

N ′
A,NB

I(N ′
A, NB) δ (WA +N ′

AωR − ωA) δ (WB +NBωR − ωB) , (S.307)

and only a numerical integration over the angles α and β remains to obtain the spectrum from the polycrystalline
sample.

S8.2.1 2H 2D PASS

In a PASS sequence,[11, 12, 3, 2, 39], illustrated in Fig. S8A, an effective time coordinate, ϵ, is created during
a constant time period, T , during which only pure chemical shift anisotropy influences the signal phase. This is
achieved with an initial excitation pulse applied at t = −T followed by a series of π pulses applied at specific times
during the constant time period. The direct acquisition of the signal begins at the end of the constant time period,
i.e., at t = 0. Recall that the effect of a π-pulse on transition symmetries is pI

π→ −pI and dI
π→ dI . Since frequency

contributions with dI symmetry remain invariant through a π pulse, we can focus our attention on the effect of the
π pulses on the signal phase due to frequency contributions with pI symmetry, treating the dI contributions as a
constant signal phase contribution at the end of T .
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Figure S8: Pulse sequence and spatial-transition symmetry pathways for 2D Phase Adjusted Spinning Sideband
(2D-PASS) sequence applied to a 2H (I = 1) nucleus. In this sequence, the π pulse spacings are varied during a
constant time period, T , to produce a desired effective signal evolution of duration ϵ between 0 to tR—depending
the π-pulse spacings—from only the D1 · p and D2 · p frequency contributions. During the second time period, t, the
transition evolves under all frequency contributions, i.e., S ·pI , D1 ·pI , D2 ·pI , D1 · dI and D2 · dI . During this time
period, the D1 ·pI , D2 ·pI contributions are refocussed into an echo along ϵ = t, as shown by the green arrow in (B).
As shown by Aleksis et al.[1] the resulting spectrum can be sheared to produce a correlation of spinning sidebands
produced by pure shift anisotropy to isotropic chemical shift and first-order quadrupolar frequency anisotropy.
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Between the initial excitation pulse and signal acquisition are Q π-pulses, applied at times
−T + τ1,−T + τ2, . . . ,−T + τQ. The signal phase contribution at the end of T is given by

ΦQ = (−1)Q
Q∑
q=0

(−1)q
−T+τq+1∫
−T+τq

Ω(s)ds, (S.308)

where τ0 = 0, τQ+1 = T and Ω(s) is the time dependent transition frequency of the observed pI = −1 transition.
Given

−T+τq+1∫
−T+τq

Ω(s)ds =W0(τq+1 − τq) +
∑
m ̸=0

Wme
−im(γ+ϕ)eimωRT

{
e−imωRτq+1 − e−imωRτq

}
, (S.309)

the signal phase at the end of the constant time period is given by

ΦQ =W0

[
(−1)Q

Q∑
q=0

(−1)q(τq+1 − τq)

]

+
∑
m ̸=0

Wme
−im(γ+ϕ)eimωRT

[
(−1)Q

Q∑
q=0

(−1)q
{
e−imωRτq+1 − e−imωRτq

}]
. (S.310)

This can be further simplified to

ΦQ = W0

[
T − 2(−1)Q

Q∑
q=1

(−1)qτq

]
−
∑
m̸=0

Wme
−im(γ+ϕ)

[
2(−1)Q

Q∑
q=1

(−1)qe−imθqeimθT + (−1)QeimθT − 1

]
,

(S.311)

where θT = ωRT , and θq = ωRτq.
In PASS, the timings of the Q π pulses are manipulated so the signal phase at the end of the constant time period,

i.e., at t = 0, matches the phase of a pI = +1 transition evolving under only the anisotropic frequency contribution
with pI symmetry for a duration ϵ, given by

ΦPASS(ϵ) = −
∫ ϵ

0

Ω(s)ds = −
∑
m̸=0

Wme
−im(γ+ϕ)

[
e−imωRϵ − 1

]
. (S.312)

Evolving forward from t = 0, the 2D PASS signal phase then becomes

Φ(ϵ, t) = ΦPASS(ϵ) + Φ(t) =W0 t+
∑
m ̸=0

Wme
−im(γ+ϕ)

[
e−imωRt − e−imωRϵ

]
. (S.313)

The timings for the π pulses that give the signal phase of Eq. (S.312) comes from equating Eqs. (S.311) and (S.312)
to obtain the PASS equations:

θT − 2(−1)Q
Q∑
q=1

(−1)qθq = 0, (S.314)

and

2(−1)Q
Q∑
q=1

(−1)qeimθqe−imθT + (−1)Qe−imθT = e−imΘ, (S.315)

where Θ = ωRϵ. Levitt and coworkers[3] suggested a five π pulse (Q = 5) 2D PASS sequence, of constant duration
T , with θT = 2π, yielding the equations

2

5∑
q=1

(−1)qθq + 2π = 0, and − 2

5∑
q=1

(−1)qeimθq − 1 = e−imΘ, for m = 1, 2. (S.316)

These non-linear equations can be solved numerically for the π pulse timings, which are plotted as a function of ϵ in
Fig. S8B. Tabulated values can be found elsewhere[3].
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The 2D PASS experiment in terms of spatial-transition symmetry product pathways is illustrated in Fig. S8C. In
this perspective, the S · pI spatial-transition symmetry product pathway leads to an echo at the end of the constant
time period, i.e., its contribution averages to zero at the end of T . In contrast, the averaged D1 · pI and D2 · pI
spatial-transition symmetry product pathways at the end of T mimic the D1 · pI and D2 · pI pathways experienced
by the free evolution of a transition with pI = +1 under MAS with the effective evolution time ϵ. With all frequency
contributions present during the forward evolution of the pI = −1 transition in t, there is a refocusing of the D1 ·pI
and D2 · pI contributions into an echo along the ϵ + t = 0 line, along which only the isotropic chemical shift and
the first-order quadrupolar anisotropy modulate the signal phase. Since the isotropic chemical shift and the first-
order quadrupolar frequency anisotropy contributions are removed during ϵ evolution, the resulting spectrum can be
sheared to produce a correlation of spinning sidebands produced by pure shift anisotropy along ϵ to isotropic chemical
shift and first-order quadrupolar frequency anisotropy along the along the ϵ+ t = 0 line, as shown by Aleksis et al.[1].

In Fig. S9 is full density matrix simulation of the 2D PASS sequence, shown in Fig. S8, for a 2H nucleus,
reproducing Fig. 2 from Aleksis et al.[1].3 The 2D spectra were obtained by applying a shear of κ(ω1) = −1 parallel
to the ω1 dimension (Fourier conjugate of ϵ), i.e., the D1 · pI , D2 · pI dimension. This is followed by a frequency
domain reversal of the D1 · pI , D2 · pI dimension to make the 2D spectrum correspond to the pI = −1 → −1 and
dI = ±1→ ±1 transition symmetry pathways.

An equivalent 2D spectrum can be simulated signifcantly more efficiently in the frequency domain using
Eq. (S.307). In this case, the 2D PASS spectrum is obtained from two transition pathway signals, i.e.,

|−1⟩ ⟨0| → |−1⟩ ⟨0| and |0⟩ ⟨+1| → |0⟩ ⟨+1|,

which map to the pI = −1 → −1 and dI = ±1 → ±1 transition symmetry pathways. In ω1 the spectrum contains
the D1 · pI and D2 · pI frequency contributions, while in ω2 the spectrum contains all frequency contributions, i.e.,
S · pI , D1 · pI , D2 · pI , D1 · dI and D2 · dI . In this case, the 2D PASS spectrum were obtained from the simulated
spectrum by applying a shear of κ(ω1) = 1 parallel to the ω1 dimension. The resulting 2D spectra, shown in Fig. S10,
are identical to those in Fig. S9 obtained with the full 2D PASS sequence in a full density matrix simulation. The
simulations were performed on a laptop computer (Apple MacBook Air, 3.49 GHz M2 processor with 8 cores and 24
GB RAM) and completed in approximately 50 ms.

3While the 2D spinning sideband patterns are in agreement, there appears to be a discrepancy with Aleksis et al.[1] with regard to the
frequency domain reversal of the D1 · pI , D2 · pI dimension. Without access to their time-domain simulations or experimental datasets,
it was not possible to track down the origin of this discrepancy.
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Density Matrix Simulation - 2D PASS

Figure S9: Density Matrix Simulation of the 2D PASS spectra, using the pulse sequence shown in Fig. S8, for
a 2H nucleus with Cq = 50 kHz, ηq = 0.9 and ζσ = 150 ppm and ησ = 0.7 for various relative orientations of the
shielding to EFG tensor while spinning at ωR/(2π) = 2 kHz. The 2D spectrum was obtained by applying a shear
of κ(ω1) = −1 parallel to the ω1 dimension (Fourier conjugate of ϵ), i.e., the D1 · pI , D2 · pI dimension. This is
followed by a frequency domain reversal of the D1 · pI , D2 · pI dimension to make the 2D spectrum correspond
to the pI = −1→ −1 and dI = ±1→ ±1 transition symmetry pathways. These simulations were performed to
reproduce Fig. 2 from Aleksis et al.[1]. Simulations were performed using density matrix code of Trease et al.[36]. To
ensure convergence of the spectral amplitudes, simulations were averaged over 131,072 orientations on the hemisphere
using three-angle integration sets described by Haber[18]. Each simulation was completed in approximately 200 s on
a laptop computer (Apple MacBook Air, 3.49 GHz M2 processor with 8 cores and 24 GB RAM).
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Figure S10: Frequency domain simulation of the 2D PASS spectra using Eq. (S.307) for a 2H nucleus with
Cq = 50 kHz, ηq = 0.9 and ζσ = 150 ppm and ησ = 0.7 for various relative orientations of the shielding to EFG
tensor while spinning at ωR/(2π) = 2 kHz, in agreement with the full density matrix simulations in Fig. S9. These
simulations employ the two transition pathways |−1⟩ ⟨0| → |−1⟩ ⟨0| and |0⟩ ⟨+1| → |0⟩ ⟨+1|, which map to the transi-
tion symmetry pathways pI = −1→ −1 and dI = ±1→ ±1. Each simulation was completed in approximately 50 ms
on a laptop computer (Apple MacBook Air, 3.49 GHz M2 processor with 8 cores and 24 GB RAM).
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S8.2.2 Stroboscopic sampling during one time domain

If the spinning speed is infinite, i.e., ωR →∞, or stroboscopically sampled during one of the evolution periods, e.g.,
∆t1 = nτR, then AA(0|ωR) = 1 and AA(N |ωR) = 0 for N ̸= 0. In this case, a partial integration of Eq. (S.298) over
γ becomes

⟨sAB(t2, t1, t0, α, β)⟩γ = uBAuA,0

×
∑
NB

∑
N ′

B

e−iWA∆t1e−i(WB+NBωR)∆t2AB(NB |ωR)A∗
B(N

′
B |ωR)

× ei(N
′
B−NB)ωRt1ei(N

′
B−NB)ϕ

∫ 2π

0

ei(N
′
B−NB)γdγ, (S.317)

which integrates to a non-zero value only when N ′
B = NB , leaving

⟨sAB(t2, t1, t0, α, β)⟩γ = uBAuA,0e
−iWA∆t1

∑
NB

I(NB)e
−i(WB+NBωR)∆t2 , (S.318)

where
I(NB) = 2π|AB(NB |ωR)|2. (S.319)

S8.2.3 Skew projection

When the two free evolution periods combine to form a single evolution period, i.e., ∆t = xA∆t1 + xB∆t1, the
time-domain signal becomes

⟨sAB(∆t, α, β)⟩γ = uBAuA,0
∑

N ′
A,NB

I(N ′
A, NB)e

−i[xA(WA+N ′
AωR)+xB(WB+NBωR)]∆t. (S.320)

In the special case of xA = xB = 1/2, this can be expanded and rewritten as

⟨sAB(∆t, α, β)⟩γ = uBAuA,0e
−i(WA+WB)∆t/2

∑
N ′

A,NB

I(N ′
A, NB)e

−i(N ′
A+NB)ωR∆t/2, (S.321)

where WAB = (WA +WB)/2. Defining N = N ′
A +NB , we obtain

⟨sAB(∆t, α, β)⟩γ = uBAuA,0e
−iWAB∆t

∑
N

I(N)e−iNωR∆t/2, (S.322)

where, since N ′
A = N −NB , we have

I(N) = 2π
∑
NB

A∗
A(N −NB |ωR)AB(NB |ωR)AAB(N − 2NB |ωR). (S.323)

S8.2.4 Rotor phase advance during uBA(α, β, γ)

Consider the case where the rotor phase advances during the coherence transfer, i.e., uBA(α, β, γ), but we have no
transition frequency evolution. In this case, we write the signal in Eq. (S.298) as

sAB(t3, t2, t1, t0, α, β, γ) = uBAuA,0

×

 ∑
NB ,N ′

B

AB(NB |θR, ωR)A∗
B(N

′
B |θR, ωR)ei(N

′
B−NB)ωRt2ei(N

′
B−NB)(γ+ϕ)e−i(WB+NBωR)∆t3


×

 ∑
NA,N ′

A

AA(NA|θR, ωR)A∗
A(N

′
A|θR, ωR)ei(N

′
A−NA)ωRt0ei(N

′
A−NA)(γ+ϕ)e−i(WA+NAωR)∆t1

 , (S.324)
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where ∆t3 = t3 − t2. We rearrange and perform a partial integration over γ,

⟨sAB(t3, t2, t1, t0, α, β)⟩γ = uBAuA,0

×
∑

NA,NB

∑
N ′

A,N
′
B

e−i(WA+NAωR)∆t2e−i(WB+NBωR)∆t3AA(NA|ωR)A∗
A(N

′
A|ωR)AB(NB |ωR)A∗

B(N
′
B |ωR)

× ei(N
′
A−NA)ωRt0ei(N

′
B−NB)ωRt2ei(N

′
A−NA)ϕei(N

′
B−NB)ϕ

∫ 2π

0

ei(N
′
A−NA)γei(N

′
B−NB)γdγ, (S.325)

which integrates to a non-zero value only when (N ′
A −NA) + (N ′

B −NB) = 0, leaving

⟨sAB(t3, t2, t1, t0, α, β)⟩γ = uBAuA,0

×
∑

NA,NB

∑
N ′

A,N
′
B

e−i(WA+NAωR)∆t2se−i(WB+NBωR)∆t3I(NA, NB , N
′
A, N

′
B)e

i(N ′
B−NB)ωR(t2−t0). (S.326)

Rewriting ωR(t2 − t0) = ωR(t2 − t1 − t0 + t1) = ωR∆t2 + ωR∆t1, we obtain

⟨sAB(t3, t2, t1, t0, α, β)⟩γ = uBAuA,0
∑

N ′
A,NB

I(N ′
A, NB)e

−i(WA+N ′
AωR)∆t2e−i(WB+NBωR)∆t3 , (S.327)

where

I(N ′
A, NB) = 2πA∗

A(N
′
A|ωR)AB(NB |ωR)

∑
N ′

B

A∗
B(N

′
B |ωR)AA(N ′

B + (N ′
A −NB)|ωR)ei(N

′
B−NB)ωR∆t1 . (S.328)

Thus, we see that a rotor advance during the coherence transfer, uBA(α, β, γ), with no transition frequency evolution,
results in a phase modulation of the sideband amplitudes.

S8.3 Free evolution through n transitions

Finally, we consider a transition pathway through n transitions, whose signal can be written as

s(t1, ..., tn, α, β, γ) =

n∏
ε=1

uε(tε, α, β, γ)uε,ε−1(α, β, γ), (S.329)

where uε,ε−1(α, β, γ) is the complex amplitude of the χ̂ε−1 → χ̂ε coherence transfer, and uε(tε, α, β, γ) is the prop-
agator for the χ̂ε transition. Inferring from the previous sections, we can write the sideband amplitudes after free
evolution through n transitions as

s(t) = s(0)

∑
N1

∑
N ′

1

A1(N1|θR, ωR)A∗
1(N

′
1|θR, ωR)ei(N

′
1−N1)ωRt0ei(N

′
1−N1)(γ+ϕ)e−i(W1+N1ωR)∆t1

 · · ·
×

∑
Nn

∑
N ′

n

An(Nn|θR, ωR)A∗
n(N

′
n|θR, ωR)ei(N

′
n−Nn)ωRtn−1ei(N

′
n−Nn)(γ+ϕ)e−i(Wn+NnωR)∆tn

 , (S.330)

where

s(0) =

n∏
j=1

uj,j−1, (S.331)

and ∆tε = tε − tε−1. Regrouping gives

s(t) = s(0)
∑
N1

· · ·
∑
Nn

∑
N ′

1

· · ·
∑
N ′

n

[
n∏
ε=1

Aε(Nε|θR, ωR)A∗
ε(N

′
ε|θR, ωR)

]

×

[
n∏
ε=1

ei(N
′
ε−Nε)ωRtε−1ei(N

′
ε−Nε)(γ+ϕ)e−i(Wε+NεωR)∆tε

]
, (S.332)
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and

s(t) = s(0)
∑
N1

· · ·
∑
Nn

∑
N ′

1

· · ·
∑
N ′

n

I(N,N′)ei
∑

ε(N
′
ε−Nε)ωRtε−1ei

∑
ε(N

′
ε−Nε)(γ+ϕ)e−i

∑
ε(Wε+NεωR)∆tε , (S.333)

where

I(N,N′) = 2π

n∏
ε=1

Aε(Nε|θR, ωR)A∗
ε(N

′
ε|θR, ωR), (S.334)

and N = (N1, N2, ..., Nn) and N′ = (N ′
1, N

′
2, ..., N

′
n).

Integrating s(t) over γ,

s(t) = s(0)
∑
N1

· · ·
∑
Nn

∑
N ′

1

· · ·
∑
N ′

n

I(N,N′)

2π

[
ei

∑
ε(N

′
ε−Nε)ωRtε−1e−i

∑
ε(Wε+NεωR)∆tε

∫ 2π

0

ei
∑

ε(N
′
ε−Nε)(γ+ϕ)dγ

]
,

(S.335)

leads to a non-zero value only when
∑n
ε=1(N

′
ε −Nε) = 0 or N ′

1 = N1 −
∑n
ε=2(N

′
ε −Nε), leaving

s(t) = s(0)
∑
N1

· · ·
∑
Nn

∑
N ′

2

· · ·
∑
N ′

n

I(N,N′)ei
∑

ε(N
′
ε−Nε)ωRtε−1e−i

∑
ε(Wε+NεωR)∆tε . (S.336)

S8.3.1 Simplifying the frequency expression

n∑
ε=1

(N ′
ε −Nε)ωRtε−1 −

n∑
ε=1

NεωR∆tε

Examine the case of n = 2, n = 3, and n = 4 transitions.

n = 2 case: With the constraint (N ′
2 −N2) = −(N ′

1 −N1), we expand the summation:

(N ′
1 −N1)ωRt0 + (N ′

2 −N2)ωRt1 −N1ωR∆t1 −N2ωR∆t2

(N ′
1 −N1)ωRt0 − (N ′

1 −N1)ωRt1 −N1ωR∆t1 −N2ωR∆t2

−(N ′
1 −N1)ωR∆t1 −N1ωR∆t1 −N2ωR∆t2

−N ′
1ωR∆t1 −N2ωR∆t2

n = 3 case: With the constraint (N ′
2 −N2) = −(N ′

1 −N1)− (N ′
3 −N3), we expand the summation:

(N ′
1 −N1)ωRt0 + (N ′

2 −N2)ωRt1 + (N ′
3 −N3)ωRt2 −N1ωR∆t1 −N2ωR∆t2 −N3ωR∆t3

(N ′
1 −N1)ωRt0 + (−(N ′

1 −N1)− (N ′
3 −N3))ωRt1 + (N ′

3 −N3)ωRt2 −N1ωR∆t1 −N2ωR∆t2 −N3ωR∆t3

(N ′
1 −N1)ωRt0 − (N ′

1 −N1)ωRt1 − (N ′
3 −N3)ωRt1 + (N ′

3 −N3)ωRt2 −N1ωR∆t1 −N2ωR∆t2 −N3ωR∆t3

−(N ′
1 −N1)ωR∆t1 + (N ′

3 −N3)ωR∆t2 −N1ωR∆t1 −N2ωR∆t2 −N3ωR∆t3

−N ′
1ωR∆t1 − (N2 − (N ′

3 −N3))ωR∆t2 −N3ωR∆t3

n = 4 case: With the constraint (N ′
2 −N2) = −(N ′

1 −N1)− (N ′
3 −N3)− (N ′

4 −N4), we expand the summation:

(N ′
1−N1)ωRt0 +(N ′

2−N2)ωRt1 +(N ′
3−N3)ωRt2 +(N ′

4−N4)ωRt3−N1ωR∆t1−N2ωR∆t2−N3ωR∆t3−N4ωR∆t4

−N ′
1ωR∆t1 + (N ′

3 −N3 −N2)ωR∆t2 − (N ′
4 −N4)ωRt1 + (N ′

4 −N4)ωRt3 −N3ωR∆t3 −N4ωR∆t4

−N ′
1ωR∆t1 − (N2 − (N ′

3 −N3)− (N ′
4 −N4))ωR∆t2 − (N3 − (N ′

4 −N4))ωR∆t3 −N4ωR∆t4
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The pattern that emerges is given by

n∑
ε=1

(N ′
ε −Nε)ωRtε−1 −

n∑
ε=1

NεωR∆tε = −N ′
1ωR∆t1 −

n∑
ε=2

(
Nε −

n∑
ε′=ε+1

(N ′
ε′ −Nε′)

)
ωR∆tε.

Since N ′
1 = N1 −

∑n
ε=2(N

′
ε −Nε), we can further simplify to

n∑
ε=1

(N ′
ε −Nε)ωRtε−1 −

n∑
ε=1

NεωR∆tε = −
n∑
ε=1

(
Nε −

n∑
ε′=ε+1

(N ′
ε′ −Nε′)

)
ωR∆tε.

Thus, an n-dimensional signal from free evolution through n transitions is given by

⟨s(t)⟩γ = s(0)
∑
N1

· · ·
∑
Nn

∑
N ′

2

· · ·
∑
N ′

n

I(N,N′) exp

{
−i

n∑
ε=1

[
Wε +

(
Nε −

n∑
ε′=ε+1

(N ′
ε′ −Nε′)

)
ωR

]
∆tε

}
, (S.337)

where N ′
1 = N1 −

∑n
ε=2(N

′
ε −Nε).

A method will have ndim spectral dimensions, v = 1 . . . ndim. Inside the vth spectral dimension are
nv = nmx

v + ndev + nsev events (or propagators), where nmx
v are mixing, ndev are delay, and nsev are spectral events.

The total number of free evolution events (i.e., delay and spectral events) is given by n =
∑ndim

v=1 (n
de
v + nsev ). The free

evolution events, ordered by time and indexed by ε = 1 . . . n, are partitioned into disjoint subsets of delay events,
D1,D2, . . . ,Dndim

and spectral events, S1,S2, . . . ,Sndim
.

Similarly, the mixing events, ordered by time and indexed by µ = 1 . . .m. We assume that mixing events occur
instantaneously, with no rotor phase advance and no free evolution of transitions. Furthermore, we assume that
mixing events are independent of α, β, and γ. Thus, we redefine Eq. (S.331) as

s(0) =

m∏
µ=1

uµ, (S.338)

and write the ndim-dimensional time domain signal as

⟨s(t, τ , α, β)⟩γ = s(0)
∑
N1

· · ·
∑
Nn

∑
N ′

2

· · ·
∑
N ′

n

I(N,N′) exp

{
−i

ndim∑
v=1

∑
ε∈Dv

(
Wε −

(
Nε −

n∑
ε′=ε+1

(N ′
ε′ −Nε′)

)
ωR

)
τε

}

× exp

{
−i

ndim∑
v=1

∑
ε∈Sv

(
Wε −

(
Nε −

n∑
ε′=ε+1

(N ′
ε′ −Nε′)

)
ωR

)
xεtv

}
. (S.339)

Here, xε is assigned to the corresponding fraction xv,k for the kth propagator in the vth spectral dimension.
The ndim-dimensional Fourier transform of this signal is

⟨s(ω, τ , α, β)⟩γ = s(0)
∑
N1

· · ·
∑
Nn

∑
N ′

2

· · ·
∑
N ′

n

I(N,N′) exp

{
−i

ndim∑
v=1

∑
ε∈Dv

(
Wε −

(
Nε −

n∑
ε′=ε+1

(N ′
ε′ −Nε′)

)
ωR

)
τε

}

×
ndim∏
v=1

δ

(∑
ε∈Sv

(
xεWε −

(
Nε −

n∑
ε′=ε+1

(N ′
ε′ −Nε′)

)
xεωR

)
− ωv

)
. (S.340)

This expression for the transition pathway spectrum is the solution of the quantum master equation using our
theoretical assumptions. Only a numerical integration over the angles α and β remains to obtain the spectrum from
the polycrystalline sample.

S52



S9 Czjzek Distribution

The Czjzek distribution[10, 9, 40]—originally developed to model random distributions of electric field gradient
(EFG) tensors in glasses—is a model for anisotropic line shapes arising from structures producing random deviations
from a mean anisotropy of zero, and is given by

f(ζ, η|σζ) =
ζ4η√
2πσ5

ζ

(
1− η2

9

)
exp

−ζ
2
(
1 + η2

3

)
2σ2

ζ

 , (S.341)

where ζ and η are the two independent parameters of the second-rank traceless symmetric tensor, and σζ is the
width parameter. The Czjzek distribution assumes uncorrelated Gaussian distributions of second-rank spherical
tensor components with a single width parameter, that is,

S =

 √3U5 − U1

√
3U4

√
3U2√

3U4 −
√
3U5 − U1

√
3U3√

3U2

√
3U3 2U1

 , (S.342)

where the components, U1, U2, U3, U4, and U5, are the five components of the second-rank traceless symmetric
tensor, randomly drawn from a five-dimensional multivariate normal distribution with the mean of < Ui >= 0 and
the variance of < U2

i >= σ2
c . It is a general model for identifying anisotropic line shapes arising from a random

distribution of second-rank NMR tensors.
For a derivation of the Czjzek distribution, see Werner-Zwanziger et al. [40]. As noted in ref. [40], any scaling of the

Czjzek distribution can be absorbed into a renormalized standard deviation parameter. Therefore, the distribution
parameterized in terms of ζσ or ζq is given by Eq. (S.341). The distribution parameterized in terms of Cq is given by

f(Cq, η|σCq
) =

C4
q η√

2πσ5
Cq

(
1− η2

9

)
exp

−C
2
q

(
1 + η2

3

)
2σ2

Cq

 , (S.343)

where σCq is the standard deviation of the distribution.
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