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An approach is presented for simulating multipulse Nuclear Magnetic Resonance (NMR) spectra of poly-
crystalline solids directly in the frequency domain. The approach integrates the symmetry pathway concept
for multipulse NMR with efficient algorithms for calculating spinning sideband amplitudes and performing
interpolated finite-element numerical integration over all crystallite orientations in a polycrystalline sample.
The numerical efficiency is achieved through a set of assumptions used to approximate the evolution of a
sparse density matrix through a pulse sequence as a set of individual transition pathway signals. The utility
of this approach for simulating spectra of complex materials, such as glasses and other structurally disordered

materials, is demonstrated.

I. INTRODUCTION

Nuclear Magnetic Resonance (NMR) spectroscopyt™
has long played an essential role in determining the struc-
ture and dynamics of matter on various length scales. At
the atomic scale, such information is encoded in the ten-
sorial interactions between the electromagnetic moments
of the nucleus and its surrounding magnetic and electric
fields. In fluid phases, the effect of these anisotropic inter-
actions on the NMR transition frequency is averaged out
by rapid molecular tumbling, leaving only isotropic con-
tributions to the NMR spectrum. In solid phases, how-
ever, these anisotropic interactions are preserved S8 This
leads to a richer array of spectral features in solids that
can reveal significantly more details about the structure
and dynamics of the solid. Unfortunately, the presence of
these anisotropic frequency contributions also increases
the level of complexity of the measurements and the in-
terpretation of results. For this reason, solid-state NMR
measurements often require the expertise of a solid-state
NMR spectroscopist to set up, process, and interpret.
Compared to the liquid state, solid-state NMR, has never
been a technique that can be approached casually, even
on commercial instruments.

The ability to simulate solid-state NMR spectra is cen-
tral to their analysis and interpretation. It also plays a
vital role in developing new solid-state NMR methods.
Currently, there are two approaches to simulating solid-
state NMR spectra. The first numerically solves a quan-
tum master equation, e.g., the Louiville von Neumann
equation, to simulate a time-domain signal whose Fourier
transform gives the frequency-domain spectrum 212 This
first-principles approach can be highly versatile in its
ability to simulate multi-pulse NMR methodologies in
rotating samples, but it is computationally expensive.
Consequently, it is often not practical for simulating
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the spectra of disordered materials, where the num-
ber of unique spin systems can be large. The second
and more approximate approach focuses on spin sys-
tems with non-degenerate eigenvalues where analytical
expressions for the NMR transition frequencies and am-
plitudes for each spin system can be summed to obtain
the frequency-domain spectrum directly. While exist-
ing software packages implementing this approximate ap-
proach are significantly faster than the first-principles ap-
proach, they are often hard-coded for a small subset of
NMR methods 227

In principle, implementing a general-purpose multi-
pulse NMR simulation directly in the frequency domain
should be no more challenging than in the time domain,
although admittedly, there are few examples in the liter-
ature of numerical algorithms being developed for such
casesI” Here, we present a theoretical approach support-
ing algorithms for a general-purpose multi-pulse NMR
simulation of solid-state NMR spectra directly in the fre-
quency domain. In this effort, we combine concepts from
the symmetry pathway approach to multi-pulse NMR
experiments?®, with efficient algorithms for calculating
spinning sideband amplitudes?? and for performing nu-
merical integration of the spectra over all crystallite ori-
entations in a polycrystalline sample?? In the symme-
try pathway approach, a multi-pulse NMR method is de-
scribed in terms of a set of transition symmetry path-
ways, which, when combined with a given spin system,
are mapped into a set of transition pathways. FEach
transition pathway corresponds to a single resonance in
a multi-dimensional NMR spectrum in a static sample
or a single centerband resonance flanked by a series of
spinning sideband resonances in a rotating sample. By
focusing on individual transition pathways, the finite-
element integration and interpolation algorithm of Al-
derman, Solum, and Grant?" (ASG) for rapid simula-
tion of one-dimensional NMR spectra of polycrystalline
sample in the frequency domain can be extended to the
simulation of multidimensional NMR spectra. Taken to-
gether, this frequency domain approach can perform sim-
ulations of multi-pulse NMR spectra in polycrystalline
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solids in significantly less time than conventional time
domain simulations. The theoretical approach and al-
gorithms described here are implemented in the Python
package MRSimulator for simulating multi-dimensional
NMR spectra of polycrystalline solids and will be de-
scribed elsewhere.

Il. THEORETICAL APPROACH
A. Fundamental assumptions

The state of a quantum-mechanical system of a set 7
of nz coupled spins can be described by a vector in a
T-dimensional Hilbert space according to

T nz
ch ), where T{I Do} = H(21u+1),
i=1 u=1

(1)
where |i) is the ¢*" eigenstate of the (Zeeman) Hamil-
tonian, and c¢;(t) is the complex amplitude of the i*®
eigenstate. Here, I, is the total spin angular momen-
tum quantum number of the u'* nucleus.

For an ensemble of identical quantum-mechanical sys-
tems, we can define the density operator

T T
&) =[®) @O =D O 1) @, (2)

j=14i=1

th

>

where the c;(t)c;(t) represent the population of the i*®
stationary eigenstate, and the c;(t)c}(t) represent the
complex amplitude of the ¢ — j transition. The i — j
transition is one of Y!/(Y — 2)! possible transitions be-
tween T levels. Here, we count ¢ — j and j — i as
different transitions.

We assume that the equilibrium density operator is di-
agonal in the Zeeman eigenstates with populations given
by the Boltzmann distribution. In the high-temperature
approximation, the density operator at thermal equilib-
rium is approximated according to

e—’}:l/kBT nz MO u R
b= = Ligrennme Y
u=1 B ( ut )
where H is the Hamiltonian, Z = Tr(e -7/ k8T is the

partition function, kp is the boltzmann constant, 7" is the
thermodynamic temperature, Al, . is the z-component of
the angular momentum operator for the u*" nucleus, and
wo, is the Larmor frequency of the u® nucleus.

At the most general level, the theoretical description
of an NMR experiment starts with the time evolution
of the density operator, p(t), through a quantum master
equation. The form of this equation can vary depending
on the application3Y32 We focus on applications where
relaxation processes can be neglected, allowing the quan-
tum master equation to be reduced to the Louiville von

Neumann equation®

PO _ L i), o] 0

where 7:[(1?) is a Hamiltonian having only coherent time
dependences due to radio-frequency (RF) excitation and
sample rotation, such as magic-angle®®34 (MAS) and
variable-angle®3% (VAS) sample spinning. It has the
general form

() =z + Faw () + S HO (1), (5)
A€l

where H 7 is the Zeeman Hamiltonian, 7:[RF(t) is the RF

excitation Hamiltonian, and 7:1&1)(75) are the parts of the
Hamiltonian arising from some set I' of nuclear spin cou-
plings internal to the sample. In NMR, the 7:1;1) are often
expressed in terms of irreducible tensor elements of ranks
L =0, 1, and 2 in the lab coordinate system® as

Y = A{*}Z Z RN TN O, V). (6)
L=0m=—L

Here, the At depend on the identity of the nuclei in-
volved in the interaction and are given in Table S7 of
the Supplementary Material. The Rgim are the spher-
ical tensor elements, and TL{);E;(U . V) are the irreducible
spherical tensor element operators, formed from the ten-

sor product of two vectors U and V. The vector U is a
nuclear spin vector operator, whereas the vector V can
be the same nuclear spin vector operator (quadrupolar
interaction), another nuclear spin vector operator (dipo-
lar and J coupling), or the external magnetic field vector
(Zeeman, paramagnetic shift, and nuclear shielding inter-
actions). Further details on the Cartesian and spherical
tensor conventions are given in the Supplementary Ma-
terial. We further assume that ||Hz|| > || 3, H (1)( ]
and the time-dependence due to sample rotation is in the
adiabatic limit 27 allowing the Hamiltonian to be written
in a series expansion

H(t) ~ Hz+Hrr(t +Z DM (1) +Z Z DE\22\,
Ael Xel Ner
A A (7)
where Dg\l) (t) and Dg\Q_;/ (t) are the first- and second-order

perturbation theory corrections!3”

An ngjn-dimensional multi-pulse NMR experiment can
be modeled using the density operator according to

Pty tng) = Ut ot ) POVUT (1, ),
8

where
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and U, (ty) is the spectral dimension propagator modeling
the evolution through the v*" spectral dimension.

Each spectral dimension propagator can be further
broken down into a product of n, events, given by

Ue(ty) = [ vk (10)
k=1

where Umk is either a free evolution propagator,
Uv7k(rv7k) or Uv7k(xv7;€tv), or a mixing propagator,
Py i(7v). The Py i(1y ) and Uy k(7v ) are propaga-
tors of constant duration 7, which we will refer to as
a mizing event and delay event propagator, respectively.
The Uy i (xy kty) denotes a variable duration free evolu-
tion propagator, which we will refer to as a spectral event
propagator and z  is the fraction of the free evolution
period ¢, that the k" propagator is active in Z;{V(tv). We
define z, ;, = 0 whenever the kth propagator is not a spec-
tral event propagator, and require

Ny
va,k =1. (11)
k=1

The assumptions made so far are similar to those found
in many conventional NMR simulations and are com-
monly used to analyze high-field solid-state NMR, spec-
tra. In developing our frequency domain simulation ap-
proach, we obtain significant efficiency gains in the simu-
lation algorithms by making the following additional as-
sumptions:

I. There are no degeneracies in the eigenvalues of 7:l(t)
for all ¢, i.e., all the dipolar and J couplings remain
in the weak limit.

II. Time dependences in ﬁ&l)(t) are not on or near
resonant with any NMR transition frequencies 3840

ITI. Internal couplings can be neglected during RF exci-
tation, ie., ||[Hrr(t)|] > || 3, ﬁ&l)(t)ﬂ Therefore,
for the mixing propagator, Pv,k, the effect of an RF
pulse on the density operator is approximated by
a pure rotation of § about an axis defined by 1 in
the z-y plane.

IV. Transition frequencies can be calculated analyti-
cally.

Assumptions I and II are essential for reducing the den-
sity operator to a set of individual transition pathway sig-
nals with no mixing among transitions during free evolu-
tion periods, i.e., the free evolution propagator matrices,
Uy k(v k) or Uy k(v kty), remain diagonal. Assumptions
IIT and IV are not essential but are made to reduce com-
putational overhead in calculating the transition path-
way signals. While these four assumptions might be
considered restrictive for a general-purpose NMR simula-
tion package, they are not uncommon for many high-field
solid-state NMR experiments, where the dipolar and J
couplings are weak and the RF excitation is strong.

B. Transition Pathways

When simulating the solid-state NMR spectrum aris-
ing from a multi-pulse sequence, it is helpful to keep
in mind that NMR experiments are typically performed
as a set of difference measurements designed to iso-
late the signal from a specific set of transition path-
way signals284143 Nuch of the experimental design
and implementation of an NMR method is identifying
the desired transition pathways and finding ways to ac-
quire their signals while eliminating all undesired tran-
sition pathway signals. Transition pathway signal isola-
tion is experimentally accomplished through various ap-
proaches, such as RF phase cycling, pulse length opti-
mizations, selective pulses, multiple quantum filters, or
field gradients.

In numerical simulations of multi-pulse NMR experi-
ments, the undesired transition pathway signals in the
density matrix are eliminated by zeroing the correspond-
ing undesired matrix elements. The density matrix can
become sparse in this process, making it computationally
inefficient to propagate the full density matrix through
the pulse sequence. In such cases, it is more efficient to
propagate the single transition operators through each
transition pathway separately.

Consider the illustration of a 2D pulse sequence
shown in Fig. where the desired signal for the
method is associated with a particular transition path-
way, XA — XB — Xc — Xp- Here x4 and xp are the
transitions associated with the two spectral events in the
t1 spectral dimension with x4 +xp = 1. The ¢ is the
transition associated with the delay event with constant
delay 7, and xp is the transition associated with the spec-
tral event, with zp = 1, along the ¢y spectral dimension,
respectively. The pulses shown as solid black rectangles
are the four mizing events. Through the first spectral
dimension, we can write the evolution as

—i(Qaza+QprR)ts B

(12)
Here, ug4 is the amplitude of the initial single transition
operator X4, and uap is the mixing amplitude for the
transfer from x4 to xXp. The Fourier transform of the
transition pathway signal as a function of ¢; derives its
average frequency, 21, from a weighted average of the X 4
and yp transition frequencies. After reaching the final
transition, xp,

—iQax Aty

(uoa)e Xa — (upauap)e

7’LSZCT:| e*lletl —iQpts »

T [(UOAUABUBCUCD)B e XD,

5(0,0)

(13)
the transition pathway signal has acquired a t; and %o
dependent phase modulation, e~#?1*1e=#t2 and a com-
plex amplitude, s(0,0), where upc and ucp are the mix-
ing amplitudes for the transfer from xp to x¢ and x¢ to
XD, respectively. A 2D Fourier transform of the transi-
tion pathway signal gives

s(wr,wz) = 8(0,0)8(w; — Q1)d(w2 — Np), (14)
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FIG. 1. An illustration of a two-dimensional NMR pulse se-
quence leading up to the acquisition of the signal from a single
transition pathway.

where 6(z) is the Dirac delta function. This process can
be repeated for other desired transition pathway signals,
which are summed to the total signal,

S(wi,ws) = ZSZ(WLWQ), (15)

z€T

where 7T is the set of all desired transition pathways. This
approach is advantageous when the number of desired
transition pathways is significantly less than the total
number of possible transition pathways. Further details
on how the transition pathway signals are calculated are
provided in the following sections.

C. Transition Frequencies

Calculating the desired transition pathway spectrum
is more efficient when analytical expressions for transi-
tion frequencies are available. This section briefly reviews
these expressions for a spin-system with nz sites. For a
detailed overview of their derivation, see the Supplemen-
tary Material.

Here, we consider frequency contributions arising from
the first- and second-order perturbation terms, which are
summed to give the total transition frequency, Q(0, 1, j),
for the i — j transition as?®

SIEC

(6,14,5) ©) €M (i, ), (16)

where wy, is the size, Egk)((%) is the sample’s spatial ori-

entation function corresponding to the L' rank spa-
tial irreducible spherical tensor, and ¢*)(i,5) is the
spin transition symmetry function of the k*" frequency
contribution®®. A review of spin transition symmetry
functions is given in Appendix [A]

The spatial orientation functions, E(Lk)(@), in Eq. ,
are defined in the laboratory frame, where the z-axis
is the direction of the external magnetic field. Here,
©(t) are the Euler angles that determine the sample’s
lattice spatial orientation, which can carry a time de-
pendence due to sample rotation. We can expand the
orientation dependence of a given transition frequency
using a series of rotations from the common frame of
each frequency contribution to the laboratory frame and

re-express Eq. as

tvzvj Z Z Dr(foko th+ d)v HRa Z Dglkzno B»W)A{L]Z}ml g(k)(zvj)a (17)
k mo——Lk ml—— k
wi Ep(8)
[
where nyi )m,(oz,ﬁ,y) are Wigner rotation matrix ele-  mon frame are given by
ments, given by .
A L A A

Aégﬂb = Z Din )771/(@1{>A}s) §£ n}w (19)

(L) (a 57 ) — g—ima dff)m’ (6) efim"y’ (18)

mm’

dﬁf) )m, (B) are the reduced Wigner rotation matrix ele-
ments, wg is the rotor frequency, ¢ is the initial rotor

o phase, 0 is the rotor angle, («, 3,7) are the Euler angles
E relating the common frame to the rotor frame, and A{Li}
L is the frequency-scaled spatial spherical (fsSST) tensor
0 part of the k' frequency contribution of rank L; in the
o E common frame#4 For frequency contributions involving
E D:_ a single interaction, the components of A{L)‘} in the com-

N

m/=—L

where g{L)‘} is an fsSST part of rank L in the PAS of the

single interaction spatial tensor, and GPAS is the orien-
tation of the PAS relative to the common frame. The
components of C{L/\} for each single interaction fsSST are
expanded and given in Table[I|

In the Supplementary Material, we further derive the
fsSST in the common frame for the second-order per-
turbation theory corrections involving the quadrupolar
interaction of spin I, with (1) the shielding interaction
of spin I, i.e., (oqr), (2) the weak J coupling interaction
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Interaction gf‘g
a3 _ 1 (@} _ _ M
quadrupolar |65y = wg—— IS = —wg =
2,0 N 2,42 17
2 2
aay _ @ 1 (ﬁi 41
0.0 wo 6+/5 \ 3
2 2 2
g{qq} _ Y 2 (77;1 _ 1) g{qq} _ _Ya Mg
20T w7\ 3 PET wo 3v21
2 2 2 2 2
Jlaa} wg 1 (77711 n 1) laa} — _Wq 7q Jlaa} Wq Mg
4,0 wo /70 \ 18 4,42 wo G\ﬁ 4,%4 wo 36
. . {c} _ _ /
shielding <5y’ = —wo0iso
{0} {o} Mo
< = —wols § = WoGo —=
2,0 ¢ 2,42 G NG
dipolar gé%} = 2wq Cg{fii}z =0
J CO{:(;} = 27rJiso
{7} _ {J} _ nJ
So0 = 2mCy S =—2nCs—=
2,0 C 2,42 < \/6
TABLE I. Frequency-scaled spatial spherical tensor elements in the principal axis system for the various NMR interactions.
For all interactions, géﬁl = cgj; = 0. The 7, are the asymmetry parameters for the symmetric tensor associated with each
nuclear spin interaction. For the Larmor frequency, wg = —7yrBo, where 7 is the magnetogyric ratio and By is the external
. . . . 6mC .
static magnetic flux density. For the quadrupolar coupling, w, = ﬁ where [ is the nuclear angular momentum
quantum number, C, = qei? ! Cqs ¢e is the fundamental unit of charge, @ is the nuclear electric quadrupolar moment, h is

the planck constant, and (g is the electric field gradient at the nucleus. For the nuclear magnetic shielding, Olso = Oiso — afsecf

is the isotropic nuclear shielding relative to the reference nucleus, and (, is the shielding anisotropy defined according to the
o y1y2h

47 3
coupled nuclei, r is the distance between the two nuclei, & is the reduced planck constant, and po is the magnetic permeability

constant. For the J coupling, Jiso is the isotropic J coupling, and (s is the J coupling anisotropy defined according to the
Haeberlen convention.

Haeberlen convention. For the dipolar coupling, wg =

, where 1 and -2 are the gyromagnetic ratios of the two

to spin S, i.e., (Jqr), and (3) the weak dipolar coupling
interaction to spin S, i.e., (dgy). These contributions can
be generically written for A\ € {o, J,d}, as

N h{)\ql}
Ai’g{} = ,Liz (L m|22m m—m/)

’

wo,r1 m

SN IR A NNG1)

2,m—m’>

where (L M|l €5 my ms) are the Clebsch-Gordon coef-
ficients, and

A 9 9 i 2
h ‘H}:_\@, R =\ bl qf}:,/g. (21)

The product of each Ay with its corresponding spin
transition function for each perturbation term creates a
frequency tensor contribution. The transition frequency
tensor contributions considered here are given in Table[[T}
All the frequency tensor contributions of similar ranks are
summed together into total transition frequency tensors
of rank L, as illustrated below:
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Fo(i,j) = ASpu + A (pP)uw + A 6o + AT dy + AN (dD)uw + AF Y (AP, (22)
Fs(i,j) = A py + A (pp)uw + ALY (PP)uw + AL, + Al ey, + AP,

+ AL (dp) . + AP (dP) (23)
Fa(i,j) = Alc,, + Al d, + AL (dp), . + AT (dp) . (24)

Contributions can be included or excluded as desired dur-
ing each spectral or delay event. We obtain the total
transition frequency in the lab frame from the total tran-
sition frequency tensor in the common frame, Fy, as

t i ] Z Z —7m(th+d>)d(L (9 )

L=0,2,4m=—L

L
x Z e d®) (8)e™ " Fy (i) (25)

D. Mixing Amplitudes
1. Pure rotations

The set of nuclei, Z, in a spin system can be partitioned
into n. disjoint subsets of {J1,J3,...,T,_}, called chan-
nels, where J, is the set of nuclei in the ¢t subset, i.e.,
the ¢ channel. This partitioning is useful for separating
nuclei into subsets of nuclei of the same isotope, although
it could also be used to separate nuclei into subsets for
other purposes, such as selective excitation of a subset of
nuclei within a specific excitation bandwidth. Following
these definitions, a single-transition operator is written
as the direct product

X = ® ® |Iu,mu7j> <Iuamu7i|' (26)

c=1u€ed,

Assuming that nuclei in each channel have the same
gyromagnetic ratio, the RF Hamiltonian in Eq. after
transforming into the multiply rotating interaction frame
of the nuclei in each channel, can be written

HRF/h Z Z Wi,e [ uxcos1/1p+l ysmd)c} , (27)

c=1u€ed,

where w; . and 9. are the RF amplitude and phase for

th

the nuclei in the ¢ channel, respectively, and fuz and

fu,y are the x and y components of the spin operator
for the u'® nucleus. By adopting assumption III, where
evolution due to all spin couplings internal to the sample
is neglected during the pulse, the effect of an RF pulse
of duration ¢, on the density operator can be calculated

(

analytically as pure rotations about an axis in the z-y
plane of each channel’s rotating frame defined by a given
rotation angle, 6. = w.t,, and phase, ¥.. The mixing
amplitude for the coherence transfer from y to }’ by a
rotation is given by

o= TLTT ) 00, (00720520
c=1lu€eT,
(28)
where P, = my, ; — my,; (Eq. ) and Ap, = P!, — Pu-
We note two interesting and useful cases. One is that
coherence transfer under a m rotation simplifies to

‘Iuvmu,j> <Iu7mu Z| Trw
‘[m _mu7j> <Iu, _mu)ile—lApuw( )Apu (29)

i.e., a ™ rotation can make only one connection between
transitions in adjacent spectral or delay events. It is also
a special connection because the p, transition symme-
try value for the two transitions are equal but opposite
in sign. Additionally, the d, transition symmetry, given
in Eq. (A3), remains unchanged (Ad, = 0) for the two
transitions. The other interesting case is that, while a
rotation can transfer a transition into many other tran-
sitions, the d, transition symmetry value cannot remain
unchanged (Ad,, # 0) between two connected transitions
under a 7/2 rotation. This is similarly true for the two-
spin symmetry transition function (Pp),, ./, also given in

Appendix [A]

2. Total Mixing

It is helpful to define an artificial total mixing operator,
where selected transitions are transferred to all selected
transitions in the following spectral or delay event with
100% efficiency. For example, suppose the first of two
adjacent spectral or delay events has three selected tran-
sitions, and the second has two selected transitions. In
that case, a total mixing operation will make 2 x 3 = 6
connections, i.e., six transition pathways passing from the
first to second spectral or delay event. This total mixing
assumes that every connection has a mixing amplitude
of 1. While the total mixing operation is unphysical, it
can be numerically efficient and, when used with caution,
yields fast and accurate simulations.
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Contribution SPT Fr(i,g)

order contribution
shielding 1st Aéo} Pu
shielding 1st Aéd} Pu
weak J 1st AéJ}(pp)u,u’
weak J 1st Ag‘]}(pp)%u/
weak dipolar 1st Aédls} (PP)w,w
quadrupolar 1st Aé‘”du
quadrupolar 2nd A({)qq} Cou
quadrupolar 2nd AéqQ}Cg,u
quadrupolar 2nd Aiqq} Cayn
quadrupolar-shielding 2nd Aégq} d.
quadrupolar-shielding 2nd Ag”q} d.
quadrupolar-shielding 2nd Aiaq} d.
quadrupolar-weak dipole 2nd A({)d‘” (dP)
quadrupolar-weak dipole 2nd Aédq} (dP) w0
quadrupolar-weak dipole 2nd AidQ} (dP)
quadrupolar-weak J 2nd A({JJQ} (dP)w,w
quadrupolar-weak J 2nd Aé‘]q} (dp)ay o/
quadrupolar-weak J 2nd AfIJ‘Z} (dP)

TABLE II. Frequency tensor contributions from the first- and
second-order perturbation terms. Here, SPT is the static per-
turbation theory order. The Aik} are the L*-rank frequency-
scaled spatial spherical (fsSST) tensor part of the contribu-
tion defined in section m The p., and d,, are the single-spin
transition symmetry functions defined in Eq. . The Cr,,u
are the single-spin transition symmetry functions of rank L
defined in Eqgs. (A5). The (Pp)y,. and (dp),,.s are the two-
spin transition symmetry functions defined in Eq. .

E. Selecting Transition Pathways

In a coupled spin system, it is helpful to define the
transition symmetry functions for the channel as

Pe= Y Pu and de= ) d, (30)

u€J, u€J,

where p,, and d,, are the transition symmetry functions
evaluated on the uth spin, and J. is the subset of spins
in the cth channel. Furthermore, we define the transition
symmetry functions for the entire spin system as

pr = i:pc, and dp = i:dc. (31)
c=1 c=1

While these functions are not used in evaluating fre-
quency contributions, they can be useful for selecting sets
of transitions. In designing an experimental NMR pulse
sequence, NMR spectroscopists use RF phase cycling to
select a set of transition pathways based on the p. sym-
metry pathways. In a numerical simulation of the same
NMR pulse sequence, one can select the same transition
pathways by retaining only the density matrix elements
in each evolution period that follow the desired p. sym-
metry pathways. That is, it is unnecessary to simulate
the RF phase cycling used in an experiment when mod-
eling its spectrum.

Identifying a specific transition by its row and col-
umn index in a density matrix requires a detailed de-
scription of the spin system and how the eigenstates
are assigned to the indexes. Alternatively, the transi-
tion symmetry functions can identify transitions with-
out such details. For example, a single-spin transition
in a spin I > 1/2 nucleus can be identified from its
p. and d, values. This is illustrated in Fig. S2 of the
Supplementary Material for the transitions of integral
and half-integral spin nuclei. Note, for simplifying nota-
tion in this section’s discussion, we use the integer-scaled
transition symmetry functions, defined by Eqgs. (A9) and
. Among the set of p, = —1 transitions, a transi-
tion will be uniquely identified with a d, value that is
one of d, = 0,£2, +4,...,4+(2[, — 1) for half-integral
spins, or d,, = +1,4£3,...,+(2[, — 1) for integral spins.
One can also identify whether the nucleus has an inte-
gral or half-integral spin by the p,, and d, values of any
transition.

As a simple illustration of this approach, consider the
four different NMR, “methods,” in Fig.[2] which are distin-
guished by their different p,, and d,, symmetry pathways.
Designing a numerical method to simulate the Hahn echo
experiment in Fig. [2]A and not the Hahn-solid echo exper-
iment in Fig. 2B, requires selecting the symmetry path-
ways

(+1,41) 25 (=1, 41),
(Py,du) = Hahn Echo
(+1,—-1) 25 (—=1,-1).
(32)
As mentioned in the previous section, coherence transfer
with Ad, = 0 between the first and second evolution pe-
riods can be enforced by using 62 = 7. Similarly, design-
ing a numerical method to simulate the solid echo exper-
iment in Fig. and not the solid anti-echo experiment
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FIG. 2. Two-pulse methods on an I =1 spin system, which are distinguished by their p; and d; pathways. These are (A)
the Hahn echo experiment, (B) the Hahn-solid echo experiment, (C) the solid echo experiment, and (D) the solid anti-echo
experiment. A filled diamond represents a contribution to a directly observable echo. An open triangle represents a contribution
to an indirectly observable free induction decay.

in Fig. 2D, requires selecting the symmetry pathways

(pu7 du) =

(—1,4+1) -2 (-1, -1),

(—1,-1) 2 (1, +1).

Solid Echo (33)

Here, coherence transfer with Ad,, # 0 between the first

and second evolution periods can be enforced by using
02 =T / 2.

A transition in a multi-site system can also be iden-
tified by its transition symmetry function values. For
example, one can readily verify that a transition in a
two weakly coupled spin 1/2 nuclei (AX) system can be
identified by its p4, px, (Pp)4y values, as illustrated



in Fig. S3 of the Supplementary Material. This is simi-
larly illustrated in a three weakly coupled spin 1/2 nuclei
(AMX) system, where a transition can be identified by
itS Das Pars Pxs (PP)axs (PP)apss and (pp)y, x values, as
illustrated in Tables S4, S5 and S6 of the Supplementary
Material.

For example, for the subset of nuclei in a given channel,
u € J., one can use the channel symmetry function, p,,
defined in Eq. , to select the subset of single-spin

transitions with p, = —1 for all nuclei in a channel with
the additional constraint that p, = —1, i.e.,
p,=—-1 while p, =0 Vu' #u. (34)

In another example, the subset of homonuclear three-spin
single-quantum transitions in a channel are selected with
the constraints that p, = —1 and

Py = +17 Py = _17 Py = _17
while py» =0 Vu" #u,u' u’. (35)

One can also identify heteronuclear multi-spin transitions
using multiple channels. For example, a two-spin het-
eronuclear coherence with pp = —3 is identified by the
transition symmetry functions

p.=—-1, pws=-2, while p. =0, V" #c¢C,
(36)
and

Py = _]-a Py = _27
while p,, =0 Vu' #u,v/, weTe,u €T (37)

For coupled nuclei with spin I > 1/2, the d, transition
symmetry can be employed to distinguish subsets of tran-
sitions further.

F. Transition Pathway Spectrum in a Rotating Solid

The time-dependent frequency for a transition
X = |j) (i| due to rotor modulation in Eq. can be
separated into static and rotor-modulated frequency con-
tributions as

O (ti )= Y |:wL70(0R,0476)
L=0,2,4
L

+ Y wrm(Or, o, fe” RO (38)

m=—L
m#0

where

wL,m(0R7 «, B) = dgnl,:)() (QR)
L

< 3 et () Fp (i g). (39)

m’/=—L

Using this expression, we write the accumulated phase of
the x transition coherence during a free evolution period
as given by

Bt to) = /IQX(s)ds — W (Or, 0, B) (11 — to)

to

(40)

4
+ Z Wm,x(9R704,6)€_im(’y+¢) {e—imetl _ e—imeto})
"0
where
WX(GR;avﬁ) = wL’O(QR,a’g)’ (41)
L=0,2,4
and
m 9 ) &by
WOy, 8) = S ZLmOrs s B) o)

Tmw
L=2,4 R

)

With our theoretical assumptions, the signal for an in-
dividual crystallite with orientation («, 8,7) from a tran-
sition pathway through n transitions can be written as

n

S(t, 0476,'7) = H us(ts;ts—la a, 6;7)“5,5—1(043 637)7

e=1
(43)
where t = (to,t1,...,tn), Uee—1(,B3,7) is the com-
plex amplitude of the x._1 — X coherence transfer, and
Ue(te, te—1, a0, B,7) is the free evolution “propagator” for
the x. transition, given by

Ue(tertemr) = D A(N)AL(N')! N =N G+0)
N,N’
« /(N =N)wrte 1 ,—i(We+Nwr)Atc (44)

Here, ¢ is the rotor phase at the beginning of the se-
quence, and A.(N) is the spinning sideband amplitude.
In this and the following expressions, we have dropped
the explicit dependences on rotor angle, rotor frequency,
and orientation, i.e., A.(N;) = Ac(N:|0r, wr, o, 3), and
W, =W.(0r, o, B).

There is a discrete Fourier relationship between the
amplitude of the spinning sideband and the rotor pitch,2?
which is given by

"o

A(N) ! /ﬂ a(®)eN*dd. (45)

—T

Thus, the sideband amplitude, A.(N.), is obtained from

4
Ag ((I)) =exp —1 Z Wm,s (0R7 «, B)eim(b (46)

m=—4
m#0
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with respect to ®, the rotor pitch. For a given value of «
and 3, this function is numerically evaluated from ® = 0
to 2w with a A® increment, and Fourier transformed into
A(Nla, p). To avoid aliasing of signals in the sideband
order dimension, the A® increment must be smaller than
7/|Nvand|, where |Npand| is the highest order sideband
present in the sideband pattern.

We assume that ues c—1(, 5,7) = e —1 are indepen-
dent of orientation, substitute the above equations in
Eq. , and perform a partial integration over -y, to ob-
tain the n-dimensional signal from free evolution through
n transitions as given by

(0, = ), 3 T3 NN

Ny N, N
xexp{ Z W+<N Z - )wR Ats}v
g'=e+1

(47)

J

(s(w 7)) = (5(0)), 30 T ZINNexp{
P>

e€S,,

Ny N, N}

where w = (w1, ..., wWny,, ) and z. is assigned to the cor-
responding fraction z,j for the kM propagator in the
vth spectral dimension. Only a numerical integration
over the angles a and [ remains to obtain the transi-
tion pathway spectrum from a polycrystalline sample.
From Eq. (50)), one also sees for evolution periods divided
among multiple spectral events that a complex sideband
pattern can emerge with sidebands flanking the center-
band at non-integer multiples of the rotor frequency, 4247
depending on the values of z..

G. Numerical integration over polycrystalline orientations

An n-dimensional anisotropic NMR, spectrum of a
polycrystalline sample is obtained by the integral

(s(v)) = /U (5(v, 0, 8))+ do, (51)

10

where N{ = Ny — >0 ,(N. — N,), and

I(N,N') =21 [ [ Ac(N:|0r, wr)AZ (N0, wr), (48)
e=1

with N = (N1, Na, ..., N,,) and N’ = (N{,Nj,...,N)).
The total number of free evolution events (i.e., delay

and spectral events) is given by n = Y 2% (nde + ne).

The free evolution events, ordered by time and in-

dexed by € = 1...n, are partitioned into disjoint subsets

of delay events, ©1,9,,...,Dy,,,. and spectral events,
G1,6,,...,6,,.,- The total number of mixing events is
given by m = > """ p™*and are similarly ordered by

time and indexed by p=1...m. We assume that mix-
ing events occur instantaneously, with no rotor phase ad-
vance and no free evolution of transitions. Furthermore,
we assume that mixing events are independent of «, (3,
and ~y, and thus define

W*Hum 1*H“u (49)

Reexpressing Eq. in terms of delay and spectral
event durations and taking the ng;y,-dimensional Fourier
transform with respect to At gives

v=1 €D, =g
<$8WE - (NE - Z (NL, — Ng)) meR) — wv> ,  (50)
e'=e+1

(

where U is the unit sphere in R® and v = w/(27).
This integral is approximated using a finite element
integration 48

Mna

Z/ s(v,a, B))ydo, = ZSA ),  (52)

where {Aq1,...,Ap,} is a triangulation of U into Ma
triangles with vertices

AT‘ = {57',A7 é’7',Bv 57',0} =

{(aT,A7BT7A); (ar,B;Br,B); (ar,CzﬁnC)}a (53>

and sa, (v) is the spectrum obtained after integration
over the solid angle of the r*" finite element.

As described by Alderman, Solum, and Grant
(ASG)?Y, the triangulation of U is approximated by first
inscribing an octahedron inside a unit sphere. The equi-
lateral triangle faces of the octahedron are further trian-
gulated into Ma = 0M? equilateral triangles as illustrated
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in Fig. 3 of the ASG paper??. The total number of ori-
entations, Ng, is defined as,

Ne = F(M+1)(MN+2)/2, (54)

where F is the number of octant faces.

In a one-dimensional anisotropic spectrum, the fre-
quencies and amplitudes evaluated at the three vertices
of a triangle are denoted as (fa,a4), (fp,ap), (fc,ac).
For this case, ASG2? developed a finite element interpo-
lation algorithm. In this approach, the frequencies are
labeled in ascending order and assigned to fin, fmid, and
fmax, respectively, and the finite element spectrum is ap-
proximated as

SAT(V) = f((lA, ap, Qc, Ar) tI‘i(l/, frnin, frnid7 fmax)a (55)

where tri(v, fimin, fmid, fmax) 18 @ normalized triangular
distribution function given by

2z

(fmax - fmin)
(V - fmin)/(fmid - fmin)v fmin S v < fmidv

X (fmax - V)/(fmax - fmid)7 fmid S v < fmaxa (56)
0, otherwise.

tri(’/a fmina fmid’ fmax) -

and f(aa,ap,a.,A;) is a scaling factor that accounts
for the area of the planar triangle projected onto the
surface of the sphere. The triangular line shape assumes
that the transition frequencies vary linearly across the
triangle’s surface and that the differences in amplitude
at the vertices are minor. This approximation becomes
valid in the limit of large Ma.

Recently, Srivastava et al4? developed an algorithm
for the finite element integration of 2D NMR spectra
correlating dimensions with anisotropic frequency contri-
butions. In the finite-element integration of a 2D spec-
trum, the correlated frequency pairs and amplitudes eval-
uated at the three vertices of a triangle are (f14,f24,a4),
(fig,fap,ap), (fic,fac,ac). In this approach, the 2D
spectrum is obtained by applying the ASG 1D algorithm
to each one-dimensional cross-section, represented as the
sum of two triangular line shapes. This algorithm can be
used for the finite element integration of 2D spectra. It
is possible to extend the approach of Srivastava et al. to
higher dimensional NMR spectra correlating anisotropic
dimension.

H. Affine Transformation of Spectrum

The ability to refocus different spatial and transition
symmetries into echoes with different paths in time-
resolved NMR experiments creates opportunities for gen-
erating multi-dimensional spectra that correlate different
interactions. These spectra can be made easier to inter-
pret through similarity transformations. Most similarity
transformations in NMR are affine transformations, as

11

they preserve the colinearity of points and ratios of dis-
tances. An active affine transformation of the signal can
be performed according to

S(W') = S(Aw), (57)

where A is a Ngim X Ndim Matrix representing the affine
transformation. In some cases, simulating S(w) and ob-
taining S(w’) through application of the affine transfor-
mation in Eq. can reduce the number of spectral
event propagators that would have been needed to simu-
late S(w’) directly.

Ill.  RESULTS AND DISCUSSION

A major motivation for the approach presented here
is to provide a theoretical framework for rapidly simulat-
ing one- and higher-dimensional NMR spectra of complex
materials in the solid state, i.e., structurally disordered,
amorphous, and heterogenous samples. Depending on
the NMR method and the relative sizes of the different
interaction tensors, the nuclear spin network of the ma-
terial’s full structure can often be described by a dis-
tribution of smaller spin subsystems, each described by
a set of interaction tensor parameters, R. This set of
reduced spin subsystems can be used to generate a sub-
spectra basis, (w, R), for a given NMR method. Taken
together with the spin subsystem populations, f(R), the
predicted spectrum, S(w), is given by

S(w) = /R f(R) K(w, R) dr. (58)

The spin subsystem populations, f(R), are often ob-
tained from a structural hypothesis for the material, such
as a molecular cluster model, a crystallographic model,
or a molecular dynamics (MD) simulation. Alternatively,
with a limited number of parameters in R, it is possible
to perform a direct inversion of the spectrum®? to obtain
f(R). In either case, it is essential to have efficient nu-
merical algorithms for the simulation of large subspectra
bases, K(w,R), for the NMR method from the desired
transition pathways of the spin subsystem.

To demonstrate the significance of our approach for
such purposes, we present a few examples of spec-
tra predicted using the Czjzek and extended-Czjzek
tensor parameter distributions for f(R). The Czjzek
distribution®23l—originally developed to model random
distributions of electric field gradient (EFG) tensors in
glasses—is a general model for simulating anisotropic line
shapes arising from a random distribution of second-rank
NMR tensors deviating from a mean anisotropy of zero.
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It is given by

3

f(Cﬂ 77|UC) =

|

¢*n <1 2)
Vo

where ¢ and n are the two independent parameters of
the second-rank traceless symmetric tensor, and o is the
width parameter. The Czjzek distribution assumes un-
correlated Gaussian distributions of second-rank spheri-
cal tensor components with a single width parameter. See
the recent work of Werner-Zwanziger et al 3 for its math-
ematical derivation and more illustrative experimental
examples.

In modeling the magic-angle spinning spectrum from
a sample with a Czjzek distribution of 2nd-rank tensors,
we further assume an uncorrelated Gaussian distribution
of isotropic chemical shifts, §1%°

cs )

1 ((515‘0 _ 50)2 }
e 7V , 60
V2ros P { 203 (60)

where &g is the mean isotropic chemical shift, and oy
is the standard deviation of the isotropic chemical shift.
Taken together, the full distribution of spin system pa-
rameters is given by

F(0100, 05) =

f(é‘(i:SSO, C777|UC7 5070-5) = f(C7n|UC>f(6(i:sso|§07U5)~ (61)

The distribution in Eq. is often used when mod-
eling the distribution of EFG tensors of tetrahedrally
and octahedrally coordinated aluminum sites in oxide
glasses54 An example of such a distribution is illus-
trated in Fig.|3] In presenting this distribution, we have
reparameterized the C; and 7, coordinate values onto
the more numerically stable grid of z, and y, coordi-
nates, following Srivastava et al’®Y. Further details on
the z, and y, definitions are given in the Supplemen-
tary Material. From this distribution, the spin inter-
action parameters