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X-ray radiography is a technique frequently used to diagnose convergent high-energy-density (HED) systems such
as inertial confinement fusion implosion; and provides unique information that is not available through self-emission
measurements. We investigate the scope and limits of that information using a radiography simulation combined
with Bayesian inference workflow. The accuracy of density reconstruction from simulated radiographs of spherical
implosions driven with 20 kJ laser energy is assessed, including the increase or decrease in accuracy due to the addition
of Lagrangian marker layers, Poisson noise, and improved prior information. This work is the first to present the
full uncertainty distributions inferred from radiography analysis in HED systems and demonstrates the importance
of constructing the full posterior probability density, as opposed to a point estimate, due to the modal structure of
the likelihood surface introduced by typical experimental noise sources. This general methodology can be used both
for robust analysis of radiographic data and for improved design of radiography experiments by modeling the full

experimental system.

I. INTRODUCTION

X-ray radiography is an imaging technique that uses high-
energy photons (tens to hundreds of keV) to probe the interior
of an object. This technique first emerged in the late 19th
century with the discovery of x-rays by Wilhelm Rontgen!,
and almost immediately following his discovery Rontgen and
other scientists realized the potential applications of X-rays
to medicine and to a variety of other research areas. The
medical field in particular has driven substantial development
in reconstruction techniques such as inversion” and forward
modeling.? X-ray radiography in combination with similar re-
construction techniques is also commonly used within engi-
neering to nondestructively investigate material properties and
structures* and items such as rock samples.’

Radiography has also long been applied to high-energy-
density (HED) systems. Early work used time-resolved x-
ray radiography to study radiation-driven shock propagation
and interface mixing in planar targets, which has applications
in inertial confinement fusion (ICF).® ICF research has also
been one of the primary drivers for improving radiography
technology and reconstruction methods since there are a num-
ber of important metrics that can be measured from radiog-
raphy experiments. A common integral transform inversion
technique known as Abel inversion has been used to infer
fuel layer density distributions,” which govern several of the
aforementioned metrics including shock velocity and target
mass. Forward-fitting techniques such as those employed in
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Bayesian inference have also been applied to ICF systems to
overcome information deficits associated with Abel inversion
in spherical implosion geometry and have extracted informa-
tion about important integrated ablator quantities like areal
density (pR), average radius (R), and mass (M) of a spher-
ical shell target.® Additional work has employed modified ra-
diography techniques such as refraction-enhanced radiogra-
phy and phase-contrast imaging® to infer density gradients in
in-flight capsules'® and for studying discontinuities at inter-
faces and shock fronts.!!

More recently, radiography has been applied to absolute
equation-of-state (EOS) measurements.'?~!4 Forward-fitting
methods have been employed to determine the shock velocity
and compression of spherical targets, which can then be re-
lated to pressure through the Rankine-Hugoniot equations.!’
This allows for an absolute measurement of the mechanical
state on the shock Hugoniot,'? and these high-energy-density
states are relevant to studying many astrophysical contexts in-
cluding stellar evolution and the interior structure of white
dwarf stars.'* A critical aspect of this work is the ability to
uniquely identify the density distribution (profile) at the loca-
tion of the shock wave from a radiograph.

This work expands on previous efforts to extract informa-
tion about density profiles in convergent HED systems us-
ing x-ray radiography by using a straight-line ray-trace cou-
pled with a forward-fitting Bayesian inference algorithm. This
combination of computational tools provides an avenue to in-
vestigate the importance of different aspects of the experimen-
tal design when attempting to reconstruct target density pro-
files and to understand the full uncertainty associated with the
reconstruction. As an example, this work investigates a sin-
gle strong shock wave launched in a solid hydrocarbon sphere
at the scale relevant to the OMEGA!® Laser located at the
University of Rochester’s Laboratory for Laser Energetics. A



Backlighter foil
1x1mm

X rays

Streak camera detector
6 x 6-mm with 50-um x
6-mm vertical slit

Aperture
100 x 10-um slit

Target
1-mm solid CH sphere

5 mm

118.6 mm

g 687 mm

E29680J1

Yy

FIG. 1. A schematic showing the setup of a standard streaked radiography experiment on the OMEGA Laser, with typical distances and sizes
given (not to scale). A backlighter with some intensity profile emits rays, which transit an object to be imaged. The rays are attenuated by the
object, which (in this work) has no self-emission, and then pass through an imaging slit to achieve spatial resolution. The rays then land on
a detector where a sub-region is selected by another slit in the complementary orientation to the imaging slit to represent the streak camera
collection slit (which provides temporal resolution) and are binned on a detector. The target is initially uniform density but will have some
radial density profile once a shock wave is generated using the spherical laser drive of Omega.

simulation by the 1-D radiation-hydrodynamic code LILAC is
used to generate thermodynamic profiles in time and space to
test the precision and accuracy of the density reconstruction.

Sections II and III detail the ray-trace that was used and
give a brief primer on the Bayesian inference algorithm im-
plemented. Section IV describes a simple test case for the
ray-trace and density reconstruction, and Sec. V details the
reconstruction of the density profile generated by the LILAC
code. Finally, Sec. VII discusses the relevance of these results
and possible future work that would further extend the results
presented here.

Il. SIMULATION DETAILS

This analysis scheme includes a straight-line ray-trace cou-
pled to a full Bayesian inference infrastructure, expanding the
use of Bayesian methods employed in previous works®1>17-18
to include a full forward simulation of the system and a
sampling of the full posterior distributions. The previ-
ous works borrowed techniques from Bayesian inference,
such as regularization,® to constrain their models using point
estimates such as maximum likelihood estimation (MLE)
with uncertainty estimates following from local perturbations

around the MLE estimate of the model parameters,'? or by
evaluating a number of repeat experiments.® This work ex-
pands on these techniques by producing the full posterior
probability distributions of the model parameters for a single
measurement.

The ray-trace component of the workflow begins by gen-
erating rays at a reference plane, in this instance the back-
lighter used for the radiography, with a given location, direc-
tion, and initial intensity based on the spatial distribution of
the backlighter. The rays are propagated in space at a fixed
time through the converging target where the equation of ra-
diative transfer is solved along each ray using a node-centered
discretization. The target is defined by 3-D density, temper-
ature, and mass absorption coefficient distributions; this pro-
cess models the absorption and emission of rays by the object
the rays intersect. The change in the monochromatic spectral
radiance, I, (W sr—! m~2 Hz~!) of each ray as it propagates
through the target is described by the (differential) equation of
radiative transfer!”

&-VI, =pk, (Sy—1,), (1)
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FIG. 2. (a) A series of spatially-integrated, time-resolved radio-
graphic lineouts that correspond to the lines in (b) which shows a
simulated x-ray streak image of an OMEGA-scale implosion gener-
ated using the straight-line ray-trace simulation and reference data
taken from the 1-D radiation-hydrodynamic code LILAC. At each
time the process from Fig. 1 generates a single vertical lineout in (b)
which are collected together to produce the full streak history. The
trajectory of the shock in time can be clearly seen, given by the 2
dark limbs converging to the central axis.

/ _ v
K‘VKV(le kBT), 2)

where Q is the angular distribution of the ray, p is the density
in g cm™3, K is the opacity in cm? g~ !, T is the temperature in
K, v is the frequency of light being considered in Hz, and Sy, is
the source function, which can be neglected for the case of no
self-emission used in this work. This casting of the equation
omits the temporal dependence of the spectral radiance since
the time scales of ray propagation [~ 0.001(m)/c] are smaller
than the dynamical times scales of the target being considered
(= tens to hundreds of ps). After the equation of radiative
transfer is solved, the rays are apertured and binned into de-
tection elements, simulating a typical measurement apparatus
such as an x-ray streak camera®’ or x-ray framing camera.?!
Figure 1 demonstrates this process; how rays start from the
backlighter plane (far left), propagate through the 3-D target
region (center left), pass through or are blocked by the aper-
ture slit (center right), and eventually are binned in the detec-
tor plane (far right) to form a 2-D image.

Fully modeling the detection system is one of the strengths
of using a ray-trace since it avoids convolving the measured
signal with an assumed response and allows for the multidi-
mensional effects of the aperture (such as rotations and inte-
grating over non-imaging dimensions) to fold naturally into
the analysis. This process results in a radiant flux that is spec-
trally integrated and multiplied by the pixel area to produce
radiant energy per detector pixel. By default, the simulation
neglects noise, but the Poisson noise associated with photon-
counting experiments is explicitly added in Sec. VIC.

Although the ray-trace is performed at a single instance in
time, a time-resolved streak image can be generated by repeat-

ing this process at different times. A number of single-time
radiographic lineouts can be seen in Fig. 2(a), and the full
time-resolved 2-D radiograph can be seen in Fig. 2(b). In all
examples considered in this work, including those in Fig. 2,
radiographs and radiographic lineouts (henceforth called "li-
neouts") are normalized so that maximum signal corresponds
to a value of 1. This is also true for the reference lineouts
generated by the ray-trace using the LILAC thermodynamic
profiles.

I1l. BAYESIAN INFERENCE

The Bayesian inference scheme implemented in this work
draws inspiration from previous work in HED science.??24
Since many in-depth explanations of Bayesian inference are
available, one will not be presented here, although a brief ex-
planation is warranted. For the purposes of the work con-
sidered, the following Bayesian inference procedure was em-
ployed:

1. Given a reference lineout (experimental or synthetic),
determine a parameterization of the density profile to be
reconstructed and any other relevant parameters (such
as opacity). Specify a priori distributions for each pa-
rameter of the parameterization.

2. Use the ray-trace simulation to generate a synthetic
lineout corresponding to the parameterization chosen,
drawing a set of parameter values randomly from the
prior distributions.

3. Statistically compare the synthetic lineout to the refer-
ence lineout using a likelihood function. The choice of
likelihood function depends on the data, so here a Gaus-
sian likelihood with some width & is appropriate.

4. Based on the statistical comparison of the two lineouts,
generate a posterior probability value for each parame-
ter.

This process is repeated with a specified number of initial pa-
rameter guesses or draws and the result is an N-dimensional
posterior probability distribution in parameter space, where N
is the number of parameters. The final posterior distribution
is generally interpreted as the result of a continuous updat-
ing of the prior values given the evidence of the likelihood
calculation. A number of statistical methods can then be ap-
plied to analyze the data and interpret the posterior distribu-
tion. Specifically, a marginalized probability distribution can
be determined for each parameter 6; through the following
equation:

P((-),»): 0 P(6i|91,62,...,91v)XP(91,92,...,9N)d6j (3)
J#

Essentially, P(6;), the marginalized probability distribution of
parameter 6;, is the integral of the full probability distribution
integrated over all parameters that are not 6;.
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FIG. 3. (a) Posterior distributions for each of the three parameters of the simple model given in Eq. (6), as well as (b) the posterior predictive
distributions (PPD’s) of the density profile, constructed by sampling the posteriors from (a), and (c) lineouts generated from the density PPD’s
distributions. The color scales in (b) and (c) show highest posterior density intervals (HPD), the shortest region that contains a given amount of
probability. The posterior distributions in (a) are well matched to their reference data, given by the vertical dark-red lines. Additionally, PPD’s
of the lineouts have been constrained by the inference process and are well matched to the reference lineout, especially around the minimum
highlighted in the inset of (c). The dashed lines in (c) give the scale of ¢ used in the Likelihood function (e.q. 4). The PPD’s of the density
profile are also well matched to the reference density. Although the reference density is known explicitly in this example, it is not used as part

of the inference nor generally known a priori.

A. Likelihood Function

The likelihood function is a measure of the probability
of observing the given data presupposing a correct model.
Therefore, the choice of likelihood function is highly depen-
dent on the type of the data and the model. For this exper-
imental setup, the reference lineout is the result of a Poisson
process, and the uncertainty associated with the reference data
should therefore follow a Poisson distribution. In the limit of
large photon counts, however, as is the case in the simulation,
the Poisson distribution converges to a Gaussian distribution,
so a Gaussian likelihood function is an appropriate way to rep-
resent the relationship between the data and the model. The
width of the Gaussian, o, is a measure of the uncertainty of
the reference data. The likelihood function, L, is given in Eq.

4

1 « (data — model)?

L=exp[— 5 ¥ RN, (4)

In practice, the natural logarithm of Eq. (4) is usually taken,
so that the Bayesian inference occurs on

1n<L>:_1[Z@ata;—r§m>2}

> &)

where the data are the reference lineout, the model is the syn-
thetic lineout generated by the ray-trace for a given set of sam-
pled parameters, and the summation occurs over all detector
locations at a given instance in time. For LILAC-generated
reference data without noise, a constant value of 0.05 was used
for 0. In cases where Poisson noise was applied explicitly to
the reference, the uncertainty o was calculated as a function of

the normalized signal. This has the effect that areas of lower
signal have more uncertainty, which is a realistic result of a
Poisson process on experimental data.

IV. SIMPLE MODEL EXAMPLE

A simplified model consisting of a steady spherically con-
verging shock wave using a two-step radial density profile is
used to demonstrate the analysis workflow and results. The
density model used is
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FIG. 4. LILAC radiation-hydrodynamic simulation density profiles
(black curve) of a 1-mm-diameter solid CH ball driven with 27 kJ at
times ¢ = 3.25 ns and ¢ = 4.25 ns. The profiles are well represented
by the best-fit model using Eq. (7) (red curve).
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FIG. 5. (a) Posterior distributions for each of the seven parameters of the model given in Eq. (7), as well as (b) PPD’s of the density profiles and
(c) lineouts generated from said posterior distributions. A number of the parameters are well constrained, as shown by a single narrow peak in
their posterior distributions, including the location of the shock, the location of the peak density, and the peak compression and they all recover
the underlying nominal value, given by the vertical red line, which is the least-squares best fit value recovered by fitting the simulated density
profile with the assumed model (like in Fig. 4). Notably, the posterior distribution for the shock compression (ps/pp) is not well-constrained,
presenting an upper bound of about 4, but roughly equal probability density across all values below 4. This can also be seen in (b), which is
well matched to the reference density profile outside the region of the shock. Despite this, the PPD’s of the lineouts in (c) are converged from
the inference and well matched to the reference information even around the feature due to the shock limb highlighted in the inset. The dashed

lines in (c) give the scale of ¢ used in the Likelihood function (e.q. 4).

Po for r < Fshock
p(r) =4 Npo for rgpock <7 < rrelease (6)
0 for r > Trelease

where py is treated as a fixed known value of initial density,
Tshock 18 the radial position of the shock, 1 is the compress-
ibility given by the ratio of the density before and after the
shock passes, and ryejease 1S the radial position at which there is
no longer any material. This simple parameterization, which
is easy to interpret and computationally efficient, serves as a
useful test case of the analysis workflow in a setting where ref-
erence data can be generated with known parameters. Specifi-
cally, the values for this example are pg = 1.1 g cm™2, rghock =
270 um, reejease = 310 um, and n = (ps/po) = 2.7. Addi-
tionally, the correct density model can be applied within the

Bayesian inference to decouple parameterization-based errors
from other problems within the workflow. In combination,
this allows one to exactly evaluate the performance of the in-
ference. In this case the density model has a flat radial profile
within the shocked region rather than an increasing density as
would result from convergence effects in more realistic sce-
narios explored in Sec. V, but this has no effect on the work-
flow itself.

The inference process results in the posterior probability
density distributions (henceforth called posteriors) for each of
the 3 model parameters, shown in Fig. 3(a), which can be used
to construct Posterior Predictive Distributions (PPD’s) for the
radial density profile, shown in Fig. 3(b). The lineouts used in
the inference procedure explained in Sec. III to constrain the
posteriors, and which correspond to the PPD’s of the density
profile, can be seen in Fig. 3(c). From the figures, it can be de-
termined that the posterior distributions for each of the three
parameters are well-constrained. Additionally, the PPD’s of



the density profiles and lineouts generated are well matched
to their respective references. Thus, the Bayesian inference
procedure is able to successfully constrain the reference den-
sity profile and recover the model parameters.

V. ANALYSIS OF LILAC DATA

The inference workflow is tested on more-realistic data gen-
erated from the 1-D radiation hydrodynamic code LILAC,
where a single spherically converging shock wave was sim-
ulated in a solid hydrocarbon sphere (CH) driven by 27 kJ
of UV light using the SESAME 7592 EOS table? and Los
Alamos astrophysical opacity tables.?® The resulting radial
density profiles are used to generate a simulated radiograph,
as shown above in Fig. 2(b), to determine how much infor-
mation about the density profile is encoded in the lineout, and
to what extent the density profile can be reconstructed from
lineout data.

All of the reference lineouts generated from the LILAC pro-
files are taken at a single time, = 4.0 ns in Fig. 2. Addition-
ally, the simulation was configured to model an idealized and
typical setup of an OMEGAG0 experiment with 5x magnifi-
cation, a spatially uniform backlighter intensity, and a perfect
10 x 100 pm slit projecting an image onto a detector with 27
um pixels. In all examples the projection is then integrated
in the less-resolved dimension to produce a single lineout on
which the inference is performed. The opacity of the target
in the ray-trace is taken as a constant, which is known for
the purposes of the analysis here, so there is no effect due to
the opacity on the inferred density profile (equivalently the in-
ferred profiles can be consider to be kp, the opacity density
product rather than simply p but for purposes of discussion
the opacity is assumed to be known here and mass density is
used).

This system has a number of simplifications over a true ex-
perimental system that make it a best-case scenario for the
purposes of inference and extracting information from the ra-
diograph. Notably, these simplifications include not having to
infer a backlighter intensity profile, using a truly monochro-
matic radiographic signal, the use of a known opacity, having
no threshold on the signal contrast in the detector, and having
no spatial blurring due to finite detection times and movement
of the shock wave. Fully resolving any of the previously men-
tioned assumptions would lead to reduced performance of the
inference process.

A. Density Profile Parameterization

The parameterization used to represent the LILAC density
profile is similar in form to previous work!? and is given by

Po for r < rg

ps + (Pp —ps)(,;‘_’;s) for ry <r <rp

p(r)= @)
] ( _ (rfrp)z) f
Pp - €Xp 752 orrp <r<re

pe-exp(— a(r—re)) forr. <r.

_ (rp—re)?
2In(pe/pp)’

where rg, 1, and 7, are the radial locations of the shock, peak
density, and tail, respectively; po, s, Pp, and p are the den-
sities of the material in ambient conditions, immediately after
being shocked, at its maximum due to converging flows, and
!:e tail of the density profile, respectively; and « is a scale
parameter that determines how quickly the density reduces to
0 in the tail. The parameterization is designed for the density
to be continuous, except at the location of the shock, and to
explicitly include physical quantities of interest. In particu-
lar, the location of the shock front, rg, and the density value
immediately behind the shock front, ps, can be used in combi-
nation to determine the equation of state of the material given
a streaked radiograph.'?> An optimized density profile param-
eterization (to match the LILAC profile) is shown in Fig. 4
along with the underlying LILAC profiles for two different
times, which show good agreement. Outside of this window
of times, the density profile parameterization is unable to fully
match the underlying profile, particularly in the tail, but this
work will focus on inference from particular time slices that
fall within the well-behaved window.

®)

B. Constraints on Bayesian Inference

A primary benefit of using Bayesian inference is the ability
to leverage as much information in the workflow as possible.
This can occur through multiple different channels including
the choices of prior distributions as well as additional terms
added to the likelihood function to account for different con-
straints. In the examples shown here, largely uninformed pri-
ors (in the form of uniform distributions) with bounds based

hysical considerations are used. The one exception is that

he radial location of the shock, which is given a Gaus-
sian prior distribution around the location visible in the ref-
erence radiograph, such as at a time of # = 4.0 ns, where the
shock occurs at a distance of approximately 0.796 mm from
the central vertical axis of the detector in Fig. 2(a). Additional
constraints include phy =ity considerations on the radial lo-
cations of the shock, =E= nd tail, such that the shock occurs
before the peak location, which itself occurs before the tail lo-
cation, as well as a constraint ensuring that the peak compres-
sion is higher than the shock compression. These constraints
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FIG. 6. PPD’s of the first three moments of the density distribution.
(a) The zeroth moment areal density in g cm?, (b) the ratio of the first
and zeroth moments, average radius in um, and (c) the second mo-
ment, mass in pg. The mean values for each distribution are within
1% of their respective true value, which shows that they are well
constrained despite the discrepancies in the density profile around
the location of the shock. The widths of each moment’s distribution
is of order 5% when looking at the bulk of the distribution (i.e. the
inflection point denoting the tails), which is much smaller than the
25% width seen in the peak compression posterior in Fig. 5.

serve to ensure that the resulting density profiles follow the
physical intuition that led to the parameterization.

VI. EXAMPLE INFERENCE CASES

This section gives a series of inference examples that con-
sider different experimentally relevant constraints. The first
is the nominal case as described in Sec. V, the second in-
cludes the addition of a mass marker layer, the third includes
simulated noise, and finally the fourth considers an outside
constraint on the density immediately behind the shock.

A. Inference in Nominal Case

The first inference test includes the priors described in Sec.
VB for the parameters of the density profile and the con-
straints on those parameters, but no additional constraints.
The resulting posterior distributions for each of the seven pa-
rameters can be seen in Fig. 5(a), while the corresponding
PPD’s of the density profiles and lineouts can be seen in Figs.
5(b) and 5(c), respectively. The PPD of the lineout is well
converged from the sampling around the reference lineout (red
curve) used in the inference, showing that the model used was
adequate to reproduce the full output; similarly, the entirety of
the density profile is fairly well predicted with the exception
of the region right around the shock jump.

Looking at the posteriors for the different model parameters
in Fig. 5(a) shows that the specific value of the compression
at the shock jump is not well constrained by the information

in the lineout. An upper limit is placed on the distribution,
but this is due to the explicit constraint that the shock com-
pression must be less than the peak compression. The peak
compression achieved is well constrained along with the loca-
tion of the peak since much of the mass is in this bulk of the
material, along with much of the areal density, the primary
moment of the density distribution when considering absorp-
tion. These findings reinforce earlier work® describing radio-
graphic reconstruction in imploding shells and the importance
of the radial moments of the density distribution, the first three
of which are given by® areal density (pR), average radius (R),
and mass (M). The inferred distributions for these quanti-
ties are shown in Fig. 6 and, as suggested in this previous
work,? these first three radial moments of the density distri-
bution are well constrained by the radiographic measurement.
Specifically, the mean values for each distributions recover
the underlying true value to better than 1%, despite the large
discrepancies in the density profile around the location of the
shock seen in Fig. 5(a).

B. Lagrangian marker

The recent work on EOS measurements using
radiography!>'* employed a Lagrangian marker to in-
troduce an added constraint on the syste he marker acts
as a position tracer where the mass int to the marker
is known from initial conditions, providing an additional
constraint from conservation of mass such that at all times the
mass interior to this marker layer is known. This constraint
comes in the form of an integral equation for the density
profile,

Tmarker
Mmarker = 470 /0 p(r)rdr, )

where Miarker and Fmarker are the the total mass interior to the
marker layer and the position of the marker layer, respectively.

This constraint was added to the Bayesian workflow used
in the Sec. VI A by assuming the position of the marker layer
is known and adding an additional term to the likelihood func-
tion that gives preference to profiles that satisfy the condition
from Eq. (9), assuming a 5% normally distributed uncertainty
on Mparker- The additional parameters required to describe the
location of the marker layer are omitted here and the position
of the marker layer is used as a known quantity with no uncer-
tainty.

Figure 7(a) shows a comparison of the posteriors inferred
from the case without a Lagrangian marker and the case with
a Lagrangian marker at rmaker = 260 pum, for the shock com-
pression, peak compression, and peak radius. There is little
difference between the posteriors, except for a slight narrow-
ing of the peak compression posterior, meaning that the infor-
mation contained in the marker layer condition is largely de-
generate with information that exists within the lineo is
is demonstrated in Fig. 7(b), which shows the PPD he
mass integrated up to the marker layer for the nominal situa-
tion without the explicit constraint (blue curve) and when the
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FIG. 7. (a) A comparison of the posterior distributions of select parameters inferred for the case with (solid blue) and without (dashed green) a
Lagrangian marker. (b) Posterior Distributions of marker layer mass the case without a Lagrangian marker (blue) and with a Lagrangian marker
(dashed green), as well as the value calculated using the reference LILAC density profile. This shows that even without the explicit constraint
of a Lagrangian marker the integrated mass up the reference point is already strongly constrained, though the addition of the marker layer does
narrow the distribution which coincides with the narrowing of the peak compression distribution in (a) meaning additional information gained
from the marker layer contributes to better constraint of the peak density achieved behind the shock. (c) Marker layer mass (u1g) (y-axis) as
a function of a variable marker layer radius (um) (x-axis) for the case with no Lagrangian Marker. Although the inference was performed
without a marker layer constraint, the PPD’s of the density profiles have integrated masses that are consistent with the true profile across
various radii, showing that the Lagrangian marker does not contribute much additional information regardless of proximity to the shock front.
Also shown in red dashes is the location of the marker layer used in the case with a Lagrangian Marker.

marker layer constraint is used (green curve). In both cases the
integrated mass recovers the underlying value (shown in red),
meaning that the explicit use of the constraint is not adding
much new information. Figure 7(c) shows how the inferred
integrated mass, for the nominal case, compares to the under-
lying true value for various values of ryarker (Where the mass
interior to the shock position is a constant and subtracted off).
This shows that even without any explicit constraint added in
the form of a Lagrangian marker, Eq. (9) is satisfied for all
values of 7maker based only on the information stored in the
lineout, so there is minimal additional information leveraged
from the used of a marker layer.

C. Noise

Another factor that strongly affects the ability of an analysis
procedure to constrain the density jump is random statistical
noise. Specifically, an experimental radiograph is the result of
a Poisson process in which photons are deposited on a streak
camera detector, and this process creates a radiograph with
random noise. By construction, the radiography simulation
built does not contain random statistical noise, but a lineout

can easily be modified to include such noise. Poisson noise
is inversely proportional to the square root of the signal such
that a normalized radiograph would have less noise where the
value is closer to 1. This can be approximated by the follow-
ing equation:

noise o< (10)

o
\/signal’
whera scaling factor. The inference results where noise
is inclooed in the lineout, while also using the same marker
layer constraint as Sec. VIB, are shown in Fig. 8. In this
case the sampling still returns a good fit to the lineout shown
in Fig. 8(c) along with a good fit to the density profile on the
whole in Fig. 8(b). The posteriors shown in Fig. 8 (a) show
similar general trends to the previous examples but now show
a significant modal structure.

It is important to be aware of the modal st re that
noise introduces into the likelihood surface, espein the
presence of point estimate inference techniques such as least
squares fitting, maximum likelihood estimation, and mini-
mum x? fitting. These techniques rely on optimization rou-
tines to find regions of high probability density, often in the
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FIG. 8. (a) Posterior distributions shock compression, peak compression, and peak location, for the case with and without noise, (b) PPD’s of
the density profiles and (c) lineouts for the case with a Lagrangian marker and Poisson noise added to the reference lineout. The posteriors
show similar general trends as in the cases without noise but now there is a distinctive modal structure present and the posteriors for peak
compression and radius are both more narrow. The PPD of the density profile in (b) again shows that the density jump at the shock location
is not well constrained the radial density profile on the whole is still well constrained. The comparison with the reference lineout in (c) again
shows good convergence and agreement with the underlying reference. The dashed lines in (c) give the scale of ¢ used in the Likelihood
function (e.q. 4). The modal structure in (a) is a product of the specific noise kernel used and can the locations and shapes of the modes can be

expected to vary randomly.

face of approximations about the nature of the uncertainty
in measurements and correlations between model parameters;
and in systems with a large number of parameters, it is very
likely that point estimate techniques will find a local extrema
in parameter space. Additionally analysis techniques relying
on these point estimates often do a local error analysis by per-
turbing parameters around that peak!2, a process which as-
sumes a single dominant mode to the probability densities of
the estimators. This assumption can lead to dramatic under-
estimates of the uncertainty on inferred parameters. As an
example if a single mode of the shock compression posterior
from Fig. 8 (a) is selected as the ’best-fit’ as would be the
case for a point estimate and a local error estimation was done
the inferred uncertainty would be something akin to a normal
distribution fit around that peak producing what appears to be
a well constrained measurement, when in reality the posterior
distribution is not well approximated by a normal distribution.

Modality is a concern for Bayesian inference techniques
as well, especially depending on the sampling algorithm
used. This work used a sequential Monte-Carlo sampler (also
known as a particle filter), which is more well behaved in the
face of multimodal posteriors than traditional Markov-chain
Monte-Carlo (MCMC) techniques and the goal of the algo-
rithm is to construct the full posterior distributions, rather than
seeking an extrema, so modality is only a concern if it prevents
the samplers from properly exploring the space.

D. Outside Constraint from Prior Data

The results from the previous test cases demonstrate that
some additional information is needed to constrain the in-
ferred shock compression. Figure 9 (a) shows the uniform
prior distribution (green) for the shock compression, along-
side the posteriors from the 3 test cases above. A defining fea-
ture of the inference from these cases is the upper-limit placed
on the shock compression, which can be used in combination
with outside information to constrain the posterior further.

The simplest way to introduce this outside information is
by using a more informed prior distribution, for example one
that introduces a lower limit on the shock compression. A
naive implementation is shown in Fig. 9 (b) where the data-
informed prior (orange) is simply a uniform distribution with a
lower bound set by the maximum compression measurement,
of 3.39%7, from previous data along the Hugoniot of CH up
to 8.74 Mbar performed in planar geometry using a different
methodology. Figure 9 (b) also shows the posterior for shock
compression given the new prior (red), which is now signifi-
cantly more peaked than the previous results (green) meaning
that there is a well-defined region of high probability density.
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shown are the prior used for each case (solid green) and the nominal value from the LILAC density profile (solid red), given as 3.86. All of
the distributions show the same general trend that above a compression of 4 the probability density drops sharply, due to the peak compression
behind the shock being well constrained and the shock jump necessarily being smaller, effectively giving an upper bound on the shock jump.
There is little constraint on the lower end of the compression where the probability density is effectively flat between 1 and 4. The case with
noise shows modal structure that, if point estimates are used, can give the impression of constraint while only being a local maximum in
probability density. (b) The posterior for shock compression (dashed green) for the case with a broad uniform prior (solid green) and posterior
(dotted red) for the case with a narrow uniform prior (solid orange) truncated at the low end at the location of previous measurements2’. This
demonstrates how Bayesian inference allows additional information to be leveraged to constrain a quantity that is otherwise unconstrained.
The combination of the prior informing a lower limit of compression and the radiograph constraining upper limits of compression results in a
nicely peaked posterior probability density that captures the proper underlying value (solid red). The axes are expanded to demonstrate how
the priors enforce that there is O probability density outside of their bounds. Note that the data-informed posterior is largely asymmetric though

presents a strongly peaked result that recovers the nominal value.

VIl. CONCLUSIONS

The results shown here provide insight into the informa-
tion content within x-ray radiographs of spherically converg-
ing shock waves in solid-density materials. Experiments of
these types have been widely used throughout the HED com-
munity and most recently have claimed to provide absolute
EOS measurements based on being able to recover the com-
pression at the location of the shock front. In the system
investigated here, which can be seen as a best-case experi-
mental scenario as discussed in Sec. V, there is insufficient
information content within an x-ray radiograph lineout alone
to claim measurement of the compression at the shock front.
This is most clearly shown in Fig. 9(a), where the uninformed
prior probability density distribution (solid green line) is plot-
ted with the posterior probability density distributions from
the different test cases presented within this work including
no marker layer (light green), with a marker layer (light blue),
and a reference with randomly generated noise (dark blue).
It is clear that beyond placing an upper bound on the shock
compression, the radiograph alone is unable to further con-
strain the shock compression. It also appears that when Pois-
son noise is introduced, different modes appear in the poste-
rior surface that can cause analysis techniques based on point
estimates and optimization schemes to converge to a local ex-
trema, which would cause the precision of the estimate to be
dramatically overestimated when local uncertainty analysis is
done.

This work shows that an abundance of caution should be

used when reconstructing density profiles from radiography
measurements and that a priority should be placed on sam-
pling the entirety of the likelihood surface rather than per-
forming point estimates of parameters. Although this work in-
vestigated only one particular scale of experiment (relevant to
the OMEGA laser) and performed inference on a single time
slice of the radiograph, the results are unlikely to change in the
face of a different scale or by leveraging the full time history
of a streaked radiograph. In the case of time history, the ear-
lier time inferences would provide a lower bound on the shock
compression (until ionization effects are reached at the high-
est pressures) since the shock wave is strengthening as it con-
verges, but the system is still reducible to the first time slice
where the compression would be mostly unconstrained and
therefore the uncertainty would propagate forward through all
other times. Additionally, there would be an increased num-
ber of parameters necessary to fit the entire streak. Finally, a
pathway to constraining the shock compression is presented
by making use of previous data to set a lower bound on the
prior of the shock compression. A converging shock experi-
ment where the initial shock pressure is well-matched to pre-
vious experiments would allow the initial time slice to be well
constrained and then subsequent times in the streaked history
would be constrained by the previous time-slice, leading to a
global constraint.

Although the shock compression is not strongly constrained
by the radiograph alone, the density profile is well constrained
by the radiograph measurement. In particular, the areal den-
sity (pR) is very well constrained and is a quantity of particu-



lar interest within the ICF community®. The findings here are
in excellent agreement with previous radiography measure-
ments done on shells for the purpose of diagnosing metrics
relevant to ICF modeling,8 and this work can be seen as an
extension of those efforts with additional insight into the un-
certainties associated with such reconstructions. Additionally,
the peak density achieved within the bulk of the material be-
hind the shock, which has a great effect on the propagation of
the outgoing shock wave,?® is well constrained. Radiography
measurements of this kind contain a great deal of informa-
tion that can be used in combination with other measurements
to develop a full picture of implosion experiments, including
how materials respond to strong converging shock waves.

This work can be used as a foundation to develop further in-
vestigations about the information contained in measurements
of this type. Experimentally additional information can be in-
troduced using phase contrast imaging (also known as refrac-
tion enhanced radiography)'%!12° to better constrain the den-
sity at the shock jump. In these systems there is an additional
feature in the radiograph that is sensitive to the derivative of
the density profile in space meaning that it is very sensitive to
the jump at the shock front where the gradient is very large.
This work can aid experimental design by giving a platform
to test which aspects of the design help constrain particular
quantities of interest, for example in this case by showing that
the Lagrangian marker layer does not introduce much new in-
formation so is likely not worth the effort of target fabrication,
and can be used as a foundation to leverage heterogeneous
information to maximize what we can learn about the high-
energy-density matter achieved in these complex implosion
experiments.
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