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Abstract

Dynamic programming equations for mean field control problems with a separable
structure are Eikonal type equations on the Wasserstein space. Standard differentiation
using linear derivatives yield a direct extension of the classical viscosity theory. We use
Fourier representation of the Sobolev norms on the space of measures, together with
the standard techniques from the finite dimensional theory to prove a comparison result
among semi-continuous sub and super solutions, obtaining a unique characterization
of the value function.
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1 Introduction

We consider the Hamilton-Jacobi equations related to mean-field control problems in
which the state process X, taking values in the d-dimensional Euclidean space R? has
the following simple dynamic structure,

dX, = o, du + o dW,,

where « is the control process adapted to the information flow but unrestricted oth-
erwise, positive square matrix o is the diffusion coefficient, and W; is a standard
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Brownian motion. The cost functional of these problems have a separable structure
given by,

r 1
J (@) :=/ (C(u, L(Xy)) + EElaulz)du + g(L(X71)),
t

where ¢, g, are given functions, and £(X,) € P(Rd ) is the law of the random variable
X,. Let v(z, ) be the value function defined by,

v(t, n) = igf J(a), L(X;) = .

By appropriately scaling time and space, we assume that o is the identity matrix. Then,
the corresponding dynamic programming equation is given by,

_afv(tv M)+H(/~’L38MU(I1 /,L)):E(t, H/)v (11)

where the function §,v(¢, 1) (-) is the linear derivative of v with respect to 1 as defined
in Section 2 below, and for a twice differentiable function x and a probability measure

/“1’3
1 1 5
H(p, k) = _EM(AK) + EM(IVKI )s (1.2)

and u(f) = [ f(x)u(dx).

Under natural assumptions on £, g (cf. Assumption 3.1, below), dynamic program-
ming holds and the value function is a viscosity solution of (1.1) using the standard
notion of linear derivative. Many similar results of this type have already been proved
in far greater generality. We refer the reader to our previous paper [1] for these types
of results, and the relevant references therein.

Mean-field optimal control problems are part of the exciting general program of
Lasry & Lions [2—4] as outlined by Lions during his College de France lectures [5].
Similar type of differential games were independently introduced by Huang, Malhamé,
& Caines [6-8], and we refer the reader to the classical book of Carmona & Delarue
[9], and to the lecture notes of Cardaliaguet [10] for detailed information and more
references.

Our central goal is the characterization of the value function as the unique weak
solution of (1.1). While the impressive paper of Cardaliaguet et. al. [11] provides
regularity results for mean field games, it is well known that dynamic programming
equations in general do not admit classical solutions, and we naturally consider the
celebrated viscosity solutions of Crandall & Lions [12—15]. However, in infinite dimen-
sions the Hamiltonian is often not defined when the derivative of the solution is not in
the domain of corresponding unbounded operators, as explained in the excellent book
of Gozzi & Swiech [16]. Thus, the original definition must be modified, and there
are several alternatives. Among those we pursue the standard definition of a viscosity
solution using the linear derivative on the convex set of probability measures, as we
have done in our earlier paper [1].
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Our main contribution Theorem 5.1 is a comparison result for the dynamic pro-
gramming equation (1.1) among all semi-continuous sub and supersolutions. More
general results in this direction have already been proved by Cosso et. al. [17], and
more recently by Daudin, Seeger [18] and by Daudin, Jackson & Seeger [19]. How-
ever, we use a different and an alternate technique developed in [1] based on negative
Sobolev norms and their Fourier representations, but without using the strong struc-
ture imposed on the controls in [1]. An important ingredient is the Lipschitz regularity
in the negative Sobolev norms of the value of optimal control problems with smooth
coefficients proved in Proposition 3.3. These estimates were first used in [1] in this
context. In the separable structure that we consider, it is proved more generally by
Daudin, Delarue & Jackson [20] using the theory of elliptic equations, and were then
used in [19] to obtain a general comparison on the d-dimensional torus. We also lever-
age this Lipschitz regularity of the value functions and the techniques of [1] to prove
the general comparison result Theorem 5.1 on the whole R¢, under a weak regularity
condition Assumption 3.1.

Properties of the solutions of Hamilton-Jacobi equations on the spaces of probability
measures have been actively researched in the past two decades. A milestone in the
these studies is the lifting introduced by Lions in [5]. This approach maps the problem
to an L2 space and connects to the earlier results exploiting the Hilbert structure. and
is further developed in several papers including [21, 22]. Additionally, the novel Lions
derivative and its properties are explored in the book of Carmona & Delarue [9].

As mentioned earlier, [17] proves a very general comparison result by extending
the deep techniques developed by Lions [23] to the Wasserstein space and covering
essentially all convex Hamiltonians. Two recent papers [18, 19] also prove compari-
son results with techniques closer to ours. While an intriguing new definition together
with the differentiable structure of the Wasserstein two metric is used in [18, 19] uses
amalgam of deep techniques including the negative Sobolev norms and a change of
variables introduced in [24] to prove several interesting results on the d-dimensional
torus. Also a general Crandall-Ishii type result is proved in [24] using the negative
Sobolev norms introduced in [1] and in this paper. Additionally, in another recent
study [25] related to stochastic optimal transport, Bertucci introduces a highly origi-
nal new definition of viscosity solutions and proves general comparison principles. An
interesting approach developed by Gangbo & Swiech [16] and Marigonda & Quin-
campoix [26], and Jimenez et.al. [27] utilizes deep connections to geometry. Gangbo
& Tudorascu [28] connects this method to Lions lifting. Cecchin and Delarue [9] uses
Fourier approximations of the measures and exploits the semi-concavity, and provides
an excellent overview of the problem. In our earlier work [1, 29], we have used the
direct definition of the viscosity solutions and employed the classical techniques.

Alternatively, projections of these equations to finite-dimensional spaces yield
approximate equations that can be directly analyzed by classical results [14]. A
second-order problem studied in [30] provides a clear example of this approach as
its projections exactly solve the projected finite dimensional equations. However, in
general these projections are only approximate solutions, and clearly one has to effec-
tively control the approximation error to obtain relevant results. This is achieved by
Cosso et.al. [17] via the smooth variational principle together with Gaussian smoothed
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Wasserstein metrics. Bayraktar et.al. [31] use a different approach, and Gangbo et.al.
[32] studies the pure projection problem.

Other highly relevant studies include Wu & Zhang [33] for path-dependent equa-
tions, Conforti et.al. [34] for gradient flows, and Talbi et.al. [35, 36] for mean-field
stopping problems. Additionally, Ambrosio & Feng [37], and Feng & Katsoulakis
[38] study the closely connected Hamilton Jacobi equations on metric spaces.

The paper is organized as follow. General structure and notations are given in
the next section. In Sect. 3 we briefly define the problem, and state the standing
assumptions. Viscosity solutions are defined in Sect. 4, and the main comparison
result Theorem 5.1 is stated and proved in Sect. 5. In the Appendices, we prove a
technical lemma and outline the proof of the regularity result proved in [20].

2 Notations

The dimension of the ambient space is denoted by d, T is the finite horizon, M(Rd)
is the set of all bounded Radon measures, 7P(R¢) is the set of probability measures on
R4, and

Py®Y) = [ e PRY : /|x|2 p(dx) < 0o,

We write M, P, P> when the ambient space is clear or redundant and endow them
with the weak topology o (M, C,(R?)). Then, for a sequence of measures {1} the
weak convergence u;—u means limg_, o wx (fx) = w(f) forevery f € Cp (RY).

Weset O := (0, T) x P, and endow O := [0, T]x P, with the product of Euclidean
and the weak topology o (C (R?), M). We utilize the local compactness of O. Indeed,
set

() = ulg) = /q(x) n(dx), e P,

g(x) :=v1+|x2, xeR% 2.1

Then, for any constant ¢ > 0, the sublevel set {(f, 1) € O : P (u) < c}is weakly
compact.

For metric spaces E, F,C(E + F) denotes the F-valued continuous functions on
E.We write C(E) when F = R and Cp,(E) for the bounded ones. For a positive integer
n, C"(RY) is the set of all n-times continuously differentiable, real-valued functions,
and we set

Cy i =CRY ={ f e CRY) : |f(x)] < c(1 +|x|?), for some constant c}.

It is clear that f fdu is well-defined for the pair u € P2, f € Cy, and whenever
defined we write w( f) for the integral fRd f(x)u(dx). We also use the notation,

Cl={feC®RY: f, |VfI?eC, D*feCp). (2.2)

@ Springer



Applied Mathematics & Optimization (2024) 90:1 Page 5 of 16 1

Using the standard notion of linear derivative on the convex set P,, we say that
@ € C(P,) is continuously differentiable if there exists §,,¢p € C(P> — Cy) satisfying,

1
o) = o(u) +/O =W+t —pw)dr, Vu,vePs.

Clearly, ,,¢(11) € C, has many representatives. However, when 8, ¢ () is twice difter-
entiable, then (1 (AS, (1)), and p(h(VS,¢(1))) with any continuous function 4 and
appropriate integrability are independent of this choice, see for instance [30][Appendix
B]. For ¥ € C(O) and (1, ) € O, 3;¥(t, u) € R is the time derivative evaluated at
(¢, m), and 8, (t, ) € Cy is the derivative in the p-variable.

We consider the Fourier basis given by,

e(x, &) = (27)"2 €, xeR? £ eRY
where i = +/—1 and z* is the complex conjugate of z. Then, for any f € L2(R%),
£ = [ 3@t de, where

S(NHE) = /Rd f)e*(x, &) dx, x, & e R (2.3)

Fors e R, H; (Rd) is the classical Sobolev space with fractional derivatives [37, 39].
Then,

A3 = 1 £ 13, gy = /R (L4 € [B(NHE) de.

Moreover, for s > k + %, H,(RY) continuously embeds into CII; (R?). Therefore,
for s > %, M@RY) © H_s(R?), and | - ||y is well defined on M (R?). Then, for
n e MR?),

Inll%, = fR d(1+|$|2)_s|3(n)(§)|2dé, where
S(n)(é)z/Rd ¢*(x, &) n(dx), £ € RY.

Moreover, by duality,

Inll—s = sup{n(¥) : ¥ € H R, [Ylly < 1},

We use the choice
d
nei=nd =3+1350 o=l 24
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where |a] is the integer part of a real number a. As n, > 2+ %, H,, (RY) C,f(Rd),
and by Morrey’s inequality there is a constant k; depending only on the dimension
such that (see for instance, [40][Chapter 4])

lellc2gay < kallkllns, ¥k € Hax(RY). (2.5)

3 McKean-Vlasov control

Let v(z, u) be the value function of the McKean-Vlasov optimal control problem
defined in the Introduction by using all square integrable, adapted controls. For more
information, we refer the reader to Chapter 6 in [9] and [1, 41]. In particular, the
recent paper of Daudin [41] outlines the connections between several formulations
and proves the existence of optimal feedback controls.

Following is the only assumption of the paper. Recall that O := [0, T] x P, is
endowed with the product of Euclidean and the weak topology o (P, Cp(R%)).

Assumption 3.1 We assume that £ : O — R, g : P> > R are bounded and continu-
ous. We additionally assume that, there exists a sequence of smooth functions (¢,,, g,,)
approximating (¢, g) uniformly, a constant k,, > 0, a modulus w (i.e., v : Ry — R
is a continuous function with w(0) = 0), and constants c¢,, such that for each n,
t,s €[0,T],and u € P,

[ (2, 1|+ [8n ()] < ke, €0t 1) — Ln(s, )| < ki (|t = s]),
18,06t 1) 134y, ity + 18,68t 1)l 2 ety + 18,80 (1) 3, . ety
+||8/Lgn(ﬂ)||czn*(Rd) = Cp.

Above assumption is satisfied by a large class of functions, and the choice 2n* is
arbitrary but does not decrease the generality. Below we provide a natural class of such
functions. In fact, regularization techniques developed in [9] can be used to construct
the approximating sequence directly under assumptions on (¢, g).

Example 3.2 Consider a function £() = L(u(f)) for some L € Cyp(R), f € Cp(R?).
Additionally, assume that L is Lipschitz, and f is square integrable. Then, by mollifi-

cation one can construct smooth functions (L, f,) approximating (L, f) uniformly,
and satisfying || full3,, . me) + | fall c2n gay < cns

sup( Laller + Il fulloo) < IIL1loo + L lloe + Il flloo =t -
n

Moreover, as §,.£,(t, u)(x) = L) (u(fn)) fu(x) for x € Rd,

8, €n(t, 31, my = K 1 fnll ey, (mEY
||5,u£n (t, M)||CZrz*(Rc1) < ks« ||fn||02n*(]Rd)-
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Thus, £ () satisfies the above assumptions. More generally, a natural class of functions
for the above assumption is given by £(¢, u) = L(z, u(f1(¢, ), ..., u(fm(t,-))) for
some functions L, fi, ..., f, satisfying appropriate conditions.

Let (¢,, g,) be as in the Assumption 3.1, and v, be the value function of the
optimal control problem with running cost £,, and terminal cost g;,, and same dynamics
as in the original problem. The following regularity of v, is essentially proved in
[20][Proposition 3.2] improving a similar result proved in [1][Theorem 4.2].

Proposition 3.3 (Proposition 3.2 [20]) Let ¢ be as in (2.4). Under the Assumption 3.1,
there exists constants ¢, such that

|Uﬂ(t1/~'l/)_vl’l(tv V)| Sén Q(M_U), VIE[Ov T]v M7V€P2« (31)

Proposition 3.2 in [20] proves exactly the above estimate but in the d-dimensional
torus. However, their proof can be directly adopted to the current context with no
changes. As the above estimate is used centrally in our proofs, for the convenience of
the readers we provide an outline proof of the above result in the Appendix.

Corollary 3.4 Under the Assumption 3.1, v,,v € Cp(O), i, both v, and v
are bounded and are continuous in the product of Euclidean and weak topology

o (Cp(RY), Py).

Proof The continuity of v, in the time variable is straightforward [1]. The above
Lipschitz continuity in ¢ and Lemma A.1 implies that v, € Cp (O). The uniform
convergence of (£,,, g,) to (¢, g) implies that v, converges to v uniformly and therefore
v € Cp(O) as well. O

4 Viscosity Solutions

We start by defining the class of test functions used in the definition of the viscosity
solutions.

Definition 4.1 A continuous function ¢ € C (6) is called a test function if there exists
a version of 8,,¢ such that the map

(t, p,x) € O x RY 1 8,9 (z, 1) (x)

is continuous, and §,¢(f, 1) € Cf for every (¢, u) € O. Let C;(O) be the set of all
test functions.

We can now directly define the notion of viscosity solutions [12-15]. Recall that
we endow O with the product of Euclidian and weak topologies.

Definition 4.2 We say that an upper semicontinuous function  : O > Risaviscosity
subsolution of (1.1) if for every test function ¢ € C;(O) we have

—0;¢(to, o) + H (o, u9(to, o)) < £(to, o),
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atevery (to, o) € O satisfying (u — ¢)(10, (0) = maxgz(u — @).
We say that a lower semicontinuous function w : O > Ris a viscosity supersolu-
tion of (1.1) if for every test function ¢ € C;(O) we have

—0;¢(to, o) + H (o, S,9(to, 10)) = £(to, o),

at every (fo, o) € O satisfying (w — ¢)(t0, (o) = ming(w — @).
A function v : O — R is a viscosity solution if its lower semicontinuous envelope
v, is a supersolution and its upper semicontinuous envelope v* is a subsolution.

Remark 4.3 In view of (2.2), if ¢ is a test function, then 8, ¢(t, u) € C? with its
derivatives satisfying §,¢(t, u), |V, ¢(t, w)|? € Cy, and D28M<p(t, u) € Cp. Note
that these test functions are not necessarily bounded and may grow quadratically. As
our analysis is in the Wasserstein space P», this relaxation is natural, and is utilized
in the comparison proof.

The following is standard and is proved in [1].

Corollary 4.4 Under Assumption 3.1, the dynamic programming holds. Consequently,
v is a viscosity solution of (1.1), and for each n, v, is a viscosity solution of

_8lv(ts /-'L) + H(/-’Lv (S/Lv(tv M)) = Z}’l(tv M)! on (Ov T) X P2

5 Comparison

Our main result is the comparison for the Eikonal equation (1.1), and its proof is given
later in this section. Recall that the state space is O = [0, T'] x P> (R?), and we endow
it with the product of Euclidean and weak topology o (P, Cp (R%Y).

Theorem 5.1 Suppose that Assumption 3.1 holds, u : O +— R is an upper semi-
continuous, bounded viscosity sub-solution of (1.1), and w : O — Ris a lower
semi-continuous, bounded viscosity super-solution of (1.1). Further assume that
u(T,) < w(T,-). Then, u < w on O. In particular, the value function v is the
unique continuous, bounded viscosity solution of the dynamic programming equation
(1.1) and the terminal condition v(T , -) = g.

We start with a simple computation and estimates. Recall the test functions Cy (O)
of Definition 4.1, n,, o of (2.4), and the Fourier basis e(x, &).

Lemma5.2 Forn € M(R?), set y(n) := %Qz(n). Then, for u,v € Pa,

K(x) =8, (n—V)(x) = fR A+ 1EH™ Fp —v)(@e(x, 6) d&, x e RY
Moreover, ||k |+ = o(u — V).
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Proof Fix p,v € P2 and set n = u — v. A straightforward computation implies
that ¥ := 8,9 (n) has the claimed form «(x) = fg(é) e(x, £)d&, where g(-) =
1+ |2)*"*3(n)(~). Then, in view of the inverse Fourier formula (2.3), we conclude
that §(k) = g.

Proof of Theorem 5.1 We complete the proof in several steps. Recall that the functions
q(-) and ¥ (u) = u(q) are defined in (2.1), and ¢ is weakly lower-semicontinuous on
P>, and any sublevel set { € P> : ¥ () < ¢} is compact. O

Step I (Set-up). Letu, w be as in the statement of the theorem. Towards a contraposition
suppose that su%(u — w) > 0. Let v be the value function. Then,

0 < sup(u — w) < sup(u — v) + sup(v — w).
[9 [ [

Hence, either supz (v — v) > 0, or supz(v — w) > 0, or both must hold. We analyze
the first case and this analysis can be followed mutatis mutandis to prove the other
case.

For a small constant 8, set u(z, u) := u(t, u) — 26+,(T — t + 1). We first fix §,
satisfying supg(u — v) > 0. We then fix n sufficiently large so that

— Opu(t, w) + H(u, Su(t, m)) < €(t, u) — 285 < £,(t, ) — 84, (5.1
and u(T, ) < g —28, < gp.Inthe remainder of the proof we fix 4., n as above. Next,
set ] := supg(u — vn)/3.

Step 2 (Doubling the variables). Set X = O x O. Fore, y > 0,and (t, u,s,v) € X,
define

We oy (E, py s, v) i= u(t, u) — v (s, v) — %((r — )2+ 0% (n—v))
=y (u) — € (v).
By the previous step, there is (fo, o) € O such that
21 < (u — vp)(to, no) = Pe,y (f0, o5 10, 10) + YT (10) + €0 (10)-
Then, for all 0 < € < y < y% = [/29(uo) + 1), maxy ®., > [ > 0. In the

remainder of this proof, we always assume thate < y < y,.
Let (x, pk, sk, vi) be a maximizing sequence of @ , . Since i, v, are bounded,

YO (i) + €0 (k) < (lulloo + lvnllos) =: Cx.
As the sub-level sets of ¢ are compact, the sequences g, vk have limit points.
Since additionally, v,,, 0 are continuous, and i, — ¥ are upper-semicontinuous,

® , is also upper-semicontinuous, and these limit points achieve the maximum
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of ®.,. Hence, there exists a quadruple (tcy, lley, Se,y, Ve,y) € A& satisfying,
Dc )y (te,ys Me,ys Se,ys Ve,y) = maxy &, > 1 > 0. Set

Neyy = Me,y — Vey» Tey = ley = Sey

Then, we also have

1 _
Z(Tiy + 92(776,;/)) + Vﬂ(ﬂe,y) + fﬂ(ve,y) = M(te,y, H«e,y) - UH(SE,]/v Ve,y)
= Cx. 5.2)

Step 3 (Norm estimate). We now use the Lipschitz estimate (3.1) of v, to obtain a uni-
form bound for ¢(7e,,, ) /€. Note that n is already chosen and remains fixed throughout
the proof. As q)e‘y(te,y’ Me,ys Se,y» Me,y) =< q)e,y(te,ya Me,ys Se,y» Ve,y)a we have

1
u(le,y, he,y) — Un(sé,yv Me,y) — Zfzy - Vﬁ(//«e,y) - Eﬁ(/’«e,y)

= u(te,y’ Me,y) — Un(se,y’ Ve,y)

1
- Z(fgz,y + Qz(ne,y)) - Vﬁ(ﬂe,y) - El?(”s,y)-

Then, by Proposition 3.3 and (5.2),

1
ZQZ(UG,V) = Un(se‘y’ Me,y) - Un(se,yv Ve,y) + e(ﬂ(l/«e,y) - ﬁ(”e,y))

~ ~ C
< 20(e,y) + €0 (e y) < En0(ey) + e;*.

Therefore, there is a constant ¢ depending only on ¢, ¢, such thatforall0 < ¢,y < 1,

A

Q(ne,y) - L

< 7

Step 4 (Letting € to zero). By (5.2), ¥ (te,y) < c«/y. Therefore, for each y € (0, 3]
there are subsequences {(f¢,,, te,)} C 0, {te,,} C [0, T], denoted by € again, and
limit points (sy, i,) € 0, t, € [0, T]suchthatas e | O, fte.y =y, te,y — t,, and
Se,y = $y. By (5.2),itis clear that #, = s,,, and limg_ 0o Q(ibe,y — Ve,y) = 0. We

now use Lemma A.1 to conclude that as € | 0, we also have ve , —pu,,.
Asu(T,-) < gn = vu(T, ), if t, were to be equal to T', we would have

(5.3)

0 <! < liminf qDE,]/(tE‘)/v Me,ys Se,y s Ve,y) < liminf [ﬁ(te,ya Me‘y) - Un(se,yv Ve,y)]
k—o00 k— 00

= ﬁ(T’ My) - Un(T: M)/) = 0.

Hence, t, < T and consequently, both z., < T, and s, < T for all sufficiently
small € > 0.
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Step 5 (Viscosity property). Set

1
Ye,y(t, ) == Z((f - se,y)z + Qz(:U« — Ve,y)) + ¥ (),

1
Gey(s,v) == —(ltey = )%+ 0% (ftey — 1)) — €D (V).

By Lemma 5.2, both 6, , (2, ), 8p6pe (£, 1) € Cf. Hence, ey, ¢c,) € Cs(5),
i.e., they are smooth test functions in the sense of Definition 4.1. By using Lemma 5.2,
we calculate that

S[LWE,)/(IG,ya Me,y) =Key +794, 8u¢é,y(se,y» Ve,y) = Ke,y — €4,

where ¢ is as in (2.1), and for x € R¢,

1 1
ke () == [ A+ EDT Fne )@ elx, E)AE = NIkey s = —0(e,)-
€ JRd €

It is clear that, u(z, u) — Ve, (¢, u) is maximized at (Z y, pe,y). Since t, < T,
Ye,y € C5(O) and u is a viscosity subsolution of (5.1),

t — S
_% + H(pey,keyy +vq) < Lnlleys e y) — Sx.

By the viscosity property of v,, a similar argument implies that

le,y — Sey
_f + H(e,y, ke,y — €q) = €n(Se.ys Ve,y)-

Step 6 (Estimation). We subtract the above inequalities to arrive at

0 < 4 SH(Ve,y, Ke,y — €q) — H(Me,y’ Key + vq) + Zn(té,}/v ,Uve,y) - En(se,ya Ve,y)
= Ie,y + u7e,y + ICe,y,

where

1
Ie,y = z(l’«e,y(A(KG,y +yq) — Vs,y(A(Ke,y —€q),

1
Jey 1= 5 ey (IVkey = €41%) = ey (Ve y + 7)),
’Ce,y = Zn(te,y, P«e,y) - Zn(se,y’ Ve,y)-

By Assumption 3.1, K¢ ,, converges to zero as € | 0. Moreover, since Ag < d, for
€ S )/’

1 HE 1
Tey = =5 /R T Em™ 1§ (e, (E)* dg + S hey +€ve)(Ag) < vd.
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Hence, 0 < 8y < Je,py +vd.
Step 7 (Estimation of Je ). In view of Lemma 5.2, (2.5), and (5.3),

Q(’?s,y) - kqc

_ﬁ‘

||Ke,y||cl(]Rd) < kallke,y lln* = ka
Since Vg (x) = x/q(x), |Vq| < 1, and by algebra,
2 2 deé
Ve,y (IV(ke,y —€q)|” — [Vke y|7) = —ve,y (V(2ke,y — €q) - €Vq) < f(W +€).

Similarly,
tey (IVke y 1> = [Vkey + Y DIP) = —tte,y (V2key +vq) - ¥Vq) < 2kal /7.

Therefore,

1
Jey = 5 Wey (Vkey = €q1?) — ey (IVkey + vq +€q)?))

IA

1 _
—Ene,y(|w5,y|2> +e(JY + o),

for some constant ¢ independent of €.
We have shown that as € | 0, tte,y, Ve,y — Wy . In particular, pe y, Ve, are tight
sequences and 7¢ , —~0. Additionally, since [[ke y ||c1 (re) i uniformly bounded, on a

subsequence k., is locally uniformly convergent. These imply that ne,y(|V/c€,y|2)
converges to zero as € |, 0. Therefore,

liminf 7., <c¢\/y.
k— 00
Step 8 (Conclusion). By the previous steps, for every y > 0 the following holds,

0 <8, <limsup Jep +yd <c\/y + vd.

k— 00

Since 8, > 0, we obtain a contradiction by letting y | 0. Hence, supn(u —w) < 0.0

A Convergence of Measures in 0
Foranys > d/2, any finite Borel measure is an element of the Sobolev space H_g (Rd ).

Hence, 0 = || - |_p* is a metric on P5(R%). Although (P, o) is not complete, con-
vergence in this space is equivalent to the weak convergence in the following sense.

@ Springer



Applied Mathematics & Optimization (2024) 90:1 Page 13 of 16 1

Lemma A.1 A sequence of probability measures |1, converge to a probability measure
w in the weak topology o (M(R?), C,y(RY)) if and only if limy o (ux — ) = 0. Addi-
tionally, if a sequence of probability measures vy satisfies limy o(vi — ) = 0, then
Vi to  in the weak topology o (M(R?), Cp(RY)) as well.

Proof Suppose that pu; weakly converges to p. Then, we have limg_ oo ux(f) =
w(f) for every f € Cp(RY). Consequently, limg §(ux — w)(€) = 0 for every &,
and dominated convergence implies limg o (ux — 1) = 0. Conversely, if limg o(ur —
w) = 0, then the dual characterization of o implies that limg vi(f) = w(f) for
every f € H,+(R?). As any f € Cp(R?) is approximated uniformly by functions in
H,+(R?), a direct approximation argument implies that limy v (f) = u(f) for every
f € Cp(RY). This proves the equivalence of weak convergence to the convergence in
0.

Moreover, limsup, o(vk — ) < limg o(vk — pi) + limg o(ux — ) = 0. Then,
by the proved equivalence, we conclude that v, converges to u in the weak topology
o (MER?), Cp(R). O

B Proposition 3.3

Here, we outline the proof of Proposition 3.3 in several steps. We fix n and set

L(t, g, x) 1= 8,lu (6, )(X), G, %) =8, ga)(x), (1, p, x) € O x R,

Step 1. (Reformulation). The optimal control problem is in fact a deterministic control
problem which has an equivalent representation. Indeed, for a given initial condition
(to, o) € O, let A(tg, 110) be the set of all pairs («, m) satisfying,

e m : [ty, T] — P, is continuous with m(fg, -) = (o;
o «: [to, T] x R? — R4 is Borel measurable andf la(t, x)|2m(t, dx) dt < oo;
e for any ¢ € C*(RY),

f ¢(x)m(s,dx)=p,(¢)+/‘/ (1A¢(x)+a(t,x).v¢(x)) m(t. dx) dt.
Rd to R4 2

The final condition simply states that m(t, -) is the law of a solution to the stochastic
differential equation d X, = a (¢, X;)dr + dW;.

Then, the value function has the following equivalent representation [41](Section
2),

T 1
v, (fo, o) = inf / [ﬁn(t,m(t, -))+—/ Ia(t,x)lzm(t,dX)] dr
(@m)eAl.no) Jy 2 Jrd
+ gn(m(T, ).

Step 2. (Smooth optimal feedback control). By Pontryagin maximum principle (see
Theorem 2.2 of [41] with constraint ¥ = 0), for any initial condition (g, (o) there
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exists an optimal pair («*, m*) € A(ty, (o). Moreover, a*(t, x) = —Vu(t, x) where
u is the solution of the following Eikonal equation,

1 1 o
—du(t, x) — EAu(t,x) + Equ(z‘,x)l2 = L(t,x) :=L(t,m*(,-), x),
(t,x) € (0,T) x RY,

with the final condition u(7', x) = G(x) = Gm*(T, "), x).

Recall that L, G have continuous and bounded derivatives of order 2n*. By standard
elliptic regularity (see Lemma 3.1 [20]), the solution u of the above equation satisfies
u(t,-) € Cg"*(Rd) with norms uniformly bounded in time. We may then rewrite the
above equation as

1 1 N
—osu(t, x) — EAu(t, x) + EA(t,x) -Vu(t,x) = L(t, x),

where A(1,x) = Vu(t, x). We now know that A(r,-) € CX ~'(R%). Also by
hypothesis i(t, ), G are in Hou+(RY). As the above equation is linear with smooth
coefficients, standard techniques imply that u(z, -) € Hop+—1 (Rd) with norms uni-
formly bounded in time. In particular, we conclude that there is a feedback optimal
control o* satisfying the estimate

lloe™ (@t Il gane—1 gay + o™t My, @y < C,

with a constant C depending only on the norms of L.G.In particular, C is independent
of the initial condition (7o, wg).

Step 3. (Conclusion). We now follow mutadis mutandis the proofs of Proposition 3.2
and Lemma 3.3 in [20], (that proves exactly the same result on the torus), to obtain
the Lipschitz estimate (3.1). Alternatively, Section 7 of [1] also implies the Lipschitz
continuity using the smoothness of the optimal feedback control.
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