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Abstract. We present a systematic study on a class of nonlocal integral functionals for functions
defined on a bounded domain and the naturally induced function spaces. The function spaces are
equipped with a seminorm depending on finite differences weighted by a position-dependent func-
tion, which leads to heterogeneous localization on the domain boundary. We show the existence
of minimizers for nonlocal variational problems with classically defined, local boundary constraints,
together with the variational convergence of these functionals to classical counterparts in the local-
ization limit. This program necessitates a thorough study of the nonlocal space; we demonstrate
properties such as a Meyers—Serrin theorem, trace inequalities, and compact embeddings, which are
facilitated by new studies of boundary-localized convolution operators.
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1. Introduction. We are interested in nonlocal variational problems posed on
a bounded domain Q C R? with natural energy space characterized by the seminorm

(L1) /Q /Q () [uy) — u()P dy dx

for measurable functions u : Q — R?. Here, the constant p € [1,00) is a Lebesgue
exponent, and the function 7 represents a nonlocal interaction kernel. In this work,
our focus is given to kernels of the form

C
Y(xy)= Ly —x|<on(x)} ly — x‘ﬁ((;n(x))derfﬁ

with an exponent § € [0,d + p), a normalization constant C' > 0, a scaling parameter
0 >0, and a position-dependent weight n = n(x).

Variational problems associated to nonlocal energies with various forms of y(x,y)
appear widely in both analysis and applications [2, 3, 4, 9, 10, 14, 15, 16, 18, 20, 23, 24,
34, 40, 42, 48, 52, 53, 55, 58, 64]. Earlier studies of these variational problems on
bounded domains have taken several different paths. Along the path that v(x,y) =
Cly — x|™? with B € (0,d + p) and 7 constant, so that v=(x,y) is singular on
the diagonal x = y, both volume-constraint problems and classical boundary-value
problems have been investigated; see, for example, [2, 19, 31, 57] and additional
references cited therein. If in particular 8 > d + 1, then classical boundary values can
be prescribed via the trace operator (see [1, 44, 54]) for cases of singular kernels that
give rise to solutions in fractional Sobolev—Slobodeckij spaces.
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Down another path, e.g., with a compactly supported and translation invariant
kernel, y(x,y) = 6~9"Pp(|x — y|/d) for a function p supported in the unit interval
(0,1) and a constant (horizon parameter ¢ > 0) that measures the range of nonlocal
interactions. One natural route to take is to define the so-called nonlocal volumetric
constraint to complement the equation defined on Q [24, 25, 29]. An example is the
prescription of u(x) in a layer consisting of x € Q¢ with dist(x,2) < J. An alternative
is to modify the nonlocal interaction rules involving u = u(x) in a layered domain, say,
for x € Q with dist(x,9€Q) < §. These volumetric conditions can recover traditional
boundary conditions in the local limit as § — 0 under suitable conditions; see, for
example, [5, 22, 29, 38, 47, 51]. Meanwhile, in the regime § — oo with a suitably
rescaled fractional kernel, these problems are related to studies of fractional differential
equations defined on a bounded domain [6, 21, 35, 43]. In addition, one can find
connections to the continuum limits of discrete graph operators and discrete particle
interactions [9, 18, 39]. For various nonlocal problems, studies of their well-posedness
subject to nonlocal volumetric constraints can be found, for example, in [25, 49], which
offered desirable mathematical insight as demonstrated for a number of applications,
such as the peridynamics models developed in mechanics [17, 30, 46, 59, 60], nonlocal
diffusion and jump processes [11, 24], and nonlocal Stokes equations for the analysis
of smoothed particle hydrodynamics [28].

Still another path is to mix classical boundary conditions and volume-constraint
conditions in constitutive models that blend local and nonlocal models. For an exten-
sive discussion relating to the many choices of blended models in applications such as
peridynamics, see the survey [32].

We are interested in boundary-value problems for nonlocal problems on a bounded
domain in the classical sense; that is, the boundary conditions are prescribed on 92
only. The motivation is twofold: First, while the nonlocal constraints are natural,
they are not perfect choices. Theoretically, nonlocal constraints may raise unintended
concerns about the regularity of solutions; for instance, nonconstant functions van-
ishing in a layer of nonzero measure no longer enjoy analyticity, and solutions of
problems with smooth kernels may experience nonphysical or undesirable jumps at
the boundary due to unmatched nonlocal constraints [29]. In practice, developers
of simulation codes for applications of nonlocal models have ample practical reasons
to keep local boundary conditions in implementation even though a nonlocal model
might be derived and/or deemed a better modeling choice in the domain of interest.

To allow for the prescription of local boundary conditions, the nonlocal energies
and the nonlocal solution spaces must be defined so that boundary values of the
solutions make sense. In the case where the kernel v =y(x,y) does not have sufficient
singularity on the diagonal x =y, it means that some localizing property near the
boundary should hold. For instance, in [26, 62, 63], a function é min{1,dist(x,99Q)}
is introduced to characterize the extent of nonlocal interactions at a point x € )
instead of taking a constant ¢ as the horizon parameter everywhere in the domain.
Clearly, the interactions are localized on the boundary. A consequence of this type of
heterogeneous localization is that functions in LP(Q) with a bounded energy can have
well-defined traces on 0f2 to allow classical, local boundary conditions for nonlocal
problems; see [37, 63]. A nonlocal operator with heterogeneous localization also allows
for a natural and seamless coupling of the associated nonlocal model on one part of
a physical domain, with a local PDE model on another part of the domain, via well-
defined interface conditions in a consistent manner, as discussed in earlier studies;
see, for instance, [62].

In this first part of a series of works on the analysis of these nonlocal variational
problems with local boundary conditions imposed via heterogeneous localization, we
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rigorously establish their well-posedness theory and examine the convergence to their
classical local counterparts. We adopt a general heterogeneous localization strategy
elucidated in later sections by a function ¢ controlling the rate of localization at the
boundary, which bears significant consequences in the studies presented in subsequent
papers. This aspect is novel in the context of the analysis of nonlocal problems, so
we also study the general nonlocal function spaces 23°7[6; ¢](Q).

1.1. Nonlocal function spaces. Throughout the paper, we assume that for
d>1, Q CR?is an open connected set (a domain) that is bounded and Lipschitz. To
describe our main findings, we first introduce the function space

(1.2) WO [66)(Q) 1= {u € L(Q) : [ulawo (s < )
which is a Banach space equipped with the norm determined by

||u||QUB 2[8:q)(Q) T ||U||Lp @ T [u ]mjﬁ 2[5:g)(Q)

The specific form of the nonlocal seminorm under consideration here, for given expo-
nents p and B and constant d, is defined by

(1.3) [u]gﬂﬁ,p[é;q](ﬂ) :/Q/Q’Yﬁ,p[&fﬂ(xa y)luly) —u(x)[” dy dx,
where p € [1,00) and

(Ap) Bel0,d+p),

taken as assumptions throughout the paper unless noted otherwise. The constant
0 >0 is the bulk horizon parameter, and the kernel in (1.3) is defined as

. — a8, 1
(L4) - .pl03 0] (6 ¥) = T gry—xi <sgtastx 000} T yTﬁ (Gq(dist(x, 00)) )47 -

For a Lebesgue measurable set A C R?, 1 4 defines its standard characteristic function.
Ca,p,p >0 is a normalization constant so that for any x € 2,

VAL
D(E5H)0(5)

with B(0,1) denoting the unit ball centered at the origin in R? and F( ) denotmg
the Euler gamma function. In fact, we see directly that Cq g, = C’dpagd oF where

= Od,pa

C
05 [ sslbdyx-yPay= [ G e
- B, &l

o denotes the surface measure and S¢~! € R? is the unit sphere. These constants
are defined so that the nonlocal seminorm is consistent with the classical Sobolev
seminorm in a precise way, as will be discussed later.

The function ¢ : [0,00) — [0,00) is used to characterize the dependence of the
localization on the distance function. It is assumed to satisfy the following:

(i)q
(ii

(iii

€ C*([0,00)) for some k € NU {oo}, ¢(0) =0, and 0 < ¢(r) <rVr >0,
0<q'(r)<1Vr>0, and for a fixed ¢, >0, ¢'(r) > 0Vr € (0,¢,],
there exists Cy > 1 such that ¢(2r) < Cyq(r) Vr € (0,00),
if k>2,|¢"(r)] € L*>([0,00)).

(Aq)

- Z  Z

(iv
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Conditions (i) and (ii) ensure that ¢ is (super)linear near 0, and condition (iii) is a
kind of homogeneity condition. Condition (iii) additionally implies that

(1.6)

R IOEQ(Cq)
SC’q<T> forall 0<r<R<o0.

Some examples of ¢ satisfying (A,) with k = oo are ¢(r) =r and ¢(r) = 2 arctan(r).
Another class of examples is ¢(r) ~ & min{r™, 1} for N € N, mollified in a neighbor-
hood of 7 =1 so that g € C* for any desired k.

The function d¢(dist(x,09)) used in (1.4) does not exceed § for x in all of Q,
which leads to the naming of ¢ as the bulk horizon parameter, but shrinks to 0 as
x — 012, hence leading to boundary localization. With these features, it represents the
extent of nonlocal interaction that takes on a more complex form than merely staying
as a constant throughout the domain. The latter case, given by dq(dist(x,00)) = d
for any x € 2 and a constant horizon parameter § > 0, has been a popular choice for
which the normalization condition for the kernel used in the seminorm implies that
[W]answ(s.g)@) = VO]l 1oy for any linear function v = v(x). Meanwhile, the choice
of exponents d +p — # and 3 are made so that the nonlocal seminorm [-]oys.» (5,4 (0)
serves as an analogue of the seminorm on the classical Sobolev space. Note that the
only factors that “genuinely” determine the nonlocal function space 20°7[4; ¢|(Q) are
B, p, q, and ). Different positive values of ¢ result in the same equivalent space, as
demonstrated later in Theorem 2.1.

Throughout this work, we assume the existence of a generalized distance function
A:Q— [0,00) that satisfies the following:

(i) there exists a constant g > 1 such that
1 _
— dist(x,00Q) < A\(x) < ko dist(x,00) Vx €,
Ko

(ii) there exists a constant 1 > 0 such that

(A) AG) =AW < rifx — | vxy € 2,
(iii) A € C%(Q) N C* () for some k € Ny U {00}, and
(iv) for each multi-index o € N¢ with |a| <k,
Tk > 0 such that [DUN(x)| < kq | dist(x,9Q)[* 71 vx € Q.

Note that conditions (i) and (ii) are equivalent to conditions (iii) and (iv) when
k =1. For any domain €2, a generalized distance function A with & = oo and all k,
depending only on d is guaranteed to exist; see [61]. Note that the distance function
itself satisfies (A)) for k = 0 and x; = 1, though in some of our later discussions,
higher values of k in (A ) are preferred. Thus, our analysis encompasses the case that
q(dist(x,09)) is a smooth function that allows for specific forms of heterogeneous
localization on the boundary 0%; i.e., it is constant away from 02 and vanishes as x
approaches 0€2; see further discussion in subsection 1.6.

1.2. Boundary-localized convolutions. An essential tool in this analysis is
the convolution-type operator

17 Ksut) = K gl i= [ ot (B Y umay xea
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Here, 1) : R — [0,00) is a standard mollifier satisfying

¥ € C*(R) for some k € Ng U {co}, 1(x) >0, and ¢(—z) =1(z) Vz € R,

A
(B) [—cy,cp) Csuppy € (—1,1) for fixed ¢y, >0 and / P(x])dx=1.
Rd

Meanwhile, the function 7s[A, ¢](x) = ¢(A(x)) is given by
(1.8) ns[A, q)(x) = dn[A, q](x) :=0q(A(x)) VxE€Q,

where n1[A,q] = [\, q] is named a heterogeneous localization function. While we
introduce these notations to emphasize the dependence on ¢ and A whenever multiple
heterogeneous localization functions appear simultaneously in the same context, we
will write 15[, ¢] simply as ns (with n; = 7) whenever the dependence is clear from
context. The same convention is applied to abbreviate Ks[\, q,¢] as K.

For the study of the variational problems, the maximum admissible value of the
bulk horizon parameter § is chosen to depend on 7)(x) as follows:

_ 1 _
4 € (0,min{d,,d0}), where d,:= and dg is the
’ ’ Bmax{l,/ﬁ,C'qngogz(C“)}
(82) 1 1+ k10
smallest positive root of M,(0) = 3 for My(9):= m&.

The precise definitions will be motivated later, but for now, we note that by (1.6) and
(Ay), we are guaranteed that for all § < g,

ns[A, q)(x) < 5C'q/<;})0gQ(Cq)q(dist(x7 00)) < —q(dist(x,09Q)) for all x € Q and

Wl

(1.9) .
15[\, q](x) = ns[A, q](y)] < glx —y| for all x,y € Q2.

We refer to Ks as a boundary-localized convolution operator. This operator has
all of the smoothing properties of classical convolution operators and additionally
recovers the boundary values of a function. To be precise, for all functions u € C°(€),
TKsu = Tu, where Tu = u|pq denotes the trace operator. This property of the
boundary-localized convolution is preserved when the operator T is extended to more
general Sobolev and nonlocal function spaces.

Throughout the paper, the functions A, ¢, and ¥ may have different orders of
smoothness; subscripts will be added for emphasis; and the value of the index k in
(Ay), (Ay), and (Ay) will vary and will be specified in each context. For example, ¢
is assumed to satisfy (A,) for k = k; > 2 in Theorems 1.10, 1.11, and 1.12, while ¢
is assumed to satisfy (Ay) for k=ky > 1 to get the estimate (1.12) in Theorem 1.1,
which relies on estimates in Theorem 3.4 and is needed for Theorems 1.4, 1.6, and 1.7
and the theorems on the local limits.

Operators with similar boundary-localizing properties were first, to our knowl-
edge, studied in [12, 13] and later in [45]. However, in previous studies, A is compa-
rable to either dist(x,d9Q) or e~/ dist(x99) "ith fixed bulk horizon = 1; A does not
involve the composition with more general nonlinearity g or general bulk horizon < 1.
Thus, results like, e.g., the boundedness on classical function spaces already obtained
in those works have more straightforward proofs in our setting; at the same time, the
operator K takes on a form distinct from the earlier works, so that the related results
are more general. It is for this reason that the studies of the operators in classical
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Sobolev spaces are included in this work. Naturally, our chief interest is to develop
their new properties associated to the nonlocal function space 20%?[§; ¢](£).

Our first main result concerns the utility of boundary-localized convolutions in
the study of nonlocal function spaces and variational problems. To illustrate, we
present the following theorem.

THEOREM 1.1. Let K5 be as in (1.7), with all of the above assumptions. Then

there exists a constant C' depending only on d, B, p, ¥, q, Ko, K1, and £ such that for
all § < 4y,

(1.10) l[u = Ksul| 1 o) < Cdg(diam(2))[ulgns.r5,q)(2)

for all u € WPP[5;q](Q). Further, for all § satisfying (As),

B—d

(1.11) [ — Ksuly s-a/00(0) < C(6g(diam(2))' ™7 [ulagsrsig) o)

for allu € WPP[§; q)(Q) whenever B> d. If in addition (Ay) is satisfied for k =k, > 1,
then for all § < §,

(1.12) ||K6u||vv1,p(9) §O||U||m]/3.,p[5;q](n) Vu € 2077 [5; ().

The proofs are contained in subsection 4.3. The estimate (1.12) suggests that the
nonlocal space 20°%7[§; ¢](Q), instead of other classical function spaces studied in the
literature, is the natural function space on which results for the classical Sobolev space
WP can be applied to the boundary-localized convolution Ksu. Meanwhile, (1.10)
and (1.11) suggest that the nonlocal seminorm quantifies how Ksu can be exchanged
for w in the LP or fractional Sobolev space W(F=4/P:»  Indeed, the following two
theorems, in addition to the Poincaré inequalities of subsection 5.3, are proved partly
as a consequence of the corresponding results for W17 (Q) applied to K. See section 5
for the relevant assumptions and proofs.

THEOREM 1.2 (density of smooth functions in the nonlocal space). C*(Q) is
dense in WPP[S;q)(Q) for any k < k,.

THEOREM 1.3 (nonlocal trace theorem). Let T denote the trace operator, i.e.,
for uw € CH(Q), Tu = u‘BQ. Then for each § < §,, the trace operator extends to a
bounded linear operator T : WPP[§;q)(Q) — WI=1/PP(9Q). Moreover, there exists
C=C(d,p,B,q,Q) such that

HTUHWl—l/p.p(aQ) <C ||“Hznﬁ,p[5;q](sz) Vu € mﬁ’p[& q)(€).

The space 20%7[§,id](Q) coincides with special cases of spaces considered in
[26, 37, 63]. Trace theorems were established in [26, 63] by analyzing nonlocal ana-
logues of tangential and normal derivatives. In [37], it was shown that a specific
boundary-localized convolution with § = 1/3 and ¥(t) = 1(_1/2,1/2)(t) converges to
a trace operator as x — 02 for very wide classes of domains and functions. Here,
we show that such a result can be obtained for Lipschitz domains and for a class of
function spaces along another branch of generality; the new method used in this work
not only provides an alternative and more direct proof but also allows us to extend
to the case of general  and ¢ by using systematically defined boundary-localized
convolutions. In addition, the density of smooth functions, the nonlocal Poincaré
inequalities of Theorems 5.8 and 5.10, and the LP-compactness in the localizing limit
of Theorem 5.15 are novel even for the spaces 20%7[§,id](£).
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1.3. Nonlocal energy functional. The study of the nonlocal function space
allows us to treat a wealth of variational problems with a common program; for the
sake of clarity, we will illustrate just a few in this work.

In order to treat general variational problems, we introduce a nonlocal kernel p,
where p:R — [0, 00) satisfies

peL>®(R), [—cp,c,) Csuppp € (—1,1) for a fixed constant ¢, > 0.

(&) Moreover, p(—z) = p(z)and p(z) > 0Vx € (—1,1).

We let @ : [0,00) — R be a nonnegative and convex function that satisfies, for some
p>1, the p-growth condition for positive constants ¢ and C, that is,

(Ag) ® is convex and max{0,c(|t]P —1)} <@(t) <C(Jt|P+1) Vi >0.

The general form of the nonlocal energy is then given by

lu(x)—u(y)]
ly — X| RS
(1.13) // < Xy P—rmy ()7 dy dx,

where additionally the assumptions (Ag), (A,), and (As) are adopted. The nonlo-
cal function space 20%7[8;¢](Q) is the natural choice of energy space for &5 since
the nonlocal seminorm remains the same under perturbations of the heterogeneous
localization A and kernel p; see Theorem 2.1 below.

The form of the functional we consider has principal part £ and is defined as

(1.14) F(u) :=Es(u) + G(Ks[A, ¢, ¥]u) + Gs(u) + Gasalu) ,

where we assume that ¢ satisfies (Ay) for k, > 1 and  satisfies (Ay). Note that
may not necessarily be equal to the X\ used for 15 = ;[\, g] in the nonlocal functional
given in (1.13). B

The functionals G, Gs, and Ggsq act as “lower-order” terms, and we explain
the assumptions and significance of each of them in turn. First, the functional
G : WhP(Q) — R is WHP(Q)-weakly lower semicontinuous and satisfies, for some
constants ¢ >0, C >0, 8 €(0,1), and © >0,

(1.15) —c(1+ [ul[{r0 () <G < COU+ i) -

The term G(K5[\,q,¥)u) is well-defined for u € 20%7[§; ¢](Q) thanks to the estimate
(1.12). By introducing the convolution Kj, the term G allows us to consider lower-
order terms that, without mollification, may not be continuous in the nonlocal function
space. B

Next, we take G5 : W7P[5;¢](2) — R to be a WP[§; ¢](2)-weakly lower semicon-
tinuous functional that satisfies, for some 6 € (0,1) and © >0,

0
(1-16) 765(1 + ”U”grgﬂyp[(;;q](g)) < gé( ) < C&(l + ||UHQU5 »[s; q](Q))

for all § satisfying (As), analogous to the condition (1.15). Observe that the constants
c and C in this case may in general depend on J. The continuity conditions are
more strict on G compared to G because it is evaluated at w itself rather than the
convolution.

Finally, for § > d, the functional Gg~4 is chosen to take advantage of the con-
tinuous embedding 20°7[5;¢](Q) < WB=D/PP(Q); see Theorem 5.12. For ease of
presentation, we note here that Gg- 4 satisfies strong continuity properties contained
in (6.1) in this case, while it is identically zero for 8 <d.
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1.4. Nonlocal variational problems. Let Fjs be defined as in (1.14) with all
the associated assumptions. The first nonlocal problem we treat is one with an inho-
mogeneous Dirichlet-type constraint on 92 or, more generally, 9Qp, a o-measurable
subset of 9Q with a positive measure ¢(0Qp) > 0. Let g € W'=Y/P2(9Qp), and define
the set

Qﬂg:gQD [6;¢)(Q) := {u € WP[5;q)(R) : u=g on INp in the trace sense }.
Then we have the following.
THEOREM 1.4. There exists a function u € Qﬂg”gQD [0;4](Y) satisfying
(1.17) Fs(u) = min Fs(v).
veW)t, [5:4)(Q)
A special case is when g =0 on 0)p, for which we consider the Banach space

(1.18) Qﬂg”gﬂD [6;q](€2) := {closure of C}(Q\ 92p) with respect to I-llgws.»5:q102) } -

We accordingly denote the Banach space WOI,’gQD(Q) as the closure of C}(Q2\ 9Qp)
with respect to [|*[lyy1.5(). Then we can relax the assumptions on G and G and still
obtain existence.

THEOREM 1.5. Suppose that G : aQ Q) — R is Woly’gQD(Q)-weakly lower
semicontinuous and satisfies (1.15), and suppose that G : Qﬁg’gQD[&q}(Q) — R s
Qﬂg”gQD [0; q](Q)-weakly lower semicontinuous and satisfies (1.16). Then there exists

a function u € QUg:gQD [0;4](QY) satisfying

(1.19) Fs(u) = min Fs(v).
veWS B, | [8:a)(2)

The functional Fs also has a minimizer in the nonlocal space

2077 [5:4)(Q) := {u € W5 q)(2) : (w)q =0},

where (u)o = & [ u(x) dx = f,u(x) dx denotes the integral average of u over Q.

THEOREM 1.6. There exists a function u € 20 ’p[5;q](ﬂ) satisfying

(1.20) Fs(u) = min Fs(v).
ve”? (5:4)(2)

The final type of nonlocal problem is one with a Robin-type constraint.
For b € L>(99), define the functional

(1.21) FR(u) / b|TulP do.

THEOREM 1.7. Assume that there exists a o-measurable set Qg of ON satisfying
o(0r) >0 and b(x) > by > 0 for a constant by and o-almost every x € O0g. Then
there exists a function u € 20°P[5;q](Q) satisfying

1.22 FRu) = min FER(w).
(1.22) Fw= _min o Fi)

Remark 1.8. In each of the cases, if the nonprincipal terms of the nonlocal func-
tionals (that is, the terms not equal to &s) are all convex, then the minimizer obtained
is unique. This is achieved using the strict convexity of &5 via a standard argument.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/18/24 to 74.3.135.213 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NONLOCAL PROBLEMS WITH LOCAL BOUNDARY CONDITIONS I 4193

1.5. Local limit. Inheriting the assumptions made in subsection 1.4, we now
present the second set of main results, which are on the localization limit. As § — 0,
we show that minimizers of nonlocal variational problems considered in subsection 1.4
converge to a minimizer of a local functional with the principal part

0= s [ f BTulx)-w]) dofe) dx.

where g, 3 ::/ 1z|P~" p(|2|) dz
B(0,1)

This result is in the same spirit as the program carried out in [50, 56|, in which
nonlocal models are shown to be consistent with appropriate classical counterparts.
Central to this analysis is the following result, which is coined the asymptotic compact
embedding, in the asymptotic limit that the bulk horizon parameter § — 0.

(1.23)

THEOREM 1.9. For p>1, let {6, }nen be a sequence that converges to 0, and let
{us}s CWPP5;4](Q) be a sequence such that supg [usll o0y < C < oo and that

sup|uslops.»(s;q (@) = B < 0.

6>0
Then {us}s is precompact in the strong topology of LP (). Moreover, any limit point
u belongs to WP(Q) with IVull o) < B-

A more general theorem and its proof are in subsection 5.5. One main idea of
the proof is to use the boundary-localized convolution, leveraging the LP compact
embedding for the space W1P(Q) with the estimate (1.12). This approach is novel
in the context of nonlocal function spaces of this type, where typically compactness
results are proven via estimates away from the boundary. However, in this case, since
the boundary information is already contained in the convolution, no such estimates
are needed.

Thanks to the properties of the nonlocal function space, the lower-order terms
can be treated in the local limit; we only require additional continuity properties and
a stricter assumption on the functional Gs. To be precise, we assume that

G is W1P(Q)-weakly continuous and that
Gs =G for all § satisfying (As), where
I € [1,p] such that G : Lm( ) =R is L™(Q)- Weakly continuous, with
—e(L+ ull ) < Glu) < CQL+ [lul 25

(1.24)

L™ (Q) )

Note that any functional G defined on L™ () that is additionally 20%?[§; ¢](Q)-weakly
continuous for all § and satisfying (1.16) also satisfies (1.24). N

The functional G is permitted to satisfy much weaker conditions than either G or
Gp>q. Indeed, the convolution Ksu approximates u as § — 0, so a very wide variety
of lower-order terms, admissible typically only in the local case, can be considered in
the nonlocal problem via this approximation.

With this compactness result in hand, we can, under the additional assumptions
that

(1.25) p is nonincreasing on [0,00) and ¢ satisfies (A,) for k, > 2,

obtain via I'-convergence the following convergence of minima for each of the nonlocal
problems.
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THEOREM 1.10. Assume (1.24) and (1.25). For a sequence § — 0, let us €
%57’§QD[5;q](Q) be a function satisfying (1.17). Then {us}s is precompact in the
strong topology on LP(Q)). Furthermore, any limit point u satisfies u € WngQD (Q),

where W;”gQD (Q):={veWr?(Q): Tv=g on Ip}, and

Folu)= min  Fo(v), where Fo(v):=E(v) +G(v)+ Gv(v) + Gp>a(v).

In addition, if g =0, then the same result holds if G : W()l’gQD () = R is weakly
continuous in the space Wol’é’QD (Q).
THEOREM 1.11. Assume (1.24) and (1.25). For a sequence 6 — 0, let us €

Qhﬁ’p[é;q](ﬂ) be a function satisfying (1.20). Then {us}s is precompact in the strong
topology of LP(Q). Furthermore, any limit point u satisfies u € WYP(Q), where
Whe(Q):={ve W'P(Q) : (v)q =0}, with

Fo(u) = . 55132(9) Fo(v)-

THEOREM 1.12. Assume (1.24) and (1.25). For a sequence § — 0, let us €
352(5; q)(Q) be a function satisfying (1.22). Then {us}s is precompact in the strong
topology of LP(SY). Furthermore, any limit point u satisfies u € WP (Q), with

Fo'w)= _min  F5'(v),

where

Fl(v) ==& v) + ” b|Tw|P do + G(v) + G(v) + Ga=a(v).

1.6. Examples. To demonstrate the scope of our analysis, we present several
examples.

Ezample 1: Dirichlet constraints. Let 8Qp = 8, let g =0, and let f € [W, ?(Q)]*.
For m € [1, ddfpp) if p < d and any finite exponent if p > d and ®(t) = %, our analysis
shows that there exists a minimizer us € Qﬂg_”gn [0;¢] () of

85(11,) + % /{; |K5[;\aq7¢]u(x)‘mdx - <fv K5[5‘7qa1/)]u>

(which is unique thanks to the strict convexity of £ and the convexity of the other
two terms) and that {us}s converges strongly in LP(Q) to a minimizer u € W, ()
of

1
p
Here we have taken G(u) = L [0 |u[™dx — (f,u), which satisfies (1.15), and we have

taken Gs = Ggsq = 0. If f additionally belongs to [Qﬁg’gg [0;¢](2)]*, then we could
instead take Gy = (f,-y and G = Gg>q = 0. That is, the same existence result holds
for the functional with the term (f, Ksu) replaced by (f,u). However, the local limit
result does not hold since the functional G(u) = (f,u) would not satisfy the condition
(1.24). To be more precise, (f,u) is not even defined for u € W, *(), which is a

smaller space than Qﬁg!’gg [0;4](9).

pxl w(x)|™dx — (f,u
[ 1vuepaxs o [ o ax—(r.u).
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Ezample 2: Neumann constraints. Given linear functionals f € [W1P(Q)]* and
g € [WI=1/PP(90)]*, there exists a (unique) minimizer us € o [0;](22) of

g&(u) - <fa Ké[SHQa 1/’}U> - <g,TU> )

and {us}s converges strongly in LP(Q) to a minimizer u € W'?(Q) of
ﬁ/ﬂfgr]ﬂ@(Wu(x) cw|)do(w)dx — (f,u) — (g, Tu).

Above, we took G = —(f, ), Gs=G = —(9,T(-)), and Gg>q = 0. Note that we do
not require any compatibility condition, such as (f,1) 4+ (g,1) =0, since we have not
discussed any associated Euler—Lagrange equations.

Ezample 3: Fixed exponents and nonlinear terms. Let d =3, p=2, f =d + 2s
for some s € (2,1). Let f € [W12(Q)]*, setting G = —(f,-), and let g € [W1/22(5Q)]*,
setting Gs =G =—(g,T(-)). Let

Gpma(u) = / u()(1 - u(x)?) dx,

which satisfies (6.1) thanks to our choice of exponents. Then our analysis shows that
there exists a minimizer us € 2997252[§; ] (2) of

gé(u) + / b|T’LL|2 do — <.f7 Ka[j\,%w]@ - <g,T7.L> + / u(x)2(1 - U(X)z) dx
a0 Q
and that any sequence of minimizers {us}s converges to a minimizer u € W2(Q) of

Eo(u) + /BQ b|Tul? do — (f,u) — (g, Tu) +/Qu(x)2(1 —u(x)?) dx.

Additionally, we note that our analysis also allows an array of models satisfying a
nonlocal nonlinear elliptic equation in the interior of 2. The discussion of the strong
forms of these equations will be the subject of a subsequent paper. As an illustration,
we may let 7 > 0 be a constant and let ¢(r) be a C! mollification of the function
min{r, 7}, so that n(x) = 7 in Q7 = {x : dist(x,00) > 7} and 5(x) = dist(x,0Q)
otherwise. With this choice of 7, a minimizer of any of the above examples solves an
Euler-Lagrange equation with no heterogeneous localization occurring in the interior.
Different equations can be treated with a principal operator either with or without
singularity on the diagonal. If =0, then the operator corresponds to a p-Laplacian
operator of the convolution type. If 8 > d, say, = d + sp for some s € (0,1), then
the operator corresponds to a censored s-fractional p-Laplacian.

This paper is organized as follows: The next section contains some comparability
results for different nonlocal seminorms. Section 3 contains some estimates of quanti-
ties involving the heterogeneous localization that we reference throughout the paper.
Properties of the boundary-localized convolution are investigated in section 4. The
density of smooth functions, the trace theorem, the Poincaré inequalities, and the
compact emebedding results are all stated and proved precisely in section 5. Sec-
tion 6 contain the existence results for the variational problems, and the proofs of
convergence to the corresponding local problems are in section 7.

2. Equivalence and comparison of nonlocal function spaces. We present
some results on the nonlocal function space 277[5; ¢](2) for p € [1,00) and under the
assumptions (Ag), (A,), and § < §,. Moreover, we henceforth define dist(x,99Q) =

doq(x).
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2.1. Nonlocal energy spaces for different bulk horizon parameters. In
a spirit similar to [63, Lemma 6.2] and [26, Lemma 2.2], we show the equivalence
of the nonlocal function space with respect to differing values of §. This proof is
representative of the types of estimates used throughout the work. It also motivates
the choice of §, < 5 used in (As).

THEOREM 2.1. For constants 0 < 61 < 2 < dy,

d+p—p

1—6, \ » 5, \ 1H=)/p
(2(1+52)) [t)qws #6510 (2) < [Wlapsr(s,iq)(@) < (&) [Wlan 15,1010

for all uw € WPP[54;q] ().

Proof. The second inequality is trivial, so the proof is devoted to the first inequal-
ity. Let n € N. To begin, we apply the triangle inequality to the telescoping sum for
x € ) and s € B(0,d2n(x)), where in this proof n(x) := g(dsq(x)):

|u(x+s)—u(x)|<i u(x—i—is) —u( ’;15)’.

Note that [x + Ls— x| <s| < dan(x), so x+ Ls € Q for i =0,1,...,n. Thus, setting
X;i=x+1 1 ==s and using Holder’s inequality, we get

|u X; + S) - U(Xz)l
[u]? <CyoanP~ // dsdx.
Wr[6330)(Q) = PP Z B(0,621()) SIPT8an G 77

Now, since 7 is Lipschitz with a Lipschitz constant no larger than 1/3,
n(xi) =n(x+ (i —1)s/n) < [s| +n(x) < (02 + 1)n(x)
and
1(x) < |s| +n(xi) < 02n(x) +1(xi) -

Therefore, by (1.9),

(2.1)
for all x € Q. Hence,

[U]psmﬂ.p [62:9)(€2)

2.2 n i+ Le) — u(x,)l?
22) scd,p,ﬁnp‘l(lwz)d*p‘ﬁz:// ulxi - 58) —uC)” g

BO. 2o n(x))  [8]°102n()|HHP—5

Now, for x € Q and [s| < lf—%zn(xi), we have

) <000+ 18 <300 + 2 ().

Therefore, n(x;) < 11:26522 n(x), and since d; < &, < %, we conclude that

8 82
x| < < ) <
[x Xz|_|S|_1752n(xz)_1725277(X)<77(X)7
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Le, x; €Q foralli=1,...,n. With this, we can perform a change of variables in the
outer integral; letting y =x; =x + “=1s in (2.2) and using (2.1), we get

[Wl3m5.0 521012

. lu(y + +s) — u(y)|”
< CppnP (14 69) 77 E // L dsdy
PP —Ja B2 0w [81°10an(y)| PP
(y)I?

- u(y + 38) —u
= Cappn” (1 4 65) 7 B/ / n dsdy.
’ 0B, 122 niy) [81°1620(¥)|TTP7

Now perform a change of variables in the inner integral by z = > to obtain

[u]gﬂﬁvl’ [0254](€2)

- - +2) — u(y)l”

< Clyp gt TP=B (1 4 5y)0HP ﬁ// |u(y dzdy
" e B0, 123 20 [2]P[82n(y)| PP
n51<1+62>>d“’ﬁ / / [uly +2) — u(y)l”

=Capp |\ — 5 dzdy.

oo (M N s i

By taking n € N such that

%2 2
91(1 = d2) 61(1—102)°
we have
, 2(1 4 65)\ “TPF
s < (o52) [ [l n)lueo - u)ldya.
as desired. 0

2.2. Nonlocal energy spaces with varying localizations. Let us consider a
more general seminorm which not only expands the scope of the techniques used but
also will streamline the analysis of the functional & in later sections. For p satisfying
(A,) and A satisfying (A»), define

[W)5 0 (5205001090 = /ﬂ /Q'Yﬁ,p[&Qpr)‘](Xv}’)‘u(Y) — u(x)[" dy dx,

where

y—x Capg, 1
Y8,p(05 ¢ ps AJ(X,Y) :p< | | > 4,8,p(P)

5g(A(x)) ) [x—yl|? (5q(A(x)))d+»=F"

and Cy 3, (p) is chosen so that Cy ., (p) [z E(LE,DP d¢=Cy,.

We now note the independence of the non{ocal energy norm space on the specific
form of the nonlocal kernel p. In particular, for a suitable range of ¢, we can select
mollified versions of the kernel 11|y _x|<sdist(x,00)} and the distance function daq(x)

to create equivalent seminorms.

THEOREM 2.2. Let p be a nonnegative even function in L™ (R) with support in
(=1,1). Then there exists a constant C' depending only on d, B, p, p, q, and kg such
that

[ulass o 5.0:p.0](0) < Clulagen(sq)) Yu € WPP[5;q)(Q).
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If in addition p satisfies (A,), then there exists a constant ¢ >0 with the same depen-
dencies such that

(2.3) c[ulaws s (s 0) < [Wwsrsgpn@) Vi€ WPP[5;¢)(9).

Proof. The result is clear if (2.2)—(2.3) is established under the assumption (A,).
First, we have

C(p) " p(o,e,) (%) < p(Ix]) < C(p)L (0,1 (%)
for C(p) > 1. Next, by (1.6) and (A)),

q(doe(x))
C(q7 ’%0)
for C’(q, ko) :=C(q) > 1. Therefore,

|u(x) — u(y)[”
dy dx
//{|y x|< ey ba(don(x))} Ix = y1°|C(q)dq(don(x))|*+P=F
= [“]wf P55 N(@)

< C(p)Clg) P~ 5//{| |u(x) —u(y)” _dydx.

y—x|<C()8a(doa (=)} X = ¥P|0q(daa(x))|dTP=F

The conclusion then follows from the assumptions on § and Theorem 2.1. 0

< q(A(x)) < C(g; ro)q(don(x))

3. Properties of heterogeneous localization functions and the associ-
ated kernels. We now present some properties related to the function n and various
kernels used in this work. All the discussions are under the assumptions (Ag), (Ay),
(Ay), and ¢ < §,. Additional assumptions on ¢ are made for some of the results
presented in subsection 3.2.

3.1. Spatial variations of the heterogeneous localization function. For
ease of access, we record the following comparisons of the heterogeneous localization
function ns that are frequently referred to in later discussions.

LEMMA 3.1. For all x,y€ (2,

3.1 (1= r10)ns(®) <n5(y) < (1 + m10)ns(x) if |z —y| <ns(),
(3:2) (1= k10)ms(y) <ms(@) < (1+ k10)ns(y) if lz—yl <ns(y).

Proof. Tt suffices to show (3.1) since (3.2) will follow from the same arguments
with the roles of x and y interchanged. From the properties of 75 coming from (A,)
and (Ay), we get

n5(y) <ns(x) + 0k1[x —y| < (1 + K16)ms(x)
and

n5(x) <ns(y) + 0k1]x —y| <ns(y) + dk1ns(x) . a

The next lemma is used later to facilitate a change of coordinates. To set the
notation used in it, let us introduce a function A that also satisfies (A) with the same
constants k, as those in the assumption for A. Likewise, we denote 7js :=ns[A, ¢] and

n:=1m.
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LEMMA 3.2. For a fized z€ B(0,1), define the function {5 :Q — R by
00 =X+ 7 (x)z Ve e (0,5).

Then there exists a constant ¢ = ¢(q, ko, k1) > K1 such that for all x, y € Q, for all
§€(0,9,), and for all £ € (0,20), where g9 := 3 min{1, 1} € (0,8,), we have

det V¢ (x) =1+ Vije(x) - 2> 1 — k1> ; ,
C(m) €Q and 0 < (1 —ee)n(x) <n(¢Z(x)) < (L +ce)n(w),

B 0 we vl <16 — ) < (0 + e, and
yl<ml@ = 160 - )< o ens(¢ile).

Moreover, if n=n, then ¢=r1 and g0 =9, can be chosen.

_ Proof. The positive lower bound on det V¢ follows from the properties of g and
A and the assumption on d,. Now, by (Ay) and (1.6), we have

/%( <A(x) < REN(x) for x €,
which implies that
n(x) _ 2log, (Cy)
C 2log,(Cy) S U(X) S Cq”o o n(x) ’

and so the second line in (3.3) follows from the Lipschitz continuity of n:

N(C(%)) > n(x) — m17l(x)]2] > (1 = 51 C,rg 22 De)n(x) =: (1 - ce)n(x) and
(¢5(x)) < (%) + m17- (x)|2] < (1 + ee)n(x).
The third line follows from

[1¢2(x) — o) — [x = yI| < [ne(x) = ne(y)|l2] < kaelx —y],

and the fourth line of (3.3) follows from the second and third lines. d
3.2. Mollifier kernels. For any function ¢ : [0,00) — R, we define
1 ly — x|
3.4 1/16 Avq X,Y) = Z/J( > .
o) N Wi LA NP IE)

In particular, ¥s[A, ¢] defines a boundary-localizing mollifier corresponding to a stan-
dard mollifier ¢ described in (Ay). We write ¥s[\, q] as simply s whenever the
context is clear. Note that fQ Ys(x,y)dy =1 for all x € Q and for all § < J,,. This is
not the case when the arguments are reversed, and so we define the function

(3.5) s (x) = /Q (v, %) dy

Let us investigate the properties of W5 below.

LEMMA 3.3. Let ¢ be a nmonnegative even function in C°(R) with support in
[—1,1]. Then there exists a constant C' depending only on d, ¥, A\, q, and k1 such
that

(3.6) Us(x) <C Ve
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Proof. Since suppt C [—1,1], we obtain the upper bound from (3.1):

1 |x —y| 1
w( )dyg Uloqoan | dy
/Qna(y)d ns(y) 1l to.y {y—x|<As(y)} M6 (¥)?

1
<cw) |
{y—x|<(1+r18)s(x)} (1= K18)mns(x

=C. O

ja

We now turn to the derivatives of ¢5. It is clear that ws5(x,y) € C*(Q x Q)
whenever (Ay), (A,), and (Ay) are satisfied for the same k € NU {c0}. We record
several estimates on the derivative of the kernel that we will use.

THEOREM 3.4. Let ¢ satisfy (Ay) for some k>1. Then there exists C = C(d, 1))
such that

_c
ns()

Proof. This follows by direct computation and the properties of :
1 x—yl Vna(><)>

(3.7) Vars(2.9)| < —— (vs(@.) + (W)s(@y)) Voyeq

— 4 X X7y
inl)zs(xa y) - (w )5( ’y) (X — y| r](;(x) 7’]5(X) W&(X)

(3.8)
Vns(x)
- 1/}5 X,y d
(x,¥) ()
Thus, using the support of ¥ and that |Vns| < 1/3, we see the result. d

COROLLARY 3.5. Let ¢ satisfy (Ay) for some k> 1, and let « € R. Then there
exists C = C(d,, k1, ) such that

C
3.9 / Y|4 Vetos(z,y)|dy< ————— Vaxe.
(3.9) Q\776( )V aths (2, y)| (@)
Proof. We first apply (3.7) and then use (3.1). ad

4. Properties of boundary-localized convolutions. Our discussion in this
section, unless indicated otherwise, is again under the assumptions (Ag), (A4), (Ay),
(Ay), and 6 < 4.

4.1. General properties and consistency on the boundary. We present
the following theorem and lemma without proof, as it is straightforward to verify.

THEOREM 4.1. Let u € C°(Q). Then Ksu e C°(Q). Moreover, Ksu(x)=u(z) for
all € 092, and Ksu — u uniformly on © as § — 0.

LEMMA 4.2. Let ¢ satisfy (Ay) for some k=1ky >0, let X satisfy (Ay) for some
k=ky >0, and let q satisfy (Ay) for some k =k, > 1. Then for any u € L}, (),
Ksue C*(Q), where k =min{k,, kx, ky}.

For t > 0, we define the sets
Qirg:={x€Q:¢\x)) <t} and QM :={xecQ:q\(x))>t}.

LEMMA 4.3. Suppose that p € C°(Q) has compact support in §); i.e., there exists

¢y > 0 such that supp ¢ C QM Then Ksp has compact support with supp Ksp C
1
(9] 1+~150w§/\aq.
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Proof. By (3.1) and (3.2), whenever n(x) < C,, wWe have

1+/15
{y ilx=yl<ns(x)} CQe,ing

Therefore, since the domain of integration in Kjsp(x) and supp ¢ are disjoint, we have
Ksp(x) =0. |

4.2. Classical function space estimates. We first show some estimates anal-
ogous to those in Theorem 1.1 for functions in classical Lebesgue and Sobolev spaces.

THEOREM 4.4. Let 1 <p<oo. There exists a constant Cy >0 depending only on
d, p, ¥, and k1 such that

(4.1) K sull o) < Co llull 1o Vue LP().

If additionally (Ay) is satisfied for k = ky > 1, then there exists a constant Cy > 0
depending only on d, p, ¥, and k1 such that

(4-2) ||VK5U||LP(Q) <O ||UHW1,p(Q) .

Proof. First, we prove (4.1) for 1 < p < oco. By Holder’s inequality, Tonelli’s
theorem, and (3.6),

p—1
||K5u||}£,,(9) §/Q </Q Vs (x,2) dZ> /Qw(s(x,y)|u(y)|p dydx<C HUHILP(Q) .

The inequality when p = oo is trivial.
To prove (4.2), it suffices to show that

(4.3) V Ksu(x / Y5 (x,y) [I - (x— yzé?xfm(x)} Vu(y)dy

since then
IVEsu(x)] < (1+ £1) K5[[Vul](x),
from which (4.2) follows by applying (4.1). First,

Vy¢5<x7y>=w/('y‘x') y-x 1

ns(x) ) |y — x| ns(x)d+t”
and so from the formula (3.8), we see that
Vaths(%,¥) = —Vy [Vs (x,) (I ST ) VBB .
=y s )] (1= EZDETIOD) iy T )
= —divy |:w§ (x,y) (I (x-y ®)V776( )>} .

Thus,

VEKsu(x / Vaths(x,¥)u(y) dy

_ /Q divy {% (%,5) <I _x- y;jj"“ (X)ﬂ dy .

Now, for any fixed x € Q, the set {y : |y — x| < n5(x)} € Q, so the functions

¥s(x,y) and (I — W) u(y) are integrable over y € (), as are their gradients.

ns (X
Moreover, their product vanishes for y € 9Q2. Therefore, no boundary term appears
when applying the divergence theorem, which leads exactly to (4.3). O
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THEOREM 4.5. Assume (Ay) fork=Fky >1. Let 1 <p < oo, and denote the trace
operator T : WHP(Q) — W1=1/Pr(9Q). Then TKsu=Tu for all u € WHP(Q).

Proof. For € C*(Q), we have Ksu=1u on 09 by Theorem 4.1. The conclusion
then follows from the density of C*°(£2) in W'?(Q) and Theorem 4.4. O

4.3. Nonlocal function space estimates.
THEOREM 4.6. For 1 <p<oo and u € LP(Q2), we have

(1.4) Ju= Kl < | [ da@n)u(a) - u()l dyd.

Consequently, (1.10) holds.
Proof. Holder’s inequality gives

= Koullpi = [ ([ ostx¥)uty) - u<x>>dy)p ax
<[ ( [ stz dy>p1 ( [ wstxyluty u(x)|pdy) ax

- / / s (x,3)lu(x) — u(y) [ dy dx,

which is (4.4). Now we have the estimate
C(q, ko)dP diam(Q)? 0P diam(Q2)P
Ps(x,y) < P5(x,y) SC—=——"5=78p0; ¢ ¥, A (X, ¥

in the right-hand-side integral of (4.4) thanks to the support of 1. Then (1.10) follows
from Theorem 2.2. d

THEOREM 4.7. Assume (Ay) for k=ky > 1, and let 1 < p < co. Then there
exists C >0 depending only on d, p, v, q, ko, and k1 such that for all uw € LP (),

(s (z, ) + (1¢'])s (2, 9))
4.5 VEKsu|?, §C// u(z) — u(y)|P dydz.
(4.5) I IZr @) s (@) |u(z) — u(y)|
Proof. Assume that the right-hand side of (4.5) is finite. Since [, ¢s(x,y)dy =1,
its gradient in x vanishes, and so

VEsu(x) = ; Vxths (x,y)u(y) dy = ; Vxths (x,y) (u(y) — u(x))dy .

Therefore, by Holder’s inequality,
||VK5u||I£p(Q)

< [ (o [ |vxw5<x,z>|dz) [ o)~ uol dy .

We use (3.9) to get

Vx
(4.6) IV Esul, Q)<c//| w5 ||u() w(x)[P dy dx .

From (3.7), we have

|wa§(xa y)‘ < C%(Xa}’) + <‘¢/|)5(X7 y)
ns(x)p=t T 15 ()P
Using the previous estimate in (4.6) gives (4.5). |
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As a consequence of the characterization of nonlocal spaces in Theorem 2.2, we
obtain the following corollary, which leads to (1.12).

COROLLARY 4.8. Let p € [1,00), and assume (Ay) for k=ky > 1. Then (1.12)
holds; i.e. there exists C' >0 depending only on d, B, p, ¥, q, ko, and K1 such that

(4.7) IVEsull o) < Clulagorsige)  Vu € WHPS;q)().

The above corollary and Theorem 4.7 together give the result of Theorem 1.1.

Additionally, the presence of the singular term |x — y|™? allows us to obtain
precise continuity estimates of K in fractional Sobolev spaces when 3 > d. The proof
additionally motivatives the choice of threshold in (As).

THEOREM 4.9. Suppose additionally that B > d. Then there exists a constant
C >0 depending only on d, B, p, ¥, q, ko, and K1 such that for all § satisfying (As),

d+p—§

[u — Ksulys-a/vp0) < C(0g(diam(R))) » [ulgps.risiqa) -

Proof. We will estimate the left-hand side by four separate terms, each of which
will be bounded by the right-hand side up to a constant. By Jensen’s inequality,

[U*Ktw]p B—d
W@

[u(¢y(x)) = u($(y)) — u(x) + uly)”
Scd’ﬂ’p/B(OJ)qul)/g o x— y|? dydxdz.

Split the right-hand-side integral as I + II, where I is the same integrand over the
domain (B(0,1) x Q x Q)N {|x —y| > max{ns(x),ns(y)}|z|} and I is the integrand
over the domain (B(0,1) x Q x Q) N {|x — y| < max{ns(x),ns(y)}|z|}

We estimate I < C(p,S,p,%)(I1 + I2), where

g _ P
el [ 0D U
B(0.1) Ja Jon{x—y|>ns ()]} x -yl

and I, is defined similarly, with the roles of x and y exchanged. The y-integral in I3
is bounded from above by C(d, 8)(n5(x)|z|)?~¢, and so

it 1s002) — uGol
n<cs) | /Bm ‘ I

Letting y = x + 75(x)z and then using Theorem 2.2, we see that

I < C(d, B,p, g)q(diam(Q)) PP =Bl o

and a similar estimate holds for I5.
Now, using Lemma 3.1 to enlarge the region of integration, we estimate

) _ ) P
wert [ [ (GE00) P o,
B(0,1) Jo Jon{x—y|< s} x -yl

T—k10

1 op- 1/ // |“(X)_“(B)| dydxdz =: IT, + I 1.
B(0,1) /@ JON{|x—y|< t—h5m5(x)} Ix -yl
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By the identities in Lemma 3.2,

2 —1
s s fon
(14 £16)° Jp0,1) Ja Jan{ics 60—¢d (x)1< 18 ns(¢3 (x0))}

(1-r18)2

[u(Ca (%) —u(Co(y))I” dy dxdz.

o (x) — Co(y)l?

Then we apply the change of variables ¥ = Ci (y), x= C‘Zs(x). Since § < g, this permits
us to apply Theorem 2.1 and obtain

v ) — v )| P

In< C(p,ﬂ,m)/ / w09 = w3 45 4
aJonfz-sl<msx} XY

S C(p7 57 d7 q, Ko, ’il)q(diam(ﬂ))d+p_ﬂ5d+p_ﬁ[u]pmﬁ,p[g;q}(g) )

where we additionally used Theorem 2.2. Finally, 11> can be estimated in a similar
but more straightforward way using Theorems 2.1 and 2.2. 0

4.4. Convergence in the local limit.
THEOREM 4.10. Let 1 <p < oo, and let w e LP(?). Then

(48) tim |5 — ul] ) =0

Proof. The result follows from the density of C°°(2) in LP(), from the LP((2)-
continuity of K4 contained in (4.1), and from the uniform convergence of Ksu to u in
Theorem 4.1. O

THEOREM 4.11. Assume that (Ay) is satisfied for k> 1. Let 1 <p < oo, and let
u€WhP(Q). Then

(4.9) ;L%”KW_“HWM(Q) =0.
Proof. Note that

/ Ys(x,y) {I - (x—y) ®V775(X)} dy =1 for all x € Q.
Q 15 (%)
Therefore, for any v € C*°(2), we have by (4.3)

VEs) = To60) =| [ sy [1- EDEIE (©0(y) - a0y

<C(¢,k1) sup |Vo(z)—Vu(x)|—0asd—0.
B(x,n5(x))

The limit is independent of x since v is uniformly continuous on 2. Thus, Ksv — v
uniformly on €. From here, the proof is the same as that of Theorem 4.10. ]

5. The nonlocal function space: Fundamental properties. In this sec-
tion, we present a few important properties on the nonlocal energy spaces, such as
the density of smooth functions, the trace theorems, Poincaré inequalities, and LP-
compactness theorems. All of these results are important ingredients in the later
proofs of the well-posedness of nonlocal problems with local boundary conditions.

5.1. Density of smooth functions. We continue the discussion in this subsec-
tion under the assumptions (Ag), (A,), 6 <dy, and p € [1,00).
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LEMMA 5.1 (a preliminary embedding result). Let u € C1(Q)NWP(Q). Then

1
[ulayeris.q(0) < m[u]ww(g) .

Proof. For s = 1, the proof is done exactly the same as in [63]. In this proof,
denote 15(x) = dq(daq(x)). We have for any z € B(x,71;5(x))

1
lu(x +2z) — u(x)|P < |z|p/ |Vu(x +tz)|P dt,
0

and so

Cy, 1
[uly W8P [5:q](Q // o) ‘ng”%( )d+p_5|u(X+Z)—u(X)\pdzdx
5 (X
Capp 1 /1
< 2 |Vu(x + tz)|P dt dz dx
/ /B(Oma x)) 2777 ns(x)+P=F

1
/ﬂ/ . |Z(|i;§;/0 Vu(x + tns (x)2)|P dt dz dx.

Define the function ¢,(x) as in Lemma 3.2. Then since ¢2, is invertible on Q with
¢ tz( ) C 2, changing coordinates and using the identities in Lemma 3.2 gives

Cy !
[y, (550)(2) < /Q /B(O 5 W’ii / |Vu(x + tns(x)z) [P dt dz dx

1
dﬁ’p/ Vu(x)|? dtdzdx
1—5//3(01 |z[7=7 o IVut)

= il 0

THEOREM 5.2 (density of smooth functions, first version). C*(Q)N20*[5;q](Q)
is dense in QPP[5;q|(Q) for any k < k.

Proof of Theorem 5.2. Given u € 23°?[5; ¢](£2), we need to show that there exists
a sequence {u.}eso C CF () NWPP[5; 4] () such that

(5.1) Ehg(l)Hus _u”m}ﬁ,p[s;q](ﬂ) =0.

To this end, define \(x) = dpqa(x), with 1(x) = n[daq, q](x), and for J € (0,d,), denote
ns(x) = 0m(x). Choose a function 1 satisfying (A) for k = oo, and choose X to satisfy
(Ay) for k =oo. Define the constant £ := min{d, o, ¢ g +6} where ¢ is the constant
defined in Lemma 3.2. Finally, define 7(x) := [\, ¢](x ), and for € € (0,€p), denote
e (x) = €7j(x), and define the sequence {u.}.>0 by

ue (%) := K [\, q, ¥]u(x) = K.u(x).
Then u. € C*(Q) by Lemma 4.2. Moreover, by Theorem 4.10, u. — u in LP(Q) as
e—0.
It remains to show that lim. o[ue — u]oys.r(s,q() = 0. To this end, for € € (0,9),
it follows from Jensen’s inequality that
p

K ou(x) — Kou(y)? = /B o P 0 700) ity 7))

S/ ¥ (|2]) [u(x + 7 (x)2) — u(y + 7-(y)2)|" dz,
B(0,1)
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and so
Kl nisia0)
- _ - P
< / |Z / / C(i,ﬁﬁ”ﬂ |U(X + 776 (X)Z) d:l:(}_,; 776 (y)z)‘ dy dX dZ .
B(0,1) (x,m5(x)) |X_y| 776(X) P

Now define the function (5 (x) = x 4 7:(x)z as in Lemma 3.2; since £y < g¢, we can
apply this lemma to get

(el 520102

<(1+05)d+p/ ¥ (|z ‘ | // %
— (=ee)? Jpoy aN{1¢s ()~ (0 1< 2 s (e} 1€ () — G ()IP

1—ce
|u(¢5(x) —u(Gz ()"
15 (C5(x))HP=F
Now apply the change of variables y = {_(y) and X = ;(x). The choice of &y ensures
that %J_”gi(s <4y, and so this permits us to apply Theorem 2.1; in the notation of that
theorem, we take d; = 6 and do = }f—gzé. Therefore, we obtain that there exists a
constant C' > 0 depending only on d, 3, p, d,, and x; such that

[Keulg

det V{5 (x)det V(L (y) dy dx dz.

WA-7[6:4]()
C % )P
<cf wiE [ w1 VI 40 g,
B(0,1) 0 JB&Ems ) 1Y —XP ns(X)HHP-
Therefore,
(52) [Kgu]ma,p[(;;q](g) < C[u]mﬂ,p[é;q](g) for e < &y .

Thanks to this estimate, we can use continuity of the integral to conclude that
for any 7> 0, there exists o > 0 independent of € such that

I/ 0135016,y ) Ku) — Keuly) — (u(x) — u(y))P dy e < 7.
QJon{|x-yl|<e}
By (3.1), whenever g <|x —y| <n5(x), we have n5(x) > ¢ and ns(y) > (1 — K1) e, so

//{ o, ooy eue) = Keu(y) = (u(x) — u(y) " dy dx

= pd e [ Keu— uHZ[),p(Q) .

Since [|[K.u —ul|7, gy — 0 as e = 0, we conclude that

limsup[K.u —u

e—0

}Snﬁ,p[(;;q](g) <7+C(0) hrgﬂjélp [ Keu— UHILP(Q) =T

and so the convergence follows since 7> 0 is arbitrary. O

A by-product of this proof is that for ¢ € &y, K.[\,q,¢] : WPP[5;¢)(Q) —
2057[§; ¢](Q) is a bounded operator.

Proof of Theorem 1.2. Define K. u just as in Theorem 5.2 for ¢ < d; note that
K.ueWhP(Q) by Corollary 4.8 and Theorem 2.1. Thus, by standard Sobolev exten-
sion, we can assume that K.u € W1P(R?). Let ¢ be a standard mollifier, and define
for £ >0 small

Ve e(x) = @z x Kou(z).
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Then vz . € C*°(Q). Moreover, by Lemma 5.1,

1
: p s p _
;lj}l}) Hvé,&‘ — K5u||QﬂB=P[5;q](Q) < 1-5 Elli% H'UE,E - KEUHWLP(Q) =0.

For each n € N, choose {e,}, to be a strictly decreasing sequence that satisfies
1K e, 1t = tllgpe.ns,q)0) < 5. Then for each n, there exists &, = &,(c,) depending on
€, such that ||vse, — KgnunB,p[&q](Q) < 5= for all £ < &,. We can choose the sequence
{&n}n to be strictly decreasing as well. Define {wy, },, = {vz, ¢, }n; we conclude with

lwn = llggs.oisiggey < 106w en)en = Ko tllawssisg) + 15Ke,u = llgps.oisq o)
< Sup [ve.e,, = Kz ullagsrisige) + 1Kzt — llags.nisg o)
E<én
<tk !
< 5 F e, u = tllggsnsige) < - 0

COROLLARY 5.3 (an embedding result). Let u€ W1P(Q). Then

[ulae v (54 (0) < m[u]wl““(m '

5.2. Trace theorem. Given their properties established in section 4, we intuit
that trace inequalities in the spirit of [26, 37, 63] might be possibly established via
the boundary-localized convolutions. This is indeed the case, and we demonstrate
this in the following theorems. The discussion in this subsection is under the same
assumptions as in subsection 5.1 except that only p € (1,00) is considered. The
trace theorems ensure that proper local boundary conditions can be imposed for the
associated nonlocal problems.

Proof of Theorem 1.3. Let v satisfy (Ay), and let A satisfy (A)), both with
k = 0o, and define the boundary-localized convolution Ksv = K;[\,q,¢¥]v. First, since
Ksv e WHP(Q), we have by Corollary 4.8

HTKJUHWlfl/p,p(aQ) <C ||K5u||W1,p(Q) <C HK(su”mB,p[(S;q](Q) .

We now use Theorem 1.2. Let {u,} C C'(Q) be a sequence converging to u in
23°%7[5; q](Q). Then since TKsu,, = Tu, for all n by Theorem 4.1,

”Tun - Tum”Wl—l/p,p(aQ) = ||TK6Un - TKzSUm”Wl—l/p,p(aQ)
<C Hun - umHmﬁ,p[g;q](Q) .
Therefore, the bounded linear operator T : 20%7[5;¢](Q) — W'=1/PP(9Q) is well-
defined. ad

In the special case of ¢(r) =r and 8 =0, we recover the trace theorems proven in
[63] for p=2 and in [26] for general p and, in the notation of that work, s =1.

Now that Theorem 1.2 gives a density result for the nonlocal function space, the
following theorem can be proved in the same way as Theorem 4.5.

THEOREM 5.4. Suppose that u € 2°P(5;4)(Q). Then

TKsu=Tu in the sense of functions in W*=Y/PP(9Q).

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/18/24 to 74.3.135.213 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

4208 JAMES M. SCOTT AND QIANG DU

We also prove a Lebesgue point property. For this, we use the outer measure
definition of J#¢ (see, for instance, [33]), which is

A (U) = lim 2,(U),

o—07t
where for o >0,
U):=inf {Z:diaun(Un)S : diam(U,) < g and U C U Un} .
n=1 n=1

THEOREM 5.5. Let T : WPP[5;¢](Q) — W'=V/PP(9Q) denote the trace operator.
Define (d — p)+ = max{d — p,0}, and for s > 0, denote s-dimensional Hausdorff
measure by %, Then for #(4—P)+_almost every =€ 0,

lim lu(y) — Tu(x)|P dy =0
e—0 B(X,E)

for all u € WPP[5;4)(Q), i.e.,

Tu(x) = lim u(y)dy for AP+ e, x €.
e—0 B(X,E)

Proof. First, we claim that for 2 (4=P)+_almost every x( € 99,

. 1
63) s [ [yl - uly) dyde=0,
€ QNB(x0,e) JQ

e—0

To show this, we let 7 >0 and define

Lp(xg,e
A= {xo €00 : 1imsup/ / lzc(lfz; )'yg,p[é;q](x,yﬂu(x) —u(y)|P dy dx > T} .
oJo

e—0

To establish (5.3), we show that s#(@~P+(A,) =0 for all 7 > 0. If p > d, this is
satisfied trivially, so assume that p < d. Let 0 < g < g. Then for each xgy € A,, there
exists 0 < ey, < 0 such that

:ﬂ' X0,Ex
(5.4) [ [ =G ol ) — )P dydx > 7.

Hence, we can use the Vitali covering lemma to obtain a countable collection of disjoint
balls {B(Xn,en)}22, such that e, < g, (5.4) is satisfied, and A, C U2 B(Xy, 5e,).
Therefore,

109 i 5£n
<*Z/ / LB (xp.e,) V8,105 41 (X, ¥) [u(x) — u(y)|” dy dx

<O [ ozl lutx) - u)dy ax.
n=1

By taking o — 0, we obtain that %fggp(AT) =0 for all o > 0. Taking po — 0 gives
HP(A.) =0, and so (5.3) is proved.
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Now, for ¢ satisfying (Ay) and A satisfying (Ay), define K5 = Ks[\,¢q]. In the
same way as in the proof of (1.10), we obtain

][ lu(x) — Ksu(x)|P dx
QﬁB(xo, )

cor
RS

[ [ mslsaylut - uy)rayax.
QNB(x0,e) J/Q
and so by (5.3),

(5.5) lim lu(x) — Ksu(x)[Pdx =0 for AP+ g e.x0 € 0.
€20 J QnB(xo,¢)
Now, by Corollary 4.8 and by the Lebesgue point property for W (£2) functions
(see, for instance, [41, Theorem 3.23]), we have

(5.6) lim | Ksu(x) — TKsu(x0)|P dx =0
=0 QNB(x0,e)
for 7 (4=P)+_almost every xo € 9.
Finally, by using Theorem 5.4, (5.5), and (5.6), we get for . (?~P)+-a.e. xo € 00

][ |u(x) — Tu(xg)|P dx = ][ lu(x) — TKsu(xo)|P dx
B(x0,¢) B(xo,¢)
<o f )~ TR s 2 ) - Kou(o dx 0
B(X(),E) B(X(J,E)

as € — 0, which concludes the proof. ]

Note that it is much easier to prove that

Tu(x) = lim Ksu(y)dy for 4 "P)+_ae. x € 9Q.
e—0 B(x7€)

The trace theorems also give us an alternative way to define the homogeneous
nonlocal spaces Qﬁg’gQD [0;](92) defined in (1.18).

THEOREM 5.6. Let 1 < p < oo. Then a function u belongs to Qﬂg:gQD [0;¢](Q2) if
and only if u € WP P[5;q](Q) and Tu=0 on IQp.

Proof. The forward implication is clear from the continuity of the trace, so we
need to prove the reverse implication. Suppose that u € 20%7[5:¢](2) and Tu =0 on
0Qp. Let ¢ satisty (Ay) and A satisfy (Ax) both with k = oo, and for 0 < e < §, define
K. = K.\, q,%]. Then TK.u=0 on dQp by Theorem 5.4, so K.u € W&’(Q;QD(Q) by
Corollary 4.8 and Theorem 2.1. Thus, for each ¢, there exists a sequence {vs}z C
CH(Q\ 9Qp) that converges in W1P(Q) to K.u as £ — 0. By Theorem 5.2, for
each n € N, we can choose {e,}, to be a strictly decreasing sequence that satisfies
[ K e, = tllgpens,q0) < 5. Then for each n, there exists &, = &,(c,) depending on
e, such that |jvs., — Kgnu”mﬁ,p[é;q](m < 5= for all £ < &, thanks to Corollary 5.3.
We can choose the sequence {&,}, to be strictly decreasing as well. Define {wy,},, =
{vs, e, }n- Then

Wn = Ullgnsisig) < Ven(en).en = Kentllamorisige) + 11, v = ullapsisg o)

< sup ||/U§7En - Kanu||21]/‘=1’[5;q](9) + || Ke, u— u”mﬂ*m[é;q](ﬂ)
ESEn
1

< m + || Ke,u— unBw{g;q](Q) < o

which concludes the proof. 0
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5.3. Poincaré inequalities. Our discussions here on nonlocal Poincaré inequal-
ities also follow the assumptions made in subsection 5.1, though we note the special
case of p € (1,00) in Theorem 5.10.

THEOREM 5.7. There exists a constant Cp = Cp(d, 3,p,q,Q) such that for all
6 < é07

lull o0y < Coltulapsnisae  Yu€Waha, [6:41(2).

Proof. Let 9 satisfy (Ay) and A satisfy (Ay), both with k£ = oo, and define the
boundary-localized convolution Ksv = Ks[\,q,%]v. Let {u,} C CL(Q\ dQp) be a
sequence converging to u in 20°P[5;q](2) as n — oo. By Corollary 4.8, Ksu,, €
WLP(Q), and it follows from a slight modification of the proof of Lemma 4.3 that
Ksu, has support compactly contained in Q\ 9Qp. Therefore, Ksu, € W0177§;QD (Q),
and we can apply the classical Poincaré inequality:

(5-7) ||K6Un||Lp(Q) < C(pa Q) ||VK5UnHLp(Q) .
By Corollary 4.8, ||VK5un||L,,(Q) < Clun)aps risige)- Then by (1.10),
unll Loy < 1K sunll Loy + lltn = Ksun| ) < (C'+ C8)[unlays »(siq)) -

The result follows by taking n — co. ]

THEOREM 5.8. There exists a constant Cny = Cn(d,,p,q,92) such that for all
5 < éo;

lu— (Wallpo @) < Onlulawrssge) — Vue W P[5 q)(Q).

Proof. Let 9 satisfy (Ay) and A satisfy (Ay), both with k£ = oo, and define the
boundary-localized convolution Ksv = Ks[\,q,%]v. By Corollary 4.8, Ksu € W1P().
Therefore, we can apply the classical Poincaré inequality:

(5.8) 1 Ksu = (Ksu)all Lrq) < C(0, ) IVEsul L g -

By Corollary 4.8, [[VKsul s (o) < Clulans.r(5,q) (). Now recall the definition of s in
(3.5), and note that

(Ksu)g = ][QK(;u(x) dx = ][Q /Q Ys(x,y)u(y)dy dx = ][Q\I/(;(y)u(y) dy = (Tsu)q,
and so by (1.10) and (5.8),

l[u— (\II5U)QHLP(Q) < || Ksu— (K5U)Q||LP(Q) + [lu— K5UHLP(Q) < Clufaws.r(5.q)(0) -

Finally, by Jensen’s inequality and by (1.10),
lu = (Wells o) < llu = (Ysu)allLoq) + [(Tsw)o = (Wall s o)

1/p
< Clulapsrisiga) + (fﬂ/ﬂ |Ksu(y) —u(y)|” dde)

< Clulapsrisga) + lu = Ksull 1oy < Clulagsrsg o) - 0

Remark 5.9. Note that all of the above Poincaré constants are constructed and
not given by a contradiction argument.
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THEOREM 5.10. Let 1 < p < oo. There exists a constant C'gr >0 such that for all
6 < é07

||v||’£p(9) <Cgr ([u]gng,p[é;q](m + /69 |Tul|? da) Yu € WPP[5)(R).
R

Proof. First, it is straightforward to prove via the compact embedding of WP (Q)
into LP(2) that there exists a constant A > 0 such that

(5.9) HU||§-1P(Q) <A <||Vv||]zp(9) + /anR [TvlP da> Yoe WhP(Q).
Now let ¢ satisfy (Ay) and A satisfy (A), both with k£ = 0o, and define the boundary-

localized convolution Ksv = Ks[\,q,%]v. By Corollary 4.8, Ksu € W1P(Q2), and
therefore we can apply (5.9):

sl <A (Il + [ (THpupas)
R

By Corollary 4.8, [|[VEsul 1,(q) < Clulaws.»(5,4)(2), and by Theorem 5.4, TKsu =Tu.
Therefore, by (5.9) and (1.10),

[ull Loy < 1K sull po(q) + lu = Ksull 1o g

<A (IVKWII’Ep(m +/6Q |TK6U|”dU> + Clulaws.r(sg) (@)
R

<Cr <[“]%B»p[6;q1<m + /a

which concludes the proof. ]

|Tul? da) ,
Qr

Remark 5.11. More general Poincaré inequalities can be obtained using the
same methods. Indeed, let V be a weakly closed subset of 20°?[4;¢](2) such that
V' NR = {0}. Then a Poincaré inequality holds on V. Thanks to the heterogeneous
localization properties, V' can possibly be characterized either by lower-order terms
or by terms depending only on boundary values. In addition, Poincaré inequalities for
more general forms on the right-hand side, for instance, [u]gnm,[é;q](Q +f8§2D |Tu|™do
for some exponent m € [1,p], can be obtained.

5.4. Compactness for a fixed bulk horizon parameter. We continue our
discussion with considering compact embeddings for nonlocal spaces under the as-
sumptions (Ag), (A4), and 1 <p < co.

If 8 < d, then it is straightforward to see that the embedding 2%P[§;q](Q) —
LP(Q) is not compact. Indeed, for any cube @ € Q2 with sides parallel to the axes,
let {u,}, be the standard Fourier basis for L?(Q). Extending the u, to all of by
0, we then have [up]ays.r(sq0) < C(Q, L [[unllp<(g)) < C independent of n since
|x|~# € L}, .(R?). However, u,, does not converge strongly in LP(2).

On the other hand, for 8 > d, the nonlocal function space actually contains frac-
tional Sobolev—Slobodeckij spaces and thus inherits their embedding properties. The
proof relies on embedding properties of Sobolev spaces and the estimate Theorem 4.9.

THEOREM 5.12. Assume that 8 > d. Then there exists a constant C' > 0 depending
only on d, B, p, q, and Q such that for all 0 satisfying (As),

||UHW<B—d)/p,p(Q) <C ||u||<m/3,p[5;q](g) Vu e mﬁ’p[(sé q)(€2).
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Proof. Let 9 satisfy (Ay) for ky > 1, with K5 = Ks[daq,q,]. First, by Theo-
rem 4.9, the estimate

dtp=p
[u— Ksulws-a/mp@) <CI 7 [ulags.r(sq )

holds. Now we use the embedding of Sobolev spaces with a varying differentiability
index along with Corollary 4.8 to get

||K6U||W<ﬂ—d>/p,p(g) <C(d,B,p) HKWHWLP(Q) < C[KW]QUB*P[&(I](Q) :
Combining these two estimates gives the result. a0

As a result, all of the embeddings that hold for fractional Sobolev spaces hold
for the nonlocal space. So that we can use it for the variational problems, we state
explicitly the LP-space embedding.

THEOREM 5.13. For B € (d,d+p), let pj denote

. ::{zj”ﬁ ifd<p<2d,

(5.10) .
any exponent <oo if B >2d.

Then for § < &, the embedding 2°°[5;q)(Q) — LPZ(Q) is continuous, and for any
q <pj, the embedding QPP[8; q](Q) < LI(Q) is compact.

5.5. Asymptotic compactness in the local limit. In the following section,
we prove a general compactness result in the local limit which encompasses Theo-
rem 1.9. We take all the assumptions of subsection 5.1. Note that Theorem 5.15 and
Lemma 5.17 require the additional assumption (1.25).

We remark that in the case p = 1, all of the results of this section hold for the space
BV (), functions of bounded variation, instead of the space W1(Q). The proofs are
almost exactly the same; the differences are the same as in the proofs contained in
[7, 56]. Since we do not consider problems associated with functionals defined in BV
spaces in this work, the precise statements are omitted.

THEOREM 5.14. Let p € (1,00). Then

. P _ ||Vu||ZI),P(Q) if ue Whr(Q),
Hm [u]h 4 s =
50" (BEP[Sia50,N] () +0o0 if ue LP(Q) \ Whr(Q).

Moreover, if a sequence {us}s converges to u in C*(V) for any V€ as § — 0, then

lim /V /V 78 908:: p, A| (6 ) () — ()P dy dox = /V Vu(x)l? dx.

§—0

Proof. The proof of the first statement follows exactly the same steps as [56,
Theorem 1.1], and the proof of the second statement follows exactly the same steps
as [56, Proposition 4.1, Remarks 4.1 and 4.2]. The heterogeneous localization n(x)
gives no additional difficulty. ]

THEOREM 5.15. Assume additionally that (1.25) holds. Let 6 = {0, }nen be a
sequence that converges to 0 and {us}s C PP[5;q](Q) be a sequence such that for
constants B and C independent of ¢,

sup [|[us | pp () < C <00 and supluslags.s(s.gpn) ) =B <.
§>0 §>0

Then {us}s is precompact in the strong topology of LP(QY). Moreover, if p > 1, then
any limit point u belongs to W1P(Q) with IVull o) < B-
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Proof. Tt suffices to show that a subsequence of {us} is Cauchy in 20%?[§; q](£).
Choose 9 to satisfy (Ay) for k= ky > 1, and then define Ksu = K;[A, ¢,1]u accord-
ingly. First, we use Theorems 4.6 and 2.2 to see that

lus — Ksus | ooy < Cluslans.r(s,q ) < CBS.
Next, by Corollary 4.8,
[Ksuslwrn() < Cluslaersig o)
Therefore, the sequence { K5, us, }nen is bounded in W1P(£2) and hence is precompact
in the strong topology of LP(£2). So for a convergent subsequence {Ks, us,} (not
relabeled), we have for n, m € N
us, = s, ll 1oy < 1K, us, — s, || o) + 1 K6, U6, — syl o)
+ K5, us, — Ks,, 6,0 | 10 ()
< CB(6m + ) + || Ks, us, —

which approaches 0 as min{m,n} — co. Thus, {us, } is also convergent.

To see that any limit point u belongs to W1P(£2), we use an argument similar to
the one used to prove Theorem 1.2. Let ¢ satisfy (A,) and A\ satisfy (A, ), both with
k = oo, and define K.u = K_[\,q,]u accordingly, where ¢ € (0,¢), ¢ as defined in
Lemma 3.2, with 7.(x) = e7(x) = £q(A(x)). Define the function ¢ (x) = x + 7. (x)z
as in Lemma 3.2. Now define p.(|z|) := p(12£|z[); by definition of the nonlocal
seminorm, we have for any v € 20°?[6; ¢|(Q)

[v ]QTB P[8;g;0<,M(Q)

_ 1 (e 5// Lteex—y[\ PG —o)lP o
3\ 1= () ) =yl te? Y

where A, := g‘i -2 Then by Jensen’s inequality,
p

__\ d+p—8
1 [1+4ce
K.uslh NN
[ 6“6]mﬁ,p[5;q;p57)\](95,/\,q) - Ap (1 — E:f) /B(O,l) /Qa;k,q /S;E'J\,q ,(/) (|Z|)

_ € _ £ P
ns(x) ) x=ylns(x)HHrp

By the identities in Lemma 3.2, we obtain that for § < & < ¢, ¢5(Q59) C QU —ee)=ra

and that

[KEU!S]ZQ)]BJ?[5;q;p57)\](Q6;>\,q)

= Ap (1 - 58)2 /B(O,l) w (|Z|) Q(1—ée)eiX,q /Q(liﬁs)az)\,q p n&(CE(X))

|us (€z(x)) — us (S (¥))”
1€2(y) — €2 (x)|Pns (C(x)) PP
where we additionally used that p is nonincreasing. Therefore, we apply the change
of variables y = ¢ (y), X = (. (x) and obtain for any 6 <&

p
(K <ts]ga.15::p. 2 (0530)

< LURR (15N )

A l—CE y— X‘Bné( )d+P—B

det V¢ (x) det V(L (y) dy dx dz,
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In summary,

14 ce)2(dtp)=F
[Ksué]p B.p[§:q:p. N|(QE:Na) %[utﬂp B.2[8:a:p.\(Q)

L7 (830502, A]( ) (1—ce)? BE-P (83930, 0] (Q)
Now for any fixed e > 0, the sequence {K.us, }, converges to K.u in C?(Q24) as
dn, — 0 since k; > 2 and QsMe € Q. Therefore, we can use Theorem 5.14 when taking
dn — 0 in the previous inequality to get

1+ ¢e)2(d+p)—8
/ |VKEU|deSL P
Qeing (1—¢e)?
This inequality holds uniformly in €, so the result follows by taking € — 0. ]

Remark 5.16. In the case § > d, we can use Theorem 4.9 in place of (1.10)
in the proof and obtain that {us}s is precompact in the fractional Sobolev space
W (B=d)/p.p(Q). This compactness allows us to obtain variational convergence of more
general energy functionals, but to illustrate the ideas in this work, we are content to
consider only semilinear functionals.

One consequence of the compactness result is the W1P(Q)-weak convergence of
boundary-localized convolutions, which will be instrumental in the analysis of the
nonlocal-to-local limit of the variational problems.

LEMMA 5.17. Let p € (1,00), ¥ satisfy (Ay) with ky > 1, and assume (1.25). Let
{0} = {dn}nen be a sequence converging to 0. Suppose that supss [|uslaps.o(s.40) <
oo. Then there exists a subsequence {us }s and a function uw € WP(Q) such that
Ksius: — u weakly in WHP(Q). If additionally there exists u € W1P(Q) such that the
entire sequence us — u strongly in LP(QY), then the whole sequence Ksus — u weakly
in WHP(Q).

Proof. We select the subsequence {us } C {us} to be one with a strong-LP(2)
limit « as in Theorem 5.15 (if us — w in LP(f2), then choose {us'} C {us}). By
Theorem 4.11, it suffices to show that Ks (us —u) — 0 weakly in WP(Q) as § — 0.
By Corollary 4.8, (4.1), (4.2), and Theorem 5.15, we have

1K (usr = u)llwrwgoy < 1 Esus ooy + 1 EKstllyro )
< Cllusllggs.pisge) + lullwieg) <C-

Hence, there exists at least one convergent subsubsequence. Now let Ky (us: — u)
be any subsubsequence converging weakly in W1P() to a function v. However,
(K5 (ugr —u), @) = 0 for any ¢ € LP (Q) since usg — u strongly in LP(Q), and so it
follows that v =0 since weak limits are unique. 0

6. Existence of minimizers to the minimization problems. In this section,
we analyze the variational problems. We now describe the assumptions on Gg. 4 using
the notation from the previous section. For a fixed m € (1, p,};), where pj is as in
(5.10), we assume that Gg~q: L™(2) — R is L™ (£2)-strongly continuous (but possibly
nonconvex) and satisfies, for ¢ >0, C >0, § € (0,1), and © >0

0 o
(6.1) —cxa,s(1+ [[ull ) < Gp>a(u) < Cxap(1+ [[ullpr q)

0, B<d,

where the constant xg4 g is defined as x4, = {1 Ny
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To further illustrate the differences between the functionals G, Gs, and Gs>p,
we present the following example: Let G(u fQ ))dx, where £ : R — R is a
continuous (but not necessarily convex) functlon that satlsﬁes

(1 —u|™) <l(u) <C(1+u|™) for some m€[1,00).

Then we note the following properties and weak continuity on the spaces 20%7[§; q]():
i) Ifme|l, ddfpp) for p<dorif me|[l,00) for p > d, then (1.15) is satisfied, and
the functional G(Ksu) = G¢(Ksu) is well-defined and weakly continuous.
ii) If B <d, (1.16) is satisfied if m € [1,p], and G(u) = G,(u) is weakly continuous
if £ is convex. _
iii) If 8 > d, both (1.16) and (6.1) are satisfied if m € [1,pj), so either G(u) = G¢(u)
or Ggsa(u) =Ge(u) is weakly continuous.

Proof of Theorem 1.4. The proof follows direct methods. First, by (4.7), (1.15),
and (1.16),

g(K6U)+g( ) > —c(1+ Hu”mﬂ »[6; q](g))

and then by (6.1) and the continuous, compact embedding 27?[4; ¢] () < L™ () of
Theorem 5.13,

Gp>alu) > —c(1+ ||U||mﬂ P[5 q](Q))
Therefore,
6.2) F5(v) > Es(v) — G(K5v) — G(v) — Ggsa(v)
> &s(v) — Ch HU”gﬁ,p[&q](Q) —Ca.

Next, let G be a W1P(Q)-continuous extension of g to all of Q, i.e.,

1Gllwre @) < ClITgllwi-1/m00) < Clglwi-1mp 0, -

Then by the Poincaré inequality in Theorem 5.7 applied to u — G (valid here thanks
to the equivalent characterization of Theorem 5.6), estimates similar to those in the
proof of Theorem 2.2 give for any v € Qﬂg b, [0:9(2)

HU—GHP )y <Clv -Gl <C€5(U—G).

238-7(5;9](Q2)
Therefore, by Corollary 5.3 applied to G,
||U||Qnﬁ P[83g)(Q) = < C(HU - G”m]ﬁ 2[8:9)(R) + ||G||Qnﬁ p[s; q](Q)) 0(55( ) + Hg‘lgvl—l/p,p(ag))v

and so combining this with (6.2) gives

(6~3> ||v||pmﬂ’ll[6;q](ﬂ) <Fs(v)+C(1+ ||U||gnﬁ »[s; q](Q))

for a constant C independent of v. This estimate guarantees that min Fs > —oo
and moreover guarantees the uniform 2°?[4;¢](2)-bound of a minimizing sequence
{tn}n. Hence, {u,}, converges weakly in 20°7[5;¢](Q2) to a function u and by weak
continuity of traces u =g in the trace sense on 0{p.

By (4.7), Ksu, — Ksu weakly in W1P(Q), so

G(Ksu) < lirginfg(K(;un) .
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Next, G is 207 P[0; q](2)-weakly lower semicontinuous by assumption. Finally, Gg~q =
0 for 8 <d, and when 8 > d, we have that u,, — u strongly in L™(Q) by Theorem 5.13,
so since Gg4 is strongly continuous in L™ (2) by assumption,

Gp>alu) = nlgfgo Gp>alun).
Therefore, Fs is 20°?[5; ¢](Q2)-weakly lower semicontinuous, and so u is a minimizer
of .7:5. 0

Proof of Theorem 1.5. The proof is exactly the same, noting that G =0. O

Proof of Theorem 1.6. The proof follows direct methods. The estimate (6.2) holds
using the same argument, and by the Poincaré inequality Theorem 5.8 and estimates

similar to those in the proof of Theorem 2.2, we have for any v € QOUB’p[(;; q](2)

||UHLP(Q) <Cl ]cmﬁ 2[8:4)(Q) <C&(v).

So combining this directly with (6.2) gives

(6.4) ol iy < Fo®) + COA 012 ni5.0c0)

for a constant C' independent of v. The rest of the proof follows similarly to that of
Theorem 1.4. 0

Proof of Theorem 1.7. The proof again follows direct methods. The same argu-
ment used to prove (6.2) gives

6
(6.5) FER(v) 2E5(v) + /aQ BITv]? Ao — C [[v]lghs a1y — C2-

Next, by the Poincaré inequality Theorem 5.10, the lower bound on b, and estimates
similar to those in the proof of Theorem 2.2, we have for any v € 20°?[5; ()

ol 0 < Cr ([ UlBgs s, qm)+b0/ TU|Pdo) SC(&;(U)—F/ b|TU|Pda) .
1219773 o

Combining this with (6.5), we get that for a constant C' independent of v,

0
(6.6) ol g < FE0) + COA 02 500
The rest of the proof is similar to that of the previous arguments, noting that

Joq bITulP do is 20°7[8; q] (Q)-weakly lower semicontinuous. 0

7. Local limit. The following lemma and its corollary will be central in calcu-
lating the local limit as the bulk horizon parameter § approaches 0.

THEOREM 7.1. Let & be as in (1.13) and Ey(u) be as in (1.23), with all the
associated assumptions of their definitions. Then lims_oEs(u) = Ep(u) for all u €
WLP(Q), and lims_,oEs(u) = +oo if u € LP(Q) \ WLP(Q). Moreover, if a sequence
{us}s converges to u in C*(V) for any VEQ as § — 0, then

@(\ua(z)—ua(y)\

. jz— yl el )
i, (5 s v

s |, f &(|Vu(2) - wl) do(w) da.
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Proof. The proof follows exactly the same steps as [56, Proposition 4.1, Remarks
4.1 and 4.2], just as in the proof of Theorem 5.14. ]
For example, if ®(t) = % and if pp 5 = Cq,p, then E(u) = % Jo IVu(x)|P dx.

7.1. Dirichlet constraint. We extend the functional Fj, defined for this prob-
lem on Qﬁg:gQD [6;4](2), to a functional FP defined on all of LP(Q) by setting

=D, . | Fs(u) forue Qﬂg,’p L10:d)(Q),
(7.1) Folu)= {+oo for u € Lp(g))\ Wit [0:q)().

PROPOSITION 7.2. With all the assumptions of Theorem 1.10, define

— Lr ()
2 R (uyem [T S )
+00 foruwe LP(Q)\ W, 5, (Q).
Then we have
(7.3) FV(u) =T —limFy (u),

6—0

where the T'-limit is computed with respect to the topology of strong convergence on
P (Q).

Proof. We proceed in two steps. First, we prove that

(7.4) Y (u) < liminf Fy (us)

§—0

for any sequence {us}s C LP(2) that converges strongly in LP(Q) to u. If the right-

S . . . —=D
hand side is oo, then there is nothing to show, so assume that liminfs_,o Fs (us) < 0.
If this is the case, then it follows from the estimate (6.3) (note that C is independent of
§ if G5 = G satisfies (1.24)) and from Theorem 5.15 that u € W?(Q). Further, by the
identity g = Tus = TKsus on 9Qp for all § > 0 and from the weak WP-continuity
othraces, an application of Lemma 5.17 gives that Tu = g on 0Q2p. Therefore,
Fo (u) < oo, and we just need to show that

(7.5) FP(u) <liminf FP (us).

0—0
To this end, an argument similar to the one used to prove Theorem 5.15 gives
(7.6) Eo(u) < liminf E5(us)

0—0
but with Theorem 7.1 used in place of Theorem 5.14. Now, by Lemma 5.17,
(7.7) lim G(Ksus) =G (u)

6—0

since G is W1P(Q)-weakly continuous. Thanks to (1.24) and the continuity assump-
tion on Ggsq4, we additionally have

(7.8) lim G(us) = G(u) and lim Gp>alus) = Gp>a(u).

Therefore, (7.6), (7.7), and (7.8) establish (7.5); i.e., (7.4) is proved.
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Second, we note that the constant sequence {us}s = u € LP(2) serves as a recovery
sequence:

(7.9) Fy (w) = lim Fy ().

This follows from (6.3) and Theorem 7.1 along with Theorem 4.11, which shows that
lims_,0 G(Ksu) = G(u).
Together, (7.4) and (7.9) conclude the proof. |

Proof of Theorem 1.10. The result follows from the framework described in [8,
Theorem 1.21]. By the I'-limit computation in Proposition 7.2, it suffices to show
that {FP (us)}s is equicoercive in the strong LP({2) topology, i.e., that {us}s is pre-
compact in the strong LP(2) topology. But this follows by noting that the constant C'
appearing in (6.3) is independent of d, permitting us to apply the compactness result
Theorem 5.15.

The case g =0 follows the same setup and steps. 0

7.2. Neumann and Robin constraints.

Proof of Theorem 1.11. Similar to the Dirichlet case, we may extend the functional
Fs, now defined on EZ()ITB’F[(S;q](Q), to a functional 75;\] by setting 7g(u) = Fs(u) for
w € WP [5;4q](92), while Fy (u) = oo for u e LP(2)\ 2077 [5; q)(Q). Likewise, with
all the assumptions of Theorem 1.11, we can extend Fo(u) on WHP(Q) by defining
.Tév(u) = Fo(u) for u € WHr(Q), while 7(])\[(u) = 400 for u € LP(Q) \ WhP(Q).
Then we can show that as § — 0, F (u) is the [-limit of F5 (u) with respect to the
topology of strong convergence on LP(2). Indeed, the proof follows the same steps
as that of Proposition 7.2, with the estimate (6.4) used in place of (6.3) and with the

additional note that if a sequence {us}s C Qcﬂﬁ’p[é; q](Q) converges strongly in LP(£2)
to a function wu, then (u)g = 0, Then the proof can be completed by following the
same argument as the proof of Theorem 1.10. 0

Proof of Theorem 1.12. By similarly extending F£ and F£ to 7? and ?5,
respectively, we can get a similar conclusion on the I'-limit for the Robin case, with
(6.6) used in place of (6.3) or (6.4). Then the proof of Theorem 1.12 follows from
arguments similar to the previous proofs. 0

8. Conclusion. We have presented a study of nonlocal function spaces with het-
erogeneous localization and used its features to study associated variational analysis
problems. The scaling of the kernels and the range of  have allowed us to treat
simultaneously both fractional and convolution-type problems, with the same class of
boundary information.

Additional properties of the function spaces can be recovered in a straightforward
way using the analysis contained in this work, including finer embeddings, Hardy
inequalities, and characterizations of dual spaces.

We note that the theory presented here applies to general Lipschitz domains. We
also treat the case of general orders of differentiability, i.e., k, and ky, that are asso-
ciated with the various functions used for localization instead of assuming them to be
oo all the time. Our primary motivation for this choice is to allow for flexibility of the
models in implementation, as we demonstrate with the following scenario. First, let
k > 2 be some integer, and suppose that C*-smoothness of the heterogeneous local-
ization 7 is desired, with boundedness on all partial derivatives up to and including
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order k. If it happens that © is a C* domain, then the choice of A = daq is possible.
However, some care must be taken, as dpn does not belong to C*(Q); rather, there
exists eq > 0 such that dpq is C* on the set {x € Q : dpa(x) < eq}; see [36]. If
g is chosen to satisfy (A,) for k, = k with ¢(r) constant for r > eq, then it follows
that the resulting heterogeneous localization n[daq,q] belongs to C*(Q). If it is not
the case that Q is C*, then one can consider, in place of dpq, a generalized distance
\ satisfying (Ay) for some ky > k + 1. Then 7(x) = q(A(x)) belongs to C*(£2), but
it is not guaranteed that its derivatives remain bounded near 9. In that case, one
can modify ¢ and choose instead a function ¢ that satisfies (Ay) for k; > k+ 1 and
that further satisfies ¢’'(0) = ... = ¢®)(0) = 0. Then an application of Faa di Bruno’s
formula shows that |Dn[\, §](x)| < Cdaq(x) 11l for all x € Q and for all |a| <k,
where C' depends only on ¢, a, and Kq.

Although the well-posedness of these variational problems in natural function
spaces has a relatively clear picture, there are a number of fundamental questions
that remain to be answered. Establishing suitable regularity properties for the models
in this work is important for mathematical theory and physical consistency. At the
same time, analysis of this type for generalizations of these models—for instance,
nonlocal models with ® nonconvex such as in [46]—are worth investigating. Further,
one may ask if a nonlocal analogue of Green’s identity can be shown for operators
that involve heterogeneous localization, so that the variational problems considered in
this work can be placed in natural correspondence with a pointwise form as suggested
in the example above. We will show in the next paper in this series that different
localization strategies result in different forms of the proper nonlocal Green’s identity
[27]. Intuitively, the boundary condition for the nonlocal problem will be consistent
with the classical boundary condition if the function 7s(x) vanishes at a faster rate
than dist(x,0€). This calls for further (and more delicate) mathematical analysis
and also bears significant consequences in the application of localization strategies to
nonlocal modeling.
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