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NONLOCAL PROBLEMS WITH LOCAL BOUNDARY CONDITIONS

I: FUNCTION SPACES AND VARIATIONAL PRINCIPLES∗

JAMES M. SCOTT† AND QIANG DU†

Abstract. We present a systematic study on a class of nonlocal integral functionals for functions
defined on a bounded domain and the naturally induced function spaces. The function spaces are
equipped with a seminorm depending on finite differences weighted by a position-dependent func-
tion, which leads to heterogeneous localization on the domain boundary. We show the existence
of minimizers for nonlocal variational problems with classically defined, local boundary constraints,
together with the variational convergence of these functionals to classical counterparts in the local-
ization limit. This program necessitates a thorough study of the nonlocal space; we demonstrate
properties such as a Meyers–Serrin theorem, trace inequalities, and compact embeddings, which are
facilitated by new studies of boundary-localized convolution operators.
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1. Introduction. We are interested in nonlocal variational problems posed on
a bounded domain Ω⊂R

d with natural energy space characterized by the seminorm
∫

Ω

∫

Ω

γ(x,y)|u(y)− u(x)|p dydx(1.1)

for measurable functions u : Ω → R
d. Here, the constant p ∈ [1,∞) is a Lebesgue

exponent, and the function γ represents a nonlocal interaction kernel. In this work,
our focus is given to kernels of the form

γ(x,y) = 1{|y−x|<δη(x)}
C

|y− x|β(δη(x))d+p−β

with an exponent β ∈ [0, d+ p), a normalization constant C > 0, a scaling parameter
δ > 0, and a position-dependent weight η= η(x).

Variational problems associated to nonlocal energies with various forms of γ(x,y)
appear widely in both analysis and applications [2, 3, 4, 9, 10, 14, 15, 16, 18, 20, 23, 24,
34, 40, 42, 48, 52, 53, 55, 58, 64]. Earlier studies of these variational problems on
bounded domains have taken several different paths. Along the path that γ(x,y) =
C|y − x|−β with β ∈ (0, d + p) and η constant, so that γ = γ(x,y) is singular on
the diagonal x = y, both volume-constraint problems and classical boundary-value
problems have been investigated; see, for example, [2, 19, 31, 57] and additional
references cited therein. If in particular β > d+1, then classical boundary values can
be prescribed via the trace operator (see [1, 44, 54]) for cases of singular kernels that
give rise to solutions in fractional Sobolev–Slobodeckij spaces.
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4186 JAMES M. SCOTT AND QIANG DU

Down another path, e.g., with a compactly supported and translation invariant
kernel, γ(x,y) = δ−d−pρ(|x − y|/δ) for a function ρ supported in the unit interval
(0,1) and a constant (horizon parameter δ > 0) that measures the range of nonlocal
interactions. One natural route to take is to define the so-called nonlocal volumetric

constraint to complement the equation defined on Ω [24, 25, 29]. An example is the
prescription of u(x) in a layer consisting of x∈Ωc with dist(x,Ω)< δ. An alternative
is to modify the nonlocal interaction rules involving u= u(x) in a layered domain, say,
for x ∈ Ω with dist(x, ∂Ω) < δ. These volumetric conditions can recover traditional
boundary conditions in the local limit as δ → 0 under suitable conditions; see, for
example, [5, 22, 29, 38, 47, 51]. Meanwhile, in the regime δ → ∞ with a suitably
rescaled fractional kernel, these problems are related to studies of fractional differential
equations defined on a bounded domain [6, 21, 35, 43]. In addition, one can find
connections to the continuum limits of discrete graph operators and discrete particle
interactions [9, 18, 39]. For various nonlocal problems, studies of their well-posedness
subject to nonlocal volumetric constraints can be found, for example, in [25, 49], which
offered desirable mathematical insight as demonstrated for a number of applications,
such as the peridynamics models developed in mechanics [17, 30, 46, 59, 60], nonlocal
diffusion and jump processes [11, 24], and nonlocal Stokes equations for the analysis
of smoothed particle hydrodynamics [28].

Still another path is to mix classical boundary conditions and volume-constraint
conditions in constitutive models that blend local and nonlocal models. For an exten-
sive discussion relating to the many choices of blended models in applications such as
peridynamics, see the survey [32].

We are interested in boundary-value problems for nonlocal problems on a bounded
domain in the classical sense; that is, the boundary conditions are prescribed on ∂Ω
only. The motivation is twofold: First, while the nonlocal constraints are natural,
they are not perfect choices. Theoretically, nonlocal constraints may raise unintended
concerns about the regularity of solutions; for instance, nonconstant functions van-
ishing in a layer of nonzero measure no longer enjoy analyticity, and solutions of
problems with smooth kernels may experience nonphysical or undesirable jumps at
the boundary due to unmatched nonlocal constraints [29]. In practice, developers
of simulation codes for applications of nonlocal models have ample practical reasons
to keep local boundary conditions in implementation even though a nonlocal model
might be derived and/or deemed a better modeling choice in the domain of interest.

To allow for the prescription of local boundary conditions, the nonlocal energies
and the nonlocal solution spaces must be defined so that boundary values of the
solutions make sense. In the case where the kernel γ = γ(x,y) does not have sufficient
singularity on the diagonal x = y, it means that some localizing property near the
boundary should hold. For instance, in [26, 62, 63], a function δmin{1,dist(x, ∂Ω)}
is introduced to characterize the extent of nonlocal interactions at a point x ∈ Ω
instead of taking a constant δ as the horizon parameter everywhere in the domain.
Clearly, the interactions are localized on the boundary. A consequence of this type of
heterogeneous localization is that functions in Lp(Ω) with a bounded energy can have
well-defined traces on ∂Ω to allow classical, local boundary conditions for nonlocal
problems; see [37, 63]. A nonlocal operator with heterogeneous localization also allows
for a natural and seamless coupling of the associated nonlocal model on one part of
a physical domain, with a local PDE model on another part of the domain, via well-
defined interface conditions in a consistent manner, as discussed in earlier studies;
see, for instance, [62].

In this first part of a series of works on the analysis of these nonlocal variational
problems with local boundary conditions imposed via heterogeneous localization, we

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
6
/1

8
/2

4
 t

o
 7

4
.3

.1
3
5
.2

1
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



NONLOCAL PROBLEMS WITH LOCAL BOUNDARY CONDITIONS I 4187

rigorously establish their well-posedness theory and examine the convergence to their
classical local counterparts. We adopt a general heterogeneous localization strategy
elucidated in later sections by a function q controlling the rate of localization at the
boundary, which bears significant consequences in the studies presented in subsequent
papers. This aspect is novel in the context of the analysis of nonlocal problems, so
we also study the general nonlocal function spaces Wβ,p[δ; q](Ω).

1.1. Nonlocal function spaces. Throughout the paper, we assume that for
d≥ 1, Ω⊂R

d is an open connected set (a domain) that is bounded and Lipschitz. To
describe our main findings, we first introduce the function space

W
β,p[δ; q](Ω) := {u∈Lp(Ω) : [u]Wβ,p[δ;q](Ω) <∞} ,(1.2)

which is a Banach space equipped with the norm determined by

‖u‖p
Wβ,p[δ;q](Ω) := ‖u‖pLp(Ω) + [u]p

Wβ,p[δ;q](Ω)
.

The specific form of the nonlocal seminorm under consideration here, for given expo-
nents p and β and constant δ, is defined by

[u]p
Wβ,p[δ;q](Ω)

=

∫

Ω

∫

Ω

γβ,p[δ; q](x,y)|u(y)− u(x)|p dydx ,(1.3)

where p∈ [1,∞) and

β ∈ [0, d+ p) ,(Aβ)

taken as assumptions throughout the paper unless noted otherwise. The constant
δ > 0 is the bulk horizon parameter, and the kernel in (1.3) is defined as

γβ,p[δ; q](x,y) := 1{|y−x|<δq(dist(x,∂Ω))}
Cd,β,p
|x− y|β

1

(δq(dist(x, ∂Ω)))d+p−β
.(1.4)

For a Lebesgue measurable set A⊂R
d, 1A defines its standard characteristic function.

Cd,β,p > 0 is a normalization constant so that for any x∈Ω,

∫

Rd

γβ,p[δ; q](x,y)|x− y|p dy=

∫

B(0,1)

Cd,β,p
|ξ|β−p dξ=

√
πΓ(d+p2 )

Γ(p+1
2 )Γ(d2 )

:=Cd,p ,(1.5)

with B(0,1) denoting the unit ball centered at the origin in R
d and Γ(z) denoting

the Euler gamma function. In fact, we see directly that Cd,β,p = Cd,p
d+p−β
σ(Sd−1)

, where

σ denotes the surface measure and S
d−1 ⊂ R

d is the unit sphere. These constants
are defined so that the nonlocal seminorm is consistent with the classical Sobolev
seminorm in a precise way, as will be discussed later.

The function q : [0,∞) → [0,∞) is used to characterize the dependence of the
localization on the distance function. It is assumed to satisfy the following:

(i) q ∈Ck([0,∞)) for some k ∈N∪ {∞}, q(0) = 0, and 0< q(r)≤ r ∀r > 0,

(ii) 0≤ q′(r)≤ 1 ∀r≥ 0 , and for a fixed cq > 0, q′(r)> 0 ∀r ∈ (0, cq],

(iii) there exists Cq ≥ 1 such that q(2r)≤Cq q(r) ∀r ∈ (0,∞),

(iv) if k≥ 2 , |q′′(r)| ∈L∞([0,∞)) .

(Aq)
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4188 JAMES M. SCOTT AND QIANG DU

Conditions (i) and (ii) ensure that q is (super)linear near 0, and condition (iii) is a
kind of homogeneity condition. Condition (iii) additionally implies that

q(R)

q(r)
≤Cq

(
R

r

)log2(Cq)

for all 0< r≤R<∞ .(1.6)

Some examples of q satisfying (Aq) with k =∞ are q(r) = r and q(r) = 2
π arctan(r).

Another class of examples is q(r)≈ 1
N min{rN ,1} for N ∈N, mollified in a neighbor-

hood of r= 1 so that q ∈Ck for any desired k.
The function δq(dist(x, ∂Ω)) used in (1.4) does not exceed δ for x in all of Ω,

which leads to the naming of δ as the bulk horizon parameter, but shrinks to 0 as
x→ ∂Ω, hence leading to boundary localization. With these features, it represents the
extent of nonlocal interaction that takes on a more complex form than merely staying
as a constant throughout the domain. The latter case, given by δq(dist(x, ∂Ω)) = δ
for any x ∈Ω and a constant horizon parameter δ > 0, has been a popular choice for
which the normalization condition for the kernel used in the seminorm implies that
[v]Wβ,p[δ;q](Ω) = ‖∇v‖Lp(Ω) for any linear function v = v(x). Meanwhile, the choice
of exponents d+ p− β and β are made so that the nonlocal seminorm [·]Wβ,p[δ;q](Ω)

serves as an analogue of the seminorm on the classical Sobolev space. Note that the
only factors that “genuinely” determine the nonlocal function space Wβ,p[δ; q](Ω) are
β, p, q, and Ω. Different positive values of δ result in the same equivalent space, as
demonstrated later in Theorem 2.1.

Throughout this work, we assume the existence of a generalized distance function
λ : Ω→ [0,∞) that satisfies the following:

(i) there exists a constant κ0 ≥ 1 such that

1

κ0
dist(x, ∂Ω)≤ λ(x)≤ κ0 dist(x, ∂Ω) ∀x∈Ω ,

(ii) there exists a constant κ1 > 0 such that

|λ(x)− λ(y)| ≤ κ1|x− y| ∀x,y∈Ω,

(iii)λ∈C0(Ω)∩Ck(Ω) for some k ∈N0 ∪ {∞}, and
(iv) for each multi-index α∈N

d
0 with |α| ≤ k ,

∃κα > 0 such that |Dαλ(x)| ≤ κα|dist(x, ∂Ω)|1−|α| ∀x∈Ω .

(Aλ)

Note that conditions (i) and (ii) are equivalent to conditions (iii) and (iv) when
k = 1. For any domain Ω, a generalized distance function λ with k = ∞ and all κα
depending only on d is guaranteed to exist; see [61]. Note that the distance function
itself satisfies (Aλ) for k = 0 and κ1 = 1, though in some of our later discussions,
higher values of k in (Aλ) are preferred. Thus, our analysis encompasses the case that
q(dist(x, ∂Ω)) is a smooth function that allows for specific forms of heterogeneous
localization on the boundary ∂Ω; i.e., it is constant away from ∂Ω and vanishes as x
approaches ∂Ω; see further discussion in subsection 1.6.

1.2. Boundary-localized convolutions. An essential tool in this analysis is
the convolution-type operator

Kδu(x) =Kδ[λ, q,ψ](x) :=

∫

Ω

1

(ηδ[λ, q](x))d
ψ

( |y− x|
ηδ[λ, q](x)

)
u(y)dy, x∈Ω.(1.7)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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NONLOCAL PROBLEMS WITH LOCAL BOUNDARY CONDITIONS I 4189

Here, ψ :R→ [0,∞) is a standard mollifier satisfying

ψ ∈Ck(R) for some k ∈N0 ∪ {∞} , ψ(x)≥ 0 , and ψ(−x) = ψ(x) ∀x∈R,

[−cψ, cψ]⊂ suppψb (−1,1) for fixed cψ > 0 and

∫

Rd

ψ(|x|)dx= 1 .
(Aψ)

Meanwhile, the function ηδ[λ, q](x) = q(λ(x)) is given by

ηδ[λ, q](x) := δη[λ, q](x) := δq(λ(x)) ∀x∈Ω ,(1.8)

where η1[λ, q] = η[λ, q] is named a heterogeneous localization function. While we
introduce these notations to emphasize the dependence on q and λ whenever multiple
heterogeneous localization functions appear simultaneously in the same context, we
will write ηδ[λ, q] simply as ηδ (with η1 = η) whenever the dependence is clear from
context. The same convention is applied to abbreviate Kδ[λ, q,ψ] as Kδ.

For the study of the variational problems, the maximum admissible value of the
bulk horizon parameter δ is chosen to depend on η(x) as follows:

δ ∈ (0,min{δ0, δ̄0}), where δ0 :=
1

3max{1, κ1,Cqκlog2(Cq)
0 }

and δ̄0 is the

smallest positive root of Mq(δ) =
1

3
for Mq(δ) :=

1+ κ1δ

(1− κ1δ)2
δ .

(Aδ)

The precise definitions will be motivated later, but for now, we note that by (1.6) and
(Aλ), we are guaranteed that for all δ < δ0,

ηδ[λ, q](x)≤ δCqκ
log2(Cq)
0 q(dist(x, ∂Ω))≤ 1

3
q(dist(x, ∂Ω)) for all x∈Ω and

|ηδ[λ, q](x)− ηδ[λ, q](y)| ≤
1

3
|x− y| for all x,y∈Ω .

(1.9)

We refer to Kδ as a boundary-localized convolution operator. This operator has
all of the smoothing properties of classical convolution operators and additionally
recovers the boundary values of a function. To be precise, for all functions u∈C0(Ω),
TKδu = Tu, where Tu = u|∂Ω denotes the trace operator. This property of the
boundary-localized convolution is preserved when the operator T is extended to more
general Sobolev and nonlocal function spaces.

Throughout the paper, the functions λ, q, and ψ may have different orders of
smoothness; subscripts will be added for emphasis; and the value of the index k in
(Aq), (Aλ), and (Aψ) will vary and will be specified in each context. For example, q
is assumed to satisfy (Aq) for k = kq ≥ 2 in Theorems 1.10, 1.11, and 1.12, while ψ
is assumed to satisfy (Aψ) for k = kψ ≥ 1 to get the estimate (1.12) in Theorem 1.1,
which relies on estimates in Theorem 3.4 and is needed for Theorems 1.4, 1.6, and 1.7
and the theorems on the local limits.

Operators with similar boundary-localizing properties were first, to our knowl-
edge, studied in [12, 13] and later in [45]. However, in previous studies, λ is compa-
rable to either dist(x, ∂Ω) or e−1/dist(x,∂Ω), with fixed bulk horizon = 1; λ does not
involve the composition with more general nonlinearity q or general bulk horizon < 1.
Thus, results like, e.g., the boundedness on classical function spaces already obtained
in those works have more straightforward proofs in our setting; at the same time, the
operator Kδ takes on a form distinct from the earlier works, so that the related results
are more general. It is for this reason that the studies of the operators in classical

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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4190 JAMES M. SCOTT AND QIANG DU

Sobolev spaces are included in this work. Naturally, our chief interest is to develop
their new properties associated to the nonlocal function space W

β,p[δ; q](Ω).
Our first main result concerns the utility of boundary-localized convolutions in

the study of nonlocal function spaces and variational problems. To illustrate, we
present the following theorem.

Theorem 1.1. Let Kδ be as in (1.7), with all of the above assumptions. Then

there exists a constant C depending only on d, β, p, ψ, q, κ0, κ1, and Ω such that for

all δ < δ0,

‖u−Kδu‖Lp(Ω) ≤Cδq(diam(Ω))[u]Wβ,p[δ;q](Ω)(1.10)

for all u∈W
β,p[δ; q](Ω). Further, for all δ satisfying (Aδ),

[u−Kδu]W (β−d)/p,p(Ω) ≤C(δq(diam(Ω)))1−
β−d
p [u]Wβ,p[δ;q](Ω)(1.11)

for all u∈W
β,p[δ; q](Ω) whenever β > d. If in addition (Aψ) is satisfied for k= kψ ≥ 1,

then for all δ < δ0,

‖Kδu‖W 1,p(Ω) ≤C ‖u‖
Wβ,p[δ;q](Ω) ∀u∈W

β,p[δ; q](Ω).(1.12)

The proofs are contained in subsection 4.3. The estimate (1.12) suggests that the
nonlocal space W

β,p[δ; q](Ω), instead of other classical function spaces studied in the
literature, is the natural function space on which results for the classical Sobolev space
W 1,p can be applied to the boundary-localized convolution Kδu. Meanwhile, (1.10)
and (1.11) suggest that the nonlocal seminorm quantifies how Kδu can be exchanged
for u in the Lp or fractional Sobolev space W (β−d)/p,p. Indeed, the following two
theorems, in addition to the Poincaré inequalities of subsection 5.3, are proved partly
as a consequence of the corresponding results forW 1,p(Ω) applied to Kδ. See section 5
for the relevant assumptions and proofs.

Theorem 1.2 (density of smooth functions in the nonlocal space). Ck(Ω) is

dense in W
β,p[δ; q](Ω) for any k≤ kq.

Theorem 1.3 (nonlocal trace theorem). Let T denote the trace operator, i.e.,

for u ∈ C1(Ω), Tu = u
∣∣
∂Ω

. Then for each δ < δ0, the trace operator extends to a

bounded linear operator T : Wβ,p[δ; q](Ω) → W 1−1/p,p(∂Ω). Moreover, there exists

C =C(d, p, β, q,Ω) such that

‖Tu‖W 1−1/p,p(∂Ω) ≤C ‖u‖
Wβ,p[δ;q](Ω) ∀u∈W

β,p[δ; q](Ω) .

The space W
0,p[δ, id](Ω) coincides with special cases of spaces considered in

[26, 37, 63]. Trace theorems were established in [26, 63] by analyzing nonlocal ana-
logues of tangential and normal derivatives. In [37], it was shown that a specific
boundary-localized convolution with δ = 1/3 and ψ(t) = 1(−1/2,1/2)(t) converges to
a trace operator as x → ∂Ω for very wide classes of domains and functions. Here,
we show that such a result can be obtained for Lipschitz domains and for a class of
function spaces along another branch of generality; the new method used in this work
not only provides an alternative and more direct proof but also allows us to extend
to the case of general β and q by using systematically defined boundary-localized
convolutions. In addition, the density of smooth functions, the nonlocal Poincaré
inequalities of Theorems 5.8 and 5.10, and the Lp-compactness in the localizing limit
of Theorem 5.15 are novel even for the spaces W0,p[δ, id](Ω).
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NONLOCAL PROBLEMS WITH LOCAL BOUNDARY CONDITIONS I 4191

1.3. Nonlocal energy functional. The study of the nonlocal function space
allows us to treat a wealth of variational problems with a common program; for the
sake of clarity, we will illustrate just a few in this work.

In order to treat general variational problems, we introduce a nonlocal kernel ρ,
where ρ :R→ [0,∞) satisfies

ρ∈L∞(R) , [−cρ, cρ]⊂ suppρb (−1,1) for a fixed constant cρ > 0 .

Moreover, ρ(−x) = ρ(x) andρ(x)≥ 0 ∀x∈ (−1,1) .
(Aρ)

We let Φ : [0,∞) → R be a nonnegative and convex function that satisfies, for some
p > 1, the p-growth condition for positive constants c and C, that is,

Φ is convex and max{0, c(|t|p − 1)} ≤Φ(t)≤C(|t|p + 1) ∀ t≥ 0 .(AΦ)

The general form of the nonlocal energy is then given by

Eδ(u) :=
∫

Ω

∫

Ω

ρ

( |y− x|
ηδ(x)

)
Φ( |u(x)−u(y)||x−y| )

|x− y|β−pηδ(x)d+p−β
dydx ,(1.13)

where additionally the assumptions (Aβ), (Aq), and (Aδ) are adopted. The nonlo-
cal function space W

β,p[δ; q](Ω) is the natural choice of energy space for Eδ since
the nonlocal seminorm remains the same under perturbations of the heterogeneous
localization λ and kernel ρ; see Theorem 2.1 below.

The form of the functional we consider has principal part Eδ and is defined as

Fδ(u) := Eδ(u) + G(Kδ[λ̄, q,ψ]u) + G̃δ(u) + Gβ>d(u) ,(1.14)

where we assume that ψ satisfies (Aψ) for kψ ≥ 1 and λ̄ satisfies (Aλ). Note that λ̄
may not necessarily be equal to the λ used for ηδ = ηδ[λ, q] in the nonlocal functional
given in (1.13).

The functionals G, G̃δ, and Gβ>d act as “lower-order” terms, and we explain
the assumptions and significance of each of them in turn. First, the functional
G : W 1,p(Ω) → R is W 1,p(Ω)-weakly lower semicontinuous and satisfies, for some
constants c > 0, C > 0, θ ∈ (0,1), and Θ> 0,

−c(1 + ‖u‖θpW 1,p(Ω))≤G(u)≤C(1 + ‖u‖ΘpW 1,p(Ω)) .(1.15)

The term G(Kδ[λ̄, q,ψ]u) is well-defined for u ∈W
β,p[δ; q](Ω) thanks to the estimate

(1.12). By introducing the convolution Kδ, the term G allows us to consider lower-
order terms that, without mollification, may not be continuous in the nonlocal function
space.

Next, we take G̃δ :Wβ,p[δ; q](Ω)→R to be a W
β,p[δ; q](Ω)-weakly lower semicon-

tinuous functional that satisfies, for some θ ∈ (0,1) and Θ> 0,

−cδ(1 + ‖u‖θp
Wβ,p[δ;q](Ω))≤ G̃δ(u)≤Cδ(1 + ‖u‖Θp

Wβ,p[δ;q](Ω))(1.16)

for all δ satisfying (Aδ), analogous to the condition (1.15). Observe that the constants
c and C in this case may in general depend on δ. The continuity conditions are
more strict on G̃ compared to G because it is evaluated at u itself rather than the
convolution.

Finally, for β > d, the functional Gβ>d is chosen to take advantage of the con-
tinuous embedding W

β,p[δ; q](Ω) ↪→ W (β−d)/p,p(Ω); see Theorem 5.12. For ease of
presentation, we note here that Gβ>d satisfies strong continuity properties contained
in (6.1) in this case, while it is identically zero for β ≤ d.
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4192 JAMES M. SCOTT AND QIANG DU

1.4. Nonlocal variational problems. Let Fδ be defined as in (1.14) with all
the associated assumptions. The first nonlocal problem we treat is one with an inho-
mogeneous Dirichlet-type constraint on ∂Ω or, more generally, ∂ΩD, a σ-measurable
subset of ∂Ω with a positive measure σ(∂ΩD)> 0. Let g ∈W 1−1/p,p(∂ΩD), and define
the set

W
β,p
g,∂ΩD

[δ; q](Ω) := {u∈W
β,p[δ; q](Ω) : u= g on ∂ΩD in the trace sense } .

Then we have the following.

Theorem 1.4. There exists a function u∈W
β,p
g,∂ΩD

[δ; q](Ω) satisfying

Fδ(u) = min
v∈W

β,p
g,∂ΩD

[δ;q](Ω)
Fδ(v) .(1.17)

A special case is when g≡ 0 on ∂ΩD, for which we consider the Banach space

W
β,p
0,∂ΩD

[δ; q](Ω) := {closure of C1
c (Ω \ ∂ΩD) with respect to ‖·‖

Wβ,p[δ;q](Ω)} .(1.18)

We accordingly denote the Banach space W 1,p
0,∂ΩD

(Ω) as the closure of C1
c (Ω \ ∂ΩD)

with respect to ‖·‖W 1,p(Ω). Then we can relax the assumptions on G and G̃ and still
obtain existence.

Theorem 1.5. Suppose that G : W 1,p
0,∂ΩD

(Ω) → R is W 1,p
0,∂ΩD

(Ω)-weakly lower

semicontinuous and satisfies (1.15), and suppose that G̃ : Wβ,p
0,∂ΩD

[δ; q](Ω) → R is

W
β,p
0,∂ΩD

[δ; q](Ω)-weakly lower semicontinuous and satisfies (1.16). Then there exists

a function u∈W
β,p
0,∂ΩD

[δ; q](Ω) satisfying

Fδ(u) = min
v∈W

β,p
0,∂ΩD

[δ;q](Ω)
Fδ(v) .(1.19)

The functional Fδ also has a minimizer in the nonlocal space

W̊
β,p

[δ; q](Ω) := {u∈W
β,p[δ; q](Ω) : (u)Ω = 0} ,

where (u)Ω = 1
|Ω|

∫
Ω
u(x)dx=

ffl

Ω
u(x)dx denotes the integral average of u over Ω.

Theorem 1.6. There exists a function u∈ W̊
β,p

[δ; q](Ω) satisfying

Fδ(u) = min
v∈W̊

β,p
[δ;q](Ω)

Fδ(v) .(1.20)

The final type of nonlocal problem is one with a Robin-type constraint.
For b∈L∞(∂Ω), define the functional

FR
δ (u) :=Fδ(u) +

∫

∂Ω

b|Tu|p dσ .(1.21)

Theorem 1.7. Assume that there exists a σ-measurable set ∂ΩR of ∂Ω satisfying

σ(∂ΩR) > 0 and b(x) ≥ b0 > 0 for a constant b0 and σ-almost every x ∈ ∂ΩR. Then

there exists a function u∈W
β,p[δ; q](Ω) satisfying

FR
δ (u) = min

v∈Wβ,p[δ;q](Ω)
FR
δ (v) .(1.22)

Remark 1.8. In each of the cases, if the nonprincipal terms of the nonlocal func-
tionals (that is, the terms not equal to Eδ) are all convex, then the minimizer obtained
is unique. This is achieved using the strict convexity of Eδ via a standard argument.
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NONLOCAL PROBLEMS WITH LOCAL BOUNDARY CONDITIONS I 4193

1.5. Local limit. Inheriting the assumptions made in subsection 1.4, we now
present the second set of main results, which are on the localization limit. As δ→ 0,
we show that minimizers of nonlocal variational problems considered in subsection 1.4
converge to a minimizer of a local functional with the principal part

E0(u) := ρ̄p,β

∫

Ω

 

Sd−1

Φ(|∇u(x) ·ω|)dσ(ω)dx ,

where ρ̄p,β :=

∫

B(0,1)

|z|p−βρ(|z|)dz .
(1.23)

This result is in the same spirit as the program carried out in [50, 56], in which
nonlocal models are shown to be consistent with appropriate classical counterparts.
Central to this analysis is the following result, which is coined the asymptotic compact
embedding, in the asymptotic limit that the bulk horizon parameter δ→ 0.

Theorem 1.9. For p > 1, let {δn}n∈N be a sequence that converges to 0, and let

{uδ}δ ⊂W
β,p[δ; q](Ω) be a sequence such that supδ>0 ‖uδ‖Lp(Ω) ≤C <∞ and that

sup
δ>0

[uδ]Wβ,p[δ;q](Ω) :=B <∞ .

Then {uδ}δ is precompact in the strong topology of Lp(Ω). Moreover, any limit point

u belongs to W 1,p(Ω) with ‖∇u‖Lp(Ω) ≤B.

A more general theorem and its proof are in subsection 5.5. One main idea of
the proof is to use the boundary-localized convolution, leveraging the Lp compact
embedding for the space W 1,p(Ω) with the estimate (1.12). This approach is novel
in the context of nonlocal function spaces of this type, where typically compactness
results are proven via estimates away from the boundary. However, in this case, since
the boundary information is already contained in the convolution, no such estimates
are needed.

Thanks to the properties of the nonlocal function space, the lower-order terms
can be treated in the local limit; we only require additional continuity properties and
a stricter assumption on the functional G̃δ. To be precise, we assume that

G is W 1,p(Ω)-weakly continuous and that

G̃δ = G̃ for all δ satisfying (Aδ), where

∃m̃∈ [1, p] such that G̃ :Lm̃(Ω)→R is Lm̃(Ω)-weakly continuous, with

−c(1 + ‖u‖θpLm̃(Ω))≤ G̃(u)≤C(1 + ‖u‖ΘpLm̃(Ω)) .

(1.24)

Note that any functional G̃ defined on Lm̃(Ω) that is additionally W
β,p[δ; q](Ω)-weakly

continuous for all δ and satisfying (1.16) also satisfies (1.24).
The functional G is permitted to satisfy much weaker conditions than either G̃ or

Gβ>d. Indeed, the convolution Kδu approximates u as δ→ 0, so a very wide variety
of lower-order terms, admissible typically only in the local case, can be considered in
the nonlocal problem via this approximation.

With this compactness result in hand, we can, under the additional assumptions
that

ρ is nonincreasing on [0,∞) and q satisfies (Aq) for kq ≥ 2,(1.25)

obtain via Γ-convergence the following convergence of minima for each of the nonlocal
problems.
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4194 JAMES M. SCOTT AND QIANG DU

Theorem 1.10. Assume (1.24) and (1.25). For a sequence δ → 0, let uδ ∈
W
β,p
g,∂ΩD

[δ; q](Ω) be a function satisfying (1.17). Then {uδ}δ is precompact in the

strong topology on Lp(Ω). Furthermore, any limit point u satisfies u ∈ W 1,p
g,∂ΩD

(Ω),

where W 1,p
g,∂ΩD

(Ω) := {v ∈W 1,p(Ω) : Tv= g on ∂ΩD}, and

F0(u) = min
v∈W 1,p

g,∂ΩD
(Ω)

F0(v) , where F0(v) := E0(v) + G(v) + G̃(v) + Gβ>d(v) .

In addition, if g = 0, then the same result holds if G :W 1,p
0,∂ΩD

(Ω) → R is weakly

continuous in the space W 1,p
0,∂ΩD

(Ω).

Theorem 1.11. Assume (1.24) and (1.25). For a sequence δ → 0, let uδ ∈
W̊
β,p

[δ; q](Ω) be a function satisfying (1.20). Then {uδ}δ is precompact in the strong

topology of Lp(Ω). Furthermore, any limit point u satisfies u ∈ W̊ 1,p(Ω), where

W̊ 1,p(Ω) := {v ∈W 1,p(Ω) : (v)Ω = 0}, with

F0(u) = min
v∈W̊ 1,p(Ω)

F0(v) .

Theorem 1.12. Assume (1.24) and (1.25). For a sequence δ → 0, let uδ ∈
W
β,p[δ; q](Ω) be a function satisfying (1.22). Then {uδ}δ is precompact in the strong

topology of Lp(Ω). Furthermore, any limit point u satisfies u∈W 1,p(Ω), with

FR
0 (u) = min

v∈W 1,p(Ω)
FR

0 (v) ,

where

FR
0 (v) := E0(v) +

∫

∂Ω

b|Tv|p dσ+ G(v) + G̃(v) + Gβ>d(v) .

1.6. Examples. To demonstrate the scope of our analysis, we present several
examples.

Example 1: Dirichlet constraints. Let ∂ΩD = ∂Ω, let g= 0, and let f ∈ [W 1,p
0 (Ω)]∗.

For m ∈ [1, dp
d−p ) if p < d and any finite exponent if p≥ d and Φ(t) = tp

p , our analysis

shows that there exists a minimizer uδ ∈W
β,p
0,∂Ω[δ; q](Ω) of

Eδ(u) +
1

m

∫

Ω

|Kδ[λ̄, q,ψ]u(x)|m dx− 〈f,Kδ[λ̄, q,ψ]u〉

(which is unique thanks to the strict convexity of Eδ and the convexity of the other
two terms) and that {uδ}δ converges strongly in Lp(Ω) to a minimizer u ∈W 1,p

0 (Ω)
of

1

p

∫

Ω

|∇u(x)|p dx+
1

m

∫

Ω

|u(x)|m dx− 〈f,u〉 .

Here we have taken G(u) = 1
m

∫
Ω
|u|m dx− 〈f,u〉, which satisfies (1.15), and we have

taken G̃δ = G̃β>d ≡ 0. If f additionally belongs to [Wβ,p
0,∂Ω[δ; q](Ω)]

∗, then we could

instead take G̃δ = 〈f, ·〉 and G = Gβ>d ≡ 0. That is, the same existence result holds
for the functional with the term 〈f,Kδu〉 replaced by 〈f,u〉. However, the local limit
result does not hold since the functional G̃(u) = 〈f,u〉 would not satisfy the condition
(1.24). To be more precise, 〈f,u〉 is not even defined for u ∈ W 1,p

0 (Ω), which is a
smaller space than W

β,p
0,∂Ω[δ; q](Ω).
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NONLOCAL PROBLEMS WITH LOCAL BOUNDARY CONDITIONS I 4195

Example 2: Neumann constraints. Given linear functionals f ∈ [W 1,p(Ω)]∗ and

g ∈ [W 1−1/p,p(∂Ω)]∗, there exists a (unique) minimizer uδ ∈ W̊
β,p

[δ; q](Ω) of

Eδ(u)−
〈
f,Kδ[λ̄, q,ψ]u

〉
− 〈g,Tu〉 ,

and {uδ}δ converges strongly in Lp(Ω) to a minimizer u∈ W̊ 1,p(Ω) of

ρ̄

∫

Ω

 

Sd−1

Φ(|∇u(x) ·ω|)dσ(ω)dx− 〈f,u〉 − 〈g,Tu〉 .

Above, we took G = −〈f, ·〉, G̃δ = G̃ = −〈g,T (·)〉, and Gβ>d ≡ 0. Note that we do
not require any compatibility condition, such as 〈f,1〉+ 〈g,1〉= 0, since we have not
discussed any associated Euler–Lagrange equations.

Example 3: Fixed exponents and nonlinear terms. Let d = 3, p = 2, β = d+ 2s
for some s∈ ( 34 ,1). Let f ∈ [W 1,2(Ω)]∗, setting G =−〈f, ·〉, and let g ∈ [W 1/2,2(∂Ω)]∗,

setting G̃δ = G̃ =−〈g,T (·)〉. Let

Gβ>d(u) =
∫

Ω

u(x)2(1− u(x)2)dx ,

which satisfies (6.1) thanks to our choice of exponents. Then our analysis shows that
there exists a minimizer uδ ∈W

d+2s,2[δ; q](Ω) of

Eδ(u) +
∫

∂Ω

b|Tu|2 dσ−
〈
f,Kδ[λ̄, q,ψ]u

〉
− 〈g,Tu〉+

∫

Ω

u(x)2(1− u(x)2)dx

and that any sequence of minimizers {uδ}δ converges to a minimizer u∈W 1,2(Ω) of

E0(u) +
∫

∂Ω

b|Tu|2 dσ− 〈f,u〉 − 〈g,Tu〉+
∫

Ω

u(x)2(1− u(x)2)dx .

Additionally, we note that our analysis also allows an array of models satisfying a
nonlocal nonlinear elliptic equation in the interior of Ω. The discussion of the strong
forms of these equations will be the subject of a subsequent paper. As an illustration,
we may let τ > 0 be a constant and let q(r) be a C1 mollification of the function
min{r, τ2}, so that η(x) = τ

2 in Ωτ = {x : dist(x, ∂Ω) > τ} and η(x) = dist(x, ∂Ω)
otherwise. With this choice of η, a minimizer of any of the above examples solves an
Euler–Lagrange equation with no heterogeneous localization occurring in the interior.
Different equations can be treated with a principal operator either with or without
singularity on the diagonal. If β = 0, then the operator corresponds to a p-Laplacian
operator of the convolution type. If β > d, say, β = d+ sp for some s ∈ (0,1), then
the operator corresponds to a censored s-fractional p-Laplacian.

This paper is organized as follows: The next section contains some comparability
results for different nonlocal seminorms. Section 3 contains some estimates of quanti-
ties involving the heterogeneous localization that we reference throughout the paper.
Properties of the boundary-localized convolution are investigated in section 4. The
density of smooth functions, the trace theorem, the Poincaré inequalities, and the
compact emebedding results are all stated and proved precisely in section 5. Sec-
tion 6 contain the existence results for the variational problems, and the proofs of
convergence to the corresponding local problems are in section 7.

2. Equivalence and comparison of nonlocal function spaces. We present
some results on the nonlocal function space Wβ,p[δ; q](Ω) for p∈ [1,∞) and under the
assumptions (Aβ), (Aq), and δ < δ0. Moreover, we henceforth define dist(x, ∂Ω) =
d∂Ω(x).
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4196 JAMES M. SCOTT AND QIANG DU

2.1. Nonlocal energy spaces for different bulk horizon parameters. In
a spirit similar to [63, Lemma 6.2] and [26, Lemma 2.2], we show the equivalence
of the nonlocal function space with respect to differing values of δ. This proof is
representative of the types of estimates used throughout the work. It also motivates
the choice of δ0 <

1
3 used in (Aδ).

Theorem 2.1. For constants 0< δ1 ≤ δ2 < δ0,

(
1− δ2

2(1 + δ2)

) d+p−β
p

[u]Wβ,p[δ2;q](Ω) ≤ [u]Wβ,p[δ1;q](Ω) ≤
(
δ2
δ1

)1+(d−β)/p

[u]Wβ,p[δ2;q](Ω)

for all u∈W
β,p[δ2; q](Ω).

Proof. The second inequality is trivial, so the proof is devoted to the first inequal-
ity. Let n ∈N. To begin, we apply the triangle inequality to the telescoping sum for
x∈Ω and s∈B(0, δ2η(x)), where in this proof η(x) := q(d∂Ω(x)):

|u(x+ s)− u(x)| ≤
n∑

i=1

∣∣∣∣u
(
x+

i

n
s

)
− u

(
x+

i− 1

n
s

)∣∣∣∣ .

Note that |x+ i
ns− x| ≤ |s|< δ2η(x), so x+ i

ns ∈ Ω for i= 0,1, . . . , n. Thus, setting
xi := x+ i−1

n s and using Hölder’s inequality, we get

[u]p
Wβ,p[δ2;q](Ω)

≤Cd,p,βn
p−1

n∑

i=1

∫

Ω

∫

B(0,δ2η(x))

|u(xi + 1
ns)− u(xi)|p

|s|β |δ2η(x)|d+p−β
dsdx .

Now, since η is Lipschitz with a Lipschitz constant no larger than 1/3,

η(xi) = η(x+ (i− 1)s/n)≤ |s|+ η(x)≤ (δ2 + 1)η(x)

and

η(x)≤ |s|+ η(xi)≤ δ2η(x) + η(xi) .

Therefore, by (1.9),

3

4
η(xi)≤

η(xi)

1 + δ2
≤ η(x)≤ η(xi)

1− δ2
≤ 3

2
η(xi)(2.1)

for all x∈Ω. Hence,

[u]p
Wβ,p[δ2;q](Ω)

≤Cd,p,βnp−1(1 + δ2)
d+p−β

n∑

i=1

∫

Ω

∫

B(0,
δ2

1−δ2
η(xi))

|u(xi + 1
ns)− u(xi)|p

|s|β |δ2η(xi)|d+p−β
dsdx .

(2.2)

Now, for x∈Ω and |s| ≤ δ2
1−δ2

η(xi), we have

η(xi)≤ η(x) + |s| ≤ η(x) +
δ2

1− δ2
η(xi) .

Therefore, η(xi)≤ 1−δ2
1−2δ2

η(x), and since δ2 < δ0 <
1
3 , we conclude that

|x− xi| ≤ |s| ≤ δ2
1− δ2

η(xi)≤
δ2

1− 2δ2
η(x)< η(x) ,
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i.e., xi ∈Ω for all i= 1, . . . , n. With this, we can perform a change of variables in the
outer integral; letting y= xi = x+ i−1

n s in (2.2) and using (2.1), we get

[u]p
Wβ,p[δ2;q](Ω)

≤Cd,p,βn
p−1(1 + δ2)

d+p−β
n∑

i=1

∫

Ω

∫

B(0,
δ2

1−δ2
η(y))

|u(y+ 1
ns)− u(y)|p

|s|β |δ2η(y)|d+p−β
dsdy

=Cd,p,βn
p(1 + δ2)

d+p−β

∫

Ω

∫

B(0,
δ2

1−δ2
η(y))

|u(y+ 1
ns)− u(y)|p

|s|β |δ2η(y)|d+p−β
dsdy .

Now perform a change of variables in the inner integral by z= s

n to obtain

[u]p
Wβ,p[δ2;q](Ω)

≤Cd,p,βn
d+p−β(1 + δ2)

d+p−β

∫

Ω

∫

B(0,
δ2

1−δ2

η(y)
n )

|u(y+ z)− u(y)|p
|z|β |δ2η(y)|d+p−β

dzdy

=Cd,p,β

(
nδ1(1 + δ2)

δ2

)d+p−β ∫

Ω

∫

B(0,
δ2

1−δ2

η(y)
n )

|u(y+ z)− u(y)|p
|z|β |δ1η(y)|d+p−β

dzdy .

By taking n∈N such that

δ2
δ1(1− δ2)

<n<
2δ2

δ1(1− δ2)
,

we have

[u]p
Wβ,p[δ2;q](Ω)

≤
(
2(1 + δ2)

1− δ2

)d+p−β ∫

Ω

∫

Ω

γβ,p[δ1; q](x,y)|u(x)− u(y)|p dydx ,

as desired.

2.2. Nonlocal energy spaces with varying localizations. Let us consider a
more general seminorm which not only expands the scope of the techniques used but
also will streamline the analysis of the functional Eδ in later sections. For ρ satisfying
(Aρ) and λ satisfying (Aλ), define

[u]p
Vβ,p[δ;q;ρ,λ](Ω)

:=

∫

Ω

∫

Ω

γβ,p[δ; q;ρ,λ](x,y)|u(y)− u(x)|p dydx ,

where

γβ,p[δ; q;ρ,λ](x,y) := ρ

( |y− x|
δq(λ(x))

)
Cd,β,p(ρ)

|x− y|β
1

(δq(λ(x)))d+p−β
,

and Cd,β,p(ρ) is chosen so that Cd,β,p(ρ)
∫
Rd

ρ(|ξ|)
|ξ|β−p dξ=Cd,p.

We now note the independence of the nonlocal energy norm space on the specific
form of the nonlocal kernel ρ. In particular, for a suitable range of δ, we can select
mollified versions of the kernel 1{|y−x|≤δ dist(x,∂Ω)} and the distance function d∂Ω(x)
to create equivalent seminorms.

Theorem 2.2. Let ρ be a nonnegative even function in L∞(R) with support in

(−1,1). Then there exists a constant C depending only on d, β, p, ρ, q, and κ0 such

that

[u]Vβ,p[δ;q;ρ,λ](Ω) ≤C[u]Wβ,p[δ;q](Ω) ∀u∈W
β,p[δ; q](Ω).
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4198 JAMES M. SCOTT AND QIANG DU

If in addition ρ satisfies (Aρ), then there exists a constant c > 0 with the same depen-

dencies such that

c[u]Wβ,p[δ;q](Ω) ≤ [u]Vβ,p[δ;q;ρ,λ](Ω) ∀u∈W
β,p[δ; q](Ω) .(2.3)

Proof. The result is clear if (2.2)–(2.3) is established under the assumption (Aρ).
First, we have

C(ρ)−1
1B(0,cρ)(x)≤ ρ(|x|)≤C(ρ)1B(0,1)(x)

for C(ρ)> 1. Next, by (1.6) and (Aλ),

q(d∂Ω(x))

C(q,κ0)
≤ q(λ(x))≤C(q,κ0)q(d∂Ω(x))

for C(q,κ0) :=C(q)> 1. Therefore,

1

C(ρ)

∫

Ω

∫

{|y−x|<
cρ

C(q)
δq(d∂Ω(x))}

|u(x)− u(y)|p
|x− y|β |C(q)δq(d∂Ω(x))|d+p−β

dydx

≤ [u]p
Vβ,p[δ;q;ρ,λ](Ω)

≤C(ρ)C(q)d+p−β
∫

Ω

∫

{|y−x|<C(q)δq(d∂Ω(x))}

|u(x)− u(y)|p
|x− y|β |δq(d∂Ω(x))|d+p−β

dydx .

The conclusion then follows from the assumptions on δ and Theorem 2.1.

3. Properties of heterogeneous localization functions and the associ-

ated kernels. We now present some properties related to the function η and various
kernels used in this work. All the discussions are under the assumptions (Aq), (Aλ),
(Aψ), and δ < δ0. Additional assumptions on ψ are made for some of the results
presented in subsection 3.2.

3.1. Spatial variations of the heterogeneous localization function. For
ease of access, we record the following comparisons of the heterogeneous localization
function ηδ that are frequently referred to in later discussions.

Lemma 3.1. For all x,y∈Ω,

(1− κ1δ)ηδ(x)≤ ηδ(y)≤ (1 + κ1δ)ηδ(x) if |x− y| ≤ ηδ(x),(3.1)

(1− κ1δ)ηδ(y)≤ ηδ(x)≤ (1 + κ1δ)ηδ(y) if |x− y| ≤ ηδ(y) .(3.2)

Proof. It suffices to show (3.1) since (3.2) will follow from the same arguments
with the roles of x and y interchanged. From the properties of ηδ coming from (Aq)
and (Aλ), we get

ηδ(y)≤ ηδ(x) + δκ1|x− y| ≤ (1 + κ1δ)ηδ(x)

and

ηδ(x)≤ ηδ(y) + δκ1|x− y| ≤ ηδ(y) + δκ1ηδ(x) .

The next lemma is used later to facilitate a change of coordinates. To set the
notation used in it, let us introduce a function λ̄ that also satisfies (Aλ) with the same
constants κα as those in the assumption for λ. Likewise, we denote η̄δ := ηδ[λ̄, q] and
η̄ := η̄1.
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NONLOCAL PROBLEMS WITH LOCAL BOUNDARY CONDITIONS I 4199

Lemma 3.2. For a fixed z∈B(0,1), define the function ζε
z
: Ω→R

d by

ζε
z
(x) := x+ η̄ε(x)z ∀ε∈ (0, δ0) .

Then there exists a constant c̄ = c̄(q,κ0, κ1) ≥ κ1 such that for all x, y ∈ Ω, for all

δ ∈ (0, δ0), and for all ε∈ (0, ε0), where ε0 :=
1
3 min{1, 1c̄} ∈ (0, δ0), we have

det∇ζε
z
(x) = 1+∇η̄ε(x) · z> 1− κ1ε >

2

3
,

ζε
z
(x)∈Ω and 0< (1− c̄ε)η(x)≤ η(ζε

z
(x))≤ (1 + c̄ε)η(x) ,

0< (1− c̄ε)|x− y| ≤ |ζε
z
(x)− ζε

z
(y)| ≤ (1 + c̄ε)|x− y| , and

|x− y| ≤ ηδ(x) ⇒ |ζε
z
(x)− ζε

z
(y)| ≤ 1 + c̄ε

1− c̄ε
ηδ(ζ

ε
z
(x)) .

(3.3)

Moreover, if η̄≡ η, then c̄= κ1 and ε0 = δ0 can be chosen.

Proof. The positive lower bound on det∇ζε
z
follows from the properties of q and

λ̄ and the assumption on δ0. Now, by (Aλ) and (1.6), we have

λ̄(x)

κ20
≤ λ(x)≤ κ20λ̄(x) for x∈Ω ,

which implies that

η(x)

Cqκ
2 log2(Cq)
0

≤ η̄(x)≤Cqκ
2 log2(Cq)
0 η(x) ,

and so the second line in (3.3) follows from the Lipschitz continuity of η:

η(ζε
z
(x))≥ η(x)− κ1η̄ε(x)|z| ≥ (1− κ1Cqκ

2 log2(Cq)
0 ε)η(x) =: (1− c̄ε)η(x) and

η(ζε
z
(x))≤ η(x) + κ1η̄ε(x)|z| ≤ (1 + c̄ε)η(x) .

The third line follows from
∣∣|ζε

z
(x)− ζε

z
(y)| − |x− y|

∣∣≤ |ηε(x)− ηε(y)||z| ≤ κ1ε|x− y| ,

and the fourth line of (3.3) follows from the second and third lines.

3.2. Mollifier kernels. For any function ψ : [0,∞)→R, we define

ψδ[λ, q](x,y) :=
1

ηδ[λ, q](x)d
ψ

( |y− x|
ηδ[λ, q](x)

)
.(3.4)

In particular, ψδ[λ, q] defines a boundary-localizing mollifier corresponding to a stan-
dard mollifier ψ described in (Aψ). We write ψδ[λ, q] as simply ψδ whenever the
context is clear. Note that

∫
Ω
ψδ(x,y)dy= 1 for all x ∈Ω and for all δ < δ0. This is

not the case when the arguments are reversed, and so we define the function

Ψδ(x) :=

∫

Ω

ψδ(y,x)dy .(3.5)

Let us investigate the properties of Ψδ below.

Lemma 3.3. Let ψ be a nonnegative even function in C0(R) with support in

[−1,1]. Then there exists a constant C depending only on d, ψ, λ, q, and κ1 such

that

Ψδ(x)≤C ∀x∈Ω.(3.6)
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4200 JAMES M. SCOTT AND QIANG DU

Proof. Since suppψ⊂ [−1,1], we obtain the upper bound from (3.1):

∫

Ω

1

ηδ(y)d
ψ

( |x− y|
ηδ(y)

)
dy≤ ‖ψ‖L∞([0,1])

∫

{|y−x|≤λδ(y)}

1

ηδ(y)d
dy

≤C(ψ)

∫

{|y−x|≤(1+κ1δ)λδ(x)}

1

(1− κ1δ)dηδ(x)d
dy

=C .

We now turn to the derivatives of ψδ. It is clear that ψδ(x,y) ∈ Ck(Ω × Ω)
whenever (Aλ), (Aq), and (Aψ) are satisfied for the same k ∈ N ∪ {∞}. We record
several estimates on the derivative of the kernel that we will use.

Theorem 3.4. Let ψ satisfy (Aψ) for some k≥ 1. Then there exists C =C(d,ψ)
such that

|∇xψδ(x,y)| ≤
C

ηδ(x)

(
ψδ(x,y) + (|ψ′|)δ(x,y)

)
∀x,y∈Ω.(3.7)

Proof. This follows by direct computation and the properties of ψ:

∇xψδ(x,y) = (ψ′)δ(x,y)

(
x− y

|x− y|
1

ηδ(x)
− |x− y|

ηδ(x)

∇ηδ(x)
ηδ(x)

)

−ψδ(x,y)
∇ηδ(x)
ηδ(x)

d .

(3.8)

Thus, using the support of ψ and that |∇ηδ| ≤ 1/3, we see the result.

Corollary 3.5. Let ψ satisfy (Aψ) for some k ≥ 1, and let α ∈ R. Then there

exists C =C(d,ψ,κ1, α) such that

∫

Ω

|ηδ(y)|α|∇xψδ(x,y)|dy≤ C

ηδ(x)1−α
∀x∈Ω.(3.9)

Proof. We first apply (3.7) and then use (3.1).

4. Properties of boundary-localized convolutions. Our discussion in this
section, unless indicated otherwise, is again under the assumptions (Aβ), (Aq), (Aλ),
(Aψ), and δ < δ0.

4.1. General properties and consistency on the boundary. We present
the following theorem and lemma without proof, as it is straightforward to verify.

Theorem 4.1. Let u∈C0(Ω). Then Kδu∈C0(Ω). Moreover, Kδu(x) = u(x) for
all x∈ ∂Ω, and Kδu→ u uniformly on Ω as δ→ 0.

Lemma 4.2. Let ψ satisfy (Aψ) for some k= kψ ≥ 0, let λ satisfy (Aλ) for some

k = kλ ≥ 0, and let q satisfy (Aq) for some k = kq ≥ 1. Then for any u ∈ L1
loc(Ω),

Kδu∈Ck(Ω), where k=min{kq, kλ, kψ}.
For t > 0, we define the sets

Ωt;λ,q := {x∈Ω : q(λ(x))< t} and Ωt;λ,q := {x∈Ω : q(λ(x))≥ t} .

Lemma 4.3. Suppose that ϕ ∈C0(Ω) has compact support in Ω; i.e., there exists

cϕ > 0 such that suppϕ ⊂ Ωcϕ;λ,q. Then Kδϕ has compact support with suppKδϕ ⊂
Ω

1
1+κ1δ cϕ;λ,q

.
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NONLOCAL PROBLEMS WITH LOCAL BOUNDARY CONDITIONS I 4201

Proof. By (3.1) and (3.2), whenever η(x)< 1
1+κ1δ

cϕ, we have

{y : |x− y| ≤ ηδ(x)} ⊂Ωcϕ;λ,q .

Therefore, since the domain of integration in Kδϕ(x) and suppϕ are disjoint, we have
Kδϕ(x) = 0.

4.2. Classical function space estimates. We first show some estimates anal-
ogous to those in Theorem 1.1 for functions in classical Lebesgue and Sobolev spaces.

Theorem 4.4. Let 1≤ p≤∞. There exists a constant C0 > 0 depending only on

d, p, ψ, and κ1 such that

‖Kδu‖Lp(Ω) ≤C0 ‖u‖Lp(Ω) ∀u∈Lp(Ω) .(4.1)

If additionally (Aψ) is satisfied for k = kψ ≥ 1, then there exists a constant C1 > 0
depending only on d, p, ψ, and κ1 such that

‖∇Kδu‖Lp(Ω) ≤C1 ‖u‖W 1,p(Ω) .(4.2)

Proof. First, we prove (4.1) for 1 ≤ p < ∞. By Hölder’s inequality, Tonelli’s
theorem, and (3.6),

‖Kδu‖pLp(Ω) ≤
∫

Ω

(∫

Ω

ψδ(x,z)dz

)p−1 ∫

Ω

ψδ(x,y)|u(y)|p dydx≤C ‖u‖pLp(Ω) .

The inequality when p=∞ is trivial.
To prove (4.2), it suffices to show that

∇Kδu(x) =

∫

Ω

ψδ(x,y)

[
I− (x− y)⊗∇ηδ(x)

ηδ(x)

]
∇u(y)dy(4.3)

since then

|∇Kδu(x)| ≤ (1 + κ1)Kδ[|∇u|](x) ,
from which (4.2) follows by applying (4.1). First,

∇yψδ(x,y) = ψ′

( |y− x|
ηδ(x)

)
y− x

|y− x|
1

ηδ(x)d+1
,

and so from the formula (3.8), we see that

∇xψδ(x,y) =−∇y [ψδ (x,y)]

(
I− (x− y)⊗∇ηδ(x)

ηδ(x)

)
− d

∇ηδ(x)
ηδ(x)

ψδ(x,y)

=−∇y [ψδ (x,y)]

(
I− (x− y)⊗∇ηδ(x)

ηδ(x)

)
+div y[x− y]

∇ηδ(x)
ηδ(x)

ψδ(x,y)

=−div y

[
ψδ (x,y)

(
I− (x− y)⊗∇ηδ(x)

ηδ(x)

)]
.

Thus,

∇Kδu(x) =

∫

Ω

∇xψδ(x,y)u(y)dy

=−
∫

Ω

div y

[
ψδ (x,y)

(
I− (x− y)⊗∇ηδ(x)

ηδ(x)

)]
dy .

Now, for any fixed x ∈ Ω, the set {y : |y − x| < ηδ(x)} b Ω, so the functions

ψδ(x,y) and
(
I− (x−y)⊗∇ηδ(x)

ηδ(x)

)
u(y) are integrable over y∈Ω, as are their gradients.

Moreover, their product vanishes for y ∈ ∂Ω. Therefore, no boundary term appears
when applying the divergence theorem, which leads exactly to (4.3).
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4202 JAMES M. SCOTT AND QIANG DU

Theorem 4.5. Assume (Aψ) for k= kψ ≥ 1. Let 1< p<∞, and denote the trace

operator T :W 1,p(Ω)→W 1−1/p,p(∂Ω). Then TKδu= Tu for all u∈W 1,p(Ω).

Proof. For ũ∈C∞(Ω), we have Kδũ= ũ on ∂Ω by Theorem 4.1. The conclusion
then follows from the density of C∞(Ω) in W 1,p(Ω) and Theorem 4.4.

4.3. Nonlocal function space estimates.

Theorem 4.6. For 1≤ p <∞ and u∈Lp(Ω), we have

‖u−Kδu‖pLp(Ω) ≤
∫

Ω

∫

Ω

ψδ(x,y)|u(x)− u(y)|p dydx .(4.4)

Consequently, (1.10) holds.

Proof. Hölder’s inequality gives

‖u−Kδu‖pLp(Ω) =

∫

Ω

(∫

Ω

ψδ(x,y)(u(y)− u(x))dy

)p
dx

≤
∫

Ω

(∫

Ω

ψδ(x,y)dy

)p−1(∫

Ω

ψδ(x,y)|u(y)− u(x)|p dy
)

dx

=

∫

Ω

∫

Ω

ψδ(x,y)|u(x)− u(y)|p dydx ,

which is (4.4). Now we have the estimate

ψδ(x,y)≤
C(q,κ0)δ

p diam(Ω)p

ηδ(x)p
ψδ(x,y)≤C

δp diam(Ω)p

Cd,β,p(ψ)
γβ,p[δ; q;ψ,λ](x,y)

in the right-hand-side integral of (4.4) thanks to the support of ψ. Then (1.10) follows
from Theorem 2.2.

Theorem 4.7. Assume (Aψ) for k = kψ ≥ 1, and let 1 ≤ p < ∞. Then there

exists C > 0 depending only on d, p, ψ, q, κ0, and κ1 such that for all u∈Lp(Ω),

‖∇Kδu‖pLp(Ω) ≤C

∫

Ω

∫

Ω

(ψδ(x,y) + (|ψ′|)δ(x,y))
ηδ(x)p

|u(x)− u(y)|p dydx .(4.5)

Proof. Assume that the right-hand side of (4.5) is finite. Since
∫
Ω
ψδ(x,y)dy= 1,

its gradient in x vanishes, and so

∇Kδu(x) =

∫

Ω

∇xψδ(x,y)u(y)dy=

∫

Ω

∇xψδ(x,y)(u(y)− u(x))dy .

Therefore, by Hölder’s inequality,

‖∇Kδu‖pLp(Ω)

≤
∫

Ω

(
ηδ(x)

∫

Ω

|∇xψδ(x,z)|dz
)p−1 ∫

Ω

|∇xψδ(x,y)|
ηδ(x)p−1

|u(y)− u(x)|p dydx .

We use (3.9) to get

‖∇Kδu‖pLp(Ω) ≤C

∫

Ω

∫

Ω

|∇xψδ(x,y)|
ηδ(x)p−1

|u(y)− u(x)|p dydx .(4.6)

From (3.7), we have

|∇xψδ(x,y)|
ηδ(x)p−1

≤C
ψδ(x,y) + (|ψ′|)δ(x,y)

ηδ(x)p
.

Using the previous estimate in (4.6) gives (4.5).
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As a consequence of the characterization of nonlocal spaces in Theorem 2.2, we
obtain the following corollary, which leads to (1.12).

Corollary 4.8. Let p ∈ [1,∞), and assume (Aψ) for k = kψ ≥ 1. Then (1.12)
holds; i.e. there exists C > 0 depending only on d, β, p, ψ, q, κ0, and κ1 such that

‖∇Kδu‖Lp(Ω) ≤C[u]Wβ,p[δ;q](Ω) ∀u∈W
β,p[δ; q](Ω).(4.7)

The above corollary and Theorem 4.7 together give the result of Theorem 1.1.
Additionally, the presence of the singular term |x − y|−β allows us to obtain

precise continuity estimates of Kδ in fractional Sobolev spaces when β > d. The proof
additionally motivatives the choice of threshold in (Aδ).

Theorem 4.9. Suppose additionally that β > d. Then there exists a constant

C > 0 depending only on d, β, p, ψ, q, κ0, and κ1 such that for all δ satisfying (Aδ),

[u−Kδu]W (β−d)/p,p(Ω) ≤C(δq(diam(Ω)))
d+p−β

p [u]Wβ,p[δ;q](Ω) .

Proof. We will estimate the left-hand side by four separate terms, each of which
will be bounded by the right-hand side up to a constant. By Jensen’s inequality,

[u−Kδu]
p

W
β−d
p

,p
(Ω)

≤Cd,β,p

∫

B(0,1)

ψ(|z|)
∫

Ω

∫

Ω

|u(ζδ
z
(x))− u(ζδ

z
(y))− u(x) + u(y)|p

|x− y|β dydxdz .

Split the right-hand-side integral as I + II, where I is the same integrand over the
domain (B(0,1)×Ω×Ω) ∩ {|x− y| ≥max{ηδ(x), ηδ(y)}|z|} and II is the integrand
over the domain (B(0,1)×Ω×Ω)∩ {|x− y|<max{ηδ(x), ηδ(y)}|z|}.

We estimate I ≤C(p,β, p,ψ)(I1 + I2), where

I1 :=

∫

B(0,1)

∫

Ω

∫

Ω∩{|x−y|≥ηδ(x)|z|}

|u(ζδ
z
(x))− u(x)|p
|x− y|β dydxdz ,

and I2 is defined similarly, with the roles of x and y exchanged. The y-integral in I1
is bounded from above by C(d,β)(ηδ(x)|z|)β−d, and so

I1 ≤C(d,β)

∫

Ω

∫

B(0,1)

|ηδ(x)z|d
|u(x+ ηδ(x)z)− u(x)|p

|ηδ(x)z|β
dzdx .

Letting y= x+ ηδ(x)z and then using Theorem 2.2, we see that

I1 ≤C(d,β, p, q)q(diam(Ω))d+p−βδd+p−β [u]p
Wβ,p[δ;q](Ω)

,

and a similar estimate holds for I2.
Now, using Lemma 3.1 to enlarge the region of integration, we estimate

II ≤ 2p−1

∫

B(0,1)

∫

Ω

∫

Ω∩{|x−y|≤ 1
1−κ1δ ηδ(x)}

|u(ζδ
z
(x))− u(ζδ

z
(y))|p

|x− y|β dydxdz

+ 2p−1

∫

B(0,1)

∫

Ω

∫

Ω∩{|x−y|≤ 1
1−κ1δ ηδ(x)}

|u(x)− u(y)|p
|x− y|β dydxdz=: II1 + II2 .
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4204 JAMES M. SCOTT AND QIANG DU

By the identities in Lemma 3.2,

II1 ≤
2p−1

(1 + κ1δ)β

∫

B(0,1)

∫

Ω

∫

Ω∩{|ζδ
z
(x)−ζδ

z
(y)|≤

1+κ1δ

(1−κ1δ)2
ηδ(ζδ

z
(x))}

|u(ζδ
z
(x))− u(ζδ

z
(y))|p

|ζδ
z
(x)− ζδ

z
(y)|β

dydxdz .

Then we apply the change of variables ȳ= ζδ
z
(y), x̄= ζδ

z
(x). Since δ < δ̄0, this permits

us to apply Theorem 2.1 and obtain

II1 ≤C(p,β,κ1)

∫

Ω

∫

Ω∩{|x̄−ȳ|≤ηδ(x̄)}

|u(x̄)− u(ȳ)|p
|x̄− ȳ|β dȳdx̄

≤C(p,β, d, q, κ0, κ1)q(diam(Ω))d+p−βδd+p−β [u]p
Wβ,p[δ;q](Ω)

,

where we additionally used Theorem 2.2. Finally, II2 can be estimated in a similar
but more straightforward way using Theorems 2.1 and 2.2.

4.4. Convergence in the local limit.

Theorem 4.10. Let 1≤ p <∞, and let u∈Lp(Ω). Then

lim
δ→0

‖Kδu− u‖Lp(Ω) = 0 .(4.8)

Proof. The result follows from the density of C∞(Ω) in Lp(Ω), from the Lp(Ω)-
continuity of Kδ contained in (4.1), and from the uniform convergence of Kδu to u in
Theorem 4.1.

Theorem 4.11. Assume that (Aψ) is satisfied for k ≥ 1. Let 1≤ p <∞, and let

u∈W 1,p(Ω). Then

lim
δ→0

‖Kδu− u‖W 1,p(Ω) = 0 .(4.9)

Proof. Note that
∫

Ω

ψδ(x,y)

[
I− (x− y)⊗∇ηδ(x)

ηδ(x)

]
dy= I for all x∈Ω .

Therefore, for any v ∈C∞(Ω), we have by (4.3)

|∇Kδv(x)−∇v(x)|=
∣∣∣∣
∫

Ω

ψδ(x,y)

[
I− (x− y)⊗∇ηδ(x)

ηδ(x)

]
(∇v(y)−∇v(x))dy

∣∣∣∣
≤C(ψ,κ1) sup

B(x,ηδ(x))

|∇v(z)−∇v(x)| → 0 as δ→ 0 .

The limit is independent of x since v is uniformly continuous on Ω. Thus, Kδv→ v
uniformly on Ω. From here, the proof is the same as that of Theorem 4.10.

5. The nonlocal function space: Fundamental properties. In this sec-
tion, we present a few important properties on the nonlocal energy spaces, such as
the density of smooth functions, the trace theorems, Poincaré inequalities, and Lp-
compactness theorems. All of these results are important ingredients in the later
proofs of the well-posedness of nonlocal problems with local boundary conditions.

5.1. Density of smooth functions. We continue the discussion in this subsec-
tion under the assumptions (Aβ), (Aq), δ < δ0, and p∈ [1,∞).
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NONLOCAL PROBLEMS WITH LOCAL BOUNDARY CONDITIONS I 4205

Lemma 5.1 (a preliminary embedding result). Let u∈C1(Ω)∩W 1,p(Ω). Then

[u]Wβ,p[δ;q](Ω) ≤
1

1− δ
[u]W 1,p(Ω) .

Proof. For s = 1, the proof is done exactly the same as in [63]. In this proof,
denote ηδ(x) = δq(d∂Ω(x)). We have for any z∈B(x, ηδ(x))

|u(x+ z)− u(x)|p ≤ |z|p
∫ 1

0

|∇u(x+ tz)|p dt ,

and so

[u]p
Wβ,p[δ;q](Ω)

=

∫

Ω

∫

B(0,ηδ(x))

Cd,β,p
|z|β

1

ηδ(x)d+p−β
|u(x+ z)− u(x)|p dzdx

≤
∫

Ω

∫

B(0,ηδ(x))

Cd,β,p
|z|β−p

1

ηδ(x)d+p−β

∫ 1

0

|∇u(x+ tz)|p dtdzdx

=

∫

Ω

∫

B(0,1)

Cd,β,p
|z|β−p

∫ 1

0

|∇u(x+ tηδ(x)z)|p dtdzdx .

Define the function ζδtz(x) as in Lemma 3.2. Then since ζδtz is invertible on Ω with
ζδtz(Ω)⊂Ω, changing coordinates and using the identities in Lemma 3.2 gives

[u]p
Wβ,p[δ;q](Ω)

≤
∫

Ω

∫

B(0,1)

Cd,β,p
|z|β−p

∫ 1

0

|∇u(x+ tηδ(x)z)|p dtdzdx

≤ 1

1− δ

∫

Ω

∫

B(0,1)

Cd,β,p
|z|β−p

∫ 1

0

|∇u(x)|p dtdzdx

=
1

1− δ
[u]pW 1,p(Ω) .

Theorem 5.2 (density of smooth functions, first version). Ck(Ω)∩W
β,p[δ; q](Ω)

is dense in W
β,p[δ; q](Ω) for any k≤ kq.

Proof of Theorem 5.2. Given u∈W
β,p[δ; q](Ω), we need to show that there exists

a sequence {uε}ε>0 ⊂Ck(Ω)∩W
β,p[δ; q](Ω) such that

lim
ε→0

‖uε − u‖
Wβ,p[δ;q](Ω) = 0 .(5.1)

To this end, define λ(x) = d∂Ω(x), with η(x) = η[d∂Ω, q](x), and for δ ∈ (0, δ0), denote
ηδ(x) = δη(x). Choose a function ψ satisfying (Aψ) for k=∞, and choose λ̄ to satisfy

(Aλ) for k =∞. Define the constant ε̃0 := min{δ, ε0, 1c̄
δ0−δ
δ0+δ

}, where c̄ is the constant

defined in Lemma 3.2. Finally, define η̄(x) := η[λ̄, q](x), and for ε ∈ (0, ε̃0), denote
η̄ε(x) = εη̄(x), and define the sequence {uε}ε>0 by

uε(x) :=Kε[λ̄, q,ψ]u(x) =Kεu(x) .

Then uε ∈ Ck(Ω) by Lemma 4.2. Moreover, by Theorem 4.10, uε → u in Lp(Ω) as
ε→ 0.

It remains to show that limε→0[uε − u]Wβ,p[δ;q](Ω) = 0. To this end, for ε ∈ (0, δ),
it follows from Jensen’s inequality that

|Kεu(x)−Kεu(y)|p =
∣∣∣∣∣

∫

B(0,1)

ψ (|z|) (u(x+ η̄ε(x)z)− u(y+ η̄ε(y)z)dz

∣∣∣∣∣

p

≤
∫

B(0,1)

ψ (|z|) |u(x+ η̄ε(x)z)− u(y+ η̄ε(y)z)|p dz ,
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4206 JAMES M. SCOTT AND QIANG DU

and so

[Kεu]
p
Wβ,p[δ;q](Ω)

≤
∫

B(0,1)

ψ (|z|)
∫

Ω

∫

B(x,ηδ(x))

Cd,β,p
|x− y|β

|u(x+ η̄ε(x)z)− u(y+ η̄ε(y)z)|p
ηδ(x)d+p−β

dydxdz .

Now define the function ζε
z
(x) = x+ ηε(x)z as in Lemma 3.2; since ε̃0 < ε0, we can

apply this lemma to get

[Kεu]
p
Wβ,p[δ;q](Ω)

≤ (1 + c̄ε)d+p

(1− c̄ε)2

∫

B(0,1)

ψ (|z|)
∫

Ω

∫

Ω∩{|ζε
z
(y)−ζε

z
(x)|≤ 1+c̄ε

1−c̄εηδ(ζ
ε
z
(x))}

Cd,β,p
|ζε

z
(y)− ζε

z
(x)|β

|u(ζε
z
(x))− u(ζε

z
(y))|p

ηδ(ζ
ε
z
(x))d+p−β

det∇ζε
z
(x)det∇ζε

z
(y)dydxdz .

Now apply the change of variables ȳ= ζε
z
(y) and x̄= ζε

z
(x). The choice of ε̃0 ensures

that 1+c̄ε
1−c̄εδ < δ0, and so this permits us to apply Theorem 2.1; in the notation of that

theorem, we take δ1 = δ and δ2 = 1+c̄ε
1−c̄εδ. Therefore, we obtain that there exists a

constant C > 0 depending only on d, β, p, δ0, and κ1 such that

[Kεu]
p
Wβ,p[δ;q](Ω)

≤C

∫

B(0,1)

ψ (|z|)
∫

Ω

∫

B(x̄,ηδ(x̄))

Cd,β,p
|ȳ− x̄|β

|u(x̄)− u(ȳ)|p
ηδ(x̄)d+p−β

dȳdx̄dz .

Therefore,

[Kεu]Wβ,p[δ;q](Ω) ≤C[u]Wβ,p[δ;q](Ω) for ε < ε̃0 .(5.2)

Thanks to this estimate, we can use continuity of the integral to conclude that
for any τ > 0, there exists %> 0 independent of ε such that

∫

Ω

∫

Ω∩{|x−y|<%}

γβ,p[δ; q](x,y)|Kεu(x)−Kεu(y)− (u(x)− u(y))|p dydx< τ .

By (3.1), whenever %≤ |x− y| ≤ ηδ(x), we have ηδ(x)≥ % and ηδ(y)≥ (1− κ1δ)%, so∫

Ω

∫

Ω∩{|x−y|≥%}

γβ,p[δ; q](x,y)|Kεu(x)−Kεu(y)− (u(x)− u(y))|p dydx

≤ C

%d+p
‖Kεu− u‖pLp(Ω) .

Since ‖Kεu− u‖pLp(Ω) → 0 as ε→ 0, we conclude that

limsup
ε→0

[Kεu− u]p
Wβ,p[δ;q](Ω)

< τ +C(%) limsup
ε→0

‖Kεu− u‖pLp(Ω) = τ ,

and so the convergence follows since τ > 0 is arbitrary.

A by-product of this proof is that for ε ∈ ε̃0, Kε[λ̄, q,ψ] : W
β,p[δ; q](Ω) →

W
β,p[δ; q](Ω) is a bounded operator.

Proof of Theorem 1.2. Define Kεu just as in Theorem 5.2 for ε � δ; note that
Kεu∈W 1,p(Ω) by Corollary 4.8 and Theorem 2.1. Thus, by standard Sobolev exten-
sion, we can assume that Kεu ∈W 1,p(Rd). Let ϕ be a standard mollifier, and define
for ε̄ > 0 small

vε̄,ε(x) =ϕε̄ ∗Kεu(x) .
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Then vε̄,ε ∈C∞(Ω). Moreover, by Lemma 5.1,

lim
ε̄→0

‖vε̄,ε −Kεu‖pWβ,p[δ;q](Ω) ≤
1

1− δ
lim
ε̄→0

‖vε̄,ε −Kεu‖pW 1,p(Ω) = 0 .

For each n ∈ N, choose {εn}n to be a strictly decreasing sequence that satisfies
‖Kεnu− u‖

Wβ,p[δ;q](Ω) <
1
2n . Then for each n, there exists ε̄n = ε̄n(εn) depending on

εn such that ‖vε̄,εn −Kεnu‖Wβ,p[δ;q](Ω) <
1
2n for all ε̄≤ ε̄n. We can choose the sequence

{ε̄n}n to be strictly decreasing as well. Define {wn}n = {vε̄n,εn}n; we conclude with

‖wn − u‖
Wβ,p[δ;q](Ω) ≤ ‖vε̄n(εn),εn −Kεnu‖Wβ,p[δ;q](Ω) + ‖Kεnu− u‖

Wβ,p[δ;q](Ω)

≤ sup
ε̄≤ε̄n

‖vε̄,εn −Kεnu‖Wβ,p[δ;q](Ω) + ‖Kεnu− u‖
Wβ,p[δ;q](Ω)

≤ 1

2n
+ ‖Kεnu− u‖

Wβ,p[δ;q](Ω) <
1

n
.

Corollary 5.3 (an embedding result). Let u∈W 1,p(Ω). Then

[u]Wβ,p[δ;q](Ω) ≤
1

(1− δ)1/p
[u]W 1,p(Ω) .

5.2. Trace theorem. Given their properties established in section 4, we intuit
that trace inequalities in the spirit of [26, 37, 63] might be possibly established via
the boundary-localized convolutions. This is indeed the case, and we demonstrate
this in the following theorems. The discussion in this subsection is under the same
assumptions as in subsection 5.1 except that only p ∈ (1,∞) is considered. The
trace theorems ensure that proper local boundary conditions can be imposed for the
associated nonlocal problems.

Proof of Theorem 1.3. Let ψ satisfy (Aψ), and let λ satisfy (Aλ), both with
k=∞, and define the boundary-localized convolution Kδv=Kδ[λ, q,ψ]v. First, since
Kδv ∈W 1,p(Ω), we have by Corollary 4.8

‖TKδu‖W 1−1/p,p(∂Ω) ≤C ‖Kδu‖W 1,p(Ω) ≤C ‖Kδu‖Wβ,p[δ;q](Ω) .

We now use Theorem 1.2. Let {un} ⊂ C1(Ω) be a sequence converging to u in
W
β,p[δ; q](Ω). Then since TKδun = Tun for all n by Theorem 4.1,

‖Tun − Tum‖W 1−1/p,p(∂Ω) = ‖TKδun − TKδum‖W 1−1/p,p(∂Ω)

≤C ‖un − um‖
Wβ,p[δ;q](Ω) .

Therefore, the bounded linear operator T : Wβ,p[δ; q](Ω) → W 1−1/p,p(∂Ω) is well-
defined.

In the special case of q(r) = r and β = 0, we recover the trace theorems proven in
[63] for p= 2 and in [26] for general p and, in the notation of that work, s= 1.

Now that Theorem 1.2 gives a density result for the nonlocal function space, the
following theorem can be proved in the same way as Theorem 4.5.

Theorem 5.4. Suppose that u∈W
β,p[δ; q](Ω). Then

TKδu= Tu in the sense of functions in W 1−1/p,p(∂Ω) .
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4208 JAMES M. SCOTT AND QIANG DU

We also prove a Lebesgue point property. For this, we use the outer measure
definition of H s (see, for instance, [33]), which is

H
s(U) = lim

%→0+
H

s
%(U) ,

where for %> 0,

H
s
%(U) := inf

{
∞∑

n=1

diam(Un)
s : diam(Un)≤ % and U ⊂

∞⋃

n=1

Un

}
.

Theorem 5.5. Let T : Wβ,p[δ; q](Ω) →W 1−1/p,p(∂Ω) denote the trace operator.

Define (d − p)+ = max{d − p,0}, and for s ≥ 0, denote s-dimensional Hausdorff

measure by H s. Then for H (d−p)+-almost every x∈ ∂Ω,

lim
ε→0

 

B(x,ε)

|u(y)− Tu(x)|p dy= 0

for all u∈W
β,p[δ; q](Ω), i.e.,

Tu(x) = lim
ε→0

 

B(x,ε)

u(y)dy for H
(d−p)+-a.e. x∈ ∂Ω .

Proof. First, we claim that for H (d−p)+ -almost every x0 ∈ ∂Ω,

limsup
ε→0

1

εd−p

∫

Ω∩B(x0,ε)

∫

Ω

γβ,p[δ; q](x,y)|u(x)− u(y)|p dydx= 0 .(5.3)

To show this, we let τ > 0 and define

Aτ :=

{
x0 ∈ ∂Ω : limsup

ε→0

∫

Ω

∫

Ω

1B(x0,ε)

εd−p
γβ,p[δ; q](x,y)|u(x)− u(y)|p dydx> τ

}
.

To establish (5.3), we show that H (d−p)+(Aτ ) = 0 for all τ > 0. If p ≥ d, this is
satisfied trivially, so assume that p < d. Let 0< %̄ < %. Then for each x0 ∈ Aτ , there
exists 0< εx0

< %̄ such that
∫

Ω

∫

Ω

1B(x0,εx0 )

εd−px0

γβ,p[δ; q](x,y)|u(x)− u(y)|p dydx≥ τ .(5.4)

Hence, we can use the Vitali covering lemma to obtain a countable collection of disjoint
balls {B(xn, εn)}∞n=1 such that εn ≤ %̄, (5.4) is satisfied, and Aτ ⊂ ∪∞

n=1B(xn,5εn).
Therefore,

H
d−p
10% (Aτ )≤

∞∑

n=1

(C(d)5εn)
d−p

≤ C

τ

∞∑

n=1

∫

Ω

∫

Ω

1B(xn,εn)γβ,p[δ; q](x,y)|u(x)− u(y)|p dydx

≤ C

τ

∞∑

n=1

∫

Ω

∫

Ω

1{η(x)≤%̄}γβ,p[δ; q](x,y)|u(x)− u(y)|p dydx .

By taking %̄ → 0, we obtain that H
d−p
10% (Aτ ) = 0 for all % > 0. Taking % → 0 gives

H d−p(Aτ ) = 0, and so (5.3) is proved.
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Now, for ψ satisfying (Aψ) and λ satisfying (Aλ), define Kδ = Kδ[λ, q]. In the
same way as in the proof of (1.10), we obtain

 

Ω∩B(x0,ε)

|u(x)−Kδu(x)|p dx

≤ Cδp

εd−p

∫

Ω∩B(x0,ε)

∫

Ω

γβ,p[δ; q](x,y)|u(x)− u(y)|p dydx ,

and so by (5.3),

lim
ε→0

 

Ω∩B(x0,ε)

|u(x)−Kδu(x)|p dx= 0 for H
(d−p)+ -.a.e.x0 ∈ ∂Ω .(5.5)

Now, by Corollary 4.8 and by the Lebesgue point property for W 1,p(Ω) functions
(see, for instance, [41, Theorem 3.23]), we have

lim
ε→0

 

Ω∩B(x0,ε)

|Kδu(x)− TKδu(x0)|p dx= 0(5.6)

for H (d−p)+ -almost every x0 ∈ ∂Ω.
Finally, by using Theorem 5.4, (5.5), and (5.6), we get for H (d−p)+ -a.e. x0 ∈ ∂Ω

 

B(x0,ε)

|u(x)− Tu(x0)|p dx=

 

B(x0,ε)

|u(x)− TKδu(x0)|p dx

≤ 2p−1

 

B(x0,ε)

|Kδu(x)− TKδu(x0)|p dx+ 2p−1

 

B(x0,ε)

|u(x)−Kδu(x)|p dx→ 0

as ε→ 0, which concludes the proof.

Note that it is much easier to prove that

Tu(x) = lim
ε→0

 

B(x,ε)

Kδu(y)dy for H
(d−p)+ -a.e. x∈ ∂Ω .

The trace theorems also give us an alternative way to define the homogeneous
nonlocal spaces Wβ,p

0,∂ΩD
[δ; q](Ω) defined in (1.18).

Theorem 5.6. Let 1 < p <∞. Then a function u belongs to W
β,p
0,∂ΩD

[δ; q](Ω) if

and only if u∈W
β,p[δ; q](Ω) and Tu= 0 on ∂ΩD.

Proof. The forward implication is clear from the continuity of the trace, so we
need to prove the reverse implication. Suppose that u ∈W

β,p[δ; q](Ω) and Tu= 0 on
∂ΩD. Let ψ satisfy (Aψ) and λ satisfy (Aλ) both with k=∞, and for 0< ε< δ, define
Kε =Kε[λ, q,ψ]. Then TKεu = 0 on ∂ΩD by Theorem 5.4, so Kεu ∈W 1,p

0,∂ΩD
(Ω) by

Corollary 4.8 and Theorem 2.1. Thus, for each ε, there exists a sequence {vε̄,ε}ε̄ ⊂
C1
c (Ω \ ∂ΩD) that converges in W 1,p(Ω) to Kεu as ε̄ → 0. By Theorem 5.2, for

each n ∈ N, we can choose {εn}n to be a strictly decreasing sequence that satisfies
‖Kεnu− u‖

Wβ,p[δ;q](Ω) <
1
2n . Then for each n, there exists ε̄n = ε̄n(εn) depending on

εn such that ‖vε̄,εn −Kεnu‖Wβ,p[δ;q](Ω) <
1
2n for all ε̄ ≤ ε̄n thanks to Corollary 5.3.

We can choose the sequence {ε̄n}n to be strictly decreasing as well. Define {wn}n =
{vε̄n,εn}n. Then

‖wn − u‖
Wβ,p[δ;q](Ω) ≤ ‖vε̄n(εn),εn −Kεnu‖Wβ,p[δ;q](Ω) + ‖Kεnu− u‖

Wβ,p[δ;q](Ω)

≤ sup
ε̄≤ε̄n

‖vε̄,εn −Kεnu‖Wβ,p[δ;q](Ω) + ‖Kεnu− u‖
Wβ,p[δ;q](Ω)

≤ 1

2n
+ ‖Kεnu− u‖

Wβ,p[δ;q](Ω) <
1

n
,

which concludes the proof.
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4210 JAMES M. SCOTT AND QIANG DU

5.3. Poincaré inequalities. Our discussions here on nonlocal Poincaré inequal-
ities also follow the assumptions made in subsection 5.1, though we note the special
case of p∈ (1,∞) in Theorem 5.10.

Theorem 5.7. There exists a constant CD = CD(d,β, p, q,Ω) such that for all

δ < δ0,

‖u‖Lp(Ω) ≤CD[u]Wβ,p[δ;q](Ω) ∀u∈W
β,p
0,∂ΩD

[δ; q](Ω) .

Proof. Let ψ satisfy (Aψ) and λ satisfy (Aλ), both with k = ∞, and define the
boundary-localized convolution Kδv = Kδ[λ, q,ψ]v. Let {un} ⊂ C1

c (Ω \ ∂ΩD) be a
sequence converging to u in W

β,p[δ; q](Ω) as n → ∞. By Corollary 4.8, Kδun ∈
W 1,p(Ω), and it follows from a slight modification of the proof of Lemma 4.3 that
Kδun has support compactly contained in Ω \ ∂ΩD. Therefore, Kδun ∈W 1,p

0,∂ΩD
(Ω),

and we can apply the classical Poincaré inequality:

‖Kδun‖Lp(Ω) ≤C(p,Ω)‖∇Kδun‖Lp(Ω) .(5.7)

By Corollary 4.8, ‖∇Kδun‖Lp(Ω) ≤C[un]Wβ,p[δ;q](Ω). Then by (1.10),

‖un‖Lp(Ω) ≤ ‖Kδun‖Lp(Ω) + ‖un −Kδun‖Lp(Ω) ≤ (C +Cδ)[un]Wβ,p[δ;q](Ω) .

The result follows by taking n→∞.

Theorem 5.8. There exists a constant CN = CN (d,β, p, q,Ω) such that for all

δ < δ0,

‖u− (u)Ω‖Lp(Ω) ≤CN [u]Wβ,p[δ;q](Ω) ∀u∈W
β,p[δ; q](Ω) .

Proof. Let ψ satisfy (Aψ) and λ satisfy (Aλ), both with k = ∞, and define the
boundary-localized convolution Kδv=Kδ[λ, q,ψ]v. By Corollary 4.8, Kδu∈W 1,p(Ω).
Therefore, we can apply the classical Poincaré inequality:

‖Kδu− (Kδu)Ω‖Lp(Ω) ≤C(p,Ω)‖∇Kδu‖Lp(Ω) .(5.8)

By Corollary 4.8, ‖∇Kδu‖Lp(Ω) ≤ C[u]Wβ,p[δ;q](Ω). Now recall the definition of Ψδ in
(3.5), and note that

(Kδu)Ω =

 

Ω

Kδu(x)dx=

 

Ω

∫

Ω

ψδ(x,y)u(y)dydx=

 

Ω

Ψδ(y)u(y)dy= (Ψδu)Ω ,

and so by (1.10) and (5.8),

‖u− (Ψδu)Ω‖Lp(Ω) ≤ ‖Kδu− (Kδu)Ω‖Lp(Ω) + ‖u−Kδu‖Lp(Ω) ≤C[u]Wβ,p[δ;q](Ω) .

Finally, by Jensen’s inequality and by (1.10),

‖u− (u)Ω‖Lp(Ω) ≤ ‖u− (Ψδu)Ω‖Lp(Ω) + ‖(Ψδu)Ω − (u)Ω‖Lp(Ω)

≤C[u]Wβ,p[δ;q](Ω) +

(
 

Ω

∫

Ω

|Kδu(y)− u(y)|p dydx
)1/p

≤C[u]Wβ,p[δ;q](Ω) + ‖u−Kδu‖Lp(Ω) ≤C[u]Wβ,p[δ;q](Ω) .

Remark 5.9. Note that all of the above Poincaré constants are constructed and
not given by a contradiction argument.
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NONLOCAL PROBLEMS WITH LOCAL BOUNDARY CONDITIONS I 4211

Theorem 5.10. Let 1< p<∞. There exists a constant CR > 0 such that for all

δ < δ0,

‖v‖pLp(Ω) ≤CR

(
[u]p

Wβ,p[δ;q](Ω)
+

∫

∂ΩR

|Tu|p dσ
)

∀u∈W
β,p[δ; q](Ω) .

Proof. First, it is straightforward to prove via the compact embedding ofW 1,p(Ω)
into Lp(Ω) that there exists a constant Λ> 0 such that

‖v‖pLp(Ω) ≤Λ

(
‖∇v‖pLp(Ω) +

∫

∂ΩR

|Tv|p dσ
)

∀v ∈W 1,p(Ω) .(5.9)

Now let ψ satisfy (Aψ) and λ satisfy (Aλ), both with k=∞, and define the boundary-
localized convolution Kδv = Kδ[λ, q,ψ]v. By Corollary 4.8, Kδu ∈ W 1,p(Ω), and
therefore we can apply (5.9):

‖Kδu‖pLp(Ω) ≤Λ

(
‖∇Kδu‖pLp(Ω) +

∫

∂ΩR

|TKδu|p dσ
)
.

By Corollary 4.8, ‖∇Kδu‖Lp(Ω) ≤ C[u]Wβ,p[δ;q](Ω), and by Theorem 5.4, TKδu= Tu.
Therefore, by (5.9) and (1.10),

‖u‖Lp(Ω) ≤ ‖Kδu‖Lp(Ω) + ‖u−Kδu‖Lp(Ω)

≤Λ

(
‖∇Kδu‖pLp(Ω) +

∫

∂ΩR

|TKδu|p dσ
)
+C[u]Wβ,p[δ;q](Ω)

≤CR

(
[u]p

Wβ,p[δ;q](Ω)
+

∫

∂ΩR

|Tu|p dσ
)
,

which concludes the proof.

Remark 5.11. More general Poincaré inequalities can be obtained using the
same methods. Indeed, let V be a weakly closed subset of Wβ,p[δ; q](Ω) such that
V ∩ R = {0}. Then a Poincaré inequality holds on V . Thanks to the heterogeneous
localization properties, V can possibly be characterized either by lower-order terms
or by terms depending only on boundary values. In addition, Poincaré inequalities for
more general forms on the right-hand side, for instance, [u]p

Wβ,p[δ;q](Ω
+
∫
∂ΩD

|Tu|m dσ

for some exponent m∈ [1, p], can be obtained.

5.4. Compactness for a fixed bulk horizon parameter. We continue our
discussion with considering compact embeddings for nonlocal spaces under the as-
sumptions (Aβ), (Aq), and 1≤ p <∞.

If β < d, then it is straightforward to see that the embedding W
β,p[δ; q](Ω) ↪→

Lp(Ω) is not compact. Indeed, for any cube Q b Ω with sides parallel to the axes,
let {un}n be the standard Fourier basis for L2(Q). Extending the un to all of Ω by
0, we then have [un]Wβ,p[δ;q](Ω) ≤ C(Q,Ω,‖un‖L∞(Q)) ≤ C independent of n since

|x|−β ∈L1
loc(R

d). However, un does not converge strongly in Lp(Ω).
On the other hand, for β > d, the nonlocal function space actually contains frac-

tional Sobolev–Slobodeckij spaces and thus inherits their embedding properties. The
proof relies on embedding properties of Sobolev spaces and the estimate Theorem 4.9.

Theorem 5.12. Assume that β > d. Then there exists a constant C > 0 depending

only on d, β, p, q, and Ω such that for all δ satisfying (Aδ),

‖u‖W (β−d)/p,p(Ω) ≤C ‖u‖
Wβ,p[δ;q](Ω) ∀u∈W

β,p[δ; q](Ω).
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4212 JAMES M. SCOTT AND QIANG DU

Proof. Let ψ satisfy (Aψ) for kψ ≥ 1, with Kδ = Kδ[d∂Ω, q,ψ]. First, by Theo-
rem 4.9, the estimate

[u−Kδu]W (β−d)/p,p(Ω) ≤Cδ
d+p−β

p [u]Wβ,p[δ;q](Ω)

holds. Now we use the embedding of Sobolev spaces with a varying differentiability
index along with Corollary 4.8 to get

‖Kδu‖W (β−d)/p,p(Ω) ≤C(d,β, p)‖Kδu‖W 1,p(Ω) ≤C[Kδu]Wβ,p[δ;q](Ω) .

Combining these two estimates gives the result.

As a result, all of the embeddings that hold for fractional Sobolev spaces hold
for the nonlocal space. So that we can use it for the variational problems, we state
explicitly the Lp-space embedding.

Theorem 5.13. For β ∈ (d, d+ p), let p∗β denote

p∗β :=

{
dp

2d−β if d< β < 2d ,

any exponent <∞ if β ≥ 2d .
(5.10)

Then for δ < δ̄0, the embedding W
β,p[δ; q](Ω) ↪→ Lp

∗

β (Ω) is continuous, and for any

q < p∗β, the embedding W
β,p[δ; q](Ω) ↪→Lq(Ω) is compact.

5.5. Asymptotic compactness in the local limit. In the following section,
we prove a general compactness result in the local limit which encompasses Theo-
rem 1.9. We take all the assumptions of subsection 5.1. Note that Theorem 5.15 and
Lemma 5.17 require the additional assumption (1.25).

We remark that in the case p= 1, all of the results of this section hold for the space
BV (Ω), functions of bounded variation, instead of the space W 1,1(Ω). The proofs are
almost exactly the same; the differences are the same as in the proofs contained in
[7, 56]. Since we do not consider problems associated with functionals defined in BV
spaces in this work, the precise statements are omitted.

Theorem 5.14. Let p∈ (1,∞). Then

lim
δ→0

[u]p
Vβ,p[δ;q;ρ,λ](Ω)

=

{
‖∇u‖pLp(Ω) if u∈W 1,p(Ω),

+∞ if u∈Lp(Ω) \W 1,p(Ω).

Moreover, if a sequence {uδ}δ converges to u in C2(V ) for any V bΩ as δ→ 0, then

lim
δ→0

∫

V

∫

V

γβ,p[δ; q;ρ,λ](x,y)|u(y)− u(x)|p dydx=

∫

V

|∇u(x)|p dx .

Proof. The proof of the first statement follows exactly the same steps as [56,
Theorem 1.1], and the proof of the second statement follows exactly the same steps
as [56, Proposition 4.1, Remarks 4.1 and 4.2]. The heterogeneous localization η(x)
gives no additional difficulty.

Theorem 5.15. Assume additionally that (1.25) holds. Let δ = {δn}n∈N be a

sequence that converges to 0 and {uδ}δ ⊂ W
β,p[δ; q](Ω) be a sequence such that for

constants B and C independent of δ,

sup
δ>0

‖uδ‖Lp(Ω) ≤C <∞ and sup
δ>0

[uδ]Vβ,p[δ;q;ρ,λ](Ω) :=B <∞ .

Then {uδ}δ is precompact in the strong topology of Lp(Ω). Moreover, if p > 1, then
any limit point u belongs to W 1,p(Ω) with ‖∇u‖Lp(Ω) ≤B.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
6
/1

8
/2

4
 t

o
 7

4
.3

.1
3
5
.2

1
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



NONLOCAL PROBLEMS WITH LOCAL BOUNDARY CONDITIONS I 4213

Proof. It suffices to show that a subsequence of {uδ} is Cauchy in W
β,p[δ; q](Ω).

Choose ψ to satisfy (Aψ) for k = kψ ≥ 1, and then define Kδu=Kδ[λ, q,ψ]u accord-
ingly. First, we use Theorems 4.6 and 2.2 to see that

‖uδ −Kδuδ‖Lp(Ω) ≤Cδ[uδ]Wβ,p[δ;q](Ω) ≤CBδ .

Next, by Corollary 4.8,

[Kδuδ]W 1,p(Ω) ≤C[uδ]Wβ,p[δ;q](Ω) .

Therefore, the sequence {Kδnuδn}n∈N is bounded inW 1,p(Ω) and hence is precompact
in the strong topology of Lp(Ω). So for a convergent subsequence {Kδnuδn} (not
relabeled), we have for n, m∈N

‖uδn − uδm‖Lp(Ω) ≤ ‖Kδnuδn − uδn‖Lp(Ω) + ‖Kδmuδm − uδm‖Lp(Ω)

+ ‖Kδnuδn −Kδmuδm‖Lp(Ω)

≤CB(δm + δn) + ‖Kδnuδn −Kδmuδm‖Lp(Ω) ,

which approaches 0 as min{m,n}→∞. Thus, {uδn} is also convergent.
To see that any limit point u belongs to W 1,p(Ω), we use an argument similar to

the one used to prove Theorem 1.2. Let ψ satisfy (Aψ) and λ̄ satisfy (Aλ), both with
k =∞, and define Kεu =Kε[λ̄, q,ψ]u accordingly, where ε ∈ (0, ε0), ε0 as defined in
Lemma 3.2, with η̄ε(x) = εη̄(x) = εq(λ̄(x)). Define the function ζε

z
(x) = x+ η̄ε(x)z

as in Lemma 3.2. Now define ρε(|z|) := ρ
(
1+c̄ε
1−c̄ε |z|

)
; by definition of the nonlocal

seminorm, we have for any v ∈W
β,p[δ; q](Ω)

[v]p
Vβ,p[δ;q;ρε,λ](Ω)

=
1

Aρ

(
1 + c̄ε

1− c̄ε

)d+p−β ∫

Ω

∫

Ω

ρ

(
1 + c̄ε

1− c̄ε

|x− y|
ηδ(x)

) |v(x)− v(y)|p
|x− y|βηδ(x)d+p−β

dydx ,

where Aρ :=
ρ̄β,p

Cd,p
. Then by Jensen’s inequality,

[Kεuδ]
p
Vβ,p[δ;q;ρε,λ](Ωε;λ,q)

≤ 1

Aρ

(
1 + c̄ε

1− c̄ε

)d+p−β ∫

B(0,1)

∫

Ωε;λ,q

∫

Ωε;λ,q

ψ (|z|)

ρε

( |y− x|
ηδ(x)

) |uδ(ζεz(x))− uδ(ζ
ε
z
(y))|p

|x− y|βηδ(x)d+p−β
dydxdz .

By the identities in Lemma 3.2, we obtain that for δ < ε< ε0, ζ
ε
z
(Ωε;λ,q)⊂Ω(1−c̄ε)ε;λ,q

and that

[Kεuδ]
p
Vβ,p[δ;q;ρε,λ](Ωε;λ,q)

≤ 1

Aρ

(1 + c̄ε)2(d+p)−β

(1− c̄ε)2

∫

B(0,1)

ψ (|z|)
∫

Ω(1−c̄ε)ε;λ,q

∫

Ω(1−c̄ε)ε;λ,q

ρ

( |ζε
z
(y)− ζε

z
(x)|

ηδ(ζ
ε
z
(x))

)

|uδ(ζεz(x))− uδ(ζ
ε
z
(y))|p

|ζε
z
(y)− ζε

z
(x)|βηδ(ζεz(x))d+p−β

det∇ζε
z
(x)det∇ζε

z
(y)dydxdz ,

where we additionally used that ρ is nonincreasing. Therefore, we apply the change
of variables ȳ= ζε

z
(y), x̄= ζε

z
(x) and obtain for any δ < ε

[Kεuδ]
p
Vβ,p[δ;q;ρε,λ](Ωε;λ,q)

≤ 1

Aρ

(1 + c̄ε)2(d+p)−β

(1− c̄ε)2

∫

Ω

∫

Ω

ρ

( |ȳ− x̄|
ηδ(x̄)

) |uδ(x̄)− uδ(ȳ)|p
|ȳ− x̄|βηδ(x̄)d+p−β

dȳdx̄ .
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4214 JAMES M. SCOTT AND QIANG DU

In summary,

[Kεuδ]
p
Vβ,p[δ;q;ρε,λ](Ωε;λ,q)

≤ (1 + c̄ε)2(d+p)−β

(1− c̄ε)2
[uδ]

p
Vβ,p[δ;q;ρ,λ](Ω)

.

Now for any fixed ε > 0, the sequence {Kεuδn}n converges to Kεu in C2(Ωε;λ,q) as
δn→ 0 since kq ≥ 2 and Ωε;λ,q bΩ. Therefore, we can use Theorem 5.14 when taking
δn→ 0 in the previous inequality to get

∫

Ωε;λ,q

|∇Kεu|p dx≤ (1 + c̄ε)2(d+p)−β

(1− c̄ε)2
Bp .

This inequality holds uniformly in ε, so the result follows by taking ε→ 0.

Remark 5.16. In the case β > d, we can use Theorem 4.9 in place of (1.10)
in the proof and obtain that {uδ}δ is precompact in the fractional Sobolev space
W (β−d)/p,p(Ω). This compactness allows us to obtain variational convergence of more
general energy functionals, but to illustrate the ideas in this work, we are content to
consider only semilinear functionals.

One consequence of the compactness result is the W 1,p(Ω)-weak convergence of
boundary-localized convolutions, which will be instrumental in the analysis of the
nonlocal-to-local limit of the variational problems.

Lemma 5.17. Let p∈ (1,∞), ψ satisfy (Aψ) with kψ ≥ 1, and assume (1.25). Let

{δ} = {δn}n∈N be a sequence converging to 0. Suppose that supδ>0 ‖uδ‖Wβ,p[δ;q](Ω) <

∞. Then there exists a subsequence {uδ′}δ′ and a function u ∈ W 1,p(Ω) such that

Kδ′uδ′ ⇀u weakly in W 1,p(Ω). If additionally there exists u∈W 1,p(Ω) such that the

entire sequence uδ → u strongly in Lp(Ω), then the whole sequence Kδuδ ⇀u weakly

in W 1,p(Ω).

Proof. We select the subsequence {uδ′} ⊂ {uδ} to be one with a strong-Lp(Ω)
limit u as in Theorem 5.15 (if uδ → u in Lp(Ω), then choose {uδ′} ⊂ {uδ}). By
Theorem 4.11, it suffices to show that Kδ′(uδ′ − u)⇀ 0 weakly in W 1,p(Ω) as δ→ 0.
By Corollary 4.8, (4.1), (4.2), and Theorem 5.15, we have

‖Kδ′(uδ′ − u)‖W 1,p(Ω) ≤ ‖Kδ′uδ′‖W 1,p(Ω) + ‖Kδ′u‖W 1,p(Ω)

≤C ‖uδ′‖Wβ,p[δ′;q](Ω) + ‖u‖W 1,p(Ω) ≤C .

Hence, there exists at least one convergent subsubsequence. Now let Kδ′′(uδ′′ − u)
be any subsubsequence converging weakly in W 1,p(Ω) to a function v. However,
〈Kδ′′(uδ′′ − u), ϕ〉 → 0 for any ϕ ∈ Lp′(Ω) since uδ′ → u strongly in Lp(Ω), and so it
follows that v= 0 since weak limits are unique.

6. Existence of minimizers to the minimization problems. In this section,
we analyze the variational problems. We now describe the assumptions on Gβ>d using
the notation from the previous section. For a fixed m ∈ (1, p∗β), where p

∗
β is as in

(5.10), we assume that Gβ>d :Lm(Ω)→R is Lm(Ω)-strongly continuous (but possibly
nonconvex) and satisfies, for c > 0, C > 0, θ ∈ (0,1), and Θ> 0

−cχd,β(1 + ‖u‖θpLm(Ω))≤Gβ>d(u)≤Cχd,β(1 + ‖u‖ΘpLm(Ω)) ,(6.1)

where the constant χd,β is defined as χd,β =

{
0 , β ≤ d ,

1 , β > d .
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NONLOCAL PROBLEMS WITH LOCAL BOUNDARY CONDITIONS I 4215

To further illustrate the differences between the functionals G, G̃δ, and Gβ>p,
we present the following example: Let G`(u) =

∫
Ω
`(u(x))dx, where ` : R → R is a

continuous (but not necessarily convex) function that satisfies

c(1− |u|m)≤ `(u)≤C(1 + |u|m) for some m∈ [1,∞) .

Then we note the following properties and weak continuity on the spacesWβ,p[δ; q](Ω):
i) If m∈ [1, dp

d−p ) for p < d or if m∈ [1,∞) for p≥ d, then (1.15) is satisfied, and
the functional G(Kδu) = G`(Kδu) is well-defined and weakly continuous.

ii) If β ≤ d, (1.16) is satisfied if m∈ [1, p], and G̃(u) = G`(u) is weakly continuous
if ` is convex.

iii) If β > d, both (1.16) and (6.1) are satisfied ifm∈ [1, p∗β), so either G̃(u) = G`(u)
or Gβ>d(u) = G`(u) is weakly continuous.

Proof of Theorem 1.4. The proof follows direct methods. First, by (4.7), (1.15),
and (1.16),

G(Kδu) + G̃(u)≥−c(1 + ‖u‖θp
Wβ,p[δ;q](Ω)) ,

and then by (6.1) and the continuous, compact embedding W
β,p[δ; q](Ω) ↪→Lm(Ω) of

Theorem 5.13,

Gβ>d(u)≥−c(1 + ‖u‖θp
Wβ,p[δ;q](Ω)) .

Therefore,

Fδ(v)≥Eδ(v)−G(Kδv)− G̃(v)−Gβ>d(v)
≥Eδ(v)−C1 ‖v‖θpWβ,p[δ;q](Ω) −C2 .

(6.2)

Next, let G be a W 1,p(Ω)-continuous extension of g to all of Ω, i.e.,

‖G‖W 1,p(Ω) ≤C ‖Tg‖W 1−1/p,p(∂Ω) ≤C ‖g‖W 1−1/p,p(∂ΩD) .

Then by the Poincaré inequality in Theorem 5.7 applied to u−G (valid here thanks
to the equivalent characterization of Theorem 5.6), estimates similar to those in the
proof of Theorem 2.2 give for any v ∈W

β,p
g,∂ΩD

[δ; q](Ω)

‖v−G‖pLp(Ω) ≤C[v−G]p
Wβ,p[δ;q](Ω)

≤CEδ(v−G) .

Therefore, by Corollary 5.3 applied to G,

‖v‖p
Wβ,p[δ;q](Ω) ≤C(‖v−G‖p

Wβ,p[δ;q](Ω) + ‖G‖p
Wβ,p[δ;q](Ω))≤C(Eδ(v) + ‖g‖p

W 1−1/p,p(∂Ω)
),

and so combining this with (6.2) gives

‖v‖p
Wβ,p[δ;q](Ω) ≤Fδ(v) +C(1 + ‖v‖θp

Wβ,p[δ;q](Ω))(6.3)

for a constant C independent of v. This estimate guarantees that minFδ > −∞
and moreover guarantees the uniform W

β,p[δ; q](Ω)-bound of a minimizing sequence
{un}n. Hence, {un}n converges weakly in W

β,p[δ; q](Ω) to a function u and by weak
continuity of traces u= g in the trace sense on ∂ΩD.

By (4.7), Kδun⇀Kδu weakly in W 1,p(Ω), so

G(Kδu)≤ lim inf
n→∞

G(Kδun) .
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4216 JAMES M. SCOTT AND QIANG DU

Next, G̃ is Wβ,p[δ; q](Ω)-weakly lower semicontinuous by assumption. Finally, Gβ>d ≡
0 for β ≤ d, and when β > d, we have that un→ u strongly in Lm(Ω) by Theorem 5.13,
so since Gβ>d is strongly continuous in Lm(Ω) by assumption,

Gβ>d(u) = lim
n→∞

Gβ>d(un) .

Therefore, Fδ is W
β,p[δ; q](Ω)-weakly lower semicontinuous, and so u is a minimizer

of Fδ.
Proof of Theorem 1.5. The proof is exactly the same, noting that G= 0.

Proof of Theorem 1.6. The proof follows direct methods. The estimate (6.2) holds
using the same argument, and by the Poincaré inequality Theorem 5.8 and estimates

similar to those in the proof of Theorem 2.2, we have for any v ∈ W̊
β,p

[δ; q](Ω)

‖v‖pLp(Ω) ≤C[v]p
Wβ,p[δ;q](Ω)

≤CEδ(v) .

So combining this directly with (6.2) gives

‖v‖p
Wβ,p[δ;q](Ω) ≤Fδ(v) +C(1 + ‖v‖θp

Wβ,p[δ;q](Ω))(6.4)

for a constant C independent of v. The rest of the proof follows similarly to that of
Theorem 1.4.

Proof of Theorem 1.7. The proof again follows direct methods. The same argu-
ment used to prove (6.2) gives

FR
δ (v)≥Eδ(v) +

∫

∂Ω

b|Tv|p dσ−C1 ‖v‖θpWβ,p[δ;q](Ω) −C2 .(6.5)

Next, by the Poincaré inequality Theorem 5.10, the lower bound on b, and estimates
similar to those in the proof of Theorem 2.2, we have for any v ∈W

β,p[δ; q](Ω)

‖v‖pLp(Ω) ≤CR

(
[v]p

Wβ,p[δ;q](Ω)
+ b0

∫

∂ΩR

|Tv|p dσ
)
≤C

(
Eδ(v) +

∫

∂Ω

b|Tv|p dσ
)
.

Combining this with (6.5), we get that for a constant C independent of v,

‖v‖p
Wβ,p[δ;q](Ω) ≤FR

δ (v) +C(1 + ‖v‖θp
Wβ,p[δ;q](Ω)) .(6.6)

The rest of the proof is similar to that of the previous arguments, noting that∫
∂Ω
b|Tu|p dσ is Wβ,p[δ; q](Ω)-weakly lower semicontinuous.

7. Local limit. The following lemma and its corollary will be central in calcu-
lating the local limit as the bulk horizon parameter δ approaches 0.

Theorem 7.1. Let Eδ be as in (1.13) and E0(u) be as in (1.23), with all the

associated assumptions of their definitions. Then limδ→0 Eδ(u) = E0(u) for all u ∈
W 1,p(Ω), and limδ→0 Eδ(u) = +∞ if u ∈ Lp(Ω) \W 1,p(Ω). Moreover, if a sequence

{uδ}δ converges to u in C2(V ) for any V bΩ as δ→ 0, then

lim
δ→0

∫

V

∫

V

ρ

( |x− y|
ηδ(x)

)
Φ( |uδ(x)−uδ(y)|

|x−y| )

|x− y|β−pηδ(x)d+p−β
dydx

= ρ̄p,β

∫

V

 

Sd−1

Φ(|∇u(x) ·ω|)dσ(ω)dx .
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Proof. The proof follows exactly the same steps as [56, Proposition 4.1, Remarks
4.1 and 4.2], just as in the proof of Theorem 5.14.

For example, if Φ(t) = tp

p and if ρ̄p,β =Cd,p, then E0(u) = 1
p

∫
Ω
|∇u(x)|p dx.

7.1. Dirichlet constraint. We extend the functional Fδ, defined for this prob-
lem on W

β,p
g,∂ΩD

[δ; q](Ω), to a functional FD
δ defined on all of Lp(Ω) by setting

FD

δ (u) :=

{
Fδ(u) for u∈W

β,p
g,∂ΩD

[δ; q](Ω) ,

+∞ for u∈Lp(Ω) \Wβ,p
g,∂ΩD

[δ; q](Ω) .
(7.1)

Proposition 7.2. With all the assumptions of Theorem 1.10, define

FD

0 (u) :=

{
F0(u) for u∈W 1,p

g,∂ΩD
(Ω) ,

+∞ for u∈Lp(Ω) \W 1,p
g,∂ΩD

(Ω) .
(7.2)

Then we have

FD

0 (u) = Γ− lim
δ→0

FD

δ (u) ,(7.3)

where the Γ-limit is computed with respect to the topology of strong convergence on

Lp(Ω).

Proof. We proceed in two steps. First, we prove that

FD

0 (u)≤ lim inf
δ→0

FD

δ (uδ)(7.4)

for any sequence {uδ}δ ⊂ Lp(Ω) that converges strongly in Lp(Ω) to u. If the right-

hand side is ∞, then there is nothing to show, so assume that lim infδ→0F
D

δ (uδ)<∞.
If this is the case, then it follows from the estimate (6.3) (note that C is independent of
δ if G̃δ = G̃ satisfies (1.24)) and from Theorem 5.15 that u∈W 1,p(Ω). Further, by the
identity g = Tuδ = TKδuδ on ∂ΩD for all δ > 0 and from the weak W 1,p-continuity
of traces, an application of Lemma 5.17 gives that Tu = g on ∂ΩD. Therefore,

FD

0 (u)<∞, and we just need to show that

FD
0 (u)≤ lim inf

δ→0
FD
δ (uδ) .(7.5)

To this end, an argument similar to the one used to prove Theorem 5.15 gives

E0(u)≤ lim inf
δ→0

Eδ(uδ)(7.6)

but with Theorem 7.1 used in place of Theorem 5.14. Now, by Lemma 5.17,

lim
δ→0

G(Kδuδ) = G(u)(7.7)

since G is W 1,p(Ω)-weakly continuous. Thanks to (1.24) and the continuity assump-
tion on Gβ>d, we additionally have

lim
δ→0

G̃(uδ) = G̃(u) and lim
δ→0

Gβ>d(uδ) = Gβ>d(u) .(7.8)

Therefore, (7.6), (7.7), and (7.8) establish (7.5); i.e., (7.4) is proved.
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4218 JAMES M. SCOTT AND QIANG DU

Second, we note that the constant sequence {uδ}δ = u∈Lp(Ω) serves as a recovery
sequence:

FD

0 (u) = lim
δ→0

FD

δ (u) .(7.9)

This follows from (6.3) and Theorem 7.1 along with Theorem 4.11, which shows that
limδ→0 G(Kδu) = G(u).

Together, (7.4) and (7.9) conclude the proof.

Proof of Theorem 1.10. The result follows from the framework described in [8,
Theorem 1.21]. By the Γ-limit computation in Proposition 7.2, it suffices to show
that {FD

δ (uδ)}δ is equicoercive in the strong Lp(Ω) topology, i.e., that {uδ}δ is pre-
compact in the strong Lp(Ω) topology. But this follows by noting that the constant C
appearing in (6.3) is independent of δ, permitting us to apply the compactness result
Theorem 5.15.

The case g= 0 follows the same setup and steps.

7.2. Neumann and Robin constraints.

Proof of Theorem 1.11. Similar to the Dirichlet case, we may extend the functional

Fδ, now defined on W̊
β,p

[δ; q](Ω), to a functional FN

δ by setting FN

δ (u) = Fδ(u) for

u ∈ W̊
β,p

[δ; q](Ω), while FN

δ (u) = +∞ for u ∈ Lp(Ω) \ W̊β,p
[δ; q](Ω). Likewise, with

all the assumptions of Theorem 1.11, we can extend F0(u) on W̊ 1,p(Ω) by defining

FN

0 (u) = F0(u) for u ∈ W̊ 1,p(Ω), while FN

0 (u) = +∞ for u ∈ Lp(Ω) \ W̊ 1,p(Ω).

Then we can show that as δ→ 0, FN

0 (u) is the Γ-limit of FN

δ (u) with respect to the
topology of strong convergence on Lp(Ω). Indeed, the proof follows the same steps
as that of Proposition 7.2, with the estimate (6.4) used in place of (6.3) and with the

additional note that if a sequence {uδ}δ ⊂ W̊
β,p

[δ; q](Ω) converges strongly in Lp(Ω)
to a function u, then (u)Ω = 0, Then the proof can be completed by following the
same argument as the proof of Theorem 1.10.

Proof of Theorem 1.12. By similarly extending FR
δ and FR

0 to FR

δ and FR

0 ,
respectively, we can get a similar conclusion on the Γ-limit for the Robin case, with
(6.6) used in place of (6.3) or (6.4). Then the proof of Theorem 1.12 follows from
arguments similar to the previous proofs.

8. Conclusion. We have presented a study of nonlocal function spaces with het-
erogeneous localization and used its features to study associated variational analysis
problems. The scaling of the kernels and the range of β have allowed us to treat
simultaneously both fractional and convolution-type problems, with the same class of
boundary information.

Additional properties of the function spaces can be recovered in a straightforward
way using the analysis contained in this work, including finer embeddings, Hardy
inequalities, and characterizations of dual spaces.

We note that the theory presented here applies to general Lipschitz domains. We
also treat the case of general orders of differentiability, i.e., kq and kλ, that are asso-
ciated with the various functions used for localization instead of assuming them to be
∞ all the time. Our primary motivation for this choice is to allow for flexibility of the
models in implementation, as we demonstrate with the following scenario. First, let
k ≥ 2 be some integer, and suppose that Ck-smoothness of the heterogeneous local-
ization η is desired, with boundedness on all partial derivatives up to and including

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
6
/1

8
/2

4
 t

o
 7

4
.3

.1
3
5
.2

1
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



NONLOCAL PROBLEMS WITH LOCAL BOUNDARY CONDITIONS I 4219

order k. If it happens that Ω is a Ck domain, then the choice of λ= d∂Ω is possible.
However, some care must be taken, as d∂Ω does not belong to Ck(Ω); rather, there
exists εΩ > 0 such that d∂Ω is Ck on the set {x ∈ Ω : d∂Ω(x) ≤ εΩ}; see [36]. If
q is chosen to satisfy (Aq) for kq = k with q(r) constant for r ≥ εΩ, then it follows
that the resulting heterogeneous localization η[d∂Ω, q] belongs to Ck(Ω). If it is not
the case that Ω is Ck, then one can consider, in place of d∂Ω, a generalized distance
λ satisfying (Aλ) for some kλ ≥ k + 1. Then η(x) = q(λ(x)) belongs to Ck(Ω), but
it is not guaranteed that its derivatives remain bounded near ∂Ω. In that case, one
can modify q and choose instead a function q̃ that satisfies (Aq) for kq ≥ k + 1 and
that further satisfies q̃′(0) = . . .= q̃(k)(0) = 0. Then an application of Faà di Bruno’s
formula shows that |Dαη[λ, q̃](x)| ≤ Cd∂Ω(x)

k+1−|α| for all x ∈ Ω and for all |α| ≤ k,
where C depends only on q̃, α, and κα.

Although the well-posedness of these variational problems in natural function
spaces has a relatively clear picture, there are a number of fundamental questions
that remain to be answered. Establishing suitable regularity properties for the models
in this work is important for mathematical theory and physical consistency. At the
same time, analysis of this type for generalizations of these models—for instance,
nonlocal models with Φ nonconvex such as in [46]—are worth investigating. Further,
one may ask if a nonlocal analogue of Green’s identity can be shown for operators
that involve heterogeneous localization, so that the variational problems considered in
this work can be placed in natural correspondence with a pointwise form as suggested
in the example above. We will show in the next paper in this series that different
localization strategies result in different forms of the proper nonlocal Green’s identity
[27]. Intuitively, the boundary condition for the nonlocal problem will be consistent
with the classical boundary condition if the function ηδ(x) vanishes at a faster rate
than dist(x, ∂Ω). This calls for further (and more delicate) mathematical analysis
and also bears significant consequences in the application of localization strategies to
nonlocal modeling.
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