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The level-set function is parameterized by a feed-forward neural network, whose parameters
are trained using the probabilistic formulation of the Stefan growth condition. The algorithm
can handle Stefan problems where the liquid is supercooled and can capture surface tension
effects through the simulation of particles along the moving boundary together with an efficient
approximation of the mean curvature. We demonstrate the effectiveness of the method on a
variety of examples with and without radial symmetry.

1. Introduction

The Stefan problem [22,41-44] is central to partial differential equations involving free boundaries. It aims to capture the
moving interface separating a solid from a liquid region, as well as the evolution of the temperature in both regions. Despite its
simple description and many deep results obtained since its introduction (see, e.g., [13] and the references therein), many intriguing
questions remain open. In particular, weak solutions to the Stefan problem are non-unique in general, while strong solutions may
fail to exist. Thus, further restrictions are needed to obtain a unique characterization. A recent approach developed by Delarue,
Guo, Nadtochiy and the first author [12,27,16] provides stochastic representations and proposes the notion of physical probabilistic
solutions as a selection principle. This new notion is expected to lie between weak and strong solutions, as shown in [27] for the
one-phase supercooled Stefan problem.

Probabilistic solutions satisfy a growth condition relating the change in volume of the solid region, denoted by I';, to the propor-
tion of absorbed “heat” particles in the two phases:

[Tol = IT,| = gPGt'<n-PE2<n 6))

Volume change of the solid ~ Absorbed liquid & solid heat particles

where 7! (resp. 72) stands for the hitting time of the moving interface o' = (0T )qo,r; for particles in the liquid (resp. solid). The
binary parameter # captures the effect of particles in the liquid when the latter has a nonnegative temperature (n = 1) or is supercooled
(n =—1). An exact statement is given in Definitions 1 and 2, below. While probabilistic solutions of the Stefan problem are quite well
understood in one space dimension [12,10] and for radially symmetric solids [16,26], less is known in the general case. Additional
challenges arise when incorporating surface tension effects through the classical Gibbs-Thomson law, [2,26,32], which postulates that
the temperature at the interface is below (resp. above) the equilibrium melting point where the solid is locally convex (resp. concave).
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We leverage the probabilistic solutions of Stefan problems, the celebrated level-set method of Osher and Sethian [28], and the
recent advances in training neural networks in order to produce efficient numerical algorithms. More specifically, we represent
I'=(T,);ep0.)> the evolving region occupied by the solid, by a level-set function which is parameterized by a feed-forward neural
network. That is, the evolving solid is given by the zero sublevel set of an appropriate function ® : [0,T] x RY - R, focusing
on d € {2,3} in our numerical experiments. The level-set method is widely used to describe the evolution of moving interfaces
in arbitrary dimensions as it imposes no assumptions on the geometry of the unknown region and can easily handle changes in
topological properties. For example, level sets are able to capture the separation of a connected set into several components and vice
versa. As demonstrated in the numerical examples below (Section 4.2.4), this flexibility is of crucial importance for general Stefan
problems. We refer the reader to the excellent books by Osher and Fedkiw [29] and Sethian [36] for a comprehensive description of
level-set methods.

To the best of our knowledge, the use of the level-set method for the Stefan problem was first proposed in [9]. Their algorithm
alternately approximates the moving interface through level-set functions and the temperature in the two phases via a finite difference
scheme for the heat equation. The method is capable of accurately reproducing known solutions to the Stefan problem, as well as of
generating realistic dendritic growth for a variety of solids (see also [15], focusing on dendritic crystallization, and [29, Section 23],
presenting applications to general heat flows). Herein, the level-set function is parameterized by a time-space feedforward neural
network @ : [0,T] x R? x® — R where O is a finite-dimensional parameter set. The parameters are trained using stochastic gradient
descent by converting the growth condition of probabilistic solutions into a loss function. The computation of the latter involves
the simulation of reflected Brownian particles in the two phases. The proposed method has the advantage that the normal vector to
the interface — which is essential in level-set methods — can be effortlessly computed through automatic differentiation of the deep
level-set function.

The training of neural network parameters is achieved by minimizing a loss function that involves stopped particles. Since the
hitting times of sharp interfaces lead to vanishing gradient issues and prevent the training of the deep level-set function, we use
a relaxation procedure as in [34,35,40], developed for optimal stopping. This relaxation consists of introducing a mushy region
separating the solid and the liquid as in phase-field models [5,8,39], and then using stopping probabilities. The loss function defined
in (13), below, tries to enforce the local version (4) of (1) for a large number of randomly chosen test functions. Such a construction
based on an identity holding for a class of test functions is novel and may find other applications.

The trained network encapsulates the two phases, and it is important to emphasize that the temperature function does not need
to be approximated during training. Due to the probabilistic nature of the algorithm, the temperature function can be estimated later
through the empirical measure of the surviving particles. Moreover, surface tension effects can be seamlessly integrated into the
algorithm, see Section 3.5. We refer the interested reader to [32] surveying computational methods for differential equations with
surface tension in fluid mechanics.

Combining the level-set method with deep learning to solve free boundary problems appears to be new, although our work shares
some similarities with [1], which provides a numerical resolution of controlled front propagation flows with the level-set method,
and where the velocity is approximated by neural networks and not the level-set function. The present approach is motivated by the
recent advances of deep learning to solve complex and/or high-dimensional problems in partial differential equations [19,37,46,31],
optimal stopping [6,7,34,35], as well as general stochastic control problems [4,18,34]. In the case of physical phenomena, physics-
informed neural networks [33,46] successfully combine observed data with known physical laws to learn the solution for a variety
of problems in physics. The neural parameterization of level-set functions has already shown promising results in computer vision.
Among others, a neural network is trained to approximate the signed distance function associated with three-dimensional objects in
[30] and their occupancy probability in [24].

We believe that the proposed deep level-set method can be applied to problems in a variety of contexts. This includes free
boundary problems in physics, such as Hele-Shaw and Stokes flows [11]. In mathematical finance, the method can be used to
generalize the neural optimal stopping boundary method of [35] for the exercise boundary of American options with known geometric
structure. Also, optimal portfolio problems with transaction costs [25] could benefit from our method once the so-called no-trade
zone is represented by a deep level-set function.

Structure of the paper. We introduce the Stefan problem and its probabilistic solution in Section 2. The deep level-set method is
described in Section 3 and extended in Section 3.5 for the Stefan problem with surface tension. Section 4 is devoted to the numerical
results in the radially symmetric case (Section 4.1) and for general shapes of the solid (Section 4.2). Section 5 concludes, and
Appendix A contains the proofs of the main results.

Notations. Given a Lebesgue measurable set A c R, d > 1, and a measurable function y : RY - R, we employ the shorthand
notations [, v = [, w(x)dx and [,y = [;, w(x)dH9(x), where H?"! is the (d — 1)-dimensional Hausdorff measure. We also
write | A| for the Lebesgue measure of A.

2. Stefan problems and probabilistic solutions

Let Q be a bounded domain in R?, d > 1, and T € (0, o). Given a closed subset - C Q and u(l) 1Q\T)_ - R, ué Ty - R_,
the strong formulation of the two-phase Stefan problem amounts to finding a triplet (u',u?,I") = (u' (1, -),u*(t,),T, )07} such that
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I}

dul = %AHJ

Fig. 1. Illustration of the two-phase Stefan problem (2a)-(2e). Evolution of the liquid region (blue) and solid region (white) in a freezing regime for some time points
0<s<t<T. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

o' = LA, oninl 1= {(1,x) €(O,TIxQ: xeintI'},i=12, (a)
W(0=,) = uf, onl} ,i=12, (b)
Oqu' =0, onoQNI" :={(t,x)€[0,T]x0Q : xel},i=1,2, (0 )
V=320 - SLou!, ondl :={(t,x)€[0,TIXQ : xe€dl,}, @
ul =u? =0, on dl, (e)

where F,l =Q\T,, th =TI, represent respectively the liquid and the solid region, and n is the outward normal vector field on Q. In
(2d), V is the outward normal velocity of dI';, v the outward normal vector field on 0I';, L the latent heat of fusion, and «,a, the
thermal diffusivities. An illustration of the two-phase Stefan problem is given in Fig. 1. We suppose that the boundary dI'; is in the
solid region so that Ftl (resp. I', = 1",2) is relatively open (resp. closed) in Q.

The initial temperature in the solid ué is always assumed to be non-positive. At the same time, the temperature in the liquid u(l)
is assumed to be either non-negative or non-positive everywhere. For convenience, we introduce the parameter  : = sign(u(])) which
indicates whether the liquid is initially regular (# = 1) or supercooled (n = —1).

2.1. Probabilistic solutions

We assume throughout that ||u6|| e y=1L1i=12, for ease of presentation and interpretation. Indeed, the initial temperature
0—

function (or its absolute value) can be regarded as the initial probability density function. Nevertheless, this restriction can be easily
removed; see Remark 2. Further, we let X’ be a Brownian motion with diffusivity «; that is normally reflected along 0Q and absorbed
when hitting the moving interface oI (in light of (2a), (2c), (2e)). More specifically,

X=X\ +\Jo;, W +1!

INT! 78N

0<t<T, 7' =inf{re[0,T]: X)+ /o, W/ + 1} gT}}, (3)

where W is a standard Brownian motion in R? and I’ the local time process at dQ [14, Chapter 1]. In addition, we take X (’) ~ |u6 [(x)dx.
We can now state the definition of a probabilistic solution.

Definition 1. We say that (yl ) /42,F) is a probabilistic solution of the Stefan problem (2a)—(2e) if for all ¢ € [0, T'], one has
1 1 2 .
/ w- / v=T (I WX D] - B Iy (X ) Tag)l), wECP©), 4)
Ty I
where 4 is the law of X!, i=1,2.

We next prove that the definition of a probabilistic solution is consistent with that of a classical one, as already shown for the
one-phase problem in [27, Proposition 5.5].

Proposition 1. Suppose that (u',u?,T') is a classical solution of the Stefan problem (2a)-(2e). Let X' be as in (3) and set ' =P o(X')~!.
Then, (1!, u2,T') is a probabilistic solution of (2a)—(2e).

Proof. See Appendix A.1. []
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In the course of the proof of Proposition 1, we find that

lu'|(t,x)dx =P(X! €dx, 7' >1), i=12. )

The temperature, albeit not our primary focus, can thus be retrieved from the (sub)density of “survived” particles (i.e., those not yet
absorbed by the moving boundary dI') once I' = (T, ),¢o | has been estimated. Further details are given in Section 4.1.2.

Remark 1. Suppose that the boundary of the ice region lies entirely in Q for all 7 € [0, T]. Then, a direct approximation argument
shows that (4) holds also for smooth test functions which are not compactly supported in Q, and we may choose y = 1 to obtain
ICo_l =T = nPG! <) = PG <),

The above identity relates the change in volume of the solid region on the left-hand side to the exit probabilities of liquid and solid
particles from their respective regions on the right-hand side, and can be interpreted as energy conservation.

Remark 2. Suppose that (u',u2,T’) is a classical solution of (2a)-(2e) with initial temperature functions uf) such that Iqu)II L )=
(),
¢; €(0,00), i =1,2. After a simple adaptation of the proof of Proposition 1, the growth condition (4) becomes

1 1 2 .
/w—/w=z(f1 S BN (XD L] = B (X)L 2g)]), W €CRQ). ©)
Ty T,

The additional flexibility in the initial temperature when c; # 1 proves useful in the numerical experiments (see Sections 4.1.2 and
4.1.3).

Example 1. The one-phase Stefan problem consists of setting u2(t,x) = 0 in the solid region. If the liquid temperature is initially
positive, then the solid is necessarily melting, i.e.: T, CT', CT,_ forall 0 < s <t < T. Writing X = X', 7= 7!, and u = y!, the growth
condition (4) simply reads

To-\I'y

2.2. Adding surface tension

Consider the Stefan problem (2a)-(2e) with the Dirichlet boundary condition (2e) replaced by

ul=u? = —y Ky, on dI. (2e)

The term k,r, is the mean curvature of oI', and y > 0 the surface tension coefficient. We use the convention that kyr-, (x) is nonnegative
when I, is locally convex at x € dI',. Equation (2¢’) captures the so-called Gibbs-Thomson effect which postulates that the temperature
at the interface is negative for strictly convex boundaries [45,23]. In other words, the freezing point of the liquid decreases at points
of convexity and increases at points of concavity. Clearly, surface tension effects only appear if d > 2. We now revisit Definition 1 in
the presence of surface tension.

Definition 2. We say that ( ul, 2 Disa probabilistic solution of the Stefan problem (2a)-(2e’) with surface tension if for all r € [0, T'],
one has

1 1 2
/w—/w= z(n[E” [w(Xll)ﬂ[,ls,]]—[E“ [w(sz)ﬂ{,zs,}]HC,), where (€)
Ty I,
t
% a
K=y (—20VK2——1()VK1)1//, ©
2 2
0 ar,
K0 = [, (XE) Tz | xb=x]. 10)

with the backward exit times 7, = inf{s € [0,1] 1 X| + /a; W] + 1L ¢T_}.

t

Proposition 2. Suppose that (u',u?,T) is a classical solution of the Stefan problem with surface tension (2a)—(2¢"). If u' :=P o(X")~! with
X' as in (3), then (u', ,uz,l") is a probabilistic solution of (2a)—(2e").

Proof. See Appendix A.2. []
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Fig. 2. Time evolution of the level-set function in the radial case and projected solid region (bottom horizontal plane).

3. Deep level-set method

Let I' = (I'),¢[0.7) De the time-varying region occupied by the solid, and let @ : [0,T] X £ — R be a level-set function such that

I ={xeQ: &{x)<0}

and the free boundary dI'; is given by the zero isocontour {®(z, ) =0}. We also assume that the initial region I'j_ is encoded as the
zero sublevel set of some function @, : Q — R. Whenever ® € CcY2([0,T] x Q) and V,® # 0, the normal velocity, outward normal
vector, and mean curvature of oI" read’

=- , V=——+, K .
|V, O] V. O] T g1

In particular, the Stefan condition (2d) can be rewritten as

0,® v, _div(v)

0,0=2V &Vl - 2V 0.Vl
2L X X 2L X X

The signed distance function defined by

p(t,x) = (=D dist(x,0T,)

can always be used as a level-set function and encodes all geometric properties of the interface; see [3,38] and [29, Section 1.2]. In
particular, suppose that dI'; is a smooth manifold. Then, p is differentiable in a neighborhood of oI', and satisfies

Avp
[Vipl=1, V==0,p, v=V,p, kyr= -1
To approximate a general level-set function @, we parameterize the difference ®(t,-) —®, by a neural network G : [0,T|xXQX©® —

R, for some parameter set ® C R”, p € N. This leads to the deep level-set function

on dI,.

O, x;0) :=Dy(x) + G(t,x;6), t€[0,T], 11

with the associated regions I'"? = {®(- ;0) > 0} and Y =T'> = {®(- ;0) < 0}. By parameterizing the difference we make sure that
the initial condition holds automatically. It also allows us to capture the occasional jumps in the solid region at t = 0 when the initial
data (u(l), ug) exhibits discontinuities; see Section 4.1.4.

Example 2. (Radial case) Let Q = By := {|x| < R} and I'y_ = B, for some r; € (0, R). We can then initialize the level-set function
with the signed distance ®,(x) = |x| — ry. If the initial temperature inside the solid and the liquid is radially symmetric, then
[, =B, for some cadlag function r: [0,T] — [0, R]. We can therefore set ®(t,x) = |x| — r(t), as illustrated in Fig. 2. This implies
that ®(7, x) — ®y(x) = ro — (1) for all x € Q. Hence, the neural network, although unaware of the radial symmetry, “simply” needs to
learn a function of time. Indeed, in our numerical experiments, we do not impose radial symmetry on the solution, but rather let the
neural network learn this invariance through training.

! The factor lel in the mean curvature ensures that ,5(x) = ﬁ for any ball B around 0 € R?.
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3.1. Loss function and training

Let us explain how the parameters in I'? can be trained so as to find a probabilistic solution, which is equivalent to requiring
the growth condition (4) to hold for every test function. This is similar to Leray type weak solutions of nonlinear partial differential
equations that demand certain equations to be satisfied for a class of test functions, and our approach can possibly be applied to
compute this type of solutions as well. We transform the growth condition into a loss function by forcing (4) to hold for a large but
finite number of test functions. Specifically, letting ¥ C C°(€2) be a finite collection of test functions, we aim to

minimize L£(0)= 2 L(O,y) over 6 €O, where (12)
we¥
2

LO.p) = ‘ (13)

1 1 2
— [ w——(nEwx )1 —Ely(X%,)1 .
/w lw T (MEW X ) T o0 < 1= EW(X ) 120 < 4]) o
¢

Ty

We expect that I'? induces a probabilistic solution if £(8) =0 and ¥ grows to a dense subset of C;"’(Q). In order to compute the loss
function in (12), we simulate reflected Brownian particles X/ = (X ,’ )rneHN’ j=1,...,J, on a regular time grid Il := {z, = nAt:

n=0,...,N}, At= % This gives the empirical loss

N
LO)= Y, D 2, 0.w), (14)
weY n=1

1
c”n(&u/)=/w—/u/— 7L
To- l"fn

1,j 2,j
(;1 WX Y, ) L rosg,y = WX, D200 ) (15)

J
=1

J

Regarding the test functions, we choose the Gaussian kernels®
L. {Wk(x)=e—ﬂk|x‘zk|2 B >0, z, €Q k= lK} K eN.

The centers z;, and widths g, are randomized in each training iteration to cover the whole domain. The randomization of the centers
z; is particularly helpful when d = 3, where considering a mesh would become computationally challenging. This choice of test
functions is motivated both by theoretical intuition and numerical tests. First, the family ¥ must be dense enough to approximate
any functions in C;°(2). One possibility is to use monomials, although they did not lead to satisfactory results (and are not compactly
supported). As we are primarily interested in the free boundary oI" (or equivalently, the regions I'!,I'2), it is expected that functions
with small support lead to better precision than monomials capturing global behaviors. Gaussian kernels indeed allow to verify the
growth condition locally by choosing large width parameters g, .
We then train the deep level-set function by gradient descent. That is, the parameters are updated according to

Oppss =0, — Vo £GO,), m=1,....M, (16)

for some M € N. However, the map 0 — 77 is piecewise constant, where 7 denotes a stopping time on the right-hand side of (15).
For concreteness, let us suppose that ¥ is the exit time of a liquid particle from the liquid region. In terms of the parameterized
level-set function, this reads

¥ =inf{t,,n< N : ®(t,, X} :0)<0}.

Unless a trajectory (X, r] (a)))”l\l 0 is exactly on the solid-liquid interface at the stopping time z%(w), i.e., ®(z%(w), X! ,(@);0) =0, the
n — T

value of 7¥(w) will remain the same after an infinitesimal change in the parameter vector 6. Hence, the gradient descent would

not converge due to the vanishing gradient V,z%. To circumvent this issue, the stopping times are relaxed according to a procedure

explained in the next section.

3.2. Relaxed stopping times

We adapt the relaxation procedure of [35], proposed in the context of optimal stopping. In short, it consists of replacing the sharp
boundary 0I', by a mushy (or fuzzy) region where stopping may or may not take place. First, we transform the neural network ®(z, - ; 0)
to locally approximate the signed distance to the interface oI',. This is achieved by normalization, namely by setting p(t,- ;0) =

%.3 We note that the spatial gradient of @(-;#) can be exactly and effortlessly computed using automatic differentiation.
<O,

2 If f, is large enough, then, at least numerically, y, is compactly supported in Q.
3 Indeed, write ¢ = ®(t,- ;) and fix x & dI',, i.e., ¢(x) # 0. If v is the outward normal vector at the point on dI', closest to x, then the signed distance p € R of x to

oI, can be characterized as the smallest solution in absolute value to ¢(x — pv) = 0. A Taylor approximation gives 0 = ¢(x — pv) & dp(x) —p v- V(x), s0 p = \V‘/]‘;:x))l

desired. Note that this approximation is only accurate close to the interface, which is precisely where p plays a role in the algorithm.
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-€ 0 -€
Signed distance

Fig. 3. Illustration of the relaxed phase function y*(p) = W Al

Next, the approximate signed distance is converted into a stopping probability. Without loss of generality, we describe the
procedure for liquid particles which are stopped when entering the solid region. For solid particles, see Remark 3. Given ¢ > 0, define
the phase indicator variables

ay° = (2 op)(t,. X} :0), n=0,....N,

(-p/e)*
2

with the relaxed phase function y*(p) = A 1; see Fig. 3 for an illustration. The phase indicator variable is equal to 1 in the

“g-interior” of the solid region (where p(t, x;0) < —¢) and is 0 when p(t, x; 0) > . Inside 6Ff"‘5, the phase indicator variable decreases
linearly with the signed distance to the interface. The parameter £ > 0 specifies the width of the mushy region

0.6 _ . .
ar; “={xeQ: |pt x;0)| <e),

in which a liquid particle enters the solid region with probability qﬁ’& €(0,1).

For Brownian particles, a natural choice for ¢ is € = \/E, this being the order of the typical Euclidean distance traveled by a
d-dimensional standard Brownian motion over a time sub-interval [z, + At]. For Brownian particles with diffusivity « > 0, we set
instead € = y/ad At. When the liquid and the solid particles have different diffusivities, we consider distinct mushy regions. Finally,
the stopped values in (15) are replaced by

n
0.
WX ) e <y~ )00 WX,
I=1
with the random stopping probabilities recursively given by

=t (- Z o) wmoe

I<n

—_——

same phase until 7,,

Similarly, the integrals in (15) are computed as

id.

J

1€ ; ; .

/ v 721‘13,’8,,- wU)), 4y =(fop)t, U%0), U/ TR UnifQ), a7
=

0
F,n

where Unif(Q) is the uniform distribution on Q. Notice that the terms /Fo v, do not depend on 6 so they can be computed only
once, e.g., in an offline phase. Because of the above relaxation, the gradient of £(0) does not vanish anymore. We can therefore apply
gradient descent to minimize the loss function, thus finding an approximation of the solid region I'.

Remark 3. For solid particles, the phase indicator variables are defined analogously by
ay° =1~ (2 op)(1,. X} :6).
We can thereafter follow the steps above to approximate the stopped values y (X 3279)]1 (720 <1}

7
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3.3. Jump penalty

So far, there is no control on the change in volume of the solid region. Although jumps can be observed [12], we may find a
solution which satisfies the growth condition but exhibits non-physical jumps, i.e., jumps of non-physically large size. To deal with
this issue, we consider the more general loss function £(60) = L(0) + A P(0), with the penalty term

PO)=R ( max Y AT |- c), C>0, R(A)=A*—001A", 18)
where /\ is the symmetric difference operation, and C > 0 is a constant describing the “allowed” volume increment between time
steps. We note that R is the so-called Leaky ReLU activation function, whose choice is justified as follows. If the maximum change
in volume exceeds the threshold C, the deep level-set function is severely penalized by the “ReLU” part of R (namely, A*). On the
other hand, the “leaky” part of R, i.e., 0.01A™, is introduced to slightly incentivize the solid to shrink/grow smoothly over time.

The Lagrange multiplier A is decomposed into the product of a fixed ratio 4, > 0 (typically less than one) and a dynamically
updated factor 15 such that A5¢?l¢ V, P(9) matches the scale of the gradient V, £(6). For this task, we employ the “learning rate
annealing algorithm” outlined in Wang et al. [47]. It is a popular normalization technique for physics-informed neural networks
when the loss function comprises heterogeneous components. Finally, the volume of an A I’;’n_l is estimated using a Monte Carlo
simulation as in (17).

Throughout the numerical experiments, we set the jump threshold to C = % In other words, the solid region is told to
grow/shrink by at most half the size of the domain per time step. This is a loose constraint, which nevertheless rules out unde-
sirable time discontinuities as we shall see in the numerical experiments. At the same time, we shall see in Section 4.1.4 that the
regularized algorithm is still capable of producing physical jumps, whose definition is now recalled. We also refer the interested reader
to [26]. Let us focus on the radial case and consider for r > 0, A € R, the annulus

Br+A \ Br’ A > O’
A, p =9B.\ B, p, —r<A<O, 19)
B A<—r.

r

A radial solution (I, )rero,11 = (Br#)reror) tO the Stefan problem is physical if for all ¢ € [0, T'], the jump Ar(r) = r(t) — r(t—), if positive,
satisfies

Ar(t):inf{A>0 : |A,(,_)’A| > —% / ul(t—,x)}_ (20)
Ar(t-),A

If Ar(t) = r(t) — r(t—) > 0, we gather that for physical solutions, Ar(¢) is the smallest solution of

1
A —yal = -7 / ul(t—,x). (21)
Ar(-),a
The left-hand side in (21) is the volume absorbed by the solid region I" at time 7. The right-hand side in (21) is the aggregate change
in temperature upon freezing of A,;_ A-

Remark 4. In the non-radial case, it is not sufficient to consider the volume increments only. The formulation of an appropriate
physicality condition is in fact subject of ongoing research.

3.4. Algorithm

The deep level-set method is summarized in Algorithm 1. The learning rate process (¢,,),_, is computed using the Adam optimizer
[21]. For the Monte Carlo simulation of particles, we use antithetic sampling to explore the domain in a symmetric fashion and to
speed up computation. More specifically, we simulate two antithetic particles for each generated initial point xg, namely

'—x0+\/—W +1" o T =inf{re[0,T]: x( + \Jo; W+ 1] €T3},
=x{ - \/_WM,+I’M,, 7 =inf{r€[0,T]: x{— Vo Wi +T ¢TIy,

3.5. Adding surface tension

3.5.1. Growth condition revisited

The numerical verification of the growth condition given in Definition 2 is not straightforward because of the additional term
K,. It turns out that an alternative formulation, which we now outline, greatly simplifies the implementation. In what follows, we
assume that d > 2. For 6 > 0, define the one-sided mushy regions,

o ={xell: dist(x,dl,) <8}, i=1,2.
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Algorithm 1 (Deep level-set method).

Given: @, = initial level-set function, J = batch size, M = # training iterations, ¥ = set of test functions, C = jump constant, ¢ = mushy region width

L. Initialize 90 €0
II. Form=0,...,.M —1:

1. Simulate X'/ —(X")

N (i =1: liquid, i = 2: solid), U/ "X Unif(Q), j=1,...,J

2. Approximate the signed distance function of oI" as p(-;0,,) = %
3. Forn=0,...,N, y € ¥, compute:
L op)t, U30,). 00,
— Phase indicator variables: qnu =(xf op)(t,,,X, 36,,), i=1,
1=(x °ﬂ)(fn»Xt 110, =2
- Symmetric Differences: |F AF "~ Iﬂ' Z |q" o 3’"10/|
J
- Integrals: /r”'" v~ % 2 y/(U/)
- Stopping probabilities: Qn”;, = ”,,(l - Z Q“j i=1,2

- Stopped values: w(X"/ i) Liconr) ™ Z Q,” u/(X,‘”)

4. Loss: £(0,)= Y Ef,,(é)m,u/)z with

wewn=1
4,0 0) = / /
e
J
1 l"
- (X Y = WX )T i)

Jj=1

6. Gradient step: 6,,,, =0,, — {m Vgé(em), Q(é’m) =L6,)+ 4 }*fncale P(6,,)
IIL. Return [ = {®(- ;6,,) <0}

Let (T,‘”)IZ | be the arrival times of a time-space Poisson point process with intensity

1,0
i 14 ~y2—d O ~ .
A, y) = <lkor, DI ———,  Yy=projor,(»), d=2, (22)
o lor; |
where projyr, (y) is the projection of y onto dI';, i.e., the point on dI'; closest to y. For each / > 1 and i = 1,2, we simulate a Brownian

particle Y/ = ()/S[’i) where, according to (22), the initial position of Y is uniformly distributed in dF(sT’;, if d =2 and inversely

selT? 1]
proportional to the absolute mean curvature of dI',s; otherwise. We also define the exit times rf’i =inf{s > Tlé’i : YS]’i gry.
!
In the three-dimensional, radially symmetric case (namely I', = B, C R3), the Poisson intensities simply read

Ar) 8

A, )—- (r) A, = (-1, (23)

1Ay,

with the annuli A, , defined in (19). We therefore gather that the expected number of simulated particles is directly proportional to
the radius of the solid region.

Proposition 3. Assume that a; = a, and consider a classical solution of the radially symmetric Stefan problem with surface tension.
Moreover, let N f DI be the counting process associated with (T,‘S" ) i =1,2. Then for all y € CX(Q),

(1<)
1 1 2
/ V- / V= i ('1 £ [W(X:_l)ﬂ(rlgt}] -E* [W(Xzz)ﬂ{ﬂsr)] + K, )’ (24)
To_ I,

K,=-K!-K?, (25)

t " Li Li

_ Ni . _ N
=lim £ IZ‘T (W(erj)n (i W(YTF,.)) . (26)

Proof. See Appendix A.3. []
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Remark 5. When the diffusivities of the solid and the liquid phase are different (a; # a,), the right-hand side of the growth condition
(24) contains an additional term, namely

t
~ oy —
K, =—y 22 1//Karxavl,/.

0 ar,

Recalling that u' = u? = —YKgr,, the above term can be approximated via

t t
= L% 2 a
IC,zg//u 6vw—%//ulavu/.
0 oré2 0 oré!

The integrals /;)Fg,i u' 9,y, in turn, can be computed using the stochastic representation of ' given in (41), below. Note that d,y is
easy to compute since the outward normal v is available from the deep level-set function.

Remark 6. It is conjectured that the representation (26) of the curvature terms holds beyond the radial case. The only difference is
that the effect of boundary particles is reversed in concave sections of the boundary. Specifically, we expect that, in general,

Né!
IC;’:EFS E [ngn Kor b x 51))(1,,071511)1 Sy T W(Y;;;J))}. 27

We show how to approximate ICﬁ of (27). First, the mushy regions can be expressed in terms of the level-set function as follows:
D(t, x) 52 D(t,x)
oré! & eQ: ————€(0,6]p, )" = €Q: —————¢€[-46,0] ;.
, {x Voo OO TSR g g €170

Without loss of generality, we focus on the term IC,1 and drop the superscripts ! throughout. Using the time discretization {f, = nAt
n=0,...,N}, At= %, N €N, we obtain for § > 0 sufficiently small that

8

n— m+l
- Z E [ E [51gn Kor, (Y’ ))(II/(Y )nlr‘sstn) —1,/(1/[;)) ‘ 773=tm]:|'

= IN" +1

Writing [Etm,y[’] =FE[-] Tl‘s =t,, Ytl = y] and recalling the Poisson intensity in (22) we find that

~ Zélaré | / |%ar, I E,, y[mgn(zg,r ()’D)(W(Ya)ﬂ{ra<, —w()]dy

y At 3 . —~ ~
== ZO[E [ s1gn(1<al—,m (Y,m)))lcar,m o
n—

E[W(Veo) Loy, —w (¥, | T2 =1, Y,m]]. (28)

The latter is estimated through Monte Carlo simulation where, for simplicity, the curvature is evaluated at ¥; instead of its projection

l//; onto dI', . This is an accurate approximation of the “true” curvature when the width § of the mushy region is small. What remains
is to approximate the mean curvature, which we address in the next section.

3.5.2. Mean curvature approximation

In this section, we present simple algorithms to locally approximate the mean curvature of a manifold = ¢ R?, d = 2,3, of
codimension 1. Other techniques, e.g., using finite differences, are discussed in [32]. If X = {¢ = 0} for some level-set function
pe C%(RY), the mean curvature can be expressed as

div(v(y)

i—1 ° YEZ, (29)

ks(y) =

with the outward normal vector field v = %. If ¢ is parameterized by a neural network, one could apply automatic differentiation to
compute ky. But computing second order derivatives through automatic differentiation is costly since it entails nested gradient tapes.
Indeed, the machine would need to keep track of the first order derivatives as well. Alternative approaches have been proposed to
speed up computation, e.g., using Monte Carlo techniques [37]. Here, we propose a dilation approach echoing the geometric nature
of curvature and solely exploiting the gradient of ¢.

10
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(@yd=2 b)d=3

Fig. 4. Dilation technique to capture the mean curvature of codimension 1 interfaces in R, d = 2,3.

As a motivation, consider a circle ¥, = dB, C R? of radius r whose curvature is xyx = % One way to approximate the cur-

vature is to look at the ratio between arc lengths of X, and the dilated circle X, . for small € > 0. Indeed, writing . D> A, . =

r,€0
{(rcos(tey), rsin(tey)) : t € [0, 1]} for an arc with radius r and angle ¢, € [0,27) we see that
H'(Aypee) + H' (Ayieey)
1 T fr+e) =1l+e Ky = Ky = : ( 1 e 1>~ (30)
H (.A,,EO) €or €\ H (A,’EO)

We can mimic this procedure for general subsets ¥ c R, dim;,(X) = 1, by approximating X locally by a circle. The procedure is
summarized in Algorithm 2 where X is the zero level set of some function ¢ € C'(R?). An illustration is also given in Fig. 4a. When
€y > 0 is small, the arc of length ¢ in (30) is accurately replaced by a segment tangent to X. We recall that the outward normal
vector field of X is readily available from the level-set function. The tangent vector field is therefore available as well.

Algorithm 2 (Local approximation of curvature, d = 2).

Given: ¢ € C'(Q) (Vo #0), T={p=0}, yeZ, >0, >0

Vo)

1. Pick a direction y of the tangent line at y, i.e., perpendicular to v(y) = e

1I. Consider
1. the segment .S, C R* with endpoints y* =y + ey
2. the dilated segment e R? with endpoints y* + ¢ v(y*)
H'(S9)

III. Compute the ratio T é) )

~1+eks(y)

H'(5¢)
IV. Return the curvature ky(y) & i(HI(S’) - ])

A similar procedure can be used in the three-dimensional case, as explained in Algorithm 3 and displayed in Fig. 4b. In short,
the segments in Algorithm 2 become quadrangles and lengths are replaced by areas. In Step III of Algorithm 3, note that the mean
curvature appears naturally from the cross products in (1 + exy ;)(1 + eky ), where (ky ; [2= | are the principal curvatures of X. As the
principal directions are unknown in general, the algorithm picks randomly two orthogonal vectors in the plane tangent to X at some
point y € X. This randomization has little impact on the accuracy of the obtained, as can be seen in Fig. 5 and Fig. 6.

Algorithm 3 (Local approximation of mean curvature, d = 3).

Given: ¢ € C'(Q) (Vo #0), T={p=0}, yeZ, >0, >0

I. Pick two directions y, L u, in the tangent plane at y, i.e., perpendicular to v(y) = ;z:i;l
1. Consider

1. the quadrangle Q, with vertices y = y + eyu;, i =1,2

2. the quadrangle Qf with vertices y* +e v(y7), i=1,2

H(0)
H2<Qj) R (1+e kg (M +e€kg,(0) =142 ks(y)
y
Q) )
H2(Q,)

1II. Compute the ratio

IV. Return the mean curvature xy(y) & i (

11



M. Shkolnikov, H. Mete Soner and V. Tissot-Daguette Journal of Computational Physics 503 (2024) 112828

(a) Curvature (b) Relative error

EE—

Parabola

Estimated curvature

Exact curvature

-1.5 -1.0 -0.5 0.0 0.5

(a) Mean Curvature, (a,b) = (1,2)

(c) Mean Curvature, (a,b) = (—1,2) (d) Relative error, (a,b) = (—1,2)

Fig. 6. Estimated mean curvature (left panels) and relative error (right panels) for a paraboloid (d = 3) with parameters (a, b) = (1,2) (top panels) and (a, b) = (—1,2)
(bottom panels).

Back to the Stefan problem, we naturally choose X =0I';, t € [0,T], and € < ¢; < 6, where 6 is the width of the fuzzy regions
or f‘] , oI f’z. Indeed, € < ¢, is imposed to gain accuracy while €, < & ensures that the points y* in Algorithm 2 (y7 in Algorithm 3)
belong to the fuzzy region for all y € dI,.

12
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Table 1
Default Training Parameters (d = number of space dimensions).
Parameter  Definition Value
J Batch size 27+
M Number of training iterations 3000
K Number of test functions (|¥]) 100d
N Number of time steps 100
g Mushy region width of phase i € {1,2} a,d%
Ao Lagrange multiplier 0.1
Table 2
Default problem parameters.
Parameter Definition Value
T Time horizon 1
R Radius of spherical domain Q 1
a, Diffusivity of liquid particles 0.5
a, Diffusivity of solid particles 0.5
y Surface tension coefficient 0

2
Let us verify Algorithms 2 and 3, respectively, for parabolas X, :={y € R?: Yy = %1} and paraboloids ¥, , :={y € R3: y3=

2 2
v, . . . .
;‘ + 72} with parameters a,b € R\ {0}. The mean curvature functions are given, respectively, by

42 42
2 %+%+a+b
k)= ————% @=2, xy,0)= = @=3). (31)
(%) ()
a1+ ab( 1+ 5+ 2
a? a? b2

Fig. 5 shows the approximated curvature and the error relative to (31) for a parabola (d =2) with parameter a = 2. In Fig. 6, we
repeat the exercise for a paraboloid with parameters (a,b) = (1,2) (top panels) and a hyperbolic paraboloid with (a,b) = (-1,2)
(bottom panels). As expected, we note that the error for the hyperbolic paraboloid in Fig. 6d is only sizeable along the points with
zero mean curvature.

4. Numerical results

Table 1 and Table 2 report the default training and problem parameters, respectively, across the examples. The value of M in
Table 1 (3000) indicates the maximum number of iterations if the loss function has not stabilized yet. For the algorithm with surface
tension, we set M = 1000 as each training iteration is more costly. Note that the Lagrange multiplier in front of the penalty function is
less than one to give more importance to the loss term than the penalty. The deep-level set function in (11) consists of a feedforward
neural network with input (¢, x) of size d = d + 1 and two hidden layers with 20+ d hidden nodes. The code is implemented in Python
3.9 using Tensorflow 2.7 and run on CPU (10 cores) on a 2021 Macbook pro with 64 GB unified memory and Apple M1 Max chip.

4.1. Radial case

We first discuss examples where the solid is radially symmetric. For concreteness, we regard the solid as an ice ball surrounded
by (liquid) water.

4.1.1. One-phase, melting regime (d =2)

Consider the one-phase Stefan problem without surface tension as in Example 1. Given I'y_ = B/, C B; = Q, and assuming
the initial temperature u(l) to be radially symmetric, the solid (ice) remains radial as well, i.e., I, = B, for some cadlag function
r. [0, T ]]—> [0, R] (see Fig. 7). We also set =1, and L = 1/4. The temperature in the liquid (water) is initially constant, namely

1 = —
0™ [BR\Byy|"
Fig. 8 compares the behavior of r(r) as t approaches the melting time with the theoretical asymptotic rate given by Hadzic and
Raphael [17], namely

1
) ~ \J1g—te V25 o inf(1>0: T, = o). (32)
As can be observed, the melting rate obtained with the deep level-set method is indeed close to the theoretical one.

13
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t=0.000 t=0.125 t=0.250 t=0.500

(1111

05 0.0 0. 05 0.0 0.5 0.0 05 0.5 0.0 0. 0.5 0.0 1.0

X1 X1 X1 X1 X1

Fig. 7. One-phase Stefan problem in the radially symmetric case (d = 2). Evolution of the solid and the liquid regions over time.

Deep-Level Set
= Asymptotic Rate ‘

Fig. 8. Mean radius of the solid region over time (left panel) and zoomed in on the melting time (right panel). The light purple curves represent one standard deviation
above and below the mean radius for various angles. The orange dashed curve is the theoretical melting rate from [17].

4.1.2. Two-phase, freezing regime (d = 2)
Let d =2 and consider the two-phase, radially symmetric supercooled Stefan problem without surface tension. Suppose that the
temperature is initially constant in the liquid and the solid regions, namely

21Bg\ B, I’ ° 10[B, | "o’

We therefore choose the constants ¢; = 1/2, ¢, =1/10 in Remark 2. In this example, the radius of the solid region converges to
some constant r, € (0, R). In other words, the solid region neither melts completely nor covers the whole domain in the long run.
In light of the Dirichlet condition (2e), the long-term temperature must be constant and equal to u!(co,-) = u#?(o0,-) = 0. In fact, the
theoretical value for r, can be derived from the Stefan growth condition. Indeed, choosing an increasing sequence y,, € C2°(Q) such
that y,, 1 1 in Q and time integrating (38) in the proof of Proposition 1 between t =0— and t =T — oo yields

1 . . ) ) C1+C2
T, | — T =—Z< ul, — u6> & g, —arg = (33)

The long-term radius is therefore r, = \/rg + % We can thus solve for r,, and compare it with the obtained long-term radius.
We choose ry =1/2, L =4, and T =5. The long-term radius is roughly equal to 0.59, as confirmed in Fig. 9.

Let us now estimate the temperature in both phases as a function of time and radius from the trained moving solid. In view of (5),
we here have that u'(1, x)dx = —¢; P(X] € dx, 7' > 1) for t € [0—, T, i = 1,2. Writing v*(z, |x|) :=u'(,x) and using polar coordinates
yields

; ¢ P(X/ledr|7'>1 ;
U(t,r)=—2—d— P(z' >1).
r r N J

(Va) (b)

The term (a) is the time ¢ conditional density of the norm of surviving particles which can be approximated using Monte Carlo
simulation and kernel density estimation (KDE). The second term (b) is the unconditional survival probability over time and can also
be estimated using simulation. Fig. 10 displays the temperature of the solid and the liquid over time. As can be seen, the temperature
at time ¢ = 2 is already close to its equilibrium ul = u =0.

14
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U 00

Fig. 9. Two-phase, supercooled Stefan problem without surface tension (d = 2) discussed in Section 4.1.2. The radius indeed converges to the theoretical long-term
value r, ~ 0.59.

t=0.00 t=0.05 t=0.50 t=1.00 t=3.00

[X) 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.5 0.75 1.00 0.00 025 0.50 0.75 .00 0.00 0.25 0.50 ). 1.00

Fig. 10. Two-phase, supercooled Stefan problem without surface tension (d = 2) discussed in Section 4.1.2. Temperature (vertical axis) in the liquid (') and the solid
(u?) retrieved using Monte Carlo simulation and kernel density estimation (KDE). At ¢ = 3, both phases are already close to their equilibrium temperature u = u2 =0
and long term radius r, ~ 0.59.

4.1.3. Two-phase, with surface tension (d = 3)
Consider the three-dimensional Stefan problem with surface tension. The initial temperatures in the solid and the liquid are
respectively given by
]lBR\BrO 2 ILBrO
=——, uy=-— .
0 2|BR\Br0| 0 |Br0|

We therefore have # = —1 (supercooled liquid), ¢, = 1/2, and ¢, = 1. Again, the solution remains radially symmetric, i.e., [, = B,(,
for some function r: [0,7T] — [0, R]. The temperature at the interface is therefore u! = u? = _ﬂ We use the growth condition in
Proposition 3 to train the parameters and estimate the mean curvature via Algorithm 3. To benchmark our method, we apply a useful
trick in the three-dimensional radial case to get rid of surface tension. A similar argument is given in [20, Section 4]. For i = 1,2,

define
Tt x) = ui (1, x) + |)y<_| (34

Then @' =% =0 on JT, so the Gibbs-Thomson condition (2€") is effectively “absorbed” by the transformation in (34). In addition,
A(x|7!') =3 = d)|x|73, hence x + |x|~! is harmonic if d =3 and ' still solves the heat equation (2a) We can therefore apply the

deep level-set method w1thout surface tension by changing the initial condition to u! (x) = uy(x) + . It is worth noting that the
Stefan condition (2d) is also affected. As u’ =% — L and 0 (IXI )= I2 , we obtain
a a a a a—a
V=20 - —Lou =20, - Lo +y—=——0t

P .
™ T T T TR

If a; = a,, then the Stefan condition remains unchanged. Otherwise, when ¢ - r(z) is strictly monotone, the growth condition in (1)
becomes

1 1 2
/w—/t/I:z([E“ WX DL ag] =B () T gy 14K, ), w €CTQ),

To Iy

15
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Tension

Tension (Trick)

No Tension

Fig. 11. Two-phase, radially symmetric Stefan problem (d = 3) with surface tension (y = 0.25) and without. Time evolution of the radius of the solid obtained from
the growth condition in Proposition 3 (orange curve), using the radial trick (dashed purple curve), and without surface tension (red curve).

t
,C:yu//izyal-“z /L_/L
' 2 [x[2 2 |x|2 Ix2 /"
0 oIy I, I

0

In this example, we assume that a; = a, = %, L =2, y=0.25. The above remedy when «a; # a, is therefore not needed. We note that

after the radial trick the liquid is still supercooled, i.e., E(l) <0.

Fig. 11 compares the radius of the solid over time obtained from the growth condition in Proposition 3 (orange curve), using the
radial trick (dashed purple curve), and without surface tension (red curve). The algorithm with surface tension and its benchmark
indeed gives similar results. As expected, the growth of the solid ball is less pronounced with surface tension as the freezing point
becomes negative for convex solid regions.

4.1.4. Two-phase, jump in the radius (d = 2)

Consider the two-dimensional radial supercooled Stefan problem inside the ball Q = B; C R%. We set the latent heat to L =2
and assume that there is no surface tension at the interface. Given I'y_ = B,O, ro € (0, R), and assuming the initial temperature to be
radial, the solid region remains radial as well, i.e., I', = B,;, for some cadlag function [0—,T] > ¢+ r(z). The goal of this experiment
is to demonstrate the method’s ability to generate jumps in the radius r(-). To this end, consider the following initial condition:

1

P 1
_mn"’oﬁo ), uy(x)= —ﬂgm (x), A s = B’o+5o\B’o’ (35)
0+50

1

uy(x) = -
0 IB,|

where r = %, 69 = 1 In other words, the liquid is strongly supercooled inside the annulus A, s and at zero temperature elsewhere.

We may therefore expect a sizeable liquid region surrounding the solid to freeze immediately, leading to an initial positive jump in

the radius. This is indeed the case as observed in Fig. 13. As seen in Section 3.3, we can in fact quantify the magnitude of the jump

for physical solutions. In this case, we have from (21) that Ar(0) must be the smallest positive value (if any) such that

1 4
[Apal= I / <— ] —u(l)(x)>~

ArO,A

Absent of surface tension (y = 0) and in light of the initial data in (35), this gives
(ro+AA 50)2 - r%

v 0 (36)
L((ro + 80)> = r3)

1
148l =T / lu)l = z((rg+ A% -1r2) =
ArO,A

Solving numerically, we obtain Ar(0) ~ 0.22. See also Fig. 12 which compares the area |Aro,A| with the excess temperature
1
Z
matches the physical jump size.

/ A a |u(1)| as functions of A. We finally observe in Fig. 13 that the initial jump produced by the deep level-set method nearly
Q-

4.2. General case

4.2.1. Two-phase, square-shaped solid (d = 2)
Let Q=B C R? and suppose that I',_ is the two-dimensional #;-ball of radius r, € (0, 1). For the initial level-set function, we
consider @y (x) = |x|; —rg, |x|; = Ei] |x;|. The temperature is initially uniform in both the liquid and the solid, namely

16
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Area A ed by T’

Temperature

0.00 005 010 015 0. 025 030 035 040 045 050

Jump size (A)

Fig. 12. Magnitude of the jump in the radius obtained by equating the excess temperature (blue curve) to the volume absorbed (red curve), corresponding to the
left-hand and the right-hand sides of (36), respectively. As can be seen, the initial jump size is roughly equal to Ar(0) ~ 0.22 (precisely 0.2208).

0.70
0.65
0.60
0.55
050
045
040

0.35

Fig. 13. Two-dimensional, two-phase supercooled Stefan problem without surface tension. The initial jump has size ~ 0.21 (precisely 0.2098) and is close to the
physical jump Ar(0) =~ 0.22.

o o

0.0

t=0.000 t=0.250 t=0.375 t=0.500
X1 X1

0.5 1.0 1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 () 1.0
X1

Fig. 14. Two-phase Stefan problem with square-shaped initial solid region (d = 2). Evolution of the solid over time (no surface tension).

il = _Clﬂg\i 2= _02&.
ITo-1

We choose a; =1/2, @y =1/20, L =1/100, and y = 0. This example intends to investigate the situation where the liquid particles
have a much larger diffusivity than the solid particles. As the liquid is not supercooled, we expect the solid region to melt faster than
with similar diffusivity.

As can be seen in Fig. 14, the solid region becomes rounder as the liquid particles are more likely to hit the corners of the initial
square-shaped region. Moreover, the particles in the solid typically take longer to hit the interface as their diffusivity is far less than
the one of the liquid particles.

Remark 7. Recall that the neural network learns the difference between the level-set function ®(z,-), t € [0, T] and its initial value
@, (-). However, @ is not smooth in the following examples, so the lack of regularity will carry over to ®(z,-) for t € (0,T]. To give
more flexibility to the deep level-set function, one could consider

17
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t=0.000 t=0.125 t=0.250 t=0.375 t=0.500

anns
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Fig. 15. Two-phase Stefan problem with surface tension (y = 0.15). Melting of a diamond-shaped solid region (d = 2).

(1, x:60) 1= G(t,x;0) + Do(x)(1 — G(t:0)),, t€[0,T],

where G : [0,T] X ® — R is another feedforward neural network taking only time as an input and capturing the decay of the initial
level-set function. However, this additional flexibility did not prove helpful in our numerical experiments. One possible explanation
is that the jump penalty prevents the auxiliary neural network from taking significant non-zero values.

4.2.2. Two-phase, diamond-shaped solid (d = 2), melting regime
We are given a diamond-shaped solid I')_ defined as the zero sublevel set of

2 2
Dy (x) = <2 |x,~|1/2> —ro- 37)
i=1

See the leftmost panel of Fig. 15 for an illustration. We choose r; =3/4 and the temperatures

L ey ) Ir,

Uy = ————, u-=——.

O 1@\ Ty_| O 4|
We also set =1, L =1/4, and y = 0.15. Fig. 15 displays the melting of the solid. As can be seen, the spikes of the diamond get
rounder and it eventually becomes almost radially symmetric. This is because the liquid particles hit the interface more frequently
near the spikes, having more contact points, which drives the melting process there.

4.2.3. Two-phase, diamond-shaped solid (d = 2), freezing regime
Consider as in Section 4.2.2 a diamond-shaped solid I'_ with level-set function as in (37). The initial temperature is again uniform
but the liquid is supercooled this time, namely

I, To\r, e e Tr,_
L TR A A P

We choose ry =1/2, ¢; =1, ¢, = 1/10. The purpose of this example is to see the impact of surface tension on the growth of the solid.
Recall from Remark 6 that for two-dimensional problems, only the sign of the curvature at the interface needs to be estimated (using
Algorithm 2).

Figs. 16a and 16b show the evolution of the solid region for the surface tension coefficients y =0 (no tension) and y = 0.15,
respectively. Observe that the interface is strictly concave almost everywhere (except at the spikes). In light of the Gibbs-Thomson
condition (2¢’), the temperature at the boundary is above zero almost everywhere when surface tension is added, which accelerates
the growth of the solid region. This is confirmed in Fig. 16b.

u

4.2.4. Two-phase, dumbbell-shaped solid (d = 2)
We finally investigate the melting of a dumbbell-shaped solid as in the top-left panel of Fig. 17. The following parameters are
used:

y=01, ¢ =2, 6220.25, n=1.

Again, the initial temperature is constant in both the liquid and the solid. As in the previous section, we use Algorithm 2 to determine
the sign of the curvature along the boundary. Fig. 17 describes the short term evolution of the solid region. As can be seen, the solid
disconnects in the time interval [0.06,0.07]. We also note that the middle of the “bar” melts faster than its extremities, namely the
concave corners. Indeed, concave areas have a melting point above zero, which slows down the melting process.

5. Conclusion

We combine the level-set method with deep learning to represent the solid region in two-phase Stefan problems. The growth
condition of probabilistic solutions is turned into a loss function and estimated using Monte Carlo simulation. The parameters of
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(a) Without surface tension.
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(b) With surface tension (y = 0.15).

t=0.500
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Fig. 17. Two-phase Stefan problem with surface tension and dumbbell-shaped solid region (d = 2). The solid disconnects between ¢ =0.06 and 7 = 0.07.

the deep level-set function are then trained using a relaxed formulation. When adding surface tension, the algorithm involves the
simulation of particles close to the solid-liquid interface and the computation of the mean curvature using a dilation technique. The
latter only requires the outward normal vector to the boundary, which is readily available through automatic differentiation of the
deep level-set function.

The numerical examples illustrate the validity and flexibility of the method. In the two-dimensional radial case, the algorithm is
capable of accurately capturing known melting rates, long-term radius, and initial jumps in the radius. Further, the three-dimensional
radial example of Section 4.1.3 accurately demonstrates the effect of surface tension. We subsequently apply the method to general
examples in two dimensions, where the initial solid is square-, diamond-, or dumbbell-shaped. The effect of surface tension is also
discussed.

We believe that our findings make a first step towards the computation and understanding of probabilistic solutions for general
Stefan problems. Naturally, other examples can be explored. For instance, it would be interesting to see if the method can handle
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more complex dynamics with multiple jumps (e.g., Figure 1 in [26]) or capture dendritic solidification [2,15,29]. Another direction
of future research is to investigate non-radial three-dimensional examples, such as cubic or dumbbell-shaped solid regions.

More broadly, the deep level-set method can be applied to other free boundary problems as well, e.g., the Hele-Shaw and the
Stokes flow [11]. In mathematical finance, the method can be adapted to describe the stopping region of American options, thus
extending the “neural optimal stopping boundary method” [35] when the geometric structure of the exercise boundary is unknown.
Another application would consist in computing the no-trade zone in portfolio choice problems with transaction costs [25].
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Appendix A. Proofs
A.1. Proposition 1

Proof. Let (u',u?,T) be a classical solution of (2a)-(2e). Without loss of generality, we prove the claim for # = 1. First, the Stefan
condition and the divergence theorem give

d
td =]V
dt/w /"'
FY

ar,

* a
=7/6Vu21//—7/0vu11//

ar, ar,

2
—Zﬂ/div(v i
= u' y)
i=1 2
¥

=i%/(m/ W+ Vi - V).
i=1 o
Observing that the velocity of FI' is =V, we obtain
/ %Au’ﬂy:/d,ui W= %/uiw—(—l)i/Vuiw.
i ri ri ort
In light of the Dirichlet boundary condition (2e), the last (surface) integral vanishes. Moreover, integration by parts gives
% /Vu" Vg = (—1)"% /u"avy/ - %/uiAy/ = —% /u"Ay/,
I or! r! i
invoking again the Dirichlet boundary condition. Thus,
d ~(d [, o [,
La/u/=z<5/u’u/—5/u‘m//>. (38)
oo )
For ¢ > 0, define 7! =inf{s > 0: X, (’) +4/% Wi +1i ¢T'_ }. Note that, by a Feynman-Kac formula,
W' (t,x) = EP<[uf (X)) 1

) i
'?;>t]]’ xe Ft’
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where the subscript in P, indicates that X é = x. Using the time reversibility of Brownian motion, It6’s formula and the definition of
7! in (3), we obtain

(—1)i+1/uill,z/[EPX[|u6(X,")|]1{7;->I)]u/(x)dx
ri ri

=//|ug(y)|Px(X,’edy,?§>t) w(x)dx
r Ty

=//w(x)nﬂ>y(xjedx,f">t) luf ()| dy
o I

:lE”I[W(Xti)ll{r">t}]

= EX [w(X! )]_EM,[W(Xii)nlrfSt}]

TiAt
t

i . a; i . i .

= [W(X(I))] + El / EX [AII/(X;)IL{T"N]] ds — E# [W(X;i)n(‘rist]l

[ —
0 =(=1)i+! /’1_‘. ul Ay

Hence % /r;' uy — % fr;' WAy = (—1)’% E* [W(Xi,) 1,i<] and the result follows. []
A.2. Proposition 2

Proof. It is enough to prove the claim for 5 = 1. Looking at the proof of Proposition 1 and using that u!,u? coincide on dI', we gather

that
d - (d %
L= = — [ dy -1 [ Viy+2L [ V-V
dt/w ;(dt/uw()/uw 2/u w)
I = ri ar, ri
d i % i !
= — -—= Ay ) -K,,
(8 fun- frm) s
B ¥ Y
where l'Crl = y"’z;a‘ / or, Kor, 0,w. Moreover, u' admits the Feynman-Kac representation

u'(tx) = BN o (XD 1,y 1 -y K'(1%), x €T,

<i
7,>1}

with K’ and 7/ given in the statement. This implies that

2
d id i ; I Il T
La/v/=;(—l)’a£" WX )L ey] — k) K+ K
I, =

with the additional terms
2 d 2 .
T i ITT i i
K = — K' 5 K = "y K'Ay. 39
=13 / v K" =135 / v (39)
i= F; i= F;

Next, due to (10), K’ is a weak solution of the heat equation in any rectangle R C int I, i.e.,

a; i o
/(6,+3A>WK =0, weC™R).
R

From Weyl’s Lemma, we conclude that K is in fact a strong solution of 9,K* = %AK " in int I, Noting also that K' = K? on dI, we
have

2 2 2
11@” =y di / Ky=Y (/a,K' w+(=1) / VK’u/> = Z/ FAK' v,
Y i=1 ! . i=1 . =17
r i ary r
Using Green’s second identity, note that (again, the outward normal of I ,' is —v)
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/AK’ v =(-1) /(GVK’ v —-K' 0V1//)+/K’A1//.
i or; i

Given the definition of I'Ct’” in (39) and recalling that K|, = K?|, = k-, this implies that

2
ST L ITT i Xi i
£l -k, =y2(—1)‘5'/(de‘ ¥ = Kor, 0,)
i=1 aT,
.7 a 04
=-K +y/ (720‘}(2—?10‘/1(1)1//
ar,
1 d
= _Kl + a K,.

Integrating in time and rearranging yields the claim. []
A.3. Proposition 3

Proof. Assume again that # = 1. Using similar arguments to the ones in the proof of Proposition 1, we can show that

) t
o [2)-F(Jor fovr ] fone)
Y f, = ri 0 i

0—

Expressing u := —u! T — u? 1 via [26, Lemma 2.4], we find for ¢ € {y, Ay},
t t

[se]
(=1t / Ue=Elp(X) 1 iyl +(=1) glg)l E [; oY, ﬂ{ﬂé'i§t<‘r[6'i}:| . (41)
ri -
Next, let us temporarily write (Y, 7}, 7, @) = 't Tf’i, rf’i, ;) to simplify notation. Using Itd’s lemma and Fubini’s theorem, observe
that

VD L1 crany =V ) Lin<ny — W) L <
t

a
=W(YTI)IL(T,S1) + E/AW(YS)Il(TlSS<T/}dS
0
At

S ALCAR AT

TiAt
t
a
= Ely () 1 ggeo) | =EW ) Linay =y (V) Tgan] + 5 / E[AW(Y) 17, < cr,y ] ds.
0

Similarly, for X! and 7', we have
'
. . . a; .
Ely (X)L sisy] =Elw(X) - y/(X’T,.)Il{,iS,}] + 3' / E[AW (X)) 1 isg]ds.
0
Plugging the above expressions into (41), with ¢ =y, and invoking Fubini’s theorem, we obtain
'

. . . a; . .
(—1)’+1</”'II/—/”'II/> =—5’/[E[Ay/(X;)]l{T,>S}]ds+[E[u/(X;,)Tl{Tist}]
ri T 0

0— t

M

R YR F Li . _ Li )
(=D 151{51 E [, 1<W(YTI($J)]1{TI°"5;} W(YT;s,i)]l{rf"st}>]

~

oo

oo a; Li
—=D'lim 5 [ E [IZ}AW(YS H1 {Tf@Krfﬂ] ds
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t
=1y X Ay ds+Ey(X') 1, 1y K
=0 5 [ [ WAy ds B Tiagy) + (-1 K,
0 ri

using (41) with ¢ = Ay for the last equality. In view of (40) and the definition of K, (N ‘Svi)?:l in the statement, we indeed find that

1 1 2
/y/—/qj:z(E” [W(Xil)n{‘rlst}]_lEM [W(sz)]l{,[zs,}]'l'nt). O
Iy I,
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