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Constant-sized self-tests for maximally
entangled states and single local projective
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Self-testing is a powerful certification of quantum systems relying on
measured, classical statistics. This paper considers self-testing in bipar-
tite Bell scenarios with small number of inputs and outputs, but with
quantum states and measurements of arbitrarily large dimension. The
contributions are twofold. Firstly, it is shown that every maximally en-
tangled state can be self-tested with four binary measurements per party.
This result extends the earlier work of Mancinska-Prakash-Schathauser
(2021), which applies to maximally entangled states of odd dimensions
only. Secondly, it is shown that every single local binary projective mea-
surement can be self-tested with five binary measurements per party. A
similar statement holds for self-testing of local projective measurements
with more than two outputs. These results are enabled by the represen-
tation theory of quadruples of projections that add to a scalar multiple
of the identity. Structure of irreducible representations, analysis of their
spectral features and post-hoc self-testing are the primary methods for
constructing the new self-tests with small number of inputs and outputs.

1 Introduction

Thanks to non-locality of quantum theory, unknown non-communicating quantum
devices measuring an unknown shared entangled state can sometimes be identified
based on classical statistic of their outputs. This phenomenon is called self-testing,
and is the strongest form of device-independent certification of quantum systems.
Self-testing was introduced in [20], and has been a heavily studied subject ever
since; see [26] for a comprehensive review of major advances on this topic. The
immense interest attracted by self-testing originates from its applications in device-
independent quantum cryptography [1, 12], delegated quantum computation [11],
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randomness generation [22, 2], entanglement detection [5], and computational com-
plexity [13, 17]. For experimental developments, see [16, 25].

This paper focuses on self-testing in bipartite Bell scenarios [6], where two parties
randomly perform measurements on a shared quantum state without communicat-
ing. From these measurements, joint probability distribution of inputs and outputs
of both parties can be constructed as classical data describing the system. Sup-
pose that each party can perform N measurements, each of them with K outcomes.
Borrowing terminology from quantum games, we model this setup with bipartite
quantum strategies. Namely, an N-input K-output strategy S of two parties (sub-
systems) A and B consists of a bipartite quantum state |¢)) in the tensor product of
Hilbert spaces H 4 and Hp, a measurement (Mi7a)£{:1 of positive operators on Hy4
for each i = 1,..., N, and a measurement (N;;){, of positive operators on Hp for
each j =1,..., N. The correlation of § is the array p of probabilities given by the
Born rule p(a, bli, j) = (| M. @ Njy 1), and is the classically observable data in-
duced by §. There are two trivial modifications of the strategy S that do not affect
its correlation: one is a unitary change of local bases, and the other is extending the
state with an ancillary state on which the measurements act trivially. If any other
strategy with correlation p is obtained from S using these trivial modifications, then
we say that § is self-tested by p. That is, the state and measurements in a self-
tested strategy are essentially uniquely determined by the correlation. The most
renowned example of a self-tested strategy (with 2 inputs and 2 outputs) consists
of maximally entangled qubits and two pairs of Pauli measurements, which give the
maximal quantum violation of the famous CHSH inequality [8, 28, 20].

The following is a fundamental self-testing problem:

(%) Which states and which measurements can be self-tested, i.e., appear in a strategy
that is self-tested by its correlation? Furthermore, how complex is such a strategy,
e.qg., how many inputs and outputs per party are required?

The breakthrough on (%) for quantum states was achieved in [10], where the
authors showed that every entangled bipartite state can be self-tested. The number
of inputs in the provided self-tests grows with the local dimension n of the quantum
state under investigation, which makes these self-tests rather complicated in large
dimensions. The existence result of [10] was later not only extended to multipar-
tite states in quantum networks [27] and refined in one-sided device-independent
scenarios (23], but also improved in terms of inputs and outputs needed to self-test
certain states. In [24], the authors show that an n-dimensional maximally entangled
bipartite state can be self-tested using 2 inputs and n outputs. The paper [14] was
the first to provide constant-sized self-tests for some infinite families of maximally
entangled states of even dimension (but not constant-sized self-tests for all maxi-
mally entangled states of even dimension). This result was complemented by [19],
where the authors establish that maximally entangled state of any odd dimension
can be self-tested using 4 inputs and 2 outputs.
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In comparison with states, the progress on (x) for measurements has been more
constrained. All two-dimensional projective measurements have been self-tested [29],
and likewise tensor products of Pauli measurements [21, 9]. Recently, it has been
established that every projective measurement can be self-tested [7]. Actually, the
self-tests derived in [7] allow for arbitrary real ensembles of projective measurements
to be self-tested simultaneously. However, self-testing an n-dimensional projective
measurement in this manner requires roughly n? inputs.

Contributions

This paper provides self-tests for all maximally entangled states and all single local
projective measurements, respectively, that are uniform in number of both inputs
and outputs. The first main result concerns maximally entangled states.

Theorem A (Corollary 5.4). Maximally entangled bipartite state of any local di-
mension d can be self-tested using 4 inputs and 2 outputs.

The strategies of Theorem A are given in Definition 5.1. Their construction and
self-testing feature arises from the one-parametric family of universal C*-algebras
A,_1 generated by four projections adding up to 2 — % times the identity. Remark-
able Tesults about representations of these algebras were established by Kruglyak-
Rabanovich-Samoilenko using Coxeter functors between representation categories
[18]. Their theory is essential in the proof of Theorem A. Representations of C*-
algebras of this type have already been leveraged in [19]. However, their work uses
a different family of parameters (2 — % for odd n, instead of 2 — % for natural n)
that leads to simple C*-algebras, and maximally entangled states of odd dimensions
only. On the other hand, exploiting algebras A, 1 for self-testing purposes requires
a more sophisticated analysis of their 1representat7ilons7 but applies to all maximally
entangled states.

The second main result of this paper provides constant-sized self-tests for single
local projective measurements with 2 outputs, i.e., binary projective measurements.
Note that a local binary projective measurement (P, I — P) is, up to unitary change
of local basis, given by a real matrix, and determined by the dimension n and the
rank r of the projection P.

Theorem B (Corollary 5.11). A single local binary projective measurement of any
dimension n and rank r appears in a 5-input 2-output strategy that is self-tested by
its correlation.

See Definition 5.9 for the explicit strategies used in Theorem B. A generalization
of Theorem B for local non-binary projective measurements is given in Corollary
5.13. Tt is important to stress both the significance and the limitation of Theorem
B. Given a single projective measurement, Theorem B provides a small self-testing
strategy that contains this measurement. Note that up to a choice of coordinate
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system, a given projective measurement always admits a real matrix presentation.
However, Theorem B does not address self-testing of ensembles of projective mea-
surements; from this perspective, it is weaker than [7], which provides (large) self-
tests for all real ensembles of projective measurements. The strategies of Theorem
B are obtained from the strategies of Theorem A by the principle of post-hoc self-
testing [26]. A broad sufficiency criterion for applicability of post-hoc self-testing
was presented in [7]. To apply this criterion in the proof of Theorem B, certain
spectral aspects of representations of A, 1 need to be resolved. Namely, we deter-
mine the spectrum of the sum of pairs of pnrojections arising from representations of
Ay 1.

While the derivation of the newly presented self-tests might seem rather ab-
stract, the resulting correlations admit closed-form expressions, and the correspond-
ing strategies can recursively constructed using basic tools from linear algebra (see
Appendix A for examples).

Reader’s guide

Section 2 reviews the standard terminology and notation on quantum strategies and
self-testing. Section 3 presents a construction of four n x n projections that add
to 2 — % times identity, and their basic properties; these projections are central to
this paper, and provide local projective measurements for the new self-tested strate-
gies. Section 4 establishes certain spectral results about these projections, which
are critical for demonstrating self-testing in this paper. While this section provides
the main new mathematical insight into what is required to establish the new self-
testing results, a reader only interested in main statements may skip this section.
Section 5 presents the new self-tested strategies and their correlations. Section 6
addresses obstructions to constant-sized self-testing of arbitrary entangled states
and pairs of projective measurements. Lastly, Appendix A explicitly constructs the
distinguished projections appearing in self-tests for local dimensions up to 6.
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2 Preliminaries

This section introduces notation and terminology on quantum strategies and self-
testing, following the conventions presented in [19]. For a comprehensive overview,
see [26].
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Let K € N. A K-tuple of operators (P,)X | acting on a Hilbert space H is a
positive operator-valued measure (K-POVM) if P, = 0 and Y% | P, = I. Ifall P, are
projections, then (P,)E | is a projection-valued measure (K-PVM), or a projective
measurement. Note that, up to a unitary basis change, a PVM (P,)X_; is uniquely
determined by the ranks rk P, for a = 1,..., K. That is, every K-PVM with ranks
of projections ry, ..., rg is unitarily equivalent to

(Toy ® Oy Oy @ Ty @ Oporger -+, Oy, © I )

A 2-POVM is also called a binary measurement. Observe that a binary PVM is
simply a pair (P, I — P) where P is a projection, and is determined by the dimension
and the rank of P up to a unitary basis change.

A (pure bipartite) state |1) is a unit vector in Hy ® Hp, where Hy, Hp are
Hilbert spaces. We say that |¢) has full Schmidt rank if PR I|¢) =1 ®@ Q|Y) =0
for some projections P, () implies P = 0 and () = 0. In this case, the Hilbert spaces
H4 and Hp are isomorphic. For n € N, the (canonical) mazimally entangled state
of local dimension n is |¢,) = ﬁ > liyi) € C" @ C". For A, B € M,,(C),

(6a A Blon) = 7(AB") = - t(ABY),

where 7 denotes the normalized trace on M, (C).
Let K4, Kp,Na, Ng € N. An (Ny, Np)-input (K4, Kg)-output bipartite quan-
tum strateqy S is a triple

S = (|¥) ;Ml,...,MNA;N17---aNNB)

where M, are K4-POVMs on a finite-dimensional Hilbert space Ha, N; are Kp-
POVMs on a finite-dimensional Hilbert space Hpg, and [¢)) € Ha @ Hp is a state.
When K = K4 = Kg and N = Ny = Np, we simply say that § is a N-input
K -output bipartite strategy. The correlation of § is the Ny x Ng x K4 x Kpg array
p with entries

pla,bli, j) = (Y| Mio @ Njp [¥) 1<a< Ky 1<b<Kp,
1 <i< N 1<j<Ng

Since S in particular models non-communication between parties, the correlation p is
non-signalling, meaning that p(ali) := X8 p(a, bli, j) and p(blj) := 54 p(a, bli, )
are well-defined (the first sum is independent of j and the second sum is independent
of 7). A correlation p is called synchronous if Ky = Kg, Ny = Ng and p(a,bli,i) = 0
for all + and a # b.

Let S and S be (N4, Np)-input (K 4, Kp)-output strategies. Then S is a local
dilation if S there exist finite-dimensional Hilbert spaces K4, Kp, a state |aux) €
Ki® Kp and isometries Uy : Ha — ﬁA QK4sand Ug : Hp — ﬁB ® g such that

(Ua © Up)(Mia ® Njp) [¢) = (Mo @ Njp) [¢) @ |aux) (1)
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for all a,b,i,j. There is a slight abuse of notation in (1); namely, we identify
(Ha®KA) @ (Hp@Kp) = (Ha@Hp) ® (Ka® Kp).

Note that if S is a local dilation of S, then the correlations of S and S coincide.
Finally, we say that a strategy S is self-tested by its correlation if it is a local dilation
of any other strategy with the same correlation.

3 Quadruples of projections adding to a scalar multiple of the

identity

In [18], the authors derive several profound results on tuples of projections that add
to a scalar multiple of the identity operator. This is achieved by studying certain
functors between categories of their representations, which are also the cornerstone
of this paper. For our purposes, we focus on projections Py, P, P3, Py that add to
(2— %)I , where n is a natural number. First we adopt the language of representations
of C*-algebras, at least to the extent required in this paper. Then we review the
construction of the aforementioned functors from [18, Section 1.2]. Finally, we refine
a part of [18, Proposition 3] to obtain further properties about the projections P; as
above (Proposition 3.1).
For o € R define the universal C*-algebra

2
Ao = C" (w1, 22,23, 10: 15 = 2] = 2, B+ T2+ 75+ 14 = @),

and let Rep,, denote the category of representations of A,. That is, objects of Rep,
are representations of A, on Hilbert spaces, and morphisms of Rep,, are equivariant
maps, i.e., bounded linear operators between Hilbert spaces that intertwine the
actions of representations. For a comprehensive source on C*-algebras and their
representations, see [3]. While the above terminology offers a suitable mathematical
framework for the technical steps in the proofs of this paper, let us extract the main
meaning behind it, sufficient for comprehending the proofs. Without addressing
precisely what a universal C*-algebra is, we can still say what its representations
are. A representation 7 of A, is a quadruple of projections X, X5, X3, X4 on a
Hilbert space H that satisfy X; + Xy + X35 + X, = af. Thus Rep,, is foremost a
collection of such quadruples; one could think of A, as their abstract model. For a
7w € Rep, as above we write 7(x;) = X;, and we assign to it a 6-tuple of numbers
[7] = (a;n;dy, da, ds, dy) where n = dimH and d; = rk7(z;), the dimension of the
range of X; (if H is infinite-dimensional, then n = oo; likewise, d; can be infinite).
Note that representations may be related to each other in several ways. For
example, let m € A, is given by projections X1, ..., Xy on a Hilbert space ‘H and
p € A, is given by projections Y7, ..., Y, on a Hilbert space L. Then the projections
X16Y,..., Xy @Y, act on H & K and add to « times identity, so they determine
representation of A, called the direct sum of m and p. Next, we say that 7 and p are
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unitarily equivalent if there is a unitary (that is, an isometric invertible linear map)
U:H — K such that Y; = UX;U* for « = 1,...,4. Finally, we say that m € Rep,
is irreducible if it is not unitarily equivalent to a direct sum of representations.
Irreducible representations can be viewed as the building blocks of Rep,; namely,
every representation is unitarily equivalent to a (possibly infinite) direct sum of
irreducible representations. Without going into technical details, viewing Rep,, as a
category instead of merely a set encapsulates these relations between representations
(e.g., that some of them are unitarily equivalent, some are direct sums of others,
and some are irreducible).

In this paper, representations of 4, (for certain choices of «v) give rise to the pro-
jective measurements in self-tested strategies presented in Section 5. To establish
the self-testing property, it is imperative to have a good handle on Rep,, (concretely,
on the irreducible representations within). This is straightforward for a = 0 and
a = 1. Indeed, the only quadruples of projections adding to 0 are tuples of zero
operators; these are all direct sums of the trivial representation 7 given by 7(z;) =0
acting on the one-dimensional Hilbert space. Hence Rep, contains a unique irre-
ducible representation. On the other hand, quadruples of projections adding to 1 are
necessarily diagonalizable, and thus unitarily equivalent to direct sums of (1,0, 0, 0),
(0,1,0,0), (0,0,1,0), (0,0,0,1) acting on the one-dimensional Hilbert space. Thus
Rep; contains exactly four unitarily non-equivalent irreducible representations. For
general «, representations of A, are not yet well-understood; however, the aim of
the next subsection is to leverage the knowledge of the very simple Rep, to study
Rep,, for certain values of a.

3.1 Functors between representation categories

In this subsection we define two functors ' = T, : Rep, — Rep,_,, (linear reflection)
and S = S, : Rep, — Repﬁ (hyperbolic reflection). The subscripts are omitted
when clear from the context. Before defining 7" and S, let us mention what a reader
should imagine under this terminology. A functor from Rep, to Repg is primarily
a mapping, that takes each quadruple of projections adding to « times identity to
a quadruple of projections adding to 3 times identity. However, being a functor
means that this mapping has to respect the additional structure of the categories
Rep,, and Repg; in particular, it needs to preserve direct sums, and map unitarily
equivalent representations to unitarily equivalent representations. Technically, one
encapsulates this by saying that a functor consists of a map between objects of
categories and a (well-behaved) map between morphisms of categories.

(T'): Given a representation 7 of A, let T'(7) be the representation of Ay,
determined by T'(m)(z;) := I — w(z;). Note that T commutes with equivariant
maps between representations, so it extends to a functor 7' : Rep, — Rep,_,. If
[7] = (a;n;d;) then [T'(m)] = (4 — a;n;n — d;).

(S): Suppose a ¢ {0,1}, and let 7 be a representation of A, on H. Denote
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H = @,;ran m(x;). Let w; : ranm(x;) — H be the canonical injections, and let
w; : ran7(z;) — H be inclusions. Then

1 o~
u=—7=|: | H—=>H

is an isometry by definition of the algebra A,. Let K = ran(/ —uu*), with inclusion
v : K — H. Note that dim K = dim H — dim H. Define

a
S ;) = “wwv.
(7)(x;) oV Wiy
Then
o? a?
(S(m)(2;))* = ——= v wywov* waw v = ———v*ww! (I — uu)wawv
(a _ 1)2 1 7 (a _ 1)2 (2 (2
062 % 1 % * C¥2 1 * *
= ——=vw; <I — uzuz> WV = <1 — ) VW w; v
(v —1)2 a (v —1)2 a
= S(m) (@)
and
4 4 4
ES(W)(%) _ ; 2w = ai v (;ww> v = Oi vy = Oﬁ U
Therefore S(m)(z1),...,5(7)(z4) are projections that give rise to a representation

S(m) of Aaon K. As described in [18, Section 1.2], one can also extend S to
equivariant maps, resulting in a functor S : Rep, — Rep_o_. If [7] = (a;n;d;) then

[S(m)] = (327: 2 di — ny ).

3.2 Distinguished quadruples of projections

For a € (0, 3), the (Coxeter) functor
¢t =SoT =S5, 40T, : Rep, — Repy, 1

define an equivalence of categories (with inverse 7" o S) by [18, Theorem 2|. In
particular, @ is a bijection between representations of A, and A, , which maps
irreducible ones to irreducible ones. If [7] = (a,n,dy,...,ds) then [®F(7)] = (1 +
ﬁ; 3n —Y;di;n —d;). The functor ®* plays an implicit yet crucial role in [18,
Proposition 3] that describes the category Rep, 1. For the sake of completeness,
we provide the proof of the part of [18, Propositign 3], and refine it to extract the
additional information needed in this paper. Given a real number 3 let |3] denote
the largest integer that is not larger than /.

The main statement of this section shows that starting with the easily-understood
Rep; and then repeatedly applying the functor ®*, one obtains a good grasp on

Rep,_1 for every n € N.
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Proposition 3.1 ([18, Proposition 3(c)]). Let n € N. The C*-algebra A,_1 has
precisely four unitarily non-equivalent irreducible representations. '
More concretely, there are projections fp&”% . 7‘351”) € M,,(R) with rk mﬁ”) = 5] -
(—=1)™ and rk fpﬁ.”) = | 5] fori=2,3,4, such that given an irreducible representation
of Ay_1, the quadruple (m(x1),...,m(x4)) is unitarily equivalent to one of the

CURR USRI U URR R U AR v

( ;(7)”)7 4(1”)7 g.n)’ gn))7 ( gn)7 Lg)n)7 4(1”)7 g.n)) °
Proof. We prove the statement by induction on n. If n = 1, then ‘Bgl) = land ‘Bgl) =
0 for 7 = 2, 3, 4 are the desired 1 x 1 projections, giving rise to a representation A; —
C. Now suppose projections fpﬁ”) € M,,(R) possess the desired properties. Then they
define an irreducible representation of A, 1 given by 7(z;) = ‘BZ(-”), and the other
three irreducible representations up to unita;y equivalence are obtained by cyclically
permuting the generators. Now let B = Ot (7m)(x;). Since &t : Repy, 1 —
Rep,_ . is an equivalence of categories, ®*(7) is an irreducible representati(;n of
A, 1, and the other three irreducible representations up unitary equivalence are
obtained via cyclic permutations of generators. The rank values are determined by
comparing [7] and [®*(7)]. O

Projections ‘I&En) are central to the self-testing results in this paper. The intu-
ition behind their applicability to self-tests is the following: if we momentarily forget
irreducibility, they are characterized by having certain traces and satisfying a linear
equation. In a quantum strategy with a maximally entangled state and projective
measurements, traces and linear relations among the PVMs are encoded by the cor-
relation. This makes strategies with maximally entangled states and measurements
(B™, 1 — ™) very natural candidates for the self-testing phenomenon.

Remark 3.2. Proposition 3.1 does not provide a closed-form expression for projec-
tions ‘,]35"), cee z(ln) € M,,(R) as functions of n. Nevertheless, definitions of functors
T and S give rise to a recursive procedure for constructing ’Bgn) € M,(R) from
wg”*” € M,_1(R). This procedure requires only matrix arithmetic and Gram-
Schmidt orthogonalization.

Basis of recursion n = 1: set &Bgl) =1 and ‘,BZ(»I) :=0fori=234.

Recursive step n — n + 1: given q3§”), e 7q351n) let

e U; bean n x rk(n — ‘BE")) matrix whose columns form an orthonormal basis

of the column space of I — P
o Vi bean (rk BY x (n 4+ 1) matrix such that the columns of
Vi

Vi
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form an orthonormal basis of the column space of

(v -+ ).

Then set P = (2 — n+1)V*V
Using the above procedure, we obtain the following projections for n = 1,2, 3:

= (1), B = (0), By =

0 1
(0 & :(o

1 00

010 -3

—2v/5 5

000 5 S
1 1 A5 1 -1 =5
3 3vV3  3V3 3 3vV3  3V3
(1 1 V5 sp(?’)_ -1 1 5
33 9 9 4 V3 9 9
V5 V55 =5 5 5
3v3 9 9 3v3 9 9

The linear-algebraic nature of this procedure allows for a feasible implementation
using exact arithmetic. For concrete matrices in cases n = 4,5, 6, see Appendix A.

For later use we record a technical fact.

Lemma 3.3. The 4 x 4 matrix

kP kPl kPl rkepl” 1111
rkfpin) rk P rkqggn) rkgpgn) R +VLJ 1111
kB kB kB rkepl AT9011 01 11

) 1111

kB kB kP rkept
is invertible for every n € N.

Remark 3.4. Let us determine the normalized traces of m§") and their products;
these values will appear in the self-testing correlations of this paper. Clearly,

r (B = ; _ Hisl—l)", 7 (P) = ; - w, for i =2,3,4.

Next, by Proposition 3.1, for every permutation o of {2, 3,4} there exists a unitary
U € M,,(C) such that

upiUr =Y, UpUr =), fori=234.
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Therefore 7(PP™) is independent of i € {2,3,4}, and r(q3§”)fq3§.">) is independent
of i,j € {2,3,4} with ¢ # j. From the equation Z?Zl‘BE”)‘Bé") = (2 - %)‘BE") for
t=1,...,4 we then obtain

T (BB = ; <1 - ) (P1)  fori=12,3,4,

.
(PR = <1 - ) (7 (B0 - o ( 1)) forij =23 4andi ]

4 Spectral results

Let n € N. The projections '™, ..., B of Proposition 3.1 play a central role in
self-tests of Section 5 below. Namely, they appear as projective measurements in a
self-tested strategy in Subsection 5.1; the fact that they are determined by a linear
relation P + -+ + ‘}3&") = (2 — 2)I is beneficial for deducing the measurements
from the correlation. Nevertheless, to obtain a self-test, one still needs to be able
to deduce the quantum state from the correlation. Furthermore, in Subsection 5.2,
the presented strategies contain an additional projective measurement, which, while
related to the mg”), is itself not a part of quadruple adding to a scalar multiple of
identity. To help with the identification of the quantum state and the additional
measurements from the correlation, we first require some information on eigenvalues
and eigenvectors of certain tensor combinations and sums of pairs of the matrices
&BE”). Concretely, Proposition 4.2 shows how the maximally entangled state is related
to B, ..., P, and Proposition 4.4 shows that B + P has pairwise distinet
eigenvalues, which enables post-hoc self-testing techniques [26, 7].

4.1 Role of the maximally entangled state

First, we identify the largest eigenvalue of >, ‘BE") ® ‘Bgn) and the corresponding
eigenvector (cf. [19, Lemma 5.7]), and bound the spectrum of 3, B @ ‘B( for a
nontrivial cyclic permutation o of (1,2,3,4). Given |[¢) = 32, ; ay; |i)|j) € C”@C” let
mat(|¢)) = 3, ; i |9)(j] € M,(C) denote its matricization; note that mat(|¢,)) =
ﬁ] , and

mat (A ® B ) ) = Amat(|¢))B*

for A, B € M,,(C).

Lemma 4.1. Let n € N and let o be a cyclic permutation o of (1,2,3,4). Denote
M = 2n— 1Z 1q3n) ®q30(z

(i) If o =id, then the largest eigenvalue of M is 1, with the eigenspace C|py,).

(ii) If o #id, then all eigenvalues of M are strictly smaller than 1.
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Proof. Let |¢) € C" @ C" be an arbitrary state. Then

4
LB eI

— (1= 5 T ) e 1) o

Therefore the largest eigenvalue of M is at most 1. Since

S P R |¢n>—r<1—2 Zm“)

2n i=1

WIS -My) 2 WIS - o

|p,) is an eigenvector of M for eigenvalue 1 if ¢ = id. Suppose |[¢)) € C* @ C"
satisfies M [1)) = |¢). Then (2) gives

4
(| M |¢) = sz” ® I |y)

—17

and therefore

4
WP ® (I =B [¢) =0,
=1

Positive semidefinitness then implies i]3£n) ® (I — C’B%)) |y = 0, and analogously

(I -3 ®‘I§((,78) 4)) = 0. In particular, ™ @ I [¢)) = I®‘J3((:Ei) |Y) fori=1,...,4.
Therefore

P mat([)) = mat([V)Pyp,  fori=1,....4, (3)
Note that mﬁ”), cee in) and ‘,]3((;8), e ,‘,]3((;21) give rise to two irreducible represen-

tations of A, 1 by Proposition 3.1, which are unitarily equivalent if and only if
o = id. Since nmat(W}) intertwines these two irreducible representations, Schur’s
lemma implies that mat |¢)) = I for some v € C if ¢ = id, and mat |[¢)) = 0 if if
o # id. Therefore |1)) is a scalar multiple of |¢,,) if o = id, and 1 is not an eigenvalue
of M if o # id. O

The following proposition shows how the maximally entangled state |¢,) is in-
trinsically connected to representations of A, 1.

Proposition 4.2. Let n € N, let ay,...,a4,b1,...,bs be nonnegative integers with
a1+ +ag =by+---40by, and let o4, ...,04 be the distinct cyclic permutations of
(1,2,3,4). Consider the identification

(C(a1+ +as)n ® (C (bi+---+ba)n = (@ o ®Cbk) R (Cn ® (Cn)'

7,k=1

Then the largest eigenvalue of

% (@ owi) o (G own)
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is 1, with the eigenspace
{( laux;) @ |auxs) @ |auxs) @ |auX4>) ® |pn) : |aux;) € C¥ ® Cbﬂ}.

Proof. Follows from the distributivity of tensor product over direct sum, and Lemma
4.1. m

4.2 Spectrum of the sum of two distinguished projections

Next, we analyze the spectrum of the matrix ‘Bén) + ‘4351”) for every n. To do this,
we return to the functors between categories Rep,. Given a finite-dimensional rep-
resentation 7 of A,, let A; C [0, 2] denote the set of eigenvalues of 7(x3 + x4).

Lemma 4.3. Let w be an n-dimensional representation of A.,.
(1) Apry =2 — Ay
(ii) Let o ¢ {0,1}.
(ii.a) If tkm(xy) +rkm(xs) > n =rkw(zs) + rkw(zy) then
Astm = {0} U (5% — 2554 -
(ii.b) If tkm(zs) +rkm(xy) > n =rkw(xy) +rkw(zs) then
Asiry = {21}V (521 — atite) -
(iii) Let o € (0,3).
(tii.a) If rkm(xy) +rkw(zs) < n =rkn(zxs) +rkn(zy) then
Agt(m = {0} U (1 — ﬁ/\w) .
(iii.b) If tkm(xs) +rkm(xy) < n =rkn(xy) +rkm(xe) then
Aarim = {1+ 25U (1= 25 + 220

Proof. Equation (i) follows immediately from T'(7)(z;) = I — 7(z;). Equations (iii)
are consequences of (i) and (ii) because & = SoT.
Equations (ii): Suppose 7 act on H with dim H = n, and let

w; : ranm(x;) — H,

w; :ran7(x;) — ran7(xy) O - - D ranw(xy),
V1 1 UT
v = ( : ) : ran ([— ( ; ) (w1 - U4)) —ran7(zy) @ - - - @ ranm(vy)
v a uj{
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be inclusions as in the construction of S. Then S(7)(z;) = *v*w;w;v, and the
characteristic polynomial of S(7)(x3 + z4) equals

det (/\] — S(m)(x3 + $4)>
= det ( I — 25v" (wsws + w4wj)v)
= det (AT — 225 (v u) (12))

= \kr(m) - det (M — 527 (3) (v3 01))

-1

M=z (=3 (02) (s )
/\rkrrx1)+rk7rx2 ndet(()\—a%)["i‘i(ﬁ)("?’”‘l))

— \km(z)trkm(zz)—n (/\ _ L)rkﬂ(m)—l-rkﬂ(m) det (()\ _ ﬁ)l + ﬁ (us ua) (zé ))

a—1
det (A = 727) 1 + Z2m(ws +24)) -

— )\rkﬂ' (z1)+rkm(z2)—n det

——
Q
|

)\rkﬂ' (z1)+rk 7(z2) (>\ . 7)rk7r(x3)+rk7r(x4)—n

a—1

Therefore
Aser) = {0} U (525 — i)
if rkm(xy) + rkw(za) > n =rkn(zs) + rkw(zy), and

Ase = (a1 Y (5% — i)

if tk(zs) + rkm(xy) > n =rkw(xy) + rkw(zs). O

The following proposition identifies all eigenvalues of the matrix ‘B:())n) + ‘Bin); in
particular, they are all simple (pairwise distinct).

Proposition 4.4. Eigenvalues of n(BY” +B) are {0,2,...,2n — 2} if n is odd,
and {1,3,...,2n — 1} if n is even.

Proof. Let my : A; — C be given as m(z1) = 1 and my(x2) = 7(z3) = 7(x4) = 0. For
n > 2 denote m,, = ®*(m). By Proposition 3.1 we have rkm, (z1) + rkm,(z2) <n =
rk 7, (z3)+1k 7, (24) if nis even, and rk 7, (z3)+1k 7, (24) < n = rkm,(21)+rk 7, (22)
if n is odd. By Lemma 4.3,

Arpn = {0} U (n+1 i Ax ) if n is even,
Arpr ={2- 500 (G + 225A,,)  if nis odd,
Therefore
(n+ 1A, ={0} U (1+nA;,) if n is even,

(n+ 1A, ={2n+1}U (1 +nA,,) if n is odd.
Since A, = {0}, induction on n shows that

niA,, =40,2,...,2n — 2} if n is odd,
nA., =4{1,3,...,2n— 1} if n is even.

Finally, B, 8" are simultaneously unitarily equivalent to m,(23), mn(z4). O
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Lastly, we determine how eigenvectors of B +P{" interact with B and PL.

Proposition 4.5. Let A be an eigenvalue of ‘Bg") +5]351n), with a corresponding unit
eigenvector |e) € R™.

(i) If X\ #£1— % then
1A

(el B ) = (el P ey = 1= - = 5

(i) If \=1— L then

0 ifn even, 1 if n even,

(e B Je) = { 1 ifn odd (el P Je) = { 0 ifn odd.

Proof. (i) By the defining relation of 2]31@),

P e) + B8 Je) + Ale) = (2 ) . @

Multiplying (4) on the left with (e[ B™ for i = 1,2 results in

(1B le) (el PR e = (2= = A) (el B ).

(1B ) + 1) B e = (2= = A) (el B ).

Therefore (e| B le) = (e B le) if X # 1 — L. Multiplying (4) on the left with (el
then gives <e|q3§”) le) = <e|q3§”) le) =1 — % — %

(ii) Note that B + P admits n orthonormal eigenvectors le1), ..., len) € R”
by Proposition 4.4. Hence

n

P =3 (e B fex)

k=1

for i = 1,2. By (ii) and Proposition 3.1 we therefore have

1y 1 1
™) 1oy — o™ _ (1) (1 — ! W g _ 1 L
(B je) = = (= 1) (1= o)+ (o (B + ) — 14 )
n (—1)" ifi=1
=2]=| = 1—
ZM nr {0 if i = 2
: ™) _ oo™
since tr'B, " = kB, . O

5 Constant-sized self-tests

In this section we derive the main results of the paper: every maximally entangled
state is self-tested by a 4-input 2-output strategy (Subsection 5.1), and every single
binary PVM is self-tested by a 5-input 2-output strategy (Subsection 5.2).
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5.1 Self-testing maximally entangled states

First we introduce a family of 4-input 2-output strategies that self-test maximally
entangled states of all dimensions (Theorem 5.2).

Definition 5.1. For n € N let ‘Bgn) be the n x n projections as in Proposition 3.1.
Let S, be the 4-input 2-output bipartite strategy

Su = (1) s (B 1= R) s (B 1B )

Note that the correlation of S,, is synchronous, p(a, b|i,i) = 7 (‘,]3571)(] — ‘,]32("))) =
0 for a # b. Furthermore,

(1,11, §) = (6 B @B [60) = 7 (BB
p(L[) = (6 B @ I |60) = (60l T @ B |60) = 7 (F")

fori,j =1,...,4, and these values are computed in Remark 3.4. Comprising every-
thing together, the correlation of S,, is determined by the vector

. 4 n__ —1)» n n n
()L, = (2 g )
4
and the symmetric matrix (p(l, 1|i,j)), -
27]:
L5)-(=1)"  (-D((5/-(=D") (n=D(L5]-(=1") (n=D(L5]-(=1)")
n 3n2 3n2 3n2
L5] (n—1)(2n—14+3(-1)")  (n—1)(2n—1+3(=1)")
n 12n2 12n2
L2 (n=1)(2n—1+3(=1)")
n 12n2

15l
n
Notice that while a closed-form expression for the strategy &, has not been given
(instead, the projections in S,, can be recursively constructed as in Remark 3.2), its
correlation admits a closed-form expression (as a function of n).

The next theorem establishes that S, is a local dilation of any strategy S that
produces the same correlation as S,,. The blueprint for the proof is threefold. Firstly,
the correlation manages to encode the defining linear relation of measurements in
Sy, which leads to measurements of S essentially forming a representation of A, 1.
Secondly, the established relationship between the maximally entangled state and
representations of A4, 1 (Proposition 4.2) allows one to identify the state in S.
Thirdly, the finer look at the correlation shows that the representation of A, 1
arising from measurements of S cannot be an direct sum of the different irreducible
representations, but is actually a direct copy of the irreducible representation coming
from S,,.

Theorem 5.2. The strategy S, is self-tested by its correlation for every n € N.
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Proof. Let p be the correlation of §,,. Suppose
= (10)5 (P T = Py (@i ] — Qi)

is another strategy with the correlation p. Since p is synchronous and local dilations
are transitive, by [19, Lemma 4.9 and Corollary 3.6] it suffices to assume that the
state [¢) € H ® H has full Schmidt rank, P;, Q); are projections on #H, and

Pally) =11 Q;y) (5)

fori=1,...,4. By equality of correlations and (5),

(23 ) © 1)
—<w|(”n‘ —.4 i)®<”‘ -3 z-)!w
~ o (M) (M

and analogously for ;. Since W) has full rank, we obtain

)l(bn - 7

4 4
2n—1I_ZPi:0:2n 1]_2Qi- (6)
n i=1 i=1
Furthermore,
4
4 = (¢, Z(”)@ Z(”) n) = 1. 7
(vl ) = (00l 5,5 B @B ) 7

Let o1,...,04 be the distinct cyclic permutations of (1,2,3,4), with 0, = id. By
(6) and Proposition 3.1 there exist nonnegative integers ay,...,ay,by,...,bsy with
a;+ -+ ay =by + -+ by, and unitaries U and V on H, such that

4 4
UPU* =@ 1, @ ¥, VRV =@, 0B,
j=1 Jj=1

fori=1,...,4. By (7) and Proposition 4.2,
U V)= (laux) & |auxs) & [auxs) & |auxs) ) @ |¢n)

for some |aux;) € C% ® C%, where we identified

4

HQQH = @ C% @ C ® (C"®C").
k=1

Then

4

(Gul B @ T |60) = (W] P I [v) = 3 (aux;lawx;) (dn] By © 1 [n)

Jj=1
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gives rise to a linear system of equations in (aux;|aux;),

4
kB = STk R - (auxglawxg)  for i =1,2,3,4. (8)

Jj=1

By Lemma 3.3, the system (8) has a unique solution; since o; = id, we obtain
(auxg|aux;) = 1 and (aux;|aux;) = 0 for j = 2,3,4. Since [¢) is a faithful state, it
follows that a; = b; = 0 for j = 2,3,4, and a; = b;. Therefore

UPU* =L, @B,  VQV' =I,0P", UaV[)=lux) s,
so S, is a local dilation of S. O

Remark 5.3. The proof of Theorem 5.2 follows the core ideas of the proof of [19,
Corollary 7.1], which treats maximally entangled states of odd dimension. The
main difference arises from applying the representation theory of C*-algebras A,
for different values of a. Namely, in [19] the authors focus on A, » for odd n (and
their analogs on more than four generators), since A, 2 for odd n is simple and
isomorphic to M, (C) (i.e., it has a unique irreducible representation, which is n-
dimensional). On the other hand, algebras A, 1 for n € N are not simple, as they
are isomorphic to C*®@M,,(C). Non-simplicity is the origin of intricacies in the proof
of Theorem 5.2 and auxiliary results.

Finally, with a considerable effort, the authors of [19] also establish that their
self-tests are robust. Such robustness analysis is omitted in this paper; nevertheless,
there is no obstruction for the techniques of [19, Section 6] to imply robust versions
of the newly presented self-tests.

Corollary 5.4. The following states and binary projective measurements can be
self-tested by 4-input 2-output bipartite strategies for every n € N:

(a) mazimally entangled state of local dimension n;

(b) binary projective measurement determined by an n x n projection with rank in

sl o) o 5]+ oy

5.2 Self-testing local projective measurements

Next we introduce a two-parametric family of 5-input 2-output strategies that self-
test binary PVMs of all dimensions and ranks (Theorem 5.10). These strategies
are obtained from the 4-input 2-output strategies of Subsection 5.1 by adding an
additional binary PVM. The phenomenon, where a self-tested strategy is extended
to a new one while preserving the self-testing feature, is called post-hoc self-testing
[26]. The key sufficiency condition for post-hoc self-testing was derived in [7], and
is presented next.
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Given an invertible hermitian matrix X € M, (C) let sgn(X) € M,(C) be the
unique hermitian unitary matrix that commutes with X, and sgn(X)X > 0. Equiv-
alently, sgn(X) is the unitary part of the polar decomposition of X. In other words,
sgn is the matrix extension of the usual sign function via functional calculus. This
map plays a role in the following post-hoc self-testing criterion established in [7].

Proposition 5.5. [7, Proposition 3.7] Suppose P, P;,Q; € M, (R) fori=1,...,Ny
and j =1,..., Ng are projections, and the (N4, Ng)-input (2,2)-output strategy

(I6n): (P = P 5 (Qin T — Q1))
is self-tested by its correlation. If
2P — I € sgn <GLn(R) Nspang{I, Q1, ... ,QNB}>,
then the (N4 + 1, Ng)-input (2,2)-output strategy
(I6n): (P T = P)E (P T = P): (Qi ] — Qi)
is self-tested by its correlation.

As mentioned at the beginning of the subsection, Proposition 5.5 will be used
to obtain a self-tested strategy by extending &, from Subsection 5.1. Recall that
‘]3§,n) + ‘;]35[” has pairwise distinct eigenvalues by Proposition 4.4. This gives rise to
a family of projections that satisfy the sufficiency condition in Proposition 5.5.

Proposition 5.6. Let n,r € N with r < n. The matrixz

n,r 1 n n
Q) = 2<I+sgn ((2r — 11— n (P8 + P ))>> € M, (R)
s a projection of rank r, and satisfies
29" — T € sgn (GLn(R) N spang {1, B, f[”}).

Proof. The matrix Q™" is a projection by definition of the map sgn. By Propo-
sition 4.4, the matrix n(PL” + PL) has eigenvalues {0,2,...,2n — 2} if n is odd
and {1,3,...,2n — 1} if n is even. Therefore (2r — )T — n(P + P has r posi-
tive eigenvalues and n — r negative eigenvalues. Consequently, the multiplicities of
eigenvalues 1 and —1 of sgn((2r — 3)I — n(q3§”> +q351”))) are r and n — r, respectively.

Hence the rank of Q") is 7. O
Remark 5.7. For 7 < n let |e1) ..., |e.) € R™ be unit eigenvectors of PL” + B

corresponding to the smallest r eigenvalues in increasing order (note that |e;) are
uniquely determined up to a sign because mé") + ‘Bfln) has n distinct eigenvalues).
Then

Q) = fer)fea] + -+ fer) e

Accepted in { Yuantum 2024-03-15, click title to verify. Published under CC-BY 4.0. 19



For concrete matrix representations of Q") when 1 < r < n < 6, see Appendix
A. While this is arguably a simpler and computationally more available definition
of Q") than the original in Proposition 5.6, the presentation in terms of the sgn
map is critical in establishing the self-test of Theorem 5.10 below.

Remark 5.8. Let us determine the normalized traces of mﬁ”)ﬂ("ﬂ") for r < 3.
Clearly, 7 (Q(””")> = ~. By Proposition 3.1 there exists a unitary U € M,(C)
such that UPLU* = P and UPU* = PBY, and therefore tr (‘Bg")ﬂ(””)) =
tr (‘434(1”)53(”””)). Thus

My — L (o) (3™ oy oo — 7 (1= D"
(R700) = G (2 (B + B)an) = o (r-
for i = 3,4 by Proposition 4.4, since tr(Q™")( M4 min))Q(”’T)) is the sum of
smallest r eigenvalues of Y,B:(),") + ‘,BZ(L”) by Remark 5.7. Since r < 3, Proposition 4.5
and Remark 5.7 imply tr(Q("’T)‘Bgn)Q("’T)) = tr(Q(””)‘Bén)Q(””)). By the defining
relation of P! we then obtain

r (P - ; <<2 _ ;) 7 (200) = 7 (PN - (B Q(mm))

fori=1,2.

Definition 5.9. Given n,r € N with r < n, let ‘,BE") be as in Proposition 3.1, and
let Q™" be as in Proposition 5.6. Let S, be the (5, 4)-input (2, 2)-output bipartite
strategy

4
=1

4
(16,0 (B, 1 - 30) (@0, 1 — e, (30,1 - )" ).
Since S, is an extension of S, its correlation is determined by that of S,, and

p(1[5) = (6| Q"7 @ I |p,) = 7 (2"),
P(L,116,5) = (0] Q"7 @ B |6) = 7 (P27

for i = 1,...,4, which are computed in Remark 5.8.

Let n,r € N with r < n. If r = 7, then a binary projective measurement of
dimension n and rank r is up to a unitary basis change contained in the self-tested
strategy &,,. Otherwise, a binary projective measurement of dimension n and rank
r is contained, up to a unitary basis change and a reordering of outputs, in S, , or
Spn—r. For this reason, let us explicitly determine the correlation of S, , only for
r < §. Since 8, is an extension of S, (whose correlation is given in Subsection 5.1)
and Remark 5.8 computes the additional inner products (for r < %), the correlation
of 8, is determined by the vector

A\ ° n_(_q1)yn n n n
()., = (L0 11 1

n n n n n
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and the 5 x 4 matrix (p(l, l\i,j))

2
[5]-(=1" (n=1)(l5]-(=1)™) (n=1)(L3]-(=D") (n=1)(L5]-(=1D")

n 3n2 3n? 3n?

L5] (n—=1)(2n—14+3(=1D)") (n—=1)(2n—1+3(=1)")
n 12n2 12n2

131 (n—1)(2n—14+3(=1)")
n 12n2
12

r(dn—2r—1—(-1)") r(4n—2r—1—(-1)") r(2r—1+(—1)") r(2r—14(-1)")

4n? 4n? 4n? 4n?

where the missing entries are determined by p(1, 1|, 7) = p(1, 1|j,7) for 7,7 < 4.

Theorem 5.10. The strateqy S,,, is self-tested by its correlation for all n,r € N
with r < n.

Proof. By Theorem 5.2, the strategy S, is self-tested by its correlation. Note that
the projection Q") lies in the image of the span of {‘BZ(-") ?_, under the map sgn.
Therefore S, , is self-tested by its correlation by Proposition 5.5. m

Corollary 5.11. Every local binary projective measurement appears in a S-input
2-output strategy that is self-tested by its correlation.

Proof. Every binary PVM is, up to unitary basis change, determined by its dimen-
sion and ranks of its projections. Therefore it suffices to consider measurements
(Qn) I — QM) and these appear in the 5-input 2-output strategies Sp.r, self-
tested by Theorem 5.10. O]

Finally, we generalize Theorem 5.10 to arbitrary K-PVMs. Given rq,...,rg,n €
N with n =r; + - -+ 4+ rg, Remark 5.7 shows that

Q(Tl,mﬂ“K) = Q(nﬂ”l-&-"'-&-%) _ Q(n,v‘1+~~~+ra71)

is a projection of rank r, for every a =1,..., K, and
(r1,esTK) K
(Da )a=1

is a K-PVM. To it we assign a certain bipartite strategy with a mixed number of
inputs and outputs.

Definition 5.12. Let ry,...,7x,n € Nwithn =r;+---+7rg. We define a bipartite
strategy S,, .. -, that has 4 inputs with 2 outputs and 1 input with K outputs for
the first party, and 4 inputs with 2 outputs for the second party:

Srvver = (103 (BT = P) () (B 19 ).

As for the correlation of S, from Definition 5.9, one can derive similar (yet more
involved) formulae for the correlation of S, ., using Remark 5.7, and Propositions
4.4 and 4.5.
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Corollary 5.13. Let rq,...,rx,n € N with n = ri + -+ + rg be arbitrary. Then
the strategy Sy, .. r. s self-tested by its correlation.

In particular, every single local K-PVM appears in a self-tested strategy that has
8 inputs with 2 outputs and 1 input with K outputs.

Proof. Let
8= (1); (BT = P)iy s (Ra)ay 5 (Qun T = Q)iy)

be a bipartite strategy with the same correlation as &, ... Define bipartite strate-
gies that have 3 + K inputs with 2 outputs for the first party, and 4 inputs with 2
outputs for the second party:

K-1

S— <‘¢n> (0,1 - ‘BE")); N s ()
(B 1-%) ).
8" = ([):(Pd = Py (Rut o R T = (Ry -+ Ra)), 5
(Qi] = Qi)

a=1

Since the projections Q717 +7) lie in the image of the span of {‘Bgn)}le under
the map sgn by Proposition 5.6, and the strategy S, is self-tested by Theorem 5.2,
the strategy S is self-tested by a repeated application of Proposition 5.5. Therefore
S is a local dilation of &'. The same local isometries and the ancillary state show
that S,, .. is a local dilation of S. O

K

6 Obstructions to constant-sized self-tests

In a sense, maximally entangled states of all dimensions and single binary projective
measurements of all dimensions and ranks can be self-tested with a constant number
of inputs and outputs because they form discrete families of objects (i.e., they are
parameterized by one and two natural parameters, respectively). On the other
hand, there are no constant-sized self-tests for all entangled states, nor for all pairs
of binary projective measurements, as implied by the results of this section (for
self-tests with varying numbers of inputs, see [11] and [7]). The local dimension
of subsystems in a quantum strategy is not directly responsible for the absence of
constant-sized self-tests; rather, dimensions of parameter spaces describing states
and pairs of binary projective measurements are the obstructions to existence of
uniform self-tests. The proofs of statements in this section rely on notions from real
algebraic geometry [4].

By the singular value decomposition, every bipartite [¢)) € C* ® C" is, up to a
left-right unitary basis change, equal to

Z )]i)
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for ¢; > 0 and 31", ¢ = 1. The numbers ¢; are the Schmidt coefficients of |)). For
example, all the Schmidt coefficients of |¢,,) are ﬁ Note that |¢) has full Schmidt
rank if and only if ¢; > 0 for all 4.

Proposition 6.1. Let L, K, N € N satisfy
L>(NK-1)+1)%

Then for all dy,...,d;, € N there exists a bipartite state with L distinct Schmidt
coefficients of multiplicities dy,...,dy that cannot be self-tested by N-inputs and
K-outputs.

Proof. Let A denote the set of all N-input K-output bipartite quantum strategies
whose states are of the form

dg

=3 A 3 0l A< < 9

Z 1 i:dg_1+1

where dy := 0. In particular, the states in strategies from A have full Schmidt rank
and L distinct Schmidt coefficients of multiplicities dy,...,d;. Consider the action

of G :=Uy (C) x-+- x Uy, (C) on A, given by
U ()3 (M (A)) = (U @ U 1) (UMU"): (ONT), )

for U = @} ,U, € G. Note that G encodes precisely all actions of local unitaries
that preserve the form (9) of states in strategies from S. Let B be the quotient of
A with respect to the action of GG, and let 7 : A — B be the canonical projection.
Given S € A let f(S) € Rt -+ @ Ré+-+de he its state (i.e., f is the projection
onto the first component of the strategy). To S = (|¢) ; (M,); (N;);) we also assign
a tuple ¢(S) € RVE-D+D*~1 consisting of

W’Mi,a@/\/’j,bW% iajzla"'?Na (I,bzl,...,K—l,
W Mg @I|0), i=1,...,N,a=1,....,K 1,
W T@N Y, =1, N, b=1,... K —1.

Note that ¢(S) determines the correlation of S. The set A is semialgebraic and
the maps f,g are semialgebraic [4, Section 2]. Furthermore, B is semialgebraic
by [4, Proposition 2.2.4] since G is a semialgebraic group. The maps f, g factor
through 7, in the sense that there are semialgebraic maps f’, ¢ on B satisfying
flom=fand ¢ om = g. Let C C B be the set of equivalence classes [S] such
that ¢~'({¢'([S])}) = {[S]}. Then C is also semialgebraic by [4, Proposition 2.2.4].
Note that if S € A is self-tested by its correlation then 7(S) € C. Observe that
dim f/(B) = L — 1, and dim C = dim ¢’(C) < (N(K — 1) + 1) — 1 by [4, Theorem
2.8.8] since ¢'|c is injective. Surjectivity of f’|c would imply dimC > L — 1,
contradicting L — 1 > (N(K — 1) 4+ 1)> — 1. Therefore f’|c is not surjective. In
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particular, there exists a state [i) of the form (9) such that 7(S) ¢ C for every
S € f7'{]¥)}). In particular, no N-input K-output strategy containing [t) is
self-tested by its correlation. m

By the renowned theorem of Halmos [15], a pair of projections P;, P, € M,,(C)
is, up ot a unitary basis change, equal to

P=c® @8@10@ @10
1 —c1 OOO 007

14cos oy sin aq 14cos oy, sin o,
= . ! 2 2 - 2 2
P2 =& 57 57 o 57 sin aiq 1—cos a1 ® D sin o, l—cosay, |
2 2 2 2

(10)

where ¢;,¢; € {0,1} and a; € (0,%). The number of distinct 2 x 2 blocks in (10)

equals the number of distinct positive eigenvalues of i(Py Py — Py Py).

Proposition 6.2. Let L, N € N satisfy L+1 > (N+1)2. Then for alldy,d,, ... ,dy €
N there ezists a pair of binary projective measurements (P, I — Py), (P, [ — Py) with
L distinct 2 x 2 blocks in (10) with multiplicities dy, . ..,dy and dy 1 X 1 blocks, that
cannot be self-tested by N-inputs and 2-outputs.

Proof. We proceed analogously as in the proof of Proposition 6.1. The set A
consists of N-input 2-output strategies whose first two measurements are given
by projections of the form (10) with L angles «, of multiplicities dy,...,dy. Let
fiA— Md0+2(d1+...+dL)(]R)2 be the projection onto the pair of projections defining
the first two measurements in a strategy. The group G consists of all unitaries pre-
serving the structure of (10). Then g, B, C are defined similarly as in the proof of
Proposition 6.1, and the same dimension arguments apply. O

A Distinguished projections in low dimensions

As a demonstration of Remark 3.2, we construct ‘,,Bgn), e fln) for n < 6.
n=1: (1),(0),(0),(0)
n=2: 7
1 =3 1 3
’ =3 3 | |v8 3
00 00 X 2 oo
n=3J:
1 1 V5 1 -1 =5
100y 0 0 0 3 3/3 33 3 3/3 33
010 0 4 —2V5 11 W5 =1 1 5
’ 9 9 "13v3 9 9 || 3v8 9 9
000/ \o =2 3 V5 V55 V5 V5 5
9 9 3vV3 9 9 3W3 9 9
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To obtain 9,,,, one computes Q,,, = >.I_; |e;)(e;| where |e;) are unit eigenvec-
tors of s:pg") + &Bfln) corresponding to the r smallest eigenvalues in increasing order.
Examples for r < n < 5 are given below.

n=2r=1
10
00
n=3r=12
0 0 0 1 0 0
5 =5 5 =5
A O M PO
0 == & 0 == 5
n=4,r=1223:
V3 V3
S0 =20 S0 =20\ /1000
0 0 0 0 0 1 0 0f]0o100
=50 L oo|'|=2 0 I offoo1o0
0 0 0 0 0 0 0 0o/ \00O0O
n=>5r=12234:
00 0 00y (O 0 0 0 0
00(9)003 0%8-10213
00 2 0 21,]0 ofﬁol—o,
—V21 3
SN P S B
00 3% 0 3/ \0o 0 F 0 %
1 0 0 0 0 10 0 0 0
7 —VaI
05(3102103 018003
oorﬁoﬁ,ooﬁol—0
—V21 3
0 5F 0§ 0] |00 0 10
0 0 2 0 £/ \00 F 0 g
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n==6r=12734,5:

00 00 0 0 20 0 =22 0 0

02 00 =500 2 0 0 =50

00 00 0 0 0O 0 0 0 0 0

0 0 00 0 Of"|=2 0 0 & o0 of

0 =200 ¢ 0f]o =50 0o L o

00 00 0 0 0 0 0 0 0 0
20 0 =2 0 0y (1t 0 00 0 0y (100000
0 3 0 0 =Lol]o 2 00 =Lo0|f010000
o 0 1 0 0 0o/fo 0o 10 0 olf0o01000

=2 9 0o L o0 of'J0o 0 01 0 0000100
0 =50 0o Lt offo=200 L 0000010
o 0 o 0o o0 o/ \0 0 00 0 0/ \00O00OO
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