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Abstract
This paper introduces state polynomials, i.e., polynomials in noncommuting variables
and formal states of their products. A state analog of Artin’s solution to Hilbert’s
17th problem is proved showing that state polynomials, positive over all matrices and
matricial states, are sums of squares with denominators. Somewhat surprisingly, it
is also established that a Krivine–Stengle Positivstellensatz fails to hold in the state
polynomial setting. Further, archimedean Positivstellensätze in the spirit of Putinar
and Helton–McCullough are presented leading to a hierarchy of semidefinite relax-
ations converging monotonically to the optimum of a state polynomial subject to state
constraints. This hierarchy can be seen as a state analog of the Lasserre hierarchy for
optimization of polynomials, and the Navascués–Pironio–Acín scheme for optimiza-
tion of noncommutative polynomials. The motivation behind this theory arises from
the study of correlations in quantum networks. Determining the maximal quantum
violation of a polynomial Bell inequality for an arbitrary network is reformulated as a
state polynomial optimization problem. Several examples of quadratic Bell inequali-
ties in the bipartite and the bilocal tripartite scenario are analyzed. To reduce the size
of the constructed SDPs, sparsity, sign symmetry and conditional expectation of the
observables’ group structure are exploited. To obtain the above-mentioned results,
techniques from noncommutative algebra, real algebraic geometry, operator theory,
and convex optimization are employed.
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1 Introduction

This paper introduces the class of (noncommutative) state polynomials, i.e., polynomi-
als in noncommutative (nc) variables, such as matrices or operators, and formal states
of their products. Such polynomials are naturally evaluated over finite or infinite-
dimensional Hilbert spaces H by replacing each variable by a bounded operator on
H, and picking a state, i.e., a positive unital linear functional on the set of bounded
operators B(H). The aim of the paper is to study positivity and optimization of state
polynomials, and develop corresponding algebraic positivity certificates and asso-
ciated algorithms. The main motivation for studying state polynomials arises from
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quantum information theory, in particular nonlinear Bell inequalities [5, 33] for cor-
relations in quantum networks [8, 34, 45]. Namely, it turns out that computing the
maximum quantum violation of a polynomial Bell inequality in the standard Bell sce-
nario corresponds to optimizing a state polynomial under nc (in)equality constraints;
that is, constraints only involvencvariables andnot the state. Formoregeneral quantum
networks, polynomial Bell inequalities correspond to state polynomial optimization
problems subject to both nc and state (in)equalities.

In the free nc context, i.e., in the absence of states, several representation results
for positive polynomials (or Positivstellensätze) have been derived, allowing one to
performoptimization.Oneof the central results fromHelton andMcCullough indepen-
dently [11, 29] asserts that all positive semidefinite polynomials are sums of hermitian
squares (SOHS). This in turn allows one to minimize the eigenvalue of an nc poly-
nomial. One can also minimize the eigenvalue of an nc polynomial subject to a finite
number of nc polynomial inequality constraints, i.e., over a basic nc semialgebraic
set. More precisely, a non-decreasing sequence of lower bounds of the minimal eigen-
value can be obtained, each bound corresponding to the solution of a semidefinite
program (SDP).1 Thanks to the Helton–McCullough representation theorem [14], the
corresponding hierarchy of lower bounds converges to the minimal eigenvalue if the
quadratic module generated by the polynomials describing the basic nc semialge-
braic set is archimedean. This framework is the nc variant of the nowadays famous
Lasserre’s hierarchy [24] for commutative polynomial optimization, based on the rep-
resentation by Putinar [37] of positive polynomials over basic closed semialgebraic
sets. Hierarchies of semidefinite programs have been applied and generalized to dif-
ferent nc optimization problems [2, 14, 32, 35]. In the seminal paper [32], Navascués,
Pironio and Acín (NPA) provide such a hierarchy to bound the maximal violation
levels of linear Bell inequalities after casting the initial quantum information problem
as an eigenvalue maximization problem; cf. [7]. Extensions to trace minimization of
nc polynomials have been derived in [2]. More recently, several hierarchies have been
derived in [9, 10] to provide lower bounds for variousmatrix factorization ranks. These
hierarchies have been concretely implemented in the Matlab library NCSOStools
[3] and the Julia library TSSOS [30, Appendix B].

Recent efforts significantly extend these frameworks to the case of optimization
problems involving trace polynomials, i.e., polynomials in nc variables and traces
of their products. In [21], the first and thirds authors focused on trace polynomials
being positive on semialgebraic sets of fixed size matrices, and derived several Pos-
itivstellensätze, including a Putinar-type Positivstellensatz stating that any positive
trace polynomial admits a weighted SOHS decomposition without denominators. In
[17], the first, second and third authors generalized the above framework to the free
setting, by providing a Putinar-type Positivstellensatz for trace polynomials which are
positive on tracial semialgebraic sets, where the evaluations are performed on von
Neumann algebras. This latter framework was applied in [13] to detect entanglement
of Werner state witnesses in a dimension-free way. In the univariate case, a tracial
analog of Artin’s solution to Hilbert’s 17th problem was provided in [18], where it is
proved that a positive semidefinite univariate trace polynomial is a quotient of sums

1 That is, the optimum of a linear function subject to linear matrix inequality (LMI) constraints.
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of products of squares and traces of squares of trace polynomials. In the multivariate
unconstrained setting, it is shown in [22] that trace-positive nc polynomials can be
“weakly” approximated by SOHS and commutators of regular nc rational functions.

From the point of view of quantum information, the trace polynomial optimiza-
tion framework from [17] allows us to obtain bounds on violation levels of nonlinear
Bell inequalities corresponding to maximally entangled states. In this paper we rely
on state polynomial optimization that is less restrictive, as it can provide violation
bounds reached by (not necessary maximally) entangled states. From the point of
view of operator theory, there is a correspondence between states on a Hilbert spaceH
and trace-class operators onH, but the reformulation of a state polynomial optimiza-
tion problem into one with trace polynomials involves the non-normalized trace, in
which case there is no dimension-independent theory of positivity, necessitating the
introduction of this new class of objects, i.e., (nc) state polynomials.

Contributions andmain results

A state polynomial in nc variables x1, . . . , xn is a real polynomial in formal state
symbols ς(w), where w is a word in x1, . . . , xn . More generally, an nc state polyno-
mial is a polynomial in x1, . . . , xn and formal states of their words. For example,
f = ς(x1x2x1) − ς(x1)ς(x1x2) is a state polynomial, and h = ς(x21 )x2x1 +
ς(x1)ς(x2x1x2) is an nc state polynomial. At a pair of bounded operators X =
(X1, X2) on Hilbert spaceH and a state λ on B(H), they are evaluated as f (λ; X) =
λ(X1X2X1)− λ(X1)λ(X1X2) and h(λ; X) = λ(X2

1)X2X1 + λ(X1)λ(X2X1X2)I .
State polynomials forma commutative algebra denotedS , and nc state polynomials

form a noncommutative algebra denotedSSS . There is a canonical involution � onSSS
that fixes S ∪ {x1, . . . , xn} element-wise, and an S -linear map ς :SSS → S .

After establishing the algebraic framework for state polynomials in Sect. 2 and their
function theoretic perspective in Sect. 3, we prove our first main result, the affirmative
answer to a state polynomial analog of Hilbert’s 17th problem from real algebraic
geometry [28, 41].

Theorem A (Theorem 4.3) Let f be a state polynomial. Then f (λ; X) ≥ 0 for all
matricial states λ and tuples of symmetric matrices X if and only if f is a quotient of
sums of products of elements of the form ς(hh�) for an nc state polynomial h.

For example,

ς(x21 )ς(x22 )− ς(x1x2)
2 =

ς
((

ς(x21 )x2 − ς(x1x2)x1
)2)

ς(x21 )

is an algebraic certificate for the Cauchy-Schwarz inequality, a sum of hermitian
squares (SOHS) certificate of the form guaranteed for all global state polynomial
inequalities by Theorem A. As a consequence of Theorem A, positivity of a state
polynomial on all matrix tuples and matricial states implies positivity on all bounded
operators and states.
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After global positivity, we turn to constrained positivity of state polynomials in
Sect. 5. We restrict ourselves to constraint sets C ⊆ SSS that are balanced: namely,
C is closed under the involution �, and the non-symmetric elements of C come in
pairs with their negatives (to allow us to handle equality constraints). Let H be a
separable real Hilbert space. Given a balanced set C ⊆ SSS , let D∞

C be the set of all
pairs (λ; X) of a state λ on B(H) and X ∈ B(H)n such that c(λ; X) 	 0 for all
c ∈ C . We call D∞

C the state semialgebraic set constrained by C . While Theorem A
gives an SOHS certificate for global positivity of a state polynomial (even when only
matrix evaluations are considered), there is no comparable analog for positivity on
arbitrary state semialgebraic sets. In Sect. 5.2 we show that the state versions of some
of the classic (Krivine–Stengle and Schmüdgen) Positivstellensätze fail in general.
Nevertheless, there is an analog of Putinar’s archimedean Positivstellensatz [37]. We
say that C ⊆ SSS is algebraically bounded if N − x21 − · · · − x2n =

∑
i pi ci p

�
i for

some ci ∈ C and nc polynomials pi . Note that D∞
C for an algebraically bounded C

is bounded in operator norm; conversely, if D∞
C is bounded, then one can make C

algebraically bounded without changing the state semialgebraic set D∞
C by adding a

single constraint. For algebraically-bounded constraint sets, we obtain the following
Positivstellensatz.

Theorem B (Theorem5.5)Let f be a state polynomial, andC abalancedalgebraically
bounded set of nc state polynomials. Then f ≥ 0 onD∞

C if and only if for every ε > 0,

f + ε =
∑
i

ς(hi ci h
�
i )

for some nc state polynomials hi and ci ∈ {1} ∪ C.

Theorem B is the cornerstone of the state optimization framework we develop in
Sect. 6. For a state polynomial f and a balanced algebraically bounded set C ⊆ SSS ,
Theorem B gives rise to an SDP hierarchy that produces a convergent increasing
sequence with limit infD∞

C
f (Corollary 6.1). Under a mild condition on C , these

SDPs satisfy strong duality (Proposition 6.7). Furthermore, under flatness and extremal
assumptions, the dual SDPs and a variant of the Gelfand–Naimark–Segal construction
allow us to extract a finite-dimensional minimizer for infD∞

C
f , and thus obtain finite

convergence of our hierarchy (Proposition 6.10). The complexity of the involved SDPs
grows rather quickly; nevertheless, we can exploit correlative sparsity (Theorem 6.12)
and sign symmetry (Theorem 6.13) patterns in f and C to reduce the SDP sizes
considerably.

Finally, we apply our newly developed theory to quantum correlations in networks.
Section7 considers nonlinear Bell inequalities [5, 47] in the standard Bell scenario,
where two parties share an entanglement source. While a linear Bell inequality for
(reduced) quantum correlations in such a scenario corresponds to eigenvalue opti-
mization of an nc polynomial, a polynomial Bell inequality for quantum correlations
corresponds to a state polynomial optimization problem. The form of the constraints
arising from the quantum mechanical formalism allows for a further reduction of the
size of the obtained SDPs in the hierarchy using a conditional expectation induced
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by the underlying group structure of binary observables (Proposition 7.1). Section8
generalizes the aforementioned correspondence to correlation inequalities in general
network scenarios [8]. That is, several entanglement sources and sharing patterns are
permitted. Following [25, 26, 34, 40], reduced quantum models for a network can
be characterized using state polynomial constraints. This allows us to apply our opti-
mization results to analyze polynomial Bell inequalities for correlations in arbitrary
networks.

Theorem C (Corollaries 6.1 and 8.1) The largest quantum violation of a polynomial
Bell inequality for classical correlations in a network scenario is the limit of a conver-
gent decreasing sequence produced by thePositivstellensatz-generated SDPhierarchy.

Using the derived optimization tools, we establish novel largest quantum violations
or their nontrivial upper bounds for various polynomial Bell inequalities in the bipartite
scenario (Sect. 7.2) and in the bilocal tripartite scenario (Sect. 8.1) from the literature.

2 Preliminaries

We begin by recalling basic notions about noncommutative polynomials, introducing
state polynomials and corresponding semialgebraic sets that will be used throughout
the paper.

2.1 Noncommutative polynomials and state polynomials

Let Sk(R) denote the space of all real symmetric matrices of order k. For a set A,
we use |A| to denote its cardinality. For a fixed n ∈ N, we consider a finite alphabet
x1, . . . , xn and generate all possible words of finite length in these letters. The empty
word is denoted by 1. The resulting set of words is the free monoid 〈x〉, with x =
(x1, . . . , xn). Let |w| denote the length of w ∈ 〈x〉. We denote by R〈x〉 the set of real
polynomials in noncommutative variables, abbreviated as nc polynomials. The free
algebra R〈x〉 is equipped with the involution � that fixes R ∪ {x1, . . . , xn} point-wise
and reverses words, so that R〈x〉 is the �-algebra freely generated by n symmetric
variables x1, . . . , xn .

For w ∈ 〈x〉 \ {1} let ς(w) be a symbol subject to the relation ς(w) = ς(w�), and
let

S := R
[
ς(w) : w ∈ 〈x〉 \ {1}],

a commutative polynomial ring in infinitely many variables. An element in S of the
form
∏m

j=1 ς(u j ) for u j ∈ 〈x〉 \ {1} is called an S -word. The set of all S -words is
a vector space basis of S . The degree of an S -word

∏
j ς(u j ) equals

∑
j |u j |. The

vector of S -words whose degrees are no greater than d is denoted by WS
d .

We also let SSS := S ⊗ R〈x〉 be the free S -algebra on x . Elements of S are
called state polynomials, and elements ofSSS are nc state polynomials. For example,
ς(x1x2)− ς(x1)ς(x2) ∈ S and x1x2x1 − ς(x2)x1 + ς(x1x2)− ς(x1)ς(x2) ∈SSS =
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S 〈x1, x2〉. An nc state polynomial of the form
∏m

j=1 ς(u j )v for u j ∈ 〈x〉 \ {1} and
v ∈ 〈x〉 is called an SSS -word. The set of all SSS -words is a vector space basis of SSS .
The degree of anSSS -word

∏
j ς(u j )v equals |v| +∑ j |u j |. The degree of f ∈SSS is

the maximal degree ofSSS -words in the expansion of f .
The involution on SSS , denoted also by �, fixes {x1, . . . , xn} ∪ S point-wise,

and reverses words from 〈x〉. The set of all symmetric elements of SSS is defined
as SymSSS := { f ∈ SSS : f = f �}. We also consider the unital S -linear �-map
ς :SSS → S uniquely determined by w 
→ ς(w) for w ∈ 〈x〉 \ {1}.

2.2 State semialgebraic sets

First we recall some classical notions from functional analysis and operator algebras
[39, 43]. LetH be a separable realHilbert space, i.e.,H admits a countable orthonormal
basis, and let B(H) be the Banach algebra of bounded linear operators on H. A state
λ on B(H) [43, Definition I.9.4] is a positive unital �-linear functional, namely

(a) λ : B(H) → R is a linear map,
(b) λ(I ) = 1,
(c) λ(Y ∗) = λ(Y ) for all Y ∈ B(H),
(d) λ(YY ∗) ≥ 0 for all Y ∈ B(H).

Notice that (c) is a consequence of (a) and (d), and λ satisfying (a)–(d) is continuous
in the norm topology [43, Lemma I.9.9]. Every unit vector v ∈ H determines a vector
state Y 
→ 〈Yv, v〉. More general states are obtained using trace-class operators [39,
SectionVI.6]. If (e j ) j is an orthonormal basis ofH, then T ∈ B(H) is trace-class if the
series

∑
j 〈
√
T ∗T e j , e j 〉 converges. Every positive semidefinite trace-class operator

ρ ∈ B(H) with trace 1 gives rise to a state via Y 
→ tr(ρY ) = ∑ j 〈ρYe j , e j 〉. Such
ρ is also called a density operator, and the state it determines is called normal [43,
Definition III.2.13]. If H is finite-dimensional, then every state on B(H) is normal.
Let S(H) denote the set of all states on B(H).

Given an nc state polynomial a ∈ SSS , a state λ ∈ S(H), and a tuple X =
(X1, . . . , Xn) of self-adjoint operators X j = X∗j ∈ B(H), there is a natural eval-
uation

a(λ; X) ∈ B(H)

obtained by replacing w with w(X) ∈ B(H) and ς(w) with λ(w(X)) ∈ R. Equiva-
lently, each pair (λ; X) gives rise to a �-representationSSS → B(H) that intertwines
ς :SSS → S and λ : B(H) → R.

Throughout the paper letH be a separable infinite-dimensional real Hilbert space;
note that up to isomorphism, there is only one such Hilbert space, so the reader may
have in mind the space of real square-summable-sequences H = �2.

Definition 2.1 A set C ⊆SSS is balanced if C� = C and −(C \ SymSSS ) ⊆ C . Given
a balanced C let

D∞
C := {(λ, X) ∈ S(H)× B(H)n : X j = X∗j , c(λ; X) 	 0 for all c ∈ C} (2.1)

123



I. Klep et al.

and

DC :=
⋃
k∈N

{(λ, X) ∈ S(Rk)× Sk(R)n : c(λ; X) 	 0 for all c ∈ C} . (2.2)

Let �D∞
C and �DC be the analogs of (2.1) and (2.2), respectively, where one restricts

only to vector states.

Note that any subset of SymSSS is an example of a balanced set. The motivation
behind more general balanced sets is to allow for non-symmetric equality constraints,
for example commutation relations. Indeed, every non-symmetric element c in a
balanced set contributes inequalities c(λ; X) 	 0 and −c(λ; X) 	 0, and thus
c(λ; X) = 0.

While (2.2) is a desired candidate for testing positivity of state polynomials, one
needs to consider bounded operators on an infinite-dimensional Hilbert space in order
to obtain sums-of-squares certificates valid for sufficiently general C (cf. [14] for
examples in the freely noncommutative setting, or the refutation ofConnes’ embedding
conjecture in the tracial setting [15, 19]). Thus we mostly consider positivity on sets
(2.1).

One might wonder why we restrict ourselves to real Hilbert spaces. In the complex
framework, the only difference is that the symbol ς(w) needs to be split into two
symbols, the real and imaginary part, to properly define ς(w�) = ς(w). Thus one is
pressed toworkwith real variables also in the complex framework. The real framework
is also more convenient to work with in optimization, especially from the perspective
of implementation using the standard semidefinite programming solvers. The complex
adaptation is detailed in Sect. 6.5.

2.3 State polynomials versus trace polynomials

Before diving into the main contributions of this paper, let us discuss the relation
between nc state polynomials and nc trace polynomials [20, 36], whose optimization
perspective has been considered earlier by the first three authors [17].

Trace polynomials originated in invariant theory [36] to describe polynomial func-
tions Sk(R)n → R and polynomial maps Sk(R)n → Sk(R) that are invariant and
equivariant, respectively, under the orthogonal group acting on Sk(R)n via simultane-
ous conjugation. To eachw ∈ 〈x〉\{1} ones assigns a formal trace symbol tr(w). These
symbols are required to commute and to satisfy tr(w) = tr(w�) and tr(uv) = tr(vu) for
u, v, w ∈ 〈x〉. As in the case of (nc) state polynomials, one defines (pure) trace poly-
nomials asT = R[tr(w) : w ∈ 〈x〉\{1}] and nc trace polynomials asTTT = T ⊗R〈x〉.
For example, trace polynomials tr(x1) tr(x2x1x2) and tr(x1) tr(x22 x1) are the same, but
analogous state polynomials ς(x1)ς(x2x1x2) and ς(x1)ς(x22 x1) are not. We endow
TTT with the involution � that fixes the elements of {x1, . . . , xn} ∪ T , and with the
degree function that is defined analogously as in the nc state polynomial case (namely,
the degree of

∏
j ς(u j )v equals |v|+∑ j |u j |). There is also a natural unitalT -linear

map tr : TTT → T , which satisfies tr( f g) = tr(g f ) for f , g ∈ TTT .
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Algebraically speaking, �-algebras T andTTT are natural quotients of algebras S
andSSS , respectively, since the symbol tr satisfies the relations of the symbol ς . Note
however that the symbol tr also satisfies tr(uv) = tr(vu), which is a property not
shared among all states. In [17], the authors therefore considered evaluations of nc
trace polynomials on self-adjoint operators from real von Neumann algebras, and
tracial states. A real von Neumann algebra F is ∗-subalgebra of bounded operators
on a real Hilbert space, closed in the weak operator topology. A tracial state on F
is a positive unital �-linear functional λ : F → R that satisfies λ(ab) = λ(ba) for
a, b ∈ F . For operators on a k-dimensional Hilbert space, there is only one tracial
state: the normalized trace on k×k real matrices. On the other hand, there is no tracial
state on B(H) for an infinite-dimensional Hilbert space H, which is the reason why
vonNeumann algebras need to be considered. The discussed restriction to tracial states
and vonNeumann algebras distinguishes positivity of trace polynomials and positivity
of state polynomials. For example, the trace polynomial t = tr(x61) tr(x

6
2)

2− tr(x21 x
4
2)

3

is nonnegative on all tracial states and self-adjoint operators from any von Neumann
algebra, byHölder’s inequality for noncommutative L p spaces [44, Theorem IX.2.13].
On the other hand, the state polynomial s = ς(x61)ς(x62)

2 − ς(x21 x
4
2 )

3 has value −18
at a pair of 2× 2 matrices X1, X2 and a state λ on 2× 2 matrices,

X1 =
(
1 1
1 0

)
, X2 =

(
0 1
1 1

)
, λ(Y ) = (1 0

)
Y

(
1
0

)
.

The paper [17] provided positivity certificates and optimization procedures for trace
polynomials subject to tracial constraints. These results are of merit to noncommuta-
tive probability (since tracial states are the noncommutative analogs of expectations,
and pure trace polynomials thus correspond to higher noncommutative moments) and
certain studies in quantum information theory. For example, trace polynomial opti-
mization can be used for finding violations of bipartite polynomial Bell inequalities
attained bymaximally entangled states (which correspond to tracial states), and entan-
glement detection in highly invariant multipartite Werner states [13].

With the above review of trace polynomials in mind, let us list the main differences
between state and trace polynomials, from the perspective of positivity and optimiza-
tion. Firstly, trace polynomials and their function-theoretic properties date back to the
work of Procesi [36]; on the other hand, state polynomials are completely new objects,
and their function-theoretic properties are derived in Sect. 3. Secondly, while the nat-
ural analog of Hilbert’s 17h problem holds for state polynomials (Theorem 4.3, its
direct analog for trace polynomials fails (see the discussion at the beginning of Sect. 4).
Thirdly, trace polynomial framework does not apply to the optimization problems in
several operator variables where one wishes to quantify the optimal value over all
states. Concrete examples of such optimization problems are bipartite polynomial
Bell inequalities over arbitrary (non-maximally) entangled states, and network Bell
inequalities (considered in Sects. 7 and 8.1, respectively). Fourthly, the distinction
between trace and state polynomials does not affect only the formal scheme of posi-
tivity certificates and optimization algorithms, but also the details in their derivation.
For example, certificates for trace positivity are simpler than certificates for state pos-
itivity because tracial states satisfy the “bounded marginal moments imply bounded
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mixed moments” property, which fails for general states (cf. Remark 5.2). Similarly,
that derivation of strong duality in state polynomial optimization differs from that of
strong duality in trace polynomial optimization (cf. Proposition 6.7). Furthermore,
while the setup of [17] allows for a characterization of positive nc trace polynomials
on bounded domains [17, Corollary 4.8], one obtains only characterization of positive
state polynomials (but not nc state polynomials) on bounded domains (Theorem 5.5).

Finally, the correspondence between density trace-class operators (or densitymatri-
ces, in the finite-dimensional case) and states mentioned earlier begs the question why
one cannot derive positivity and optimization of state polynomials more directly from
the corresponding already-established theory for trace polynomials. The reason is that
optimization of trace polynomials pertains to evaluations of the normalized trace on
matrices, or tracial states on von Neumann algebras. On the other hand, modelling
state polynomials with trace polynomials (in an additional variable corresponding to
the trace-class operator) would require considering the (usual) non-normalized trace.
However, for evaluations of trace polynomials with respect to a non-normalized trace,
there is no comparable dimension-independent theory of positivity and optimization.

3 A functional perspective on nc state polynomials

One can draw a comparison between nc state polynomials and noncommutative func-
tions as developed e.g. in [23]. While nc state polynomials are not noncommutative
functions (since their evaluations on matrix tuples are not compatible with direct sums
of matrix tuples), they nevertheless admit a closely related intrinsic characterization
(Proposition 3.2), and like nc polynomials, they are determined onmatrices of bounded
size (Proposition 3.1). In the proofs of these statements we utilize evaluations of trace
polynomials (Sect. 2.3) on matrices using the usual (non-normalized) matrix trace.

Proposition 3.1 If f ∈ SSS is of degree d, then there exist λ ∈ S(R2d+1) and X ∈
S2d+1(R)n such that f (λ; X) �= 0.

Proof Let

f =
k∑

i=1
αi

mi∏
j=1

ς(ui, j )vi .

Define a trace polynomial in variables x0, . . . , xn

g =
k∑

i=1
αi (tr x0)

d−mi

mi∏
j=1

tr(x0ui, j )vi .

Note that g �= 0 since f �= 0, and the degree of g (as a trace polynomial) is 2d. By
[36, Proposition 8.3], g is not constantly zero on S2d+1(R)n+1. Since positive definite
matrices are Zariski dense in symmetric matrices, there exist (P, X) ∈ S2d+1(R) ×
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S2d+1(R)n with P � 0 such that g(P, X) �= 0. By the construction of g we have
g(αP, X) = αdg(P, X) for all α ∈ R. Therefore

f (λ; X) = g
( 1
tr P P, X

) �= 0

where λ ∈ S(R2d+1) is given by λ(Y ) = tr( 1
tr P PY ).

As mentioned in Sect. 2.2, states in S(Rk) are in one-to-one correspondence with
k × k density matrices (positive semidefinite matrices in Sk(R) with trace 1); namely,
a density matrix ρ gives rise to a state Y 
→ tr(ρY ). For the purpose of the next propo-
sition we resort to this identification. Hence we view S(Rk) as a Zariski dense subset
of the affine space of symmetric matrices with trace 1. By a polynomial function on
S(Rk)×Sk(R)n we therefore refer to a polynomial function on the corresponding real
affine space of dimension k(k+1)

2 −1+n k(k+1)
2 . Furthermore, S(Rk)×Sk(R)n inherits

the diagonal conjugate action of the orthogonal groupOk on tuples of symmetric k×k
matrices:

O(X0, . . . , Xn)O
∗ = (OX0O

∗, . . . , OXnO
∗).

The following is an nc state analog of [23, Theorem 6.1] and [20, Proposition 3.1] for
nc polynomials.

Proposition 3.2 A sequence ( fk)k∈N of polynomial maps fk : S(Rk) × Sk(R)n →
Sk(R) satisfies

(a) fk(O(λ; X)O∗) = O fk(λ; X)O∗ for all k ∈ N, O ∈ Ok and (λ; X) ∈ S(Rk)×
Sk(R)n,

(b) f�k(ρ ⊗ λ; X⊕�) = fk(λ; X)⊕� for all k, � ∈ N, ρ ∈ S(R�) and (λ; X) ∈
S(Rk)× Sk(R)n,

(c) supk deg fk < ∞,

if and only if it is given by an nc state polynomial.

Proof (⇐): Let w ∈ 〈x〉. Then

w(OXO∗) = Ow(X)O∗,
ς(w)(O(λ; X)O∗) = tr(OλO∗ · Ow(X)O∗) = tr(λ · w(X)) = ς(w)(λ; X),

w(X⊕�) = w(X)⊕�,

ς(w)(ρ ⊗ λ; X⊕�) = tr(ρ ⊗ λ · w(X)⊕�) = tr(ρ) tr(λ · w(X)) = ς(w)(λ; X)

for all orthogonal matrices O ∈ Ok , tuples X ∈ Sk(R)n , and positive semidefinite
matrices λ ∈ Sk(R) and ρ ∈ S�(R) of trace 1. Next,w(X) is, as amatrix of polynomial
expressions in the entries of X , of degree d. Similarly, ς(w)(λ; X) is, as a polynomial
expression in the entries of λ and X , of degree d+1. Since the algebraSSS is generated
by elements of the formw and ς(w), it follows that every nc state polynomial satisfies
(a)-(c).
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(⇒): By (a) and [36, Theorem 7.3], for every k ∈ N there exists an nc trace
polynomial Tk in variables x0, . . . , xn such that Tk agrees with fk on S(Rk)×Sk(R)n ,
the expression tr(x0) does not appear in Tk (cf. [36, Section 5]), and deg Tk = deg fk .
Denote d = maxk deg fk .

For k ≥ d+1, the nc trace polynomial Tk defined as above is unique [36, Proposition
8.3]. Let

Tk =
∑
i

αk,i

∏
j

tr(ui, j )vi (3.1)

where
∏

j tr(ui, j )vi are distinct trace words with |vi |+
∑

j |ui, j | ≤ d. By uniqueness

and comparison of (b) for ρ = 1
2 I2 and ρ = 1

2 (
1 1
1 1 ), the variable x0 cannot appear in

any vi . Furthermore, if there are m occurrences of x0 in ui, j , then

tr
(
ui, j
(
ρ ⊗ λ; I ⊗ X1, . . . , I ⊗ Xn

)) = tr(ρm) · tr (ui, j (λ; X1, . . . , Xn)
)
.

Therefore, uniqueness of Tk and comparison of (b) for ρ = 1
2 I2 and ρ = 1

4 (
1 0
0 3 )

imply that the variable x0 can appear in each ui, j at most once. Finally, uniqueness
and comparison of (b) for ρ = 1

2 I2 and ρ = ( 1 0
0 0

)
show that x0 appears in each ui, j .

Thus (3.1) becomes

Tk =
∑
i

αk,i

∏
j

tr(x0u
′
i, j )v

′
i (3.2)

where u′i, j , v′i are words in x1, . . . , xn .
By the special structure (3.2),

T�k(λ; X)⊕� = T�k
( 1

�
I� ⊗ λ, I� ⊗ X

) = f�k
( 1

�
I� ⊗ λ, I� ⊗ X

)

= fk(λ, X)⊕� = Tk(λ, X)⊕�

for all � ∈ N, k ≥ d + 1 and (λ, X) ∈ S(Rk)× Sk(R)n . By uniqueness of the Tk we
thus have T�k = Tk for all � ∈ N, k ≥ d + 1, and consequently Tk = Td+1 for all
k ≥ d + 1. The property (b) ensures that the evaluations of Td+1 and Tk for k ≤ d
agree on Sk(R)n+1. Thus

f =
∑
i

αd+1,i
∏
j

ς(u′i, j )v′i ∈SSS

is the desired nc state polynomial.

Corollary 3.3 A sequence ( fk)k∈N of polynomial maps fk : S(Rk) × Sk(R)n → R

satisfies

(a) fk(O(λ; X)O∗) = fk(λ; X) for all k ∈ N, O ∈ Ok and (λ; X) ∈ S(Rk)×Sk(R)n,
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(b) f�k(ρ ⊗ λ; X⊕�) = fk(λ; X) for all k, � ∈ N, ρ ∈ S(R�) and (λ; X) ∈ S(Rk)×
Sk(R)n,

(c) supk deg fk < ∞,

if and only if it is given by a state polynomial.

Proof Replacing fk with f̂k := fk Ik , Proposition 3.2 implies f̂k arises from an nc state
polynomial, say f̂ . Add a new variable xn+1 and form the commutator g := [ f̂ , xn+1].
By assumption the image of f̂ consists only of scalar matrices, so g always evaluates
to 0 on all tuples (λ; X) ∈ S(Rk)×Sk(R)n+1. Thus by Proposition 3.1, g = 0. Hence
f̂ cannot have any “free” nc variables not bound by ς , i.e., f̂ ∈ S .

4 Hilbert’s 17th problem for state polynomials

In this section we present a state analog of Artin’s solution to the celebrated Hilbert’s
17th problem. Let 	 ⊆ S be the preordering [28, Section 2.1] generated by
{ς(hh�) : h ∈ SSS }. That is, 	 is the smallest subset of S closed under sums and
products that contains all squares and {ς(hh�) : h ∈ SSS }. Note that if a ∈ S then
a2 = aa�ς(1) = ς(aa�) since a = a� and ς is a unitalS -linear map. Hence 	 is the
set of all sums of products of elements of the form ς(hh�) for h ∈ SSS . Clearly, state
polynomials in	 are nonnegative onD∅ andD∞

∅ . Theorem 4.3 below shows that every
state polynomial, nonnegative on D∅, is a quotient of elements in 	. This is in stark
contrast with trace polynomials: while the trace analog of Theorem 4.3 only holds for
one matrix variable [18, Corollary 3.8], it fails in general [22, Proposition 6.4]. We
can pinpoint the crucial difference more precisely: the proof of Theorem 4.3 utilizes
the Positivstellensatz in a free �-algebra [12]; on the other hand, the tracial analog
of this step would require a positive resolution of the renowned Connes’ embedding
conjecture, which has been recently refuted [15].

For d ∈ N let 〈x〉d denote the set of words with length at most d, and D =
|〈x〉d | = nd+1−1

n−1 . Let Hd = (ς(uv�))u,v∈〈x〉d ∈ S D×D . The following is a well-
known statement adapted to the notation of this paper.

Lemma 4.1 For each d there exists (λ; X) ∈ �D∅ such that Hd(λ; X) is positive definite.

Proof By [12, Lemma 3.2] there exists a unital �-functional L : R〈x〉2d+2 → R

such that L(hh�) > 0 for all nonzero h ∈ R〈x〉d+1. By [12, Proposition 2.5], there
is (λ; X) ∈ �D∅ such that L( f ) = λ( f (X)) for all f ∈ R〈x〉2d . Then Hd(λ; X) is
positive definite by construction.

Proposition 4.2 Every principal minor of Hd is a quotient of two elements in 	.

Proof Let 
 be the generic D × D symmetric matrix; that is, the entries of 
 are
commuting indeterminates, related only by 
 being symmetric. Let A be the real
polynomial algebra generated by the entries of 
, and T ⊆ A its real subalgebra
generated by {tr(
 j ) : 1 ≤ j ≤ D}. Within AD×D let T [
] denote the real subalgebra
generated by the matrix 
 and multiples of identity T · I . Let P be the preordering in
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T generated by

{tr(h(
)2), tr(h(
) ·
 · h(
)) : h ∈ T [
]}.

Let m ∈ T be an arbitrary principal minor of 
. By [21, Lemma 4.1 and Theorem
4.13] there exist p, q ∈ P and k ∈ N such that

qm = m2k + p. (4.1)

Let w be the vector of words in 〈x〉d (ordered degree-lexicographically); then Hd is
obtained by applying ς to ww� ∈ R〈x〉D×D entry-wise. If h ∈ T [
] ⊆ AD×D , then
h(Hd) ∈ S D×D and h(Hd)w ∈SSS D; moreover,

tr(h(Hd)
2) ∈ 	,

tr (h(Hd) Hd h(Hd)) =
D∑
j=1

ς
(
(h(Hd)w) j (h(Hd)w)�j

) ∈ 	.
(4.2)

If m′, p′, q ′ are obtained from m, p, q by replacing 
 with Hd , then p′, q ′ ∈ 	 by
(4.2). Furthermore, q ′ �= 0 since the right-hand side of (4.1) is strictly positive when
evaluated at a positive definite state evaluation of Hd , which exists by Lemma 4.1.
Therefore m′, a principal minor of Hd , is a quotient of elements in 	.

The following is a solution to Hilbert’s 17th problem for state polynomials.

Theorem 4.3 The following are equivalent for a ∈ S :

(i) a(λ; X) ≥ 0 for all X ∈ SK (R)n and vector states λ ∈ S(RK ), where K =
1

n−1 (n
� 1+deg a2 � − 1);

(ii) a is nonnegative on D∞
∅ ;

(iii) a is a quotient of two elements in 	.

Proof (ii)⇒(i) Clear.
(i)⇒(iii) Suppose a is not a quotient of elements in 	. Let d = � 1+deg a2 � and

R = R[ς(w) : w ∈ 〈x〉2d \ {1}]. Then a ∈ R, and R is a finitely generated polynomial
ring. Let M ⊆ R be the set of all principal minors of Hd . By Proposition 4.2, a is not a
quotient of elements in the preordering in R generated by M . By the Krivine–Stengle
Positivstellensatz [28, Theorem 2.2.1] there exists a homomorphism ϕ : R → R such
that ϕ(a) < 0 and ϕ(M) ⊆ R≥0. Applying ϕ entry-wise to Hd therefore results in
a positive semidefinite matrix. Define L : R〈x〉2d → R as L( f ) = ϕ(ς( f )). Then
L is a unital �-functional, and L(gg�) ≥ 0 for g ∈ R〈x〉d . By Lemma 4.1 there
exists a unital �-functional L ′ : R〈x〉2d → R such that L ′(gg�) > 0 for nonzero
g ∈ R〈x〉d . For every ε ∈ (0, 1) denote the unital �-functional Lε = (1− ε)L + εL ′;
then Lε(gg�) > 0 for all nonzero g ∈ R〈x〉d . By [12, Proposition 2.5] there exists

(λε; Xε) ∈ S(RK )× SK (R)n , with K = dimR〈x〉d−1 = nd−1
n−1 and λε a vector state,

such that Lε( f ) = λε( f (Xε)) for all f ∈ R〈x〉2d−1. Then

lim
ε→0

a(λε; Xε) = a(λ0; X0) = ϕ(a) < 0
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and so a(λε; X ε) < 0 for some ε ∈ (0, 1).
(iii)⇒(ii) Let a = p/q for some p, q ∈ 	 with q �= 0. Clearly p and q

are nonnegative on D∞
∅ . Let X be a tuple of self-adjoint bounded operators on an

infinite-dimensional separable Hilbert spaceH, and let λ be a state on B(H). Suppose
a(λ; X) < 0. Since q �= 0, by Proposition 3.1 there existY ∈ Sk(R)n and aμ ∈ S(Rk)

such that q(μ; Y ) �= 0. Let ι : R
k → H be an isometry, and define X ′j = ι ◦ Y j ◦ ι∗

and λ′ = μ ◦ ι∗. Then q(λ′; X ′) �= 0. For ε ∈ (0, 1) set λε = (1 − ε)λ + ελ′
and Xε = (1 − ε)X + εX ′. Since q(λ1; X1) �= 0 and q is a polynomial in state
symbols, we have q(λε; Xε) �= 0 for all but finitely many ε ∈ (0, 1). On the other
hand, limε→0 a(λε; Xε) = a(λ0; X0) < 0. Therefore there exists ε ∈ (0, 1) such that
q(λε; Xε) �= 0 and a(λε; Xε) < 0, so

0 > a(λε; Xε) =
p(λε; Xε)

q(λε; Xε)
≥ 0,

a contradiction.

Theorem 4.3 shows that every state polynomial inequality valid on all matrices is an
algebraic consequence of states on hermitian squares, i.e., it is built from expressions
ς(hh�) using addition, multiplication and inversion. In particular, a state polynomial
inequality valid on all matrices is automatically valid on all operators. A well-known
example is the Cauchy-Schwarz inequality, which admits an algebraic certificate

ς(x21 )ς(x22 )− ς(x1x2)
2 =

ς
((

ς(x21 )x2 − ς(x1x2)x1
)2)

ς(x21 )
. (4.3)

Alternatively, one can recognize ς(x21 )ς(x22 )− ς(x1x2)2 as the 2× 2 principal minor
of H1 indexed by x1, x2.

Example 4.4 A less evident example of a globally nonnegative state polynomial is

a = (ς(x21 )ς(x22 )− ς(x1x2)
2)ς(x2x

2
1 x2)+ 2ς(x1x2)ς(x2x1x2)ς(x21 x2)

− ς(x21 )ς(x2x1x2)
2 − ς(x22 )ς(x21 x2)

2.

Let us give twoarguments for nonnegativity ofa. Firstly, consider a principal submatrix
of H2,

s =
⎛
⎝

ς(x21 ) ς(x1x2) ς(x21 x2)
ς(x1x2) ς(x22 ) ς(x2x1x2)
ς(x21 x2) ς(x2x1x2) ς(x2x21 x2)

⎞
⎠ ∈ S 3×3.

A calculation shows that a = det(s). Since H2(λ, X) is positive semidefinite for every
(λ; X) ∈ �D∅, it follows that a is nonnegative. Secondly, we sketch how to directly
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obtain a certificate for nonnegativity of a in terms of Theorem 4.3. Let

σ2 =
(
ς(x21 )ς(x2x

2
1 x2)− ς(x21 x2)

2
)
+
(
ς(x21 )ς(x22 )− ς(x1x2)

2
)

+
(
ς(x22 )ς(x2x

2
1 x2)− ς(x2x1x2)

2
)

which is one of the coefficients of the characteristic polynomial of s. Note that σ2 is
a sum of three terms obtained from (4.3) by substitution, and therefore in particular a
sum of three quotients of elements in 	. If h1, h2, h3 ∈SSS are given by

⎛
⎝
h1
h2
h3

⎞
⎠ = (s2 − tr(s)s + σ2 I3) ·

⎛
⎝

x1
x2
x2x1

⎞
⎠ ∈SSS 3,

then a direct (but tedious) calculation shows that

a = ς(h1h�
1)+ ς(h2h�

2)+ ς(h3h�
3)

σ2
,

so a is a quotient of elements in 	, and therefore nonnegative. The choice of h j is
inspired by the proof of Proposition 4.2 and [21, Example 6.1].

5 Archimedean positivstellensatz for state polynomials

In this section we give a version of Putinar’s Positivstellensatz [37] for state polyno-
mials subject to archimedean constraints, Theorem 5.5, which is later applied to state
polynomial optimization in Sect. 6. First we address which functionals R〈x〉 → R

are given by states and evaluations on tuples of bounded operators. The following is
a variant of the well-known Gelfand-Naimark-Segal (GNS) construction [43, Section
I.9].

Proposition 5.1 Let L : R〈x〉 → R be a unital �-functional. If

(a) L(pp�) ≥ 0 for all p ∈ R〈x〉, and
(b) there is N > 0 such that L(p(N − x21 − · · · − x2n )p

�) ≥ 0 for all p ∈ R〈x〉,
then there exist a vector state λ ∈ S(H) and a tuple of self-adjoint operators X ∈
B(H)n such that L(p) = λ(p(X)) for all p ∈ R〈x〉.
Proof Apply [3, Theorem 1.27] to the quadratic module in R〈x〉 generated by {N −
x21 − · · · − x2n }.
Remark 5.2 It is easy to see that (b) in Proposition 5.1 can be replaced by

(b’) there is N > 0 such that L(ww�) ≤ N |w| for all w ∈ 〈x〉.
On the other hand, it cannot be replaced by

(b”) there is N > 0 such that L(x2kj ) ≤ Nk for all j = 1, . . . , n and k ∈ N,
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as in the tracial setup [17, Proposition 3.2]. Namely, for non-tracial states not all mixed
moments can be bounded with univariate moments. For example, let

v =
( 1

0
0
0

)
, X1 =

(
0 1 0 0
1 0 0 0
0 0 γ 0
0 0 0 γ

)
, X2 =

(
1 0 0 0
0 0 0 γ
0 0 1 0
0 γ 0 0

)
, X3 =

(
0 0 0 1
0 γ 0 0
0 0 γ 0
1 0 0 0

)
.

Then 〈X2k
j v, v〉 = 1 for all j, k but 〈X1X2X3v, v〉 = γ can be arbitrarily large.

Due to Proposition 5.1, we focus on state polynomial positivity subject to balanced
constraint sets with the following property. We say that C ⊆ SSS is algebraically
bounded if there is N > 0 such that

N − x21 − · · · − x2n =
∑
i

pi ci p
�
i

for some ci ∈ {1} ∪ C ∩R〈x〉 and pi ∈ R〈x〉 (in other words, C ∩R〈x〉 generates an
archimedean quadratic module in R〈x〉).

Next we turn to a notion from real algebra [28, 41]. A subset M ⊆ S is called a
quadratic module if 1 ∈ M, M +M ⊆ M and a2M for all a ∈ S . For M ⊆ S
let QM(M) denote the quadratic module generated by M . Given a quadratic module
M ⊆ S that is archimedean (i.e., for each f ∈ S there is m > 0 such that m ± f ∈
M), we consider the real points of the real spectrum SperMS , namely the set χM
defined by

χM := {ϕ : S → R : ϕ homomorphism, ϕ(M) ⊆ R≥0, ϕ(1) = 1}. (5.1)

The next proposition is the well-known Kadison-Dubois representation theorem,
see, e.g., [28, Theorem 5.4.4].

Proposition 5.3 Let M ⊆ S be an archimedean quadratic module. Then, for all
a ∈ S , one has

∀ϕ ∈ χM ϕ(a) ≥ 0 ⇔ ∀ε > 0 a + ε ∈M.

Since the algebraS is not finitely generated, it is in general not straightforward to
determine if a quadratic module in S is archimedean. Nevertheless, the next lemma
shows that quadraticmodules arising fromalgebraically bounded sets are archimedean.
To C ⊆SSS we assign

Cς := {ς(pcp�) : p ∈ R〈x〉, c ∈ {1} ∪ C} ⊆ S .

Lemma 5.4 If C is balanced and algebraically bounded then the quadratic module
QM(Cς ) ⊆ S is archimedean.

Proof It suffices to show that the generators ofS are boundedwith respect toQM(Cς )

[6], i.e., that for every w ∈ 〈x〉 there exists m > 0 such that m ± ς(w) ∈ QM(Cς ).
Since
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Nς(ww�)− ς(wx2jw
�) = ς

(
w(N − x2j )w

�
)
∈ QM(Cς ),

induction on |w| implies that for every w there is m′ > 0 such that m′ − ς(ww�) ∈
QM(Cς ). Then

1
4 + m′ ± ς(w) = ς

(
( 12 ± w)( 12 ± w)�

)+ m′ − ς(ww�) ∈ QM(Cς ).

We are now ready to prove an analog of the noncommutative Helton–McCullough
Positivstellensatz [14] for state polynomials subject to nc state constraints.

Theorem 5.5 Let C ⊆ SSS be balanced and algebraically bounded. Then for a ∈ S
the following are equivalent:

(i) a(λ; X) ≥ 0 for all (λ; X) ∈ �D∞
C ;

(ii) a(λ; X) ≥ 0 for all (λ; X) ∈ D∞
C ;

(iii) a + ε ∈ QM(Cς ) for all ε > 0.

Proof (iii)⇒(ii) If (λ; X) ∈ D∞
C , then

c(λ; X) 	 0, λ
(
p(X)p(X)∗

) 	 0

for all c ∈ C and p ∈ R〈x〉, hence s(λ; X) ≥ 0 for all s ∈ QM(Cς ), and so
a(λ; X) ≥ 0.

(ii)⇒(i) Clear.
(i)⇒(iii) Suppose a+ε /∈ QM(Cς ) for some ε > 0. By Proposition 5.3 there exists

a unital homomorphism ϕ : S → R with ϕ(QM(Cς )) ⊆ R≥0 and ϕ(a) < 0. Hence

ϕ(ς(pp�)) ≥ 0, ϕ(ς(p(N − x21 − · · · − x2n )p
�)) ≥ 0

for all p ∈ R〈x〉. Consider the unital �-functional L : R〈x〉 → R given by L(p) =
ϕ(ς(p)). ByProposition5.1, there exist a vector stateλ ∈ S(H) and X = X∗ ∈ B(H)n

such that L(p) = λ(p(X)) for all p ∈ R〈x〉. Therefore ϕ(b) = b(λ; X) for all
b ∈ S . Let v ∈ H be a unit vector such that λ(Y ) = 〈Yv, v〉 for all Y ∈ B(H), and
P ∈ B(H) be the orthogonal projection onto {p(X)v : p ∈ R〈x〉}. Then 〈q(X)v, v〉 =
〈q(PX P)v, v〉 for all q ∈ R〈x〉. Thus we can without loss of generality assume
PX j = X j ; that is, the operators X j can be replaced by their compressions PX j P .
Hence

〈
c(λ; X)p(X)v, p(X)v

〉 = ϕ(ς(p�cp)) ≥ 0 for c ∈ C, p ∈ R〈x〉

together with (I − P)X j = 0 implies c(λ; X) 	 0, and so (λ, X) ∈ �D∞
C . Finally,

a(λ; X) = ϕ(a) < 0.

Given a ∈ S and c, p ∈SSS we have a2ς(pcp�) = ς((ap)c(ap)�). Therefore

QM(Cς ) ⊆
{

K∑
i=1

ς( fi ci f
�
i ) : K ∈ N, fi ∈SSS , ci ∈ {1} ∪ C

}
, (5.2)
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an inclusion we shall make use of in Sects. 5.1 and 6.1 below.

5.1 Quadratic state modules

In this section we provide an alternative form of the Positivstellensatz for state poly-
nomials that underlines their noncommutative roots. A subset M ⊆ SSS is called a
quadratic state module if

1 ∈M, M+M ⊆M, fM f � ⊆M ∀ f ∈SSS , ς(M) ⊆M.

Given C ⊆ SSS let QMς (C) be the quadratic state module generated by C , i.e.,
the smallest quadratic state module inSSS containing C . We start with an alternative
description of quadratic state modules.

Lemma 5.6 Let C ⊆SSS .

(1) Elements of QMς (∅) are precisely sums of

ς(h1h
�
1) · · · ς(h�h

�
�)h0h

�
0

for hi ∈SSS .
(2) Elements of QMς (C) are precisely sums of

q1, h1c1h
�
1, ς(h2c2h

�
2)q2

for hi ∈SSS , qi ∈ QMς (∅), ci ∈ C.
(3) Elements of ς(QMς (C)) = QMς (C) ∩S are precisely sums of

ς(h1h
�
1) · · · ς(h�h

�
�)ς(h0ch

�
0)

for hi ∈SSS and c ∈ C ∪ {1}.
In particular, ς(QMς (∅)) is the preordering 	 from Sect.4.

Proof Straightforward.

Note that while ς(QMς (∅)) is a preordering in S , this is not necessarily the case
for ς(QMς (C)) in general (namely, ς(QMς (C)) does not need to contain elements
of the form ς(h1c1h�

1)ς(h2c2h�
2) for ci ∈ C). A quadratic state module M is called

archimedean if for every f ∈ SymSSS there exists N > 0 such that N ± f ∈M (note
that even though M might not be contained in SymSSS , we only consider symmetric
f ).

Proposition 5.7 A quadratic state moduleM is archimedean if and only if there exists
N > 0 such that N − x21 − · · · − x2n ∈M.
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Proof The forward implication is obvious. For the converse, note that the setM∩R〈x〉
is an archimedean quadratic module. Thus, for all p = p� ∈ R〈x〉 there exists M > 0
such that

M ± p ∈M ∩ R〈x〉 . (5.3)

In addition, the set H of bounded elements, defined by

H = {h ∈SSS : ∃M > 0 s.t. M − hh� ∈M},

is closed under involution, addition, subtraction and multiplication, i.e., is a �-
subalgebra of SSS [6]. A symmetric element f ∈ SSS is in H if and only if there is
some M > 0 with M ± f ∈M.

For every w ∈ 〈x〉 we have

ς(ww�)− ς(w)2 = ς
(
(w − ς(w))(w − ς(w))�

) ∈M. (5.4)

By (5.3) and the fact that M is preserved under ς , there is some M > 0 with M −
ς(ww�) ∈M. Adding this to (5.4) yields M − ς(w)2 ∈M. Thus, by the definition
of H , ς(w) ∈M. The desired result now follows since H is a subalgebra ofSSS .

The following is the state version of Theorem 5.5. Note that while the constraints
in Corollary 5.8 are nc state polynomials, the objective function needs to be a state
polynomial (cf. [17, Example 4.6]).

Corollary 5.8 Let M ⊆ SSS be an archimedean quadratic state module and a ∈ S .
The following are equivalent:

(i) a(λ; X) ≥ 0 for all (λ, X) ∈ �D∞
M;

(ii) a(λ; X) ≥ 0 for all (λ, X) ∈ D∞
M;

(iii) a + ε ∈M for all ε > 0.

Proof By Proposition 5.7, there exists N > 0 such that N − x21 − · · · − x2n ∈ M.
Furthermore,QM(Mς ) ⊆M by (5.2). Therefore (i)⇒(iii) follows fromTheorem5.5,
and (iii)⇒(ii)⇒(i) is clear.

5.2 Nonexistence of a Krivine–Stengle or Schmüdgen positivstellensatz for state
polynomials

We finish this section by commenting on two classical non-archimedean Positivstel-
lensätze from real algebraic geometry, and how their straightforward (albeit possibly
naïve) analogs for state polynomials fail.

A quadratic state module P ⊆SSS is a state preordering if ς(P) ·P ⊆ P . Note that
ς(P) = P ∩S is then a preordering (in the usual sense) in S . Moreover, if P is a
state preordering generated by C , then ς(P) is the preordering generated by ς(hch�)

for c ∈ {1} ∪ C .
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Consider the following two statements about a finitely generated state preordering
P and a ∈ S , which would be analogs of the Krivine–Stengle Positivstellensatz [28,
Theorem 2.2.1] and the Schmüdgen Positivstellensatz [28, Corollary 6.1.2], respec-
tively:

(A) if a|D∞
P ≥ 0 then there exist p1, p2 ∈ P and k ∈ N such that ap1 = a2k + p2;

(B) if D∞
P is bounded in operator norm and a|D∞

P ≥ ε for some ε > 0 then a ∈ P .

Example 5.9 Let P be the state preordering generated by

{
± (1+ [x1, x2]2

)
,±[[x1, x2], x1

]
,±[[x1, x2], x2

]}
,

and a = −ς(x1). Then

(1) D∞
P = ∅;

(2) there is a homomorphism ϕ : S → R such that ϕ(ς(P)) = R≥0 and ϕ(a) < 0;
(3) The above implications (A) and (B) both fail.

Proof (1) LetH be a complex Hilbert space, and suppose there exist X1, X2 ∈ B(H)

such that [X1, X2] commutes with X1, X2 and

I + [X1, X2]2 = 0. (5.5)

By the GNS construction (applied with any state on B(H)) one can then without loss
of generality assume that there exists v ∈ H such that {p(X)v : p ∈ R〈x〉} is dense in
H. Then [X1, X2] is central in B(H), and so (5.5) implies [X1, X2] = ±i I . But this
contradicts nonexistence of bounded representations of theWeyl algebra [39, Example
VIII.5.2]. Therefore D∞

P = ∅.
(2) The standard (Bargmann-Fock) unbounded �-representation of theWeyl algebra

is given by the unbounded operator T acting on the complex Hilbert space �2 with
the orthonormal basis {en}n∈N as T en = √

nen+1. The domain of this representation
contains

⊕
n∈N Cen , and T satisfies T ∗T − T T ∗ = I . Let v = 1√

2
(e1 + e2) and

X1 = 1
2 (T + T ∗), X2 = 1

2i (T − T ∗). Then X1, X2 are self-adjoint unbounded
operators, and [X1, X2] = i I . Define a homomorphism ϕ :SSS → R by

ϕ(ς(w)) = Re 〈w(X1, X2)v, v〉

for w ∈ 〈x〉. By the construction, ϕ(ς(P)) = R≥0 and ϕ(a) = − 1
2 .

(3) Note that D∞
P is bounded and a|D∞

P ≥ 1 vacuously by (1). Then (B) fails since

a /∈ ς(P) = P ∩S by (2). If ap1 = a2k + p2 for p1, p2 ∈ P , then

0 ≥ ϕ(a)ϕ(ς(p1)) = ϕ(a)2k + ϕ(ς(p2)) > 0,

a contradiction; thus also (A) fails.
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6 Optimization of state polynomials

In this section we apply Theorem 5.5 to optimization of state objective functions
subject to nc state constraints. Doing so, we obtain a converging hierarchy of SDP
relaxations in Sect. 6.1, and its dual in Sect. 6.2. When flatness occurs in the latter
hierarchy, one can extract a finite-dimensionalminimizer as shown in Sect. 6.3. Finally,
Sect. 6.4 presents sparsity-based approaches to reducing the sizes of the constructed
SDP hierarchies.

Recall that the degree of a SSS -word
∏

j ς(u j )v equals |v| + ∑ j |u j |, and the
degree of f ∈SSS is the maximal degree ofSSS -words in the expansion of f . LetSSSd be
subspace of nc state polynomials of degree at most d, and denote �(n, d) = dimSSSd .
Note that the number of SSS -words of degree d ∈ N is bounded below by nd (the
number of words from 〈x〉 of length d) and above by 1

2 (2n)d (the number of ordered
lists of words from 〈x〉 \ {1} whose lengths add to d). This gives a coarse estimate
nd ≤ �(n, d) ≤ (2n)d+1. Also, letSd =SSSd ∩S . ByWSSS

d we denote the vector of
allSSS -words of degree at most d with respect to the degree lexicographic order; note
that WSSS

d is of length �(n, d). Given c ∈SSS denote dc := � deg c2 �.
Throughout the rest of the paper we restrict ourselves to constraint sets C ⊆ SSS

such that C ∩SSS d is finite for all d ∈ N. In polynomial optimization one typically
focuses on finite sets of constraints, but this slightly more general setup is needed later
in Sect. 8.

6.1 SDP hierarchy for state polynomial optimization

For a balanced C ⊆SSS and d ∈ N define

M(C)d :=
{

K∑
i=1

ς( fi ci f
�
i ) : K ∈ N, fi ∈SSS , ci ∈ {1} ∪ C, deg( fi ci f

�
i ) ≤ 2d

}
.

(6.1)

By (6.1) it is clear that checking membership inM(C)d can be formulated as an SDP.
Indeed, let C ∩SSS d = {c1, . . . , c�}, and a ∈ Sd . Then a ∈ M(C)d if and only if
there exist positive semidefinite matrices A0, . . . , A�, where A0 is of size�(n, d) and
Ai is of size �(n, d − dci ) for i = 1, . . . , �, such that

a = ς
(
WSSS

d
� · A0 ·WSSS

d

)
+

�∑
i=1

ς
(
WSSS

d−dci
� · (ci Ai ) ·WSSS

d−dci
)

.

Furthermore, M(C)d for d = 1, 2, . . . is an increasing sequence of convex cones
whose union by (5.2) contains the quadratic module QM(Cς ) from Sect. 5.

Given a state polynomial a ∈ S , one can useM(C)d to design a hierarchy of SDP
relaxations for minimizing a over the state semialgebraic set D∞

C . Let us define amin
and a∞min as follows:
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amin := inf{a(λ; X) : (λ, X) ∈ DC } , (6.2)

a∞min := inf{a(λ; X) : (λ, X) ∈ D∞
C } . (6.3)

Since DC embeds into D∞
C , one has a∞min ≤ amin. One can approximate a∞min from

below via the following hierarchy of SDPs, indexed by d ≥ deg a
2 :

amin,d = sup{m : a − m ∈M(C)d} . (6.4)

Corollary 6.1 If C is balanced and algebraically bounded, the SDP hierarchy (6.4)
provides a sequence of lower bounds (amin,d)d≥ deg a

2
monotonically converging to

a∞min.

Proof. By (6.1) and (6.4), it is clear that amin,d ≤ a∞min. AsM(C)d ⊆M(C)d+1, one
has amin,d ≤ amin,d+1. Furthermore, Theorem 5.5 implies that for each each m ∈ N,
there exists d(m) ∈ N such that a − a∞min + 1

m ∈M(C)d(m). Thus one has

a∞min −
1

m
≤ amin,d(m),

which implies that

lim
d→∞ amin,d = a∞min.

6.2 Duality and state Hankel matrices

Next, we introduce state Hankel and localizing matrices, which can be viewed
as analogs of the noncommutative Hankel and localizing matrices (see e.g. [3,
Lemma 1.44]). To c ∈ SSS and a linear functional L : S2d → R, we associate
the following two matrices:

(a) the Hankel matrix Hd(L) is the symmetric matrix of size �(n, d), indexed by
SSS -words u, v ∈SSSd , with (Hd(L))u,v = L(ς(u�v));

(b) the localizing matrix Hd−dc (c L) is the symmetric matrix of size �(n, d − dc),
indexed bySSS -words u, v ∈SSSd−dc , with (Hd−dc (c L))u,v = L(ς(u�cv)).

Note that the localizing matrix associated to L and 1 is simply the Hankel matrix
associated to L .

Definition 6.2 A matrix M indexed by SSS -words of degree ≤ d satisfies the state
Hankel condition if and only if

Mu,v = Mw,z whenever ς(u�v) = ς(w�z) . (6.5)

Remark 6.3 Linear functionals on S2d and matrices from S�(n,d)(R) satisfying the
state condition (6.5) are in bijective correspondence. To a linear functional L : S2d →
R, one can assign the matrix Hd(L), defined by (Hd(L))u,v = L(ς(u�v)), satisfying
the state Hankel condition, and vice versa.
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The positivity of L relates to the positive semidefiniteness of its Hankel matrix
Hd(L). The proof of the following lemma is straightforward and analogous to its free
counterpart [3, Lemma 1.44].

Lemma 6.4 Given a linear functional L : S2d → R, one has L(ς( f � f )) ≥ 0 for all
f ∈SSSd , if and only if, Hd(L) 	 0. Given c ∈SSS , one has L(ς( f � c f )) ≥ 0 for all
f ∈SSSd−dc , if and only if, Hd−dc (c L) 	 0.

We are now ready to state the dual SDP of (6.4).

Lemma 6.5 The dual of (6.4) is the following SDP:

inf
L:S2d→R

L linear

L(a)

s.t. (Hd(L))u,v = (Hd(L))w,z, whenever ς(u�v) = ς(w�z),

(Hd(L))1,1 = 1,

Hd−dc(c L) 	 0, for all c ∈ {1} ∪ C with dc ≤ d.

(6.6)

Proof Let us denote by (M(C)d)
∨ the dual cone of M(C)d . By (6.1), one has

(M(C)d)
∨ = {L : S2d → R : L linear, L( f c f �) ≥ 0 for all c ∈ {1} ∪ C, f ∈SSSd−dc

}
.

By using a standard Lagrange duality approach, we obtain the dual of SDP (6.4):

amin,d = sup
a−m∈M(C)d

m = sup
m

inf
L∈(M(C)d )∨

(m + L(a − m)) (6.7)

≤ inf
L∈(M(C)d )∨

sup
m

(m + L(a − m)) (6.8)

= inf
L∈(M(C)d )∨

(L(a)+ sup
m

m(1− L(1))) (6.9)

= inf
L
{L(a) : L ∈ (M(C)d)

∨, L(1) = 1} , (6.10)

The second equality in (6.7) comes from the fact that the inner minimization problem
gives minimal value 0 if and only if a−m ∈M(C)d . The inequality in (6.8) trivially
holds. The inner maximization problem in (6.9) is bounded with maximum value 0 if
and only L(1) = 1. Eventually, (6.10) is equivalent to SDP (6.6) by Remark 6.3 and
Lemma 6.4.

To establish strong duality for the SDP pair (6.4) and (6.6), we require a stronger
version of algebraic boundedness.

Lemma 6.6 Let C ⊆SSS be balanced, and assume N − x21 − · · ·− x2n for some N > 0
is a conic combination of elements in C ∩ R〈x〉2 and hermitian squares of elements
in R〈x〉1. If L ∈ (M(C)d)

∨ and L(1) = 0 then L = 0.
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Proof For k ∈ N let Kk be the convex hull of

{
f0 f

�
0 , ς( f0 f

�
0 ), f1(N − x2j ) f

�
1 , ς( f1(N − x2j ) f

�
1 ) : fi ∈SSS , deg fi ≤ k − i, 1 ≤ j ≤ n

}
.

We start by showing that for everySSS -word w,

N degw − ww� ∈ Kdegw. (6.11)

We proceed by induction on degw. Firstly, N − x2j ∈ K1, and then N − ς(x j )2 =
ς(N−x2j )+ς((x j−ς(x j ))2) ∈ K1. Now suppose (6.11) holds forSSS -words of degree
at most k. If w is a SSS -word of degree k + 1, there are three (partially overlapping)
possibilities: w = x jv for aSSS -word v of degree k, in which case

N degw − ww� = N deg v(N − x2j )+ x j (N
deg v − vv�)x j ∈ Kk+1;

or w = ς(x j )v for aSSS -word v of degree k, in which case

N degw − ww� = N deg v(N − ς(x j )
2)+ ς(x j )

2(N deg v − vv�) ∈ Kk+1;

or w = ς(x jv) for aSSS -word v of degree k, in which case

N degw − ww� = N degw − ς((x jv)(x jv)�)

+ς((x jv − ς(x jv))(x jv − ς(x jv))�) ∈ Kk+1.

Now assume L ∈ (M(C)d)
∨ and L(1) = 0. Since ς(K2d) ⊆ M(C)d by the

assumption on C , we have L(ς(ww�)) = 0 for all SSS -words w of degree at most
d by (6.11). Then ς((u ± v�)(u ± v�)�) ∈ M(C)d implies L(ς(uv)) = 0 for all
SSS -words u, v of degree at most d. SinceS2d is spanned by such ς(uv), we conclude
L = 0.

Proposition 6.7 Let C ⊆ SSS be balanced, and assume N − x21 − · · · − x2n for some
N > 0 is a conic combination of elements in C ∩ R〈x〉2 and hermitian squares of
elements in R〈x〉1; e.g., N − x21 − · · · − x2n ∈ C. Then SDP (6.4) satisfies strong
duality, i.e., there is no duality gap between SDP (6.6) and SDP (6.4).

Proof Suppose SDP (6.4) is feasible. Then a − amin,d is a boundary point of the
coneM(C)d inS2d . Therefore there is a supporting hyperplane forM(C)d through
a − amin,d . In other words, there is a nonzero linear functional L ∈ (M(C)d)

∨ such
that L(a−amin,d) = 0. By Lemma 6.6 we have L(1) > 0. After rescaling we can then
assume that L(1) = 1, and so L(a − amin,d) = 0 implies L(a) = amin,d . Therefore
there is no duality gap.

Remark 6.8 The condition on the constraint set C in Proposition 6.7 is stronger that
algebraic boundedness. Nevertheless, it is satisfied in many prominent instances, for
example if C contains±(x2j −1) for all j (optimization over binary observables) as in
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Sect. 7 below, or if C contains ±(x2j − x j ) for all j (optimization over projections) as
in Sect. 8. Furthermore, if C is algebraically bounded, orD∞

C is known to be bounded
in operator norm, then we can simply add the desired constraint directly to C , thus
fulfilling the assumption of Proposition 6.7 without affecting D∞

C .

6.3 Minimizer extraction

The goal of this subsection is to derive an algorithm to extract minimizers and certify
exactness of state polynomial optimization problems. The forthcoming statements
can be seen as state variants of the results derived in the context of commutative
polynomials [4], eigenvalue optimization of noncommutative polynomials [3, 35],
and optimization of trace polynomials [2, 17].

Definition 6.9 Suppose L : S2d+2δ → R is a linear functional. We associate to L and
L|S2d the Hankel matrices Hd+δ(L) and Hd(L|S2d ) respectively, and get the block
form

Hd+δ(L) =
[
Hd(L|S2d ) B

BT B ′
]

.

We say that L is δ-flat or that L is a δ-flat extension of L|S2d , if Hd+δ(L) is flat over
Hd(L|S2d ), i.e., if rankHd+δ(L) = rankHd(L|S2d ).

Suppose L is δ-flat and let r := rankHd(L|S2d ) = Hd+δ(L). SinceHd+δ(L) 	 0,
we obtain the Gram matrix decompositionHd+δ(L) = [〈u, v〉]u,v with vectors u, v ∈
R
r , where the labels u, v areSSS -words of degree at most d + δ. Then, we define the

following r -dimensional Hilbert space

K := span {u : deg u ≤ d + δ} = span {u : deg u ≤ d},

where the equality is a consequence of the flatness assumption. Let S(δ) denote the
subalgebra of S generated by ς(w) for w ∈ 〈x〉δ \ {1}, and denoteSSS (δ) = S(δ) ⊗
R〈x〉 ⊆SSS . Each p ∈SSS (δ) gives rise to the multiplication operator X p on K, which
leads to the �-representation π : SSS (δ) → B(K) defined by π(p) = X p. Let v be
the vector representing 1 in K; then L(p) = 〈π(p)v, v〉 for all p ∈SSS (δ). In general,
elements of π(S(δ)) are central in π(SSS (δ)); if they are actually scalar multiples of the
identity on K, then π is not just a �-representation, but it respects the state symbol in
the sense that π( f ) = f (π(x1), . . . , π(xn)) for every f ∈SSS (δ). This fact applies to
our SDP hierarchy as follows.

Proposition 6.10 Let a ∈ S , suppose that C ⊆SSS satisfies the assumptions of Propo-
sition 6.7, and let d, δ ∈ N be such that d, δ ≥ da, dc for c ∈ C. Assume that L is a
δ-flat optimal solution of SDP (6.6), and let the �-representation π : SSS (δ) → B(K)

and the unit vector v ∈ K be constructed as above. If π(S(δ)) = R, then

(i) (λ, X) ∈ �DC where X = (π(x1), . . . , π(xn)) and λ(Y ) = 〈Yv, v〉;
(ii) L(p) = p(λ; X) for all p ∈ S(δ);
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(iii) amin,d+δ = L(a) = a∞min.

Proof As seen in the paragraph before Proposition 6.10, the operators Xi are
well-defined (thanks to the flatness assumption) and symmetric. After choosing
an orthonormal basis of K we can view Xi as r × r symmetric matrices. More-
over, L(p) = λ(p) for all p ∈ S(δ). Since π(S(δ)) = R, we furthermore have
L(p) = p(λ; X) for all p ∈ S(δ), so (ii) holds. For c ∈ C , one in particular has
c(λ; X) = L(c) ≥ 0 becauseHd−dc (c L) 	 0 as L is a feasible solution of SDP (6.6).
Hence (i) holds. Proposition 6.7 implies amin,d+δ = L(a) ≤ a∞min; on the other hand,
a∞min ≤ a(λ; X) = L(a), and therefore (iii) holds.

Remark 6.11 The conditionπ(S(δ)) = R in Proposition 6.10 in particular holds if L is
an extreme optimal solution of (6.6). In practice modern SDP solvers rely on interior-
point methods using the so-called “self-dual embedding” technique [50, Chapter 5].
Therefore, they will always converge towards an optimum solution of maximum rank;
see [27, §4.4.1] for more details. In order to obtain a posteriori an extreme linear
functional, a commonly used heuristic to minimize the rank is to minimize the trace
of the moment matrix over the same constraints involved in SDP (6.6) together with
the additional constraint amin,d+δ = L(a).

6.4 Reduction by exploiting sparsity

In this subsection, we briefly introduce the approaches for reducing the sizes of SDP
(6.6) andSDP (6.4) by exploiting sparsity encoded in the state polynomial optimization
problem, which are adapted from the case of eigenvalue and trace optimization over
nc polynomials [16, 49].

6.4.1 Correlative sparsity

For I ⊆ [n] := {1, . . . , n}, let SI ⊆ S (resp. SSS I ⊆ SSS ) be the subset of state
(resp. nc state) polynomials in variables xi , i ∈ I only. Let I1, . . . , I� ⊆ [n] be a tuple
of index sets and further J1, . . . , J� ⊆ C be a partition of the constraint polynomials
in C such that

a ∈ SI1 + · · · +SI�; (6.12)

Jk ⊆SSS Ik for k = 1, . . . , �. (6.13)

The tuple of index sets I1, . . . , I� is then called the correlative sparsity pattern of
(6.2) and (6.3). We build the Hankel submatrixHIk

d (L) (resp. the localizing submatrix

HIk
d−dc(c L)) with respect to the correlative sparsity pattern by retaining only rows and

columns indexed by W
SSS Ik
d (resp. W

SSS Ik
d−dc ) for each k ∈ [�] (resp. each c ∈ Jk).
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Let us consider the correlative sparsity adapted version of (6.6):

inf
L:S2d→R

L linear

L(a)

s.t. (HIk
d (L))u,v = (HIk

d (L))w,z, whenever ς(u�v) = ς(w�z), for k ∈ [�],
(Hd (L))1,1 = 1,

HIk
d−dc (c L) 	 0, for all c ∈ {1} ∪ Jk with dc ≤ d and k ∈ [�],

(6.14)

with optimum denoted by acsmin,d .

Theorem 6.12 Let C ⊆ SSS be balanced and algebraically bounded, and let a ∈ S .
Suppose that there exist subsets I1, . . . , I� and J1, . . . , J� such that (6.12) and (6.13)
hold, and that I1, . . . , I� satisfy the running intersection property (RIP), i.e., for every
k ∈ [�− 1], we have that

⎛
⎝Ik+1 ∩

⋃
j≤k

I j

⎞
⎠ ⊆ Ii for some i ≤ k. (6.15)

Then limd→∞ acsmin,d = a∞min.

Proof Let us define

QM(Cς )cs := QM(J ς
1 )+ · · · + QM(J ς

� ).

To obtain the convergence result, we need to prove a sparse analog of Theorem 5.5,
namely a(λ; X) ≥ 0 for all (λ; X) ∈ �D∞

C implies a + ε ∈ QM(Cς )cs, for all
ε > 0. This sparse representation result requires an adaptation of [16, Theorem 3.3],
so we only sketch the main steps while emphasizing changes required. The proof
is by contradiction, so we suppose that a + ε /∈ QM(Cς )cs for some ε > 0.
By the algebraically bounded assumption, each quadratic module QM(Jς

k ) in SIk
is archimedean (see Lemma 5.4). In particular, 1 is an algebraic interior point of
QM(Cς )cs in SI1 + · · · +SI� . Thus by the Eidelheit-Kakutani separation theorem
(a version of the Hahn-Banach separation theorem suitable for this context; see [1,
Corollary III.1.7]), there exists a unital linear functional ϕ : SI1+· · ·+SI� → Rwith
ϕ(QM(Cς )cs) ⊆ R≥0 and ϕ(a) < 0. We pick any extension of ϕ to a linear functional
onS which we again denote by ϕ. Let L : R〈x〉 → R be the unital �-functional given
by L(p) := ϕ(ς(p)), and let us denote by Lk the restriction of L to R〈x(Ik)〉.

Then we proceed exactly as in the proof of Theorem 5.5 for each k ∈ {1, . . . , �}.
Since each quadratic module QM(J ς

k ) ⊆ SIk is archimedean, one can apply
Proposition 5.1 to obtain a vector state λk ∈ S(Hk) and a tuple of self-adjoint oper-
ators Xk ∈ B(Hk)

|Ik | such that Lk(p) = λk(p(Xk)) for all p ∈ R〈x(Ik)〉, and
(λk, Xk) ∈ �D∞

Jk
. Here Hk denotes the Hilbert space completion of the quotient of

R〈x(Ik)〉 by the set of nullvectors corresponding to Lk , obtained through the GNS
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construction. Now, the proof proceeds by induction on � to show that there exist a
vector state λ and a tuple of self-adjoint operators X such that b(λ, X) = ϕ(b) for all
b ∈ SI1 + · · · +SI� , and (λ, X) ∈ �D∞

C .
We focus specifically on the case � = 2, as the general case then follows by an

inductive argument relying on the running intersection property, similarly to the proof
of [16, Theorem 3.3]. We denote by L12 the restriction of L1 to R〈x(I1 ∩ I2)〉 and
again we apply Proposition 5.1 to obtain a vector state λ12 ∈ S(H12) and self-adjoint
X12 ∈ B(H12)

|I1∩I2| such that L12(p) = λ12(p(X12)), for all p ∈ R〈x(I1 ∩ I2)〉. For
k ∈ {1, 2}, we denote by ik the canonical embedding from R〈x(I1 ∩ I2)〉 to R〈x(Ik)〉.
Let ιk be the canonical embedding from B(H12) to B(Hk), satisfying ιk(X12

i ) = Xk
i

for all i ∈ I1 ∩ I2. Then we apply [16, Theorem 3.1] to obtain an amalgamation
A with state λ and homomorphisms jk : B(Hk) → A such that j1 ◦ ι1 = j2 ◦ ι2.
After performing the GNS construction with (A, λ), we obtain a Hilbert space K, a
representation π : A→ B(K) and a vector ξ ∈ K so that λ(b) = 〈π(b)ξ, ξ 〉. We next
define X := (X1, . . . , Xn), with Xi := π( j1(X1

i )) if i ∈ I1 and Xi := π( j2(X2
i ))

otherwise. This tuple of operators is well-defined thanks to the amalgamation property.
Let us now set L̃(p) := 〈p(X)ξ, ξ 〉, for all p ∈ R〈x〉. We prove that L̃ agrees

with Lk (as well as L) on R〈x(Ik)〉 thanks to the amalgamation setup. Indeed, for all
p ∈ R〈x(Ik)〉 one has

L̃(p) = 〈p(X)ξ, ξ 〉 = 〈p(π( jk(X
k)))ξ, ξ 〉 = 〈π(p( jk(X

k)))ξ, ξ 〉
= λ(p( jk(X

k))) = λ( jk(p(X
k))) = λk(p(X

k)) = Lk(p) = L(p).

Hence, this yields ϕ(b) = b(λ, X) for all b ∈ Sk and by linearity of ϕ, we obtain
ϕ(b) = b(λ, X) for all b ∈ S1 +S2. To show that (λ, X) ∈ �D∞

C , we proceed as in
the proof of Theorem 5.5.

6.4.2 Sign symmetry

For a ∈ SSS and a binary vector s ∈ {0, 1}n , let [a]s ∈ SSS be defined by
[a]s(x1, . . . , xn) := a((−1)s1x1, . . . , (−1)sn xn). Then a is said to have the sign sym-
metry represented by a binary vector s ∈ {0, 1}n if [a]s = a. We use S(a) ⊆ {0, 1}n
to denote all sign symmetries of a and let S(C) := ∩c∈C S(c) for C ⊆SSS . Denote

U = {u ∈WSSS
2d : S({a} ∪ C) ⊆ S(u)},

and letSU ⊆ S2d be the span of {ς(u) : u ∈ U}. Consider the optimization problem
given by (6.3). We can build a block-diagonal SDP hierarchy for (6.3) by exploiting
its sign symmetries. To this end, we define an equivalence relation ∼ onWSSS

d by

u ∼ v ⇐⇒ u�v ∈ U . (6.16)
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The equivalence relation ∼ gives rise to a partition ofWSSS
d :

WSSS
d =

pd⊔
i=1

WSSS
d,i . (6.17)

We build the Hankel submatrixHd,i (L) (resp. the localizing submatrixHd−dc,i (c L))
with respect to the sign symmetry by retaining only those rows and columns that are
indexed by WSSS

d,i (resp.W
SSS
d−dc,i ) for each i ∈ [pd ] (resp. i ∈ [pdc ]).

Let us consider the sign symmetry adapted version of (6.6):

inf
L:SU→R

L linear

L(a)

s.t. (Hd,i (L))u,v = (Hd,i (L))w,z, whenever ς(u�v) = ς(w�z), for i ∈ [pd ],
L(1) = 1,

Hd−dc,i (c L) 	 0, for all c ∈ {1} ∪ C with dc ≤ d and i ∈ [pdc ],
(6.18)

with optimum denoted by assmin,d .

Theorem 6.13 We have that assmin,d = amin,d .

Proof For a linear functional L : S2d → R and s ∈ {0, 1}n , let Ls : S2d → R be
another linear functional given by Ls(u) = L([u]s). Suppose that L is an optimal
solution of (6.6) and let L ′ = 1

|S({a}∪C)|
∑

s∈S({a}∪C) L
s which is also an optimal

solution of (6.6). We claim that L ′(ς(u�v)) = 0 whenever u � v ∈ WSSS
d . By (6.16),

if u � v, then there exists s′ ∈ S({a} ∪ C) such that [u�v]s′ = −u�v. We then have

L ′(ς(u�v)) = 1

|S({a} ∪ C)|
∑

s∈S({a}∪C)

Ls(ς(u�v))

= − 1

|S({a} ∪ C)|
∑

s∈S({a}∪C)

Ls(ς([u�v]s′))

= − 1

|S({a} ∪ C)|
∑

s∈S({a}∪C)

Ls+s′(ς(u�v))

= − 1

|S({a} ∪ C)|
∑

s∈S({a}∪C)

Ls(ς(u�v))

= −L ′(ς(u�v)).

Thus L ′(ς(u�v)) = 0 as desired. From this we see that the restriction of L ′ to SU is
a feasible solution of (6.18) and so assmin,d ≤ amin,d .
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On the other hand, let L : SU → R be an optimal solution of (6.18). We define a
functional L ′ : S2d → R as follows:

L ′(ς(u)) =
{
L(ς(u)), if u ∈ U ,

0, otherwise.

One can easily check that L ′ is a feasible solution of (6.6). So assmin,d ≥ amin,d and it
follows assmin,d = amin,d as desired.

Remark 6.14 In ncpolynomial optimization, the exploitationof sign symmetries canbe
extended to an iterative procedure via the more general notion of “term sparsity” [49].
Due to the multitude of technical details and overhead involved, the state polynomial
version of term sparsity will be explored elsewhere in the future.

6.5 Complexification

In this section we detail how to suitably modify state polynomials, quadratic modules
QM(Cς ) and Theorem 5.5 to study state polynomial positivity and optimization on
states and bounded operators on complex Hilbert spaces.

Instead of a single formal state symbol ς(w) for w ∈ 〈x〉 \ {1}, we introduce two
formal symbols ς re(u) for u ∈ 〈x〉\{1} and ς im(v) for v �= v� ∈ 〈x〉\{1}, subject to
the relations ς re(u�) = ς re(u) and ς im(v�) = −ς im(v). Define

S C = C
[
ς re(u), ς im(v) : u ∈ 〈x〉 \ {1}, v �= v� ∈ 〈x〉 \ {1}],

SSS C = S C ⊗R R〈x〉 = S C ⊗C C〈x〉.

There is a natural involution � onSSS C which acts as complex conjugation on C and
fixes the generators x j , ς re(u), ς im(v). Let SymS C and SymSSS C denote the real
vector spaces of �-fixed elements inS C andSSS C, respectively. Note that

SymS C = R
[
ς re(u), ς im(v) : u ∈ 〈x〉 \ {1}, v �= v� ∈ 〈x〉 \ {1}] =: S R

is an infinitely generated real polynomial ring. Define theS C-linear unital map

ς :SSS C → S C

determined by ς(w) = ς re(w) + iς im(w) for w ∈ 〈x〉 \ {1}. Then ς( f �) = ς( f )
for f ∈SSS C. Furthermore, taking the real or the imaginary part of the coefficients of
elements inSSS C gives rise to the R-linear maps

re, im :SSS C → S R ⊗R R〈x〉.

With a slight abuse of notation, we extend the symbols ς re, ς im to S R-linear maps
SSS C → S R given by ς re = re ◦ ς and ς im = im ◦ ς . Then ς re( f �) = ς re( f ) and
ς im( f �) = −ς im( f ) for f ∈SSS C. A direct calculation gives the following.
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Lemma 6.15 Let c ∈ SymSSS C and p ∈SSS C. Then

ς(pcp�) = ς re((re p)c(re p)�)+ ς re((im p)c(im p)�
)

+ς im((re p)c(im p)�
)− ς im((im p)c(re p)�

)
.

Let C ⊆SSS C be a set of state polynomial constraints, and define

D∞
C := {(λ, X) ∈ S(H)× B(H)n : X j = X∗j , c(λ; X) 	 0 for all c ∈ C}

whereH is a separable complex Hilbert space (which is unique up to an isomorphism).

Example 6.16 LetC = {±(1+ς(x1x2x3)2)}. In the real framework (where realHilbert
spaces and real states are considered), D∞

C = ∅. On the other hand, D∞
C �= ∅ in the

complex framework. Concretely, the state λ = 1
2 tr on 2 × 2 complex matrices, and

hermitian matrices

X1 =
(
0 1
1 0

)
, X2 =

(
2 0
0 0

)
, X3 =

(
0 i
−i 0

)

satisfy 1+ λ(X1X2X3)
2 = 0.

Suppose C is balanced, in the sense that C� = C and −(C \ SymSSS C) ⊆ C . If

C ′ = C ∩ SymSSS C ∪
{
± 1

2 (c + c�),± 1
2 (ic

� − ic) : c ∈ C \ SymSSS C

}
⊆ SymSSS C,

then D∞
C = D∞

C ′ since C is balanced. When interested in state polynomial positivity
within the complex framework, this observation allows one to replace balanced subsets
ofSSS C with the subsets of SymSSS C. For the rest of this section we therefore restrict
to constraint sets C ⊆ SymSSS C.

Analogously as before, we say that C ⊆ SymSSS C is algebraically bounded if there
exists N > 0 such that N − x21 −· · ·− x2n =

∑
i pi ci p

�
i for some ci ∈ {1}∪C ∩C〈x〉

and pi ∈ C〈x〉. Furthermore, set

Cς = {ς(pcp�) : p ∈ C〈x〉, c ∈ {1} ∪ C} ⊆ S R.

One can alternatively introduce Cς using only real polynomials according to
Lemma 6.15.

Lemma 6.17 If C ⊆ SymSSS C is algebraically bounded then the quadratic module
QM(Cς ) ⊆ S R is archimedean.

Proof. It suffices to extend the proof of Lemma 5.4, and show that the generators
ς re(w), ς im(w) of S R are bounded with respect to QM(Cς ). As in the proof of
Lemma 5.4 we see that for w ∈ 〈x〉 there exists m > 0 such that m − ς(ww�) ∈
QM(Cς ). Then

1
4 + m ± ς re(w) = ς

(
( 12 ± w)( 12 ± w)�

)+ m − ς(ww�) ∈ QM(Cς ),

1
4 + m∓ς im(w) = ς

(
( i2 ± w)( i2 ± w)�

)+ m − ς(ww�) ∈ QM(Cς ).
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The following is the complex analog of Theorem 5.5.

Theorem 6.18 Let C ⊆ SymSSS C be algebraically bounded. Then for a ∈ S R the
following are equivalent:

(i) a(λ; X) ≥ 0 for all (λ; X) ∈ D∞
C ;

(ii) a + ε ∈ QM(Cς ) for all ε > 0.

Proof The implication (ii)⇒(i) is straightforward as in the proof of Theorem 5.5.
For the implication (i)⇒(ii), suppose a + ε /∈ QM(Cς ) for some ε > 0. By
Lemma 6.17 and Proposition 5.3, there exists a unital homomorphism ϕ : S R → R

with ϕ(QM(Cς )) ⊆ R≥0 and ϕ(a) < 0. Hence

ϕ(ς(pp�)) ≥ 0, ϕ(ς(p(N − x21 − · · · − x2n )p
�)) ≥ 0

for all p ∈ C〈x〉. Consider the unital �-functional L : C〈x〉 → C given by L(p) =
ϕ(ς re(p))+ iϕ(ς im(p)). By a complex version of Proposition 5.1 (which is obtained
from the GNS construction on C〈x〉), there exist a vector state λ ∈ S(H) and X =
X∗ ∈ B(H)n such that L(p) = λ(p(X)) for all p ∈ C〈x〉. Therefore ϕ(b) = b(λ; X)

for all b ∈ S R. The rest follows as in the proof of Theorem 5.5.

Let C ⊆ SymSSS C be algebraically bounded, and a ∈ S R. For d ∈ N let

M(C)d :=
{

K∑
i=1

ς( fi ci f
�
i ) : K ∈ N, fi ∈SSS C, ci ∈ {1} ∪ C, deg( fi ci f

�
i ) ≤ 2d

}
.

Then the SDP hierarchy

sup{m : a − m ∈M(C)d} (6.19)

converges to infD∞
C
a from above. Analogously to Lemma 6.5, the dual of (6.19) is

constructed using Hankel matrices, and there is no duality gap if the assumption of
Proposition 6.7 is satisfied.

More concretely, let L : S R → R be a unital functional, and c ∈ SymSSS C.
The hermitian localizing Hankel matrix HC

d (c L) is indexed bySSS C-words of degree
at most d (here, a SSS C word is a product of ς re(u), ς im(v), x j ), and its (u, v)-entry
equals L(ς re(u�cv))+ i L(ς im(u�cv)). Then

inf
L:S R

2d→R

L linear, L(1)=1

L(a) s.t. HC

d−dc(c L) 	 0, for all c ∈ {1} ∪ C with dc ≤ d

(6.20)

is the dual of (6.19). Alternatively, to reformulate (6.20) as an SDP over real numbers,
we refer the reader to [48].
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7 Nonlinear Bell inequalities

In this section we connect state polynomial optimization to violations of nonlinear
Bell inequalities, establish a further reduction of our optimization procedures based on
conditional expectation that is tailored to the quantum-mechanical formalism (Propo-
sition 7.1), and outline a few examples.

For the sake of simplicity, we restrict to bipartite models where two parties share
a state and use binary observables to produce measurements. A (m-input 2-output)
quantum commuting model is then given as a triple (λ, A, B) where λ ∈ S(H) is
a state and A = (A1, . . . , Am), B = (B1, . . . , Bm) are commuting tuples of binary
observables in B(H):

A∗i = Ai , A2
i = I , B∗j = Bj , B2

j = I , Ai B j = Bj Ai

for all 1 ≤ i, j ≤ m. The correlations produced by (λ, A, B) are determined by
λ(Ai B j ) for i, j = 0, . . .m where A0 = B0 = I . If H = H′ ⊗ H′ for a finite-
dimensionalH′ and Ai = A′i⊗ I , Bj = I⊗B ′j then (λ, A, B) is a (finite-dimensional)
spatial quantum model. In this case, dimH′ is the local dimension of (λ, A, B), and
λ is usually given by a density matrix. On the other hand, if A and B are tuples of
commuting operators, then (λ, A, B) is classical. In this case, the correlations can
be obtained as expectations of products of binary random variables on a probability
space.

To warm up, consider the expression

λ(A1B1)+ λ(A1B2)+ λ(A2B1)− λ(A2B2) (7.1)

for a model (λ, A, B). The classical Bell inequality states that (7.1) is at most 2 for
classical models. On the other hand, (7.1) attains the value 2

√
2 for a spatial quantum

model with local dimension 2. Furthermore, Tsirelson’s bound [46] implies that the
value 2

√
2 is optimal for all quantum commuting models. From the perspective of this

paper, Tsirelson’s bound can be recovered as a state polynomial optimization problem

sup ς(x1y1)+ ς(x1y2)+ ς(x2y1)− ς(x2y2)

s.t. x2i = 1, y2j = 1, [xi , y j ] = 0.

Upper bounds on quantum violations of linear Bell inequalities can be found using
the NPA hierarchy [32] for eigenvalue optimization of noncommutative polynomials;
for example, one can get Tsirelson’s bound on violations of (7.1) by eigenvalue-
optimizing x1y1 + x1y2 + x2y1 − x2y2 subject to x2j = y2j = 1 and [xi , y j ] = 0.
On the other hand, covariance of quantum correlations [33] and detection of partial
separability [47] lead to more general polynomial Bell inequalities. While linear Bell
inequalities are linear in expectation values of (products of) observables, polynomial
Bell inequalities contain multivariate polynomials in expectation values of (products
of) observables. Even for classical models, nonlinearity complicates the study of poly-
nomial Bell inequalities; for example, the supremum of a Bell-like expression over
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classical models can be strictly larger than the supremum over deterministic models.
Nonlinearity also renders noncommutative polynomial eigenvalue optimization,which
is commonly used to bound quantum violations of linear Bell inequalities, inapplica-
ble to polynomial Bell inequalities. On the other hand, state polynomial optimization
gives upper bounds on violations of polynomial Bell inequalities.

7.1 Universal algebras of binary observables

In this section we derive further simplifications for optimization of a state polynomial
subject to a balanced constraint set of the form

C =
{
±(1− x21 ), . . . ,±(1− x2n ),±[xi1 , x j1 ], . . . ,±[xi� , x j� ]

}
(7.2)

for some 1 ≤ ik, jk ≤ n. As mentioned above, optimal Bell inequalities correspond to
optimization problems subject to constraint sets of the form (7.2). By Corollary 6.1,
every state polynomial optimization problem on (7.2) admits a convergent SDP hier-
archy as in Sect. 6.1, and these SDPs satisfy strong duality by Proposition 6.7.

Let G be a group. Analogously to the construction of nc state polynomials, one can
define the state group algebraSSS (G) of G: namely, letS (G) be the real polynomial
ring in commutative symbols ς(g) for g ∈ G \ {1}, subject to ς(g−1) = ς(g), and
let SSS (G) = S (G) ⊗ R[G], where R[G] is the real group �-algebra of G, where
the involution is given by g� = g−1 for g ∈ G. As before, there is a natural map
SSS (G) → S (G). Let �SSS (G)2 denote the set of sums of hermitian squares f f � for
f ∈SSS (G).
Returning to (7.2), consider the group

G = 〈x1, . . . , xn | x21 = · · · = x2n = 1, xi1x j1 = x j1xi1 , . . . , xi�x j� = x j�xi�〉.

Let π : 〈x〉 → G be the canonical homomorphism. We extend it to a ς -respecting
�-homomorphism π :SSS →SSS (G). Then for a ∈ S ,

a ∈ QM(Cς ) ⇐⇒ π(a) ∈ ς
(
�SSS (G)2

)
. (7.3)

The relation (7.3) is advantageous in optimizing state polynomials subject to C : the
sizes of SDPs (6.4) and (6.6) can be reduced by indexing with a basis of SSS (G),
and only a single semidefinite constraint is needed (corresponding to �SSS (G)2). This
reduction is used in all subsequent computational examples.

A further reduction is sometimes possible. Given f ∈ S (G), its support are
elements of G appearing in f .

Proposition 7.1 Let a ∈ S , and let H ⊆ G be the subgroup generated by the support
of π(a). Then

a ∈ QM(Cς ) ⇐⇒ π(a) ∈ ς
(
�SSS (H)2

)
. (7.4)
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Proof Let 1H : G → H ∪ {0} be the indicator function, where 1H (g) = g if g ∈ H
and 1H (g) = 0 otherwise. Let E :SSS (G) →SSS (H) be the unital �-linear map given
by

E
(
ς(g1) · · · ς(g�)g0

) = ς(1H (g1)) · · · ς(1H (g�))1H (g0).

Note that E commutes with ς , restricts to a ring homomorphism S (G) → S (H),
and has conditional expectation properties (cf. [42, Section 3]):

(i) E(b1ab2) = b1E(a)b2 for a ∈SSS (G) and b1, b2 ∈SSS (H),
(ii) E(�SSS (G)2) = �SSS (H)2.

The second property follows by [42, Proposition 3.4] and E : S (G) → S (H) being
a homomorphism. Since π(a) ∈ S (H), (ii) implies π(a) ∈ ς

(
�SSS (H)2

)
if and only

if π(a) ∈ ς
(
�SSS (G)2

)
, and the rest follows by (7.3).

If H is a proper subgroup of G, the sizes of SDPs (6.4) and (6.6) can thus be further
decreased by Proposition 7.1; this is illustrated in Example 7.2.1 below.

7.2 Examples

Wedemonstrate the optimization results from Sect. 6 on the following polynomial Bell
inequalities. The codes for reproducing these results over real Hilbert spaces are avail-
able at (https://github.com/wangjie212/NCTSSOS/blob/master/examples/stateopt.jl)
and the codes for reproducing these results over complex Hilbert spaces are available
at (https://github.com/wangjie212/NCTSSOS/blob/master/examples/complex_state.
jl)

For all examples (except Example 8.1.3 with d = 5), we employ MOSEK 10.0
as an SDP solver. For more details on the modeling syntax, we refer the interested
programmer to the tutorial from [30, Appendix B.2] that describes a similar syntax to
perform trace polynomial optimization.

7.2.1 Example

One of the first considered polynomial Bell inequalities is

λ(A1B2 + A2B1)
2 + λ(A1B1 − A2B2)

2 ≤ 4 (7.5)

given in [47], where it is shown that (7.5) holds for all classical models, and for all
spatial quantum models with local dimension 2 (the equality is obtained for a model
with amaximally entangled state). In [31], (7.5) is shown to hold for all spatial quantum
models. An automatized proof of (7.5) for arbitrary quantum commuting models can
be obtained by solving the optimization problem

sup (ς(x1y2)+ ς(x2y1))
2 + (ς(x1y1)− ς(x2y2))

2

s.t. x2i = 1, y2j = 1, [xi , y j ] = 0 for i, j = 1, 2.
(7.6)
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Let C = {±(1− x2j ),±(1− y2j ),±[xi , y j ]}i, j=1,2. The relaxation of (7.6) with d = 3
as in Sect. 6.1,

inf μ s.t. μ− (ς(x1y2)+ ς(x2y1))
2 − (ς(x1y1)− ς(x2y2))

2 ∈M(C)d

(7.7)

outputs 4, which coincides with the classical value in (7.5). The concrete implementa-
tion of (7.7) encodes the relations x2j = y2j = 1 and [xi , y j ] = 0 directly into the SDP,
as in Sect. 7.1. The resulting SDP has 2032 variables, and a 209 × 209 semidefinite
constraint.

Alternatively, we can also invoke Proposition 7.1. The support of
(ς(x1y2)+ ς(x2y1))2 − (ς(x1y1)− ς(x2y2))2 in

G = 〈xi , y j | x2i = y2j = 1, xi y j = y j xi for i, j = 1, 2〉

is {xi y j }i, j=1,2, which generates the subgroup H of G consisting of all words in
generators xi , y j of even length. Cutting down the aforementioned SDP with respect
to H then results in an SDPwith 933 variables and a 112×112 semidefinite constraint,
which returns the value 4 in shorter time.

7.2.2 Example

Polynomial Bell inequalities also arise from covariances of quantum correlations. Let

covλ(X ,Y ) = λ(XY )− λ(X)λ(Y ).

In [33] it is shown that while

covλ(A1, B1)+ covλ(A1, B2)+ covλ(A1, B3)

+ covλ(A2, B1)+ covλ(A2, B2)− covλ(A2, B3)

+ covλ(A3, B1)− covλ(A3, B2)

(7.8)

is at most 9
2 for classical models, it attains the value 5 for a spatial quantum model

of local dimension 2 and a maximally entangled state. The authors also performed
extensive numerical search within spatial quantum models with local dimension at
most 5, but no higher value of (7.8) was found. They left it as an open question whether
higher dimensional entangled states could lead to larger violations [33, Appendix
D.1(b)].

Let

b = ς(x1y1)− ς(x1)ς(y1)+ ς(x1y2)− ς(x1)ς(y2)+ ς(x1y3)− ς(x1)ς(y3)

+ ς(x2y1)− ς(x2)ς(y1)+ ς(x2y2)− ς(x2)ς(y2)− ς(x2y3)+ ς(x2)ς(y3)

+ ς(x3y1)− ς(x3)ς(y1)− ς(x3y2)+ ς(x3)ς(y2) .
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The relaxation of

sup b s.t. x2i = 1, y2j = 1, [xi , y j ] = 0 for i, j = 1, 2, 3

with d = 2 returns 5. Therefore the value of (7.8) is at most 5 for all quantum
commuting models.

7.2.3 Example

In the previous two examples, the maximal violation of a polynomial Bell inequality
was attained at a maximally entangled state. Next, consider the expression

λ(A2 + B1 + B2 − A1B1 + A2B1 + A1B2 + A2B2)

− λ(A1)λ(B1)− λ(A2)λ(B1)− λ(A2)λ(B2)− λ(A1)
2 − λ(B2)

2.
(7.9)

Below we show that:

(i) (7.9) is bounded by 3.375 for classical models and spatial quantum models with
maximally entangled states, and this bound is obtained by a classical model with
a discrete 3-atomic measure;

(ii) (7.9) is bounded by 3.51148 for any quantum commuting model, and this bound
is obtained by a spatial quantum model of local dimension 2.

Let

b = ς(x2)+ ς(y1)+ ς(y2)− ς(x1y1)+ ς(x2y1)+ ς(x1y2)+ ς(x2y2)

− ς(x1)ς(y1)− ς(x2)ς(y1)− ς(x2)ς(y2)− ς(x1)
2 − ς(y2)

2.

(ii): To solve the optimization problem

sup b s.t. x2i = 1, y2j = 1, [xi , y j ] = 0 for i, j = 1, 2, (7.10)

we first solve the SDP for the relaxation of (7.10) with d = 2 as in (6.6). The out-
put is 3.51148; moreover, the resulting Hankel matrix is flat, and the assumptions
of Proposition 6.10 are satisfied. Therefore we can perform the finite-dimensional
GNS construction and extract a 4-dimensional quantum commuting model attaining
3.51148.After a unitary basis change, the extractedmodel is evidently spatial quantum,
of local dimension 2, and given by

|ψ〉 =

⎛
⎜⎜⎜⎝

− cosβ sin β
3

cosβ cos β
3

− sin β cos 2β−α
3

sin β sin 2β−α
3

⎞
⎟⎟⎟⎠ ,

A1 =
(
1 0
0 −1
)
⊗ I , A2 =

(
cosα sin α

sin α − cosα

)
⊗ I ,

B1 = I ⊗
(
1 0
0 −1
)

, B2 = −I ⊗
(
cosα sin α

sin α − cosα

)
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and λ(Y ) = 〈ψ | Y |ψ〉 for α = −4.525 and β = 2.192.
(i): If in the optimization problem (7.10) one restricts only to tracial states (i.e.,

λ ∈ S(H) satisfying λ(uv) = λ(vu)), then its solution gives an upper bound of (7.9)
for both classical models and spatial quantum models with a maximally entangled
state. Using the relaxation with d = 2 in the SDP hierarchy [17, Section 5.3] for
the tracial version of (7.10) one obtains an upper bound 3.375. Again, the resulting
Hankel matrix is flat, so a maximizing 3-dimensional model with a tracial state can be
extracted [17, Section 5.4]. In this model, all the operators commute, so the model is
classical, on a probability space of size 3. Once the bound on the size of the probability
space is known, we can search for a maximizing classical model exactly, resulting in

ρ = diag

(
1

4
,
3

8
,
3

8

)
, A1 = diag(1,−1,−1),

A2 = diag(1, 1,−1), B1 = I , B2 = A2

and λ(Y ) = tr(ρY ), for which the value of (7.9) is 27
8 = 3.375. Lastly, since ρ has

rational entries with denominator 8, the upper bound 27
8 can also be reached by a

spatial quantum model with a maximally entangled state with (possibly non-minimal)
local dimension 8 · 3 = 24.

To complete the picture, let us mention that the maximum of (7.9) for deterministic
models is 2.

8 Bell inequalities for network scenarios

As seen in the previous section, a polynomial Bell inequality corresponds to opti-
mizing a state polynomial subject to noncommutative constraints. On the other hand,
correlation inequalities for general quantum networks [8, 26, 34, 45] correspond to
optimizing a state polynomial subject to both noncommutative and state constraints.

Following [8], a correlation or network scenario is given by

(1) a set [M] = {1, . . . , M} of parties;
(2) a set [S] = {1, . . . , S} of sources; and
(3) a relation � on [S] × [M], where s � m means that the party m has access to

the source s.

Parties can have several inputs (questions) and outputs (answers); for m ∈ [M] let am
and bm be the number of inputs and outputs of m, respectively.

A (spatial) quantum model for such a network is given by

(i) (Finite-dimensional) Hilbert spaces H(s,m) for s � m;
(ii) For each m ∈ [M], projective-valued measures (PVMs) (Pm,i, j )

bm
j=1 for i =

1, . . . , am where

Pm,i, j ∈ B
( ⊗
s:s�m

Hs,m

)
, Pm,i, j = P∗m,i, j = P2

m,i, j ,

bm∑
j=1

Pm,i, j = I ;
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(iii) density matrices

ρs ∈ B
( ⊗
m:s�m

Hs,m

)

representing states, for s ∈ [S].
The correlations of this model are

p(i1, j1, i2, j2, . . . , iM , jM ) = tr

⎛
⎝⊗

s∈[S]
ρs ·
⊗

m∈[M]
Pm,im , jm

⎞
⎠

with a slight abuse of notation, since the tensor factors need to be appropriately ordered.
As in [25, Section III.C] (cf. [26, Section II.C] and [40, Definition 3.2]), a reduced

quantum model for such a network is given by

(i) A (possibly infinite-dimensional) Hilbert space H;
(ii) For each m ∈ [M], projective-valued measures (PVMs) (Pm,i, j )

bm
j=1 for i =

1, . . . , am where

Pm,i, j ∈ B(H), Pm,i, j = P∗m,i, j = P2
m,i, j ,

bm∑
j=1

Pm,i, j = I ,

and

[Pm,i, j , Pm′,i ′, j ′ ] = 0 for m �= m′;

(iii) A state λ ∈ S(H) satisfying

λ(Q1 · · · Q�) = λ(Q1) · · · λ(Q�) (8.1)

whenever each Qk is in the algebra generated by the PVMs for mk , and for all
k �= k′, mk �= mk′ and there is no s ∈ [S] with mk �s � mk′ .

The correlations of this model are

p(i1, j1, i2, j2, . . . , iM , jM ) = λ
(
P1,i1, j1 P2,i2, j2 · · · PM,iM , jM

)

Clearly, correlations of spatial quantum models are produced by reduced quantum
models. When all operators in a reduced quantum model commute (in which case
measurements are given by indicator functions on a probability space, and the state is
given by the integrationwith respect to the probabilitymeasure), themodel is classical.

A (classical/spatial quantum/reduced quantum) polynomial Bell inequality for a
network scenario is an upper bound on a polynomial expression in correlations, valid
for every (classical/spatial quantum/reduced quantum) model. We can obtain Bell
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inequalities for reduced quantummodels of network scenarios using the SDPhierarchy
from Sect. 6 as follows.

Consider the description of a network scenario as at the beginning of this section,
and let B be a polynomial expression in correlations p(i1, j1, . . . , iM , jM ). For each
m, i, j let xm,i, j be a freely noncommuting self-adjoint variable, and let b ∈ S
be the state polynomial obtained from B by replacing p(i1, j1, . . . , iM , jM ) with
ς(x1,i1, j1 · · · xM,iM , jM ).

Corollary 8.1 Let B and b be as above. Then β ∈ R is the smallest constant such that
B ≤ β for every reduced quantum model if and only if β is the output of the state
polynomial optimization problem

sup b

s.t. x2m,i, j = xm,i, j ,

bm∑
j=1

xm,i, j = 1,

xm,i, j xm,i, j ′ = 0, for j �= j ′, [xm,i, j , xm′,i ′, j ′ ] = 0 for m �= m′,
ς(w1 · · ·w�) = ς(w1) · · · ς(w�) for wk ∈ 〈xmk ,i, j : i, j〉 where mk are distinct

and not sharing sources.

(8.2)

Note that the constraints xm,i, j xm,i, j ′ = 0 for j �= j ′ above are redundant, but
convenient for reducing the size of SDPs.

In particular, Corollaries 6.1 and 8.1 together yield a convergent SDP hierarchy for
optimization of Bell expressions over reduced quantummodels of an arbitrary network
scenario. By Proposition 6.7, it is easy to see that in the special case of the bilocal
scenario (see Sect. 8.1 below), this SDP hierarchy is equivalent to the one presented
in [34], and whose convergence was first proved in [40]. For a different convergent
SDP hierarchy based on the quantum de Finetti theorem, see [26].

8.1 Bilocal scenario

In the bilocal scenario, there are three parties and two sources, and the middle party
shares a source with each of the other parties. In the network notation above, M =
{1, 2, 3}, S = {1, 2} and

1 �1 � 2 �2 � 3.

Below we provide bounds on reduced quantum violations of some Bell inequalities
of classical models for this scenario. We restrict ourselves to 2-output scenarios; note
that a two-output PVM {P, I − P} can be equivalently given by a binary observable
A (namely, A = 2P − I ). Thus we describe measurements of the first (resp. second;
resp. third) party in terms of binary observables Ai (resp. Bi ; resp. Ci ), as in Sect. 7.
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8.1.1 Example

Suppose each of the parties has two inputs and two outputs. In [5], the following
inequality for classical models of this bilocal scenario is given:

√|J1| +
√|J2| ≤ 2 (8.3)

where

J1 = λ
(
(A1 + A2)B1(C1 + C2)

)
, J2 = λ

(
(A1 − A2)B2(C1 − C2)

)
.

The inequality (8.3) is equivalent to the four polynomial inequalities

− 1

8
(J1 − η1 J2)

2 + η2(η1 J1 + J2) ≤ 2 (8.4)

for ηi ∈ {−1, 1}; see [5]. Let us bound reduced quantum violations of (8.4) for
η1 = η2 = 1 (the other cases are similar). Denote

j1 =
∑

i, j∈{1,2}
ς(xi y1z j ), j2 =

∑
i, j∈{1,2}

(−1)i+ jς(xi y2z j ),

b = −1

8
( j1 − j2)

2 + ( j1 + j2).

The maximal bilocal reduced quantum violation of (8.4) is then given by the optimiza-
tion problem

sup b s.t. x2i = y2i = z2i = 1, [xi , y j ] = [yi , z j ] = [zi , x j ] = 0 for all i, j,

ς
(
w1(x1, x2)w2(z1, z2)

) = ς
(
w1(x1, x2)

)
ς
(
w2(z1, z2)

)
for all w1, w2.

(8.5)

The SDP (6.6) for d = 3 returns 4, which gives an upper bound for a bilocal reduced
quantum violation of (8.4). This bound is attained by a spatial quantum model with

A1 = C1 =
(
1 0
0 −1
)

, A2 = C2 =
(
0 1
1 0

)
,

B1 = 1

2

(
1 1
1 −1
)
⊗
(
1 1
1 −1
)

, B2 = 1

2

(
1 −1
−1 −1

)
⊗
(

1 −1
−1 −1

)
,

ρ j = |ψ〉〈ψ | for |ψ〉 = 1√
2

⎛
⎜⎜⎝
1
0
0
1

⎞
⎟⎟⎠ .

Also, for this bilocal model one has
√|J1| + √|J2| = 2

√
2.
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8.1.2 Example

In [38, Appendix F], the authors prove an analog of the I3322 inequality for classical
bilocal models

√|J1| +
√|J2| ≤

√|L| (8.6)

where

J1 = 1

2
λ
(
(A1 + A2 + A3 + I )B1(C1 + C2)

)
,

J2 = 1

2
λ
(
(A1 + A2 − A3 + I )B2(C1 − C2)

)+ 1

2
λ
(
(A1 − A2)B3(C1 − C2)

)
,

L = 4+ λ(A1)+ λ(A2).

The inequality (8.6) implies the polynomial inequality

2(J1 J2 + J1L + J2L)− J 21 − J 22 − L2 ≤ 0. (8.7)

To find an upper bound for bilocal reduced quantum violations of (8.7), we set up the
optimization problem as in the previous example, and the SDP (6.6) for d = 3 returns
15.6705. With the current computational limitations, we do not know whether this is
the least upper bound. Nonetheless, there certainly exist bilocal quantum violations
of (8.7). Concretely, for α = 1.947 and β = 1.639, the spatial quantum model

A1 =
(
1 0
0 −1
)

, A2 =
(
0 1
1 0

)
, A3 =

(
0 −i
i 0

)
, C1 = A1, C2 = A2,

B1 = (sin αA2 + cosαA3)⊗ 1√
2
(A1 + A2),

B2 = (sin αA2 − cosαA3)⊗ 1√
2
(A1 − A2),

B3 = −A1 ⊗ 1√
2
(A1 − A2),

ρ j = |ψ j 〉〈ψ j | for |ψ1〉 = sin β

2

⎛
⎜⎜⎝

√
2

−1
0
−1

⎞
⎟⎟⎠+

cosβ

2

⎛
⎜⎜⎝

0
−1√
2
1

⎞
⎟⎟⎠ , |ψ2〉 = 1√

2

⎛
⎜⎜⎝

0
1
−1
0

⎞
⎟⎟⎠

gives 2(J1 J2 + J1L + J2L)− J 21 − J 22 − L2 = 13.3309.
In the above examples, state polynomial optimization yields the same result both in

the real and the complex framework (though complex SDP relaxations are larger). In
the following example, the real and the complex frameworks yield slightly different
results.
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8.1.3 Example

Suppose that each of the parties has three inputs and two outputs. In [45], an inequality
for classical models is given:

1

3
S − T ≤ 3+ 5Z

where

S =
∑

i∈{1,2,3}

(
λ(BiCi )− λ(Ai Bi )

)
,

T =
∑

{i, j,k}={1,2,3}
λ(Ai B jCk),

Z =max
(
{|λ(Ai )|, |λ(Bi )|, |λ(Ci )| : i ∈ {1, 2, 3}}

∪ {|λ(Ai B j )|, |λ(BiC j )|, |λ(AiC j )| : i �= j}
∪ {|λ(Ai B jCk)| : |{i, j, k}| ≤ 2}

)
.

In particular, [45] focused on the inequality

1

3
S − T ≤ 3 subject to Z = 0 (8.8)

for classicalmodels, and showed it admits a spatial quantumviolation satisfying Z = 0
and 1

3 S − T = 4. To provide an upper bound for bilocal reduced quantum violations
of (8.8), we set up the optimization problem as before. The SDP (6.6) for d = 3
(more precisely, its reduction as in Sects. 6.4.2 and 7.1) contains four PSD blocks with
respective size 130, 105, 105, 105 and 3018 affine constraints. We obtain an upper
bound 4.46613 in 1.94s. For d = 4, the SDP (6.6) (more precisely, its reduction as
in Sects. 6.4.2 and 7.1) contains four PSD blocks with respective size 678, 678, 678,
646 and 64878 affine constraints. We obtain an upper bound 4.37666 for the reduced
quantum violations of (8.8) in 5346s. The corresponding Hankel matrix is not flat and
so we cannot certify the optimality of this bound. The SDP (6.6) for d = 5 contains
four PSD blocks with respective size 3838, 3838, 3838, 3739 and 1 352 093 affine
constraints. With COSMO as an SDP solver, we obtain the upper bound 4.36605 in
566 979s.

Nowwe turn to the results obtained in the complex setting. Ford = 3, theSDP (6.19)
contains four PSD blocks with respective size 178, 134, 134, 134 and 7578 affine
constraints. We obtain an upper bound 4.46665 in 20.1s. For d = 4, the SDP (6.19)
contains four PSD blocks with respective size 1012, 1012, 1012, 958 and 210 501
affine constraints. We obtain an upper bound 4.37951 in 47138s. For d = 5, the
SDP (6.19) contains four PSD blocks with respective size 6498, 6498, 6498, 6244
and 5 672 003 affine constraints, which is currently out of reach.
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