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Abstract

Deadlocks, in which threads wait on each other in a cyclic
fashion and can’t make progress, have plagued parallel pro-
grams for decades. In recent years, as the parallel program-
ming mechanism known as futures has gained popularity,
interest in preventing deadlocks in programs with futures
has increased as well. Various static and dynamic algorithms
exist to detect and prevent deadlock in programs with fu-
tures, generally by constructing some approximation of the
dependency graph of the program but, as far as we are aware,
all are specialized to a particular programming language.

A recent paper introduced graph types, by which one
can statically approximate the dependency graphs of a pro-
gram in a language-independent fashion. By analyzing the
graph type directly instead of the source code, a graph-based
program analysis, such as one to detect deadlock, can be
made language-independent. Indeed, the paper that proposed
graph types also proposed a deadlock detection algorithm.
Unfortunately, the algorithm was based on an unproven con-
jecture which we show to be false. In this paper, we present,
and prove sound, a type system for finding possible dead-
locks in programs that operates over graph types and can
therefore be applied to many different languages. As a proof
of concept, we have implemented the algorithm over a subset
of the OCaml language extended with built-in futures.

CCS Concepts: « Software and its engineering — Cor-
rectness; Semantics; Concurrent programming languages;
Concurrent programming structures.

Keywords: Deadlock, futures, graph types, type systems,
static analysis

1 Introduction

The problem of deadlocks, in which two or more threads are
waiting on each other in a cyclic fashion so none can make
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progress, has been observed since the early days of paral-
lel and concurrent programming [7]. Many solutions to the
problem have been proposed over the years. We can broadly
group these into static approaches (e.g. [5, 9, 13, 17, 22]),
which detect using either a type system or static analysis
on the source code of a program whether the conditions
necessary for a deadlock may exist in the program, and dy-
namic approaches (e.g., [8, 20, 21]) which run alongside the
program and detect either that the conditions necessary for
a deadlock exist at runtime, or that a deadlock has occurred.

Much prior work on deadlock has been focused on cyclic
requests for resources (often locks) by coarse-grained system
threads, such as pthreads. In more recent years, there has
been intense interest in fine-grained parallelism, where large
numbers of lightweight threads are scheduled automatically
by the runtime system onto system-level threads. A mecha-
nism for fine-grained parallelism that has attracted particular
interest recently is the future and its closely related cousin
the promise. A future is spawned to compute a designated
piece of work asynchronously with the rest of the program.
The handle to the future is then a first-class object that can
be stored, passed as an argument to functions, etc. When the
result of the asynchronous computation is needed (even in a
far-away part of the program), its handle can be “touched”
(or “forced”). This operation blocks until the future’s com-
putation completes and then returns the result. Since being
introduced in Multilisp [11], variants of these mechanisms
have made their way into numerous languages, including
Cilk [10], Habanero-Java [6], JavaScript, Python, Rust [1],
and the latest version of OCaml [18]. Futures can be used
for everything from reducing latency in concurrent interac-
tions to implementing asymptotically efficient pipelined data
structures [3]. Because of their generality, however, futures
can also be used in ways that cause a deadlock.

Even when considering one threading paradigm such as
futures, tools for solving the deadlock problem have been
proposed for numerous languages and libraries. However,
as far as we are aware, virtually all solutions proposed thus
far are specific to at least a particular language, if not a
particular runtime and/or threading library. This specificity
of deadlock analyses to a particular language is odd when
one considers that the essence of the deadlock problem for
futures, regardless of language, can be boiled down to a
graph problem. If we think of the program as a directed
graph of dependences between threads, a deadlock in which
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two futures wait on each other will show up as a cycle in the
graph. Indeed, many existing static and dynamic analyses for
deadlock work by (implicitly or explicitly) constructing some
approximation of the dependency graph. This observation
leads to the central question of this paper: is it possible to
statically predict deadlocks in programs with futures in a
language-agnostic way by analyzing not the program source
code but a representation of dependency graphs?

Recent work [14] proposed graph types as a way of rep-
resenting the set of dependency graphs that might result
from executing a program. Such a representation is neces-
sary because, especially in fine-grained parallel programs
such as those with futures, runtime decisions based on either
input values or nondeterminism can affect the structure of
the dependency graph. As a result, a dependency graph as
described above represents not the program itself but rather
a particular execution of the program. The program then
corresponds to a (possibly infinite) set of graphs describing
the structure of every possible execution. Graph types repre-
sent these sets in a finite, compact way, and can be statically
assigned to a program by a graph type system. Moreover, the
graph type representation is not tied to a particular language
or parallelism model (although the graph type system, which
produces a graph type from source code, is specific to the
language). The problem of determining whether a deadlock
is possible in a parallel program then reduces to determin-
ing whether any graph represented by the program’s graph
type can contain a cycle. Because graph types can, in princi-
ple, represent programs in many different languages, such
an analysis over the graph type would lead to a language-
agnostic static deadlock detection tool.

Indeed, the initial work on graph types presents a proof-
of-concept static deadlock algorithm based on the above
idea—after inferring graph types for a program, their tool,
called GML for Graph ML (the tool accepts source code in a
dialect of the OCaml language), can optionally run deadlock
detection on the resulting graph type. The algorithm in this
prior work is not proven sound and relies on a conjecture
(admitted as such in the paper) that any cycles that might
arise in graphs represented by a graph type can be found
by “unrolling” the graph type to a fixed depth and testing
a small number of representative graphs for cycles. Unfor-
tunately, as we show in this paper with a general family of
counterexamples, that conjecture is false and the deadlock
detection algorithm unsound. Moreover, any fixes to the al-
gorithm that might resolve these issues would result in an
exponential blowup in the number of graphs that must be
checked for cycles.

In this paper, we propose a different static deadlock de-
tection algorithm on graph types, which takes the form of a
type system over graph types and does not rely on unrolling
the graph type to extract representative graphs. Because our
approach is a static one, it will necessarily be conservative.
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On the other hand, we prove the algorithm sound by show-
ing that any program it determines to be deadlock-free will
at runtime obey the transitive joins property [20], a condition
used in prior work on dynamic deadlock avoidance for fu-
tures which has been shown to imply deadlock-freedom. As
a type system, we say that the system “accepts” (finds to be
well-typed) programs and graph types that are guaranteed
to be deadlock-free and “rejects” ones that it cannot verify
to be deadlock-free. At a high level, the algorithm works
by controlling the ownership and use of futures in a graph
type, ensuring two properties. First, while the original graph
type system has a robust mechanism for determining where
futures may be spawned, we extend this to determine where
futures must be spawned, in order to detect situations in
which a future handle could be touched without a spawn
of the corresponding future. Next, we reject graph types in
which it cannot be determined statically that the touch of a
future comes “after” (in a well-defined partial order on the
program) the spawn, which prevents cycles of futures block-
ing on each other. We have implemented the algorithm in an
extension of GML and show using a number of qualitative
examples that it is not overly restrictive.

The rest of the paper proceeds as follows. In Section 2, we
introduce the thread model we consider—the language we
use for examples is intentionally simple so that it can repre-
sent the spectrum of languages for which our techniques can
be applied—and the basics of graph types. Next (Section 3),
we outline the counterexample to the prior deadlock detec-
tion algorithm. In Section 4, we present our algorithm as a
type system and prove it sound. In Section 5, we describe
our implementation of the algorithm as well as a qualitative
evaluation that shows the scope of programs it can prove
deadlock-free. Finally, we discuss related work and conclude.

2 Preliminaries
2.1 Language Model

Graph types abstract away details of the programming lan-
guage and even the exact parallelism constructs, so the algo-
rithm we describe in this paper is applicable to a wide variety
of languages with futures. For the purposes of presenting
examples, we adopt a simple, imperative language with a
built-in type future[A] representing a future asynchronously
computing a value of type A. We distinguish between a future
thread, or simply thread, which is an asynchronous thread
performing some computation, and a future handle, which
is a value of type future[A] providing the programmer a
means of accessing the result of an associated future thread.
When it is clear from context, we will simply use the term
future. We consider three operations on futures. The con-
structor new future[A]() creates a new future handle which
is currently not initialized with a running future thread. This
handle can then be used to perform two operations: if h is
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1 function divide_and_conquer (list[A] 1):
2 if 1l.length < threshold:

3 return base_case(1l)

4 else:

5 (11, 12) = divide 1

6 h = new future[B]()

7 h.spawn({ divide_and_conquer 11 })

8 12_result = divide_and_conquer 12

9 11_result = h.touch()

10 return combine(l1_result, 12_result)

Figure 1. Example code for a divide-and-conquer program
implemented with futures.

a future handle, then h.spawn(f) spawns a new asynchro-
nous future thread to compute the function f, and installs
the handle to this future into h. Calling h. touch() waits for
the future thread associated with h to complete and returns
the thread’s return value (if no thread is associated with h
because spawn has not yet been called, then touch() waits for
a thread to be installed, and then wraits for it to complete).

As an example, the program in Figure 1 implements a
generic parallel recursive divide-and-conquer algorithm (this
could be instantiated with Mergesort, Quicksort, Fibonacci,
or many other standard algorithms). If the length of an input
is greater than some threshold, the input is divided into two
halves. A new future is spawned to run the program recur-
sively on the first half, while the second half is computed in
the current thread. The future handle is then touched to get
the result of the first half, and the two results are combined.

As a result of their generality, futures can also be used
in a way that leads to deadlocks. Consider the following
program:

new futurel[int]();
new futurelint]();
.spawn({ return b.touch() })
.spawn({ return a.touch() })

1

2

3

T 0 T w

4

The program declares two futures handles, and then initial-
izes each with a computation that touches the other. Neither
future thread can make progress until the other completes,
and so this is a classic deadlock. We note that the impera-
tive nature of spawn is crucial for this example. In purely
functional programs with futures, the use of futures is con-
strained to be structured [12], which precludes deadlocks;
however, many real-world uses of futures are not structured.

2.2 Graphs

We abstractly represent the parallel structure of a program
using a directed graph expressing the dependences between
threads. We will use metavariables u and variants to refer to
vertices of the graph, which represent individual, sequential
computations. If u is an ancestor of #’, then u must happen
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before u’. The lack of a path between two computations
indicates that they may occur in parallel.

Formally, we represent a graph g as a quadruple (V, E, s, t)
of a set V of vertices, a set E of directed edges, a designated
“start” vertex s and a designated “end” vertex t. We consider
each graph to have a “main” thread that starts at s and ends
at t. We use a number of shorthands to build and compose
graphs. The notation e represents a graph containing a sin-
gle vertex. The graph g; ® g, represents sequential compo-
sition of the two graphs, composing the two main threads
together in sequence. The graph g /,, describes a main thread
consisting of one vertex that spawns another thread (e.g.,
a future thread). The new thread consists of the graph g,
post-composed with a new designated “end” vertex u. We
add this vertex to give the future a unique name that can
be referred to later, such as when another thread wants to
touch the future. This touch corresponds to adding an edge
from the last vertex of the future thread, which is u, and
we write this as “\. The notations are defined formally in
Figure 2, which also gives graphical depictions of two of
the operations. The graph-building operations additionally
require that all vertices in the graph are unique.

2.3 Graph Types

The graphs of the previous subsection represent a record
of one execution of a program: while the graph abstracts
away from details of how parallel threads are scheduled, if a
program makes choices based on unknown input or involves
any nondeterminism, the graph still reflects only one possible
resolution of these choices. As an example, the graph that
results from performing a parallel Quicksort on a sorted list
will be quite different from the graph that results from a
randomly-ordered list. There is no way to know without
running the program exactly how the graph will look.

Graph types [14] compactly represent the set of all possible
graphs that might result from running a particular program,
and are assigned statically to programs, allowing us to make
statements about a program’s graph without running it. Like
the abstract graphs described above, graph types abstract
away details of the language model, and so are an ideal in-
termediate representation for performing analyses on the
structure of a program in a language-agnostic way. In this
subsection, we give a brief overview of the graph type nota-
tion we need for the rest of the paper, and direct readers to
the prior work for a more complete presentation.

The syntax for graph types G is given below:

G = o|Gi®Gy|G/ul"\
| GiVGe|py.Gly|vuG |Iug;u:.G | Glug; u]

The first row of constructs looks similar to the notation used
for building graphs in the previous subsection. Indeed, any
graph constructed using the constructs of Figure 2 is also a
valid graph type inhabited by only that one graph.
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< S1 > [/ /u; \}
* = ({uh0,uu) u fresh t s
(Vi,E1,s1,t1) @ (Vo, B, s2,t2) 2 (ViU Vo, Ey UE2 U {(t1,82)}, 51, 12) VinV, =0 | < >
(V,E,s,t) Ju 2 (VU{uu'},EU{W,s), (t,w} v, u') u freshugV ;2 ¢
\ L (W) ) u’ fresh ;
a < > SN
ty ‘\u )
b c

Figure 2. a. Shorthands for combining graphs. b. Depiction of (Vi, Eq, s1, t1) @ (Vz, Ea, s2, t2). ¢. Depiction of (V, E, s, t) /4. In (b)

and (c), dashed lines and nodes are newly created.

The constructs in the second row allow graph types to re-
flect a set containing multiple graphs. The graph type G, VG,
represents the disjunction of two alternatives; for example,
if a program might take either branch of a conditional at
runtime, its graph might correspond to the if branch or the
else branch. The set of graphs represented by this graph type
is the union of the graphs represented by G; and G,.

Graph types must also be able to represent unbounded sets
of graphs, which generally result from either recursion or
iteration in the parallel program. As an example, there is no
way to tell statically how many times the divide_and_conquer
function of Figure 1 will call itself. The graph type for this
function needs to contain graphs corresponding to any num-
ber of recursive calls. This is represented with the recursive
graph type py.G, which binds a graph variable y inside G.
The inner graph type, G, can “call” the entire recursive graph
type recursively using y.

Here, we take a slight diversion to introduce an important
point about graph types. Recall from the previous subsection
that vertices in a graph must be unique—if there are two ver-
tices u in a graph, then there is no way to know which one
is the source of an edge (u, u"). The graph-composition con-
structs in Figure 2 simply enforce, as a condition of their use,
that composing graphs would not duplicate vertex names.
In graph types, it is not always clear when a graph type
would yield a graph with duplicate vertex names. Consider
the following invalid graph type, which we might naively
use to represent the parallel divide-and-conquer example:

G2puy.eV(yludye"\)

The graph type indicates that the program either 1) “bottoms
out” to a sequential base case, or 2) spawns a future whose
graph is also represented by G using a designated vertex
name u, then does another computation represented by G,
then touches the future. The problem with this graph type
is that finding the set of graphs to which it corresponds
requires “unrolling” the recursion, e.g., one such graph is

(oluded™\) /fud(e/ @0 )"\

which has 3 vertices “named” u.

To avoid duplicating vertex names when unrolling recur-
sion, we need a way to generate fresh vertex names. This is
accomplished with the vu.G construct, which introduces a
vertex variable u within the scope of G. This variable will be
instantiated with a unique vertex each time the binding is
encountered. The divide-and-conquer example graph could
then be expressed correctly as:

G2pyvu.eV(y/u®ye"\)

To enforce that graph types are used in a way that will not
result in graphs with duplicate vertices, prior work equips
graph types with a “well-formedness” judgment that takes
the form of a type system over graph types (or rather, a
“kind” system because graph types are already type-level
constructs). In this judgment, vertices that are used to spawn
futures are subject to an affine restriction, which prevents
them from being used more than once. In Section 4, we
describe how this is accomplished in more detail.

The final two graph type constructs allow graph types to
be parameterized by sets of vertices. The graph type ITiif; ii;.G
introduces the variables iy and i; which may be used in G.
Both notations represent a comma-separated vector of zero
or more vertices; we will use 0 if there are no vertices in
one vector. The vertices in il may be used to spawn futures,
while the vertices in #; may be used to touch futures. It will
become clear when we discuss well-formedness of graph
types in the Section 4 why these two sets are separated. The
parameters of such a graph type can be instantiated with the
application G[iif; ii;].

Finally, we discuss formally how to construct a set of
graphs from a graph type, a process we have motivated in-
formally above. We refer to this process as normalization.
Generally, one should not have to normalize graph types in
order to use them, but normalization is useful for defining
the semantics and soundness of graph types. Specifically,
the soundness theorem of the graph type system [14] en-
sures that any graph that results from executing a program
is contained in the normalization of the program’s graph
type. (We also use normalization in the proof of soundness
for the analysis we present in this paper, but normalization
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Normy, (vu.G) Normy, (G[u' /u])
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{G] ® G; | G| € Norm,(G,), G, € Norm,(G>)
{G; ® G, | G| € Norm,(G,), G, € Normy(G,)

u’ fresh

Normy(G) 2 0

Normy, (e) = {e}

Norm,(G; ® Gs) =

Norm, (G, & G;) =

Normy,(G; V G,) 2 Norm,(Gy) U Normy,(G,)

Normy, (G /4) = {G' /ul G’ € Norm,(G)}

Norm, (*\) = {"\}

Norm,,(11y.G) 2 Norm,_1(G[py.G/yl) U Normy,_1(py.G)

Normy, (Glif;u,])

Normy, (Gliig; ;]) 0

1>

Norm,, (G’ [l_if/l_i}] [ /u;])

unrollg(G) = H{i}-;l_i;.G/
unroll,(G) # Hﬁ},;ﬁ;.G’

Figure 3. Normalization.

is not necessary for actually performing the analysis.) Be-
cause graph types (such as the divide-and-conquer example
above) can correspond to infinite sets of graphs, we param-
eterize the normalization function by a natural number n
roughly corresponding to how many times. recursive graph
types should be unrolled. Figure 3 defines the normalization
operation as a function Normg(n)!. Once n reaches zero, nor-
malization returns the empty set. Otherwise, normalization
proceeds largely as we have motivated above. A sequential
composition G; & G, is normalized by pairwise composing
the normalizations of the two subgraphs, disjunctions union
their normalizations, and a future G /,, introduces a spawn
of g using vertex u for all g in the normalization of G. The
normalization of recursive bindings allows the binding to
be unrolled or not; in either case, n is decremented. A “new”
binding vu.G is normalized by substituting a fresh vertex
for u. The normalization of an application unrolls the applied
graph type until it is a IT binding (decrementing n by the
number of times it needs to be unrolled) and then substitutes
the arguments for the parameters.

3 Counterexample to Conjecture

The original work on graph types [14] proposed and imple-
mented a proof-of-concept deadlock detection algorithm for
graph types. The algorithm worked by normalizing the graph
type to the minimum level n (that is, computing Norm, (G))
such that every recursive binding in the graph type is un-
rolled twice. It would then check each of the resulting graphs
for cycles”. The (purported) soundness of this algorithm de-
pends on a conjecture that if g € Norm,,(G) for any m and g
has a cycle, then there is a graph with a cycle in Norm,(G),

IThe definition here is slightly different from the presentation in prior
work [14]; specifically, the prior presentation returned the singleton graph
type e rather than the empty set of graphs as the base case. The defini-
tion here is more convenient for our proofs; we have confirmed that the
soundness proof of the graph type system is unaffected by this change.
2Separately, the algorithm checks that the graph type does not allow a
vertex to be touched without being spawned, but we focus here on the cycle
detection part of the algorithm.

where n is as described above. In this section, we present a
counterexample to this conjecture. Consider the graph type

vy, uz.® /i, ®Gu;uy]
where
G £ pyTug; ux.vu. o V(™ \, ®e Ju, ®ylusul)
This graph type could arise from the following program.

1 function g(futurelint] a, x):
2 u = new future()
3 if (rand () == 0):

4 return

5 else:

6 x.touch()

7 a.spawn({ return 42 })
8 g (u, w

9 return

11 function main():

12 ul, u2 = new future[int]()
13 u2.spawn({ return 42 3})

14 g(ul, u2)

15 return

The function g takes two futures, a and x, which it spawns
and touches, respectively. At the first call to g, these are
instantiated with different futures, but when it is called re-
cursively, both are instantiated with the same future.

If we unroll the recursive binding of G once, we get:

o/, @\ D0/, Do

where we take the “else” branch in the first unrolling of G
and the “then” branch in the second (this is the only option
available that would produce a graph, because taking the
“else” branch again would require unrolling the recursion
again). Unrolling the recursion a second time gives rise to a
graph where we call g recursively with u as both arguments

and get the following graph:
o Lu, @\ @0/ &\ B0/ ®
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This graph has a cycle because u is touched before it is
spawned, but this cycle was only detected by unrolling the
graph type an extra time.

Furthermore, the problem cannot be fixed by simply un-
rolling more times (increasing the n value above) and check-
ing more graphs. If we unroll every recursion three times,
the following program serves as a counterexample (we have
omitted the main function here, which just initializes g)*:

1 function g(futurelint] a, b, x, y):
2 u = new future[int]()
3 if (rand () == 0):

4 return

s else:

6 x.touch()

7 a.spawn({ return 42 3})
8 g (b, u, y, u

9 return

This version of the program takes two futures to spawn
and two to touch. On the recursive call, the second “spawn”
future, b, is moved into the first position so it will be spawned
on the next iteration, and the second “touch” future, y, is
moved into the first “touch” position so it will be touched
on the next iteration. The new future u is passed as both
the second “spawn” and second “touch” future so it will be
both touched and spawned (creating a cycle) on the following
iteration. For any number n of unrollings, this example can
be extended so that the deadlock will not manifest until
the n + 1% call to g, and therefore the n + 1% unrolling.

The above counterexample shows that there is no global
number n of unrollings such that a deadlock will mani-
fest in the first n unrollings (which would make it possible
to soundly detect deadlocks by checking all of the graphs
in Norm,,(G) for cycles). It is possible that there exists such
an n for each program. For the family of counterexamples
above, if m is the number of “spawn” and “touch” arguments,
n could be set to m + 1, as the examples were constructed
precisely to manifest a deadlock on the m + 15! unrolling.
However, this solution, even if sound, leaves much to be
desired in both elegance and efficiency. The latter is eas-
ily seen, as the number of graphs in Norm,,(G) is, for most
graph types, exponential in n. We therefore take a different
approach in designing the algorithm in the next section.

3While this example is syntactically valid, we note that if the code is con-
verted to GML’s OCaml-like syntax, GML is not able to infer a graph type
for the program. This is due to a design decision in GML’s handling of
polymorphic recursion; the details are beyond the scope of this paper, but
the high-level issue is that it may take several iterations of graph inference
over a recursive function to arrive at the proper type. In the type inference
literature, this is referred to as Mycroft iteration [16]. GML short-cuts this
process by performing graph inference on each recursive function twice. If
the type has not reached a fixed point after the second iteration, an error is
raised. For reasons that are similar to why this works as a counterexample,
the type of this example will not reach a fixed point after two iterations.
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Figure 4. Rules for deadlock avoidance.

4 A Graph Type Analysis for Deadlock
Prevention

In Section 4.1, we present our main result, a kind system for
detecting whether deadlock is possible in a given program
using its graph type. We then prove it correct in Section 4.2.

4.1 Graph Kind System

Our deadlock detection algorithm is a static analysis pass
over graph types [14]. That is, we do not depend on source
code and do not perform any evaluation (although our sound-
ness proof will involve normalizing graph types, a form of
evaluation on graph types). We present the analysis as a kind
system over graph types. There are two graph kinds k, which
may be thought of as the “types of graph types™:

K= | Hl_if;l_it.*

The graph kind * represents ordinary graph types; these
are graph types that can be directly normalized. The graph
kind ITiif; i; .+ represents a graph type with two sets of pa-
rameters U I and i;; these parameters must be instantiated
to produce an ordinary graph type. The deadlock freedom
judgment is A; Q; ¥ +pr G : k, which assigns a graph kind x
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to the graph type G. The judgment uses three contexts: A
contains graph variables y together with their graph kinds,
Q contains vertex names that may be used for spawning
futures, and ¥ contains vertex names that may be touched.
Other than the subscript on the turnstile, the deadlock free-
dom judgment looks quite similar to the well-formedness
judgment of our prior work [14], which also assigns graph
kinds to graph types. That judgment, however, aims to as-
sign a graph kind to all properly formed graph types. It
serves mainly to reject graph types that would spawn mul-
tiple futures using the same vertex, which would result in
meaningless graphs. As such, the spawn context Q is treated
as affine, meaning that vertices in this context may be used
at most once in the type. The touch context ¥ has no such
restriction, as vertices may be touched any number of times.
Our judgment serves a different purpose, in that it seeks
to assign a graph kind only to graph types that are guaran-
teed to be deadlock-free. This kind system is designed to be
conservative, and (as with all static analysis) will reject some
safe programs. We seek to prevent two types of deadlocks:

1. A touch targets a vertex that is never spawned, so the
touch will block indefinitely.
2. Touches and spawns create a cycle in the graph.

Item (1) requires ensuring that vertices that may be spawned
indeed are spawned. It is therefore not enough, as in prior
work, to treat the spawn context as affine. Instead, we treat
it as linear, meaning that vertices in the spawn context must
be used exactly once. This guarantees that any vertex that
may be spawned by a graph type will be spawned. As before,
there are no affine or linear restrictions on the touch context.
However, we take more care in when we add vertices to the
touch context: we will add vertices to the touch context only
after they are known to have been spawned.

The rules for the deadlock freedom judgment are in Fig-
ure 4, and we describe a few of the key points here. Rule
DF:EmPTY indicates that the single-node graph is well-kinded,
but only under an empty spawn context; if there are any ver-
tices in the spawn context, this would violate linearity as
they are not spawned by the graph type. Rule DF:VAR han-
dles graph variables which are found in the context A. Again,
the spawn context must be empty. Rule DF:SEQ handles se-
quential composition of two graph types. The spawn context
is split (nondeterministically) into two pieces Q; and Q,. As
is typical in linear and affine type systems, this must con-
stitute a disjoint splitting of the spawn context. We kind G,
with the spawn context Q;. Recall that this means that G,
must spawn all vertices in Q;. It is therefore safe to add the
vertices from Q; to the touch context when analyzing G,—
we know that all of these vertices will have already been
spawned before G, runs.

The role that DF:SEQ has in preventing deadlocks is de-
picted graphically in Figure 5. In this figure, futures are
drawn to the left of the threads that spawned them, and
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Figure 5. Diagrams showing how rules DF:Seq (left) and
DF:Spawn (right) ensure that touch edges go from left to
right. Dashed lines show that, e.g. all vertices in ¥ are “to
the left of” vertices in Q;.

the continuations of threads are drawn to the right. The
deadlock-freedom restrictions imposed by the kind system
can, in this figure, be roughly stated as requiring that all
touch edges go from left to right, which prevents a cycle.
Rule DF:SEQ ensures this by restricting the set of vertices
spawned by G; to Q; and the set of vertices touched by it
to ¥. We inductively assume all of the vertices in Q; are to
the right of those in ¥. Because G; is to the right of Gy, it is
safe to add the vertices spawned by G; (those in Q) to the
set touchable by G,, as they are now to the left of G,.

It is worth noting that rule DF:OR does not split the spawn
context—only one of G; and G, will actually be executed,
and so both may spawn the same set of vertices (indeed,
because of linearity, both must spawn the same vertices).
Rule DF:NEw introduces the new vertex into the spawn
context, but not the touch context (it will only be added to
the touch context after being spawned). These are the im-
portant features of the kind system for ensuring deadlock
freedom; the remaining rules are largely unchanged from
the original graph kinding judgment and we describe them
here only briefly. Rule DF:REcP1 handles recursive param-
eterized graph types, which arise from recursive functions.
The parameters are added to the appropriate contexts when
checking the body, and the variable y, representing the recur-
sive instance of the function, is added to the graph context A,
with an appropriate graph kind. The outer spawn context
must be empty, because it is not safe for linear resources
(vertices) to be captured in a recursive binding, where they
may be duplicated. This restriction is not needed in DF:Pr,
which checks graph types that accept parameters but do not
recur. Rules DF:SpawN and DF:ToucH require u to be in the
appropriate context. In rule DF:SpAwN, as depicted on the
right side of Figure 5, the future is spawned to the left of
the spawning vertex (4’ in the figure), so descendants of v’
may touch it, but G is only allowed to touch vertices in ¥,
which is to the left of both u’ and G. Finally, DF:App requires
the vertex arguments to be in the appropriate contexts and
removes the spawn arguments from the spawn context.
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4.2 Soundness Proof

We now prove that a graph type that is declared to be deadlock-

free by the analysis of the previous subsection (that is, one
that is well-kinded) does not admit deadlocks. To do this, we
show that any graph contained in the normalization of such
a graph type obeys the transitive joins property [20], which
implies deadlock freedom. In short, the transitive joins (TJ)
property relies on a “permission to join” relation <, which is
the transitive closure of the following two properties:

1. If a spawns b, then a may touch b (a < b).
2. If when a spawns b, a may touch c, then b also has
permission to touch ¢ (b < ¢).

It is shown that < establishes a total order on threads, pre-
venting the creation of cycles in the graph.

Preliminaries on Transitive Joins. We now go into
more detail on the formal definitions surrounding transitive
joins, which we will need in our proof. For more informa-
tion, the reader is directed to the original presentation [20].
A program execution is abstracted as a trace t, which records
a sequence of actions a. There are three types of actions:
the initialization of the main thread a, written init(a); the
thread a spawning b, written fork(a, b); and a touching b,
written join(a, b). The concatenation of two threads is writ-
ten t1; t,. The empty trace is denoted -, and we note that
t;-=-t=1t.

The “permission-to-join” relation depends on the history
of spawn operations, and so it is defined inductively over
traces with the judgment t + a < b, defined as follows:

(TJ-LEFT) (TJ-RIGHT) (TJ-moNO)
tFc<a tra<c tira<b
t; fork(a,b) - c < b t; fork(a,b) + b < ¢ tistora<b

We may also write a < b to meanthata=bora <b. A
trace is Tj-valid if it begins with the initialization of the main
thread and all subsequent touches obey the permission-to-
join relation. The judgment ¢ : A indicates that ¢ is a TJ-valid
trace with the set A of thread names. This set is added to by
fork actions in the inductive definition of the judgment:

(VALID-FORK) (VALID-JOIN)
t:A aeA be¢ A A tra<b

t; fork(a,b) : AU {b} t;join(a,b) : A

(VALID-INIT)

init(a) : {a}

Well-formed graphs are TJ-valid. To connect our no-
tation for graphs to transitive joins, we must define a way
to produce traces from graphs. We write g ~», t to mean
that a graph whose main thread is named a produces the
trace t. The rules for this judgment are defined in Figure 6.
Spawns and touches are recorded appropriately. When a
new thread is spawned using a vertex u, we reuse u as the
name of the new thread and recursively compute the trace
corresponding to the new thread by deriving g ~»,, t (note
that the “main” thread of this derivation has now changed
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(Tr:EmMPTY) (Tr:SEQ)
91 g tl gZ ~q t2
g g1 ® g2 ~q b5l
(Tr:SPAWN) (Tr:ToucH)
g~ut

g/u~a fork(a,u);t U\, ~o g join(a, u)

Figure 6. Rules for producing traces.

to u). To produce a trace from the sequential composition
of two graphs, we sequentially compose the traces resulting
from the two graphs. Note that ¢t will never contain an init
action, so to produce a (potentially) valid trace, we would
take init(a);t.

We now turn our attention to proving the main result of
the section, which is that if a graph is in the normalization
of a well-kinded (according to the rules of Figure 4) graph
type, then the trace produced from the graph is TJ-valid. The
proof uses the following technical lemma, which says that
substituting graphs for graph variables or vertices for vertex
variables in well-kinded graph types results in well-kinded
graph types. Similar results have been shown for the original
graph type well-formedness judgment [14], and the proof is
largely a straightforward induction.

Lemma 1. L If5Qip; ¥, 1 Fpr G : k then

5 QU Y,y kpr Gluip /g [y /] < x

and the height of this derivation is no larger than the
height of the original typing derivation.

2.Ify + ;Y vprp G : kand ¥ Fpp G ¢ K
then ; Q; ¥ +pr G[G'/y] : k.

Proof.

1. By induction on the derivation of -; Q, ﬁf; ¥, i: Fpr G : K.
2. By induction on the derivation of y : ’; Q; ¥ +pr G : k

]

The heavy lifting for our main theorem is done by Lemma 2,
which proves a stronger result. The lemma allows us to fo-
cus on a part of the graph and the corresponding part of
the resulting trace. In the statement of the lemma, the trace
generated up until this point is #; and is assumed to be well-
formed with the set Ay of vertices. We furthermore assume
that we do not have permission to spawn any of the ver-
tices in Ay (that is, Ag N Q = @), because this would result
in spawning a vertex twice. We also assume that ¥ does
indeed represent the set of vertices we have permission to
touch based on the current trace t, (that is, for all b € ¥,
we have ty F a < b). Under these assumptions, the resulting
trace to; t is TJ-valid and its set of threads consists of A plus
the vertices in Q (which must have been spawned), plus a set
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of fresh vertex names that will not conflict with any other
names. Finally, the new trace gives permission to touch any
newly-spawned vertices (i.e., those in Q).

Lemma 2. Suppose ;¥ +pr G : *, and g € Norm,,(G) for
some n. Let ty : Ag be a TJ-valid trace such that Ay N Q = 0
and forallb € ¥, we havety - a < b. Ifg ~>, t, thenty;t : A
is Tj-valid and A = QU Ay U Ay where all vertices in Ay are
fresh, and for allb € Q, we have ty;t + a < b.

Proof. By lexicographic induction on n and the derivation
of ;¥ +tpr G : +. If n = 0, then Norm,,(G) = 0, which
contradicts g € Norm,(G). So, suppose n > 0 and proceed
by induction on the derivation.

We prove representative interesting cases here.

e DF:SEQ. Then G = G; ® G; and g = g; ® g, where g; €
Norm,,(G;) and g, € Norm,,(G,) and A; Q1;¥ +pr Gy :
xand A; Qq; ¥, Qq kpr Gy @ . Wehave AgNQ1, Qy =0
and for allb € ¥, t, + a < b. By inversion, t = t;t;
and g; ~», t; and g, ~>, t,. By induction, fy; t1:A; is TJ-
valid and Ay = Q; UAg U Ap; where all vertices in Ag,
are fresh, and for all b € Q;, we have ty;t; F a < b. We
have Q1N Q3 =0,50 A, NQy =0.Forall b € ¥, Q,,
we have tp;t; F a < b. By induction on the second
premise, we have ty; t1;t, : A is TJ-valid where A =
QUA1UAr = Qy, QyUA)UAf where all vertices in Ag
are fresh, and for all b € Q,, we have ty;t;t, - a < b.
Combining this with the above and monotonicity of
<,forall b € Qi,Q,, we have ty;t1;t2 F a < b.

DF:SpAwN. Then G = G; /, and A; Q; ¥ + Gy ¢ %

where Q = Q,u,and g = g; /,,, where g; € Norm,(G).

By inversion, ¢t = fork(a, u);t; where g; ~», t;. We
have AjNQ; = 0. By VALID-FORK, we have ty; fork(a, u):
Ap U {u} is TJ-valid and (A U {u}) N Q; = 0. By in-
duction using ty; fork(a, u) as the trace, fo; t; : A is TJ-
validand A = Q; UAyU {u} UAr = QU A U Ap
where all vertices in Ay are fresh and for all b € Q;,
we have ty;t + a < b.Forallb € Q,if b € Q,
thenty;t + a < bfromabove. If b = u,thenty;t Fa < b
by TJ-LEFT.

DF:App. Then G = Gy [ii}; ;] and Q = Qy, 4 and

QLY Fpr Gy Hﬁf; Uy %
By inversion, either
1. Gy = iiy;4;.Goand g € Normn(Gz[ﬁ}/ﬁf] [4)/4,])

and ;; Qq,is; ¥, 4 Fpr Gy @ % o1
2. Gy = py Iliis; .G, and

g € Normy_1(Gelpy Iiiy; 1ir.Go [y [i} /g ] (447 /1i:])

and y : Hﬁf;ﬁt.*; W, U, Fpr Gy @ *.

Proceed in these two cases.

1. By Lemma 1, 5 Q; ¥ +pfr G, [l_i}/l_if] [} /] : *. The
result follows by induction.
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2. By Lemma 1,
¥ kpr Golpy Tiig; .Gy [y] [ﬁ}/ﬁf] [y /] : *
The result follows by induction, decreasing on n.
]

The main theorem simply instantiates the lemma with ap-
propriate initial conditions: Q and ¥ are empty, and the trace
generated so far is simply init(a), where a is a designated
name for the main thread.

Theorem 1. Suppose -;-;- +pp G : %, and g € Normy,(G) for
somen. If g ~>4 t, then init(a);t : A is T}-valid.

Proof. This is a direct result of Lemma 2, because init(a):{a}
is TJ-valid by vALID-INIT, and {a} N - = 0. O

5 Implementation and Evaluation

We implemented the deadlock analysis, based on the rules
in Section 4, in OCaml as an extension of GML [14], a tool
for inferring graph types from source programs in a large
subset of OCaml (extended with futures as a built-in type).
In particular, the language subset accepted by GML includes
OCaml-style mutable references and is sufficient to express
all of the examples in this paper (except the extended coun-
terexample in Section 3, which as described in the footnote,
cannot be inferred by GML). After GML infers graph types
for the program, the user can request that one function or
the entire program be checked for deadlocks, in which case
our analysis extracts the corresponding graph type from the
graph-annotated output of GML and runs our algorithm on
it. It is relatively straightforward to turn the rules of Figure 4
into a type-checking algorithm because the rules are syntax-
directed, that is, it is clear from the syntax of the graph type
being checked which rule should be applied. Before present-
ing our evaluation of the implementation, we describe one
additional optimization that improves the precision of the
algorithm on some examples.

New pushing. Consider the graph type below.
py.vu. e V(y /[y @y ®"“\)

This graph type corresponds to many common divide-and-
conquer parallel algorithms, e.g. Figure 1. However, as shown,
it is not well-formed according to the rules of Figure 4. The
reason is that the vertex u is placed into the spawn context
for both branches of the Vv, but the left branch (corresponding
to the base case of the algorithm) does not use this vertex,
violating linearity. However, the graph above is semantically
equivalent to this one:

py. e V(viy Ju ®y & \)

where we have simply moved the “new” binding inside the
recursive case of the graph type, and so the base case is
no longer in the scope of this binding. However, GML will
always produce the first graph type because, for efficiency
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reasons, it only inserts “new” bindings at the top of function
bodies. In order to reduce false positives for graph types
produced by GML, we introduce a procedure we call “new
pushing”, which pushes “new” bindings through a graph type
to the smallest scope possible, and apply this transformation
to graph types before checking them for deadlocks.

Precision comparison. In order to show the flexibility
and precision of our algorithm, we ran the implementation
on six example programs, with and without deadlocks:

1. Fibonacci: An example from prior work [14] that com-
putes the 8 Fibonacci number in parallel by spawning
(in parallel) 8 threads to compute the first 8 Fibonacci
numbers; threads 3-8 touch the previous two threads
and sum their results.

2. FibDL: The Fibonacci program from above but with
one of the touches altered to create a cycle.

3. Pipeline: The motivating example of GML ([14], Fig.
10), which performs a pipelined map over a list of
inputs.

4. Counterex.: The second counterexample of Section 3.

5. Webserver: The webserver example of GML, which is
much larger (approx. 350 LoC) and more complex than
the previous examples and tests the scalability of the
implementation.

6. WebserverDL: The webserver benchmark with a subtle
deadlock (along the same lines as FibDL) inserted.

For Counterex., to avoid the subtlety discussed in Section 3,
rather than run a source program through GML, we hand-
coded the AST for the graph type of the counterexample
and ran our deadlock detection algorithm on this directly.
Because the contribution of this paper is the deadlock detec-
tion algorithm, which already operates on ASTs for graph
types, no part of our algorithm is bypassed.

Table 1 lists the examples and (in column 2) whether or
not the example has a deadlock. The third column indicates
that our algorithm gives the correct answer in each case
(i.e., correctly identifies Fibonacci, Pipeline, and Webserver
as deadlock-free and FibDL, Counterex., and WebserverDL
as having deadlocks). The next column shows the same re-
sults for GML [14], which is shown to be unsound by the
counterexample. We also compare to Known Joins (KJ) [8], a
weaker version of the Transitive Joins property which also
guarantees deadlock-freedom but is overly pessimistic in
some cases and, for example, is not able to show the deadlock-
freedom of the Fibonacci example. We manually applied the
rules of KJ to determine whether each example would be
considered valid by KJ at runtime.

We make two important caveats about this evaluation.
First, it is difficult to make an apples-to-apples comparison
between static and dynamic analyses. While we show in
Section 4 that any program guaranteed deadlock-free by
our algorithm will have the transitive joins property, the
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Table 1. Example programs comparing the precision of our
deadlock detector with prior work.

Program DL? Does analysis give correct answer?
Ours GML [14] Known Joins [8]

Fibonacci No X

FibDL Yes

Pipeline No

Counterex. Yes X

Webserver No
WebserverDL  Yes

reverse is not true, and cannot be true for any static anal-
ysis. Determining whether a program will have a dynamic
property (such as deadlock, known joins, or transitive joins)
at runtime using a static analysis is undecidable by reduc-
tion to the halting problem, so there will naturally be some
programs that are valid under transitive joins (and known
joins) but cannot be guaranteed so by our static analysis. A
more precise characterization of the false positive profile of
our algorithm is an area for future work. We also note that,
while a quantitative evaluation is outside the scope of this
paper, the deadlock detection algorithm takes under 1ms
on a commodity desktop on all examples except Webserver
and WebserverDL, which are an order of magnitude larger
than the other examples. Even on these examples, deadlock
detection takes under 5ms, which is less time than is taken
than type inference on these examples.

6 Related Work

Numerous solutions to the problem of deadlock have been
proposed since 1971 when Coffman et al. [7] neatly charac-
terized the problem and categorized potential solutions. The
classes of solutions they propose are (1) prevent deadlocks
statically by detecting whether the conditions to allow them
are present in source code, (2) avoid deadlocks at runtime by
detecting whether the conditions to allow them have arisen
dynamically and (3) detect at runtime whether a deadlock has
occurred, and ideally recover from the situation. Dynamic
techniques (2 and 3) are far too numerous to survey here, so
we focus on the most closely related ones. The known joins
property [8] restricts threads to join on, or touch, futures
spawned by an ancestor in the thread hierarchy. Known
joins is, however, fairly restrictive and was later extended
to transitive joins [20], which extends the “permission-to-
join” relation of known joins with transitivity. In doing so,
it establishes a total order on threads at runtime, in a way
similar to work on SP-order [2, 23] has been used for runtime
data race detection. We have shown that programs identified
by our algorithm as deadlock-free obey the transitive joins
property and are therefore indeed deadlock-free. We have
also shown (in Section 5) that our program can identify as
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deadlock-free programs that known joins cannot. Voss and
Sarkar [21] present a dynamic deadlock detection algorithm
(class 3 above) for promises, a mechanism related to futures
for which they identify analogues of the two deadlock situ-
ations we prevent in futures (cycles and waits on promises
that will never be completed). Their semantics requires track-
ing an owner for each promise and detects if a promise is
unowned or if the ownership relation is cyclic.

Static techniques fall into two broad categories: type sys-
tems for controlling ownership of resources, and dataflow
analyses. Our work falls into the former, but operates at the
level of graph types rather than source programs. Boyapati
et al. [5] also proposed a type system for ownership of locks
that prevents deadlock. A similar ownership type system pre-
vents data races in Rust [1]. Vasconcelos et al. [19] present
a type system for a typed assembly language that prevents
deadlocks but requires annotating locks with an ordering.
Most dataflow analyses for deadlock (e.g., [9, 13, 17, 22]) track
relations between threads and usage of resources, in some
sense building an approximation of a dependency graph.
Boudol [4] proposes an approach that mixes static and dy-
namic techniques: a type system guarantees that programs
can be safely run using a “prudent” operational semantics
that makes deadlocks impossible by construction.

7 Conclusion

We have proposed a static algorithm for predicting deadlock.
The analysis is based on graph types, a language-independent
representation of the set of dependency graphs that might
result from a given program, and so in principle can be ex-
tended to many paradigms and languages. We have shown
the soundness of the algorithm by reduction to transitive
joins, a condition that is known to imply deadlock freedom.
We have implemented a prototype of the analysis on top of
GML, a graph type inference tool for a subset of the OCaml
language, and shown that it can effectively detect deadlocks
in a variety of examples. Although at present, we have ap-
plied our technique only to fairly small examples (the largest
being the webserver), this has mostly been due to limitations
of the existing implementation of the graph type system.
In the future, if an industrial-strength graph type system is
implemented for larger languages, we expect the techniques
described here will be directly applicable to the graph types
it generates. This work shows the promise of graph types
for the development of language-agnostic static analyses
for parallel programs, which we hope can be applied in the
future to other problems such as race detection.
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Artifact

The implementation and code examples described in Sec-
tion 5 are available as an artifact on Zenodo [15]. The artifact
contains a virtual machine image in .ova format. The VM
has been tested on VirtualBox v.7.0 but should work with
other VM players as well. The VM already has all necessary
dependencies installed and the artifact has a README file
with detailed instructions for building and using the software
and examples to reproduce the results of Section 5.



	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Language Model
	2.2 Graphs
	2.3 Graph Types

	3 Counterexample to Conjecture
	4 A Graph Type Analysis for Deadlock Prevention
	4.1 Graph Kind System
	4.2 Soundness Proof

	5 Implementation and Evaluation
	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Artifact

