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Harnack inequalities and Gaussian estimates for
random walks on metric measure spaces”
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Abstract

We characterize Gaussian estimates for transition probability of a discrete time Markov
chain in terms of geometric properties of the underlying state space. In particular,
we show that the following are equivalent: (1) Two sided Gaussian bounds on heat
kernel (2) A scale invariant Parabolic Harnack inequality (3) Volume doubling property
and a scale invariant Poincaré inequality. The underlying state space is a metric
measure space, a setting that includes both manifolds and graphs as special cases. An
important feature of our work is that our techniques are robust to small perturbations
of the underlying space and the Markov kernel. In particular, we show the stability
of the above properties under quasi-isometries. We discuss various applications and
examples.
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1 Introduction

The goal of this work is to characterize Gaussian estimates for Markov chains and
parabolic Harnack inequality for a corresponding discrete time version of heat equation
by two geometric properties on the state space: Large scale volume doubling property
and Poincaré inequality. Our main result is that equivalence between the following
properties:

(1) Two sided Gaussian bounds on heat kernel.
(2) Parabolic Harnack inequality.

(3) Volume doubling property and a scale invariant Poincaré inequality.
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Random walks on metric measure spaces

The above result is due to Grigor'yan [30] and Saloff-Coste [67] for diffusion on Rie-
mannian manifolds (or more generally, local Dirichlet spaces due to Sturm [74]) and
extended to random walks on graphs by Delmotte [25]. Different versions of this result
was shown for diffusions, random walks on graphs, and jump processes admitting for
more general space-time scaling (space need not scale like square of time). A (partial)
list of works in this direction are [11, 4, 5, 15, 35, 36, 75]. We emphasize that we only
consider the standard space time scaling (quadratic in distance) and leave more general
cases for future work (see Problem 10.10).

The hardest and most useful implication in the equivalence above is that the con-
junction of the volume doubling property and Poincaré inequality implies the two sided
Gaussian estimates and parabolic Harnack inequality. Also, an important consequence
of this characterization is the stability of Gaussian estimates and parabolic Harnack
inequality under quasi-isometric transformation of the underlying space. This result
extends Moser’s stability result of Harnack inequalities on R™ [58, 59]. Moser’s work
also provides an alternate approach to regularity of weak solutions to elliptic equations
previously obtained by de Giorgi and Nash [22, 62]. Examples of spaces satisfying Gaus-
sian heat kernel bounds include manifolds with non-negative Ricci curvature [16, 55, 13],
convex domains and complement of convex domains [39], subelliptic operators on groups
of polynomial growth [41, 77], weighted Euclidean spaces [34]. We refer to [71, Section
3.3] for a more extensive list of examples and further details. Recently, this characteriza-
tion of parabolic Harnack inequality led to a similar characterization and stability of the
elliptic Harnack inequality [11, 9, 6].

The goal of this work is to obtain the equivalence for random walks on metric
spaces. A motivation comes from the work of Hebisch and Saloff-Coste [41] on random
walks on groups. By the main results of [41], we know that many natural translation-
invariant Markov chains on groups (discrete and continuous groups) of polynomial
volume growth satisfy two-sided Gaussian estimates. However the arguments in [41]
for proving Gaussian lower bounds are specific to the case of translation-invariant
Markov chains as the authors of [41] note “We want to emphasize that a number of key
points of the argument presented below are specific to the case of translation invariant
Markov chains”. To this end they conjecture “We have no doubt that, if G has polynomial
volume growth a corresponding Gaussian lower bound holds for (non transition-invariant)
Markov chains as well. However, we have not been able to prove this result. We hope
to come back to this question in the future.” [41, Remark 2]. Our work validates their
conjecture.

1.1 Main results

Next, we state a version of our main result in a restricted setting. Recall that
a weighted Riemannian manifold (M, g, 1) is a Riemannian manifold (M, g) equipped
with a measure p such that u(dy) = o(y)v(dy), where v is the Riemannian measure
and o € C*(M) is the weight function. We denote integer intervals by [a,b] :=
{ieZ : a<i<b}
Theorem 1.1. Let (M, g, 1) be a complete non-compact, weighted Riemannian manifold
such that there exists K > 0 such that Ric > —Kg. Furthermore there exists C; > 1
such that the weight function o satisfies C;' < o(x)/o(y) < C, for all z,y € M with
d(x,y) < 1. Consider a Markov chain on M with a symmetric kernel p;, with respect to .
Further we assume that there exists Cy > 1,h > 0,h’ > h such that

]-B(m,h) (y)
V(x, h)

]-B(:v,h’) (y)

-1
Co V(x,h')

<pi(z,y) <G (1.1)

forall z € M and for pu-almost every y € M. Then the following properties are equivalent:
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(a) The parabolic Harnack inequality: there existsn € (0,1), Cy > 1, Ry > 0 such that
for all balls B(z,r), x € M, r > Ry and for all non-negative functionsu : N x M — R
that satisfies Oyu + Auy = 0 in [0, |4n?r?|] x B(x,r), we have

supu < Cgyinfu
Qo Qe

where

Qo = [[*/2)r*1, ln*r*]] x B(z, (n/2)r),
Qo = [[20°7*], [4n*r?]] x B(z, (n/2)r)

(b) Two sided Gaussian bounds on the heat kernel: there exists Cy,Cy > 0 such that for
all z,y € M and for alln € IN* satisfying n > 2, we have

Cl d(l’,y)Q
pn(l'ay) < WGXP ( Con (1.2)

Further there exists c1,co,c3 > 0 such that for all x,y € M satisfying d(z,y) < csn
and for all n € IN* satisfyingn > 2
d 2
! exp <_($’y)> (1.3)

pn(w,y) > V(J?, \/’ﬁ) can

(c) The conjunction of

e The volume doubling property: there exists Cp > 0 such that for all € M, for
all r > 0 we have
V(z,2r) < CpV(z,r)
e The Poincaré inequality: there exists Cp > 0, k > 1 such that for any ball
B = B(x,r),x € M,r > 1and forall f € L?(M, 1), we have

2 2 1 . 2 .
/B\f—fBI dp < Cpr /w (V(y’l) /B(y,l) If(2) = f)I” w(d )) u(dy), (1.4)

where kB = B(x,kr), f = ﬁ I 1 dp.

The role of Theorem 1.1 is only to illustrate our main result introducing additional
definitions. We provide an unified approach to study random walks on both discrete and
continuous spaces. We prove Theorem 1.1 as a corollary of a general result that also
gives an alternate proof of Delmotte’s theorem [25, Theroem 1.7] for random walks on
graphs. We also provide a characterization of Gaussian upper bounds on heat kernel in
Theorem 7.18.

Given the previous works on characterization of parabolic Harnack inequality and
Gaussian bounds [30, 67, 74, 25, 42] our results should not be surprising. However we
encounter new difficulties that had to be resolved here and which were not present in
previous works. The Sobolev inequalities in the previous settings are of the form

2
25/(5—2) Cr ( P 2)

||f||2 S VM($,T)2/6 g(f,f)-'—'l" ||f||2 (15)
for all ‘nice’ functions f supported in B(z,r). However for discrete time Markov chains,
the Dirichlet form satisfies the inequality £(f, f) = (I — P)f, f) < 2 Hf||§ This along
with (1.5) implies that L2(B(xz, 7)) C L2%/(0~2)(B(x,r)) for all balls B(z,) which can hap-
pen only if the space is discrete. Hence for discrete time Markov chains on Riemannian
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manifolds the Sobolev inequality (1.5) cannot possibly be true. We prove and rely on a
weaker form of the Sobolev inequality (1.5) which seems to be too weak to run Moser’s
iteration directly to prove parabolic Harnack inequality (See Theorem 5.1). Instead
we use Moser’s iteration to prove a version of the mean value inequality which in turn
gives Gaussian upper bounds. We adapt a method of [42] which uses elliptic Harnack
inequality and Gaussian upper bounds to prove Gaussian lower bounds (See Section 8).
Another difficulty that is new to our setting is explained in the beginning of Section 7.3.

1.2 Outline for the paper

This paper is organized as follows. In Section 2, we present the setting of quasi-
geodesic spaces satisfying certain doubling hypotheses, study its basic properties and
develop techniques that would let us compare discrete and continuous spaces. In
Section 3, we introduce Poincaré inequalities and discuss various examples. We study
the relationship between our new Poincaré inequalities on metric measure spaces with
previous versions on manifolds on graphs. We study stability properties of Poincaré
inequalities. In Section 4, we introduce hypotheses on Markov chain, Dirichlet forms and
recall their basic properties. In Section 5, we introduce and prove a Sobolev inequality
under the assumptions of large scale volume doubling and Poincaré inequality. In
Section 6, we use Sobolev inequality and Poincaré inequality to run the Moser iteration
argument to prove elliptic Harnack inequality.

Section 7 is devoted to the proof of Gaussian upper bounds using Sobolev inequality.
In addition, we show that Sobolev inequality is equivalent to the conjunction of Gaussian
upper bounds on the heat kernel and large scale volume doubling property. In Section 8
we prove Gaussian lower bounds using elliptic Harnack inequality and Gaussian upper
bounds. This completes the proof that large scale volume doubling property and Poincaré
inequality implies two sided Gaussian bound on the heat kernel. In Section 9, we prove
parabolic Harnack inequality using Gaussian bounds. Moreover, we prove large scale
volume doubling property and Poincaré inequality using parabolic Harnack inequality,
and thereby completing the proof of the characterization parabolic Harnack inequality
and Gaussian bounds. In Section 10, we mention some applications of Gaussian estimates
and describe some examples. Many of the proofs that rely on small modifications to
known methods have been omitted but an interested reader can find more complete
proofs on arXiv [61].

2 Metric geometry

Let (M,d, ;1) be a locally compact metric measure space where p is a Radon measure
with full support. Let B(M) denote the Borel o-algebra on (M, d). Let B(xz,r) := {y €
M : d(x,y) < r} denote the closed ball in M for metric d with center x and radius r > 0.
Let V(z,r) := u(B(z,r)) denote the volume of the closed ball centered at z of radius r.
Since M is a Radon measure with full support, we have that V (x,r) is finite and positive
for all x € M and for all » > 0. In this section, we introduce some assumptions on the
metric d and measure p and study some consequences of those assumptions.

2.1 Quasi-geodesic spaces

The main assumption on the metric d of the metric measure space (M, d, 1) is that
of quasi-geodesicity. In Riemannian geometry, the distance between two points of a
manifold is defined as the infimum of lengths of curves joining them. Such a relation
between distance and length of curves is observed more generally in length spaces.

Definition 2.1. Let (M,d) be a metric space. For x,y € M, a path from x to y is a
continuous map v : [0,1] — M such that v(0) = « and v(1) = y. We define the length
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L(v) € [0, 0] of a path ~ is the supremum

taken over all partition 0 =ty < t; < ... < t, =1 of[0,1].
The length of a path is a non-negative real number or +oc.

Definition 2.2. The inner metric or length metric associated with metric space (M, d)
is the function d; : M x M — [0, 00| defined by

di(xa y) = lgf L(’Y)

where the infimum is taken over all paths v from x to y. (M, d) is called a length space if
d; = d. A metric for which d = d; is called an intrinsic metric.

One of the goals of this work is to provide an unified approach to the study of

random walks in continuous spaces like Riemannian manifolds and discrete spaces like
graphs. We would like to consider spaces more general than length spaces to include
disconnected metric spaces like graphs. Quasi-geodesic spaces provides a natural setting
to include both length spaces and graphs as special cases. Quasi-geodesic spaces are
equipped with a weak notion of geodesics called chains. We recall the following definition
of chain and various notions of geodesicity as presented by Tessera in [76].
Definition 2.3. Consider a metric space (M,d) and b > 0. For xz,y € M, a b-chain
between from x to y, is a sequence v : x = xg,x2,...,%, =y in M such that for every
0 <i<m,d(z;x;+1) < b. We define the length I(v) of a b-chain v : xg,z1,...,T,m by
setting

m—1

1(y) = dws,wip).
i=0
Define a new distance function d, : M x M — [0, c0] as
dp(x,y) = infI(7) (2.1)

where v runs over every b-chain from x to y. We say a metric space (M, d) is

 b-geodesic if d(x,y) = dp(x,y) forall x,y € M.
¢ quasi-b-geodesic if there exists C > 0 such that dy(z,y) < Cd(x,y) for all x,y € M.
* quasi-geodesic if there exists b > 0 such that (M, d) is quasi-b-geodesic.

The following lemma guarantees that quasi-geodesic spaces are endowed with suffi-
ciently short chains at many length scales. The proof follows easily from the definition of
quasi-geodesic space.

Lemma 2.4 (Chain lemma). Let (M, d) be a quasi-b-geodesic space for some b > 0. Then
there exists Cy > 1 such that for all by > b and for all x,y € M, there exists a b,-chain

. Cid(zx,
T =T0,T1,...,Tm =y Withm < [%—‘

2.2 Doubling hypotheses

The main assumption that we recall below on the Radon measure x is the doubling
property. For a metric measure space (M, d, 1), we denote volume of balls by V(z,r) =

n(B(x,r)).
Definition 2.5. We define the following doubling hypothesis:
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(VD)o We say a space (M, d, 1) satisfies the local volume doubling property (V D)., if for
all r > 0, there exists C, such that

V(z,2r) < C.V(x,r) (VD)1oc

forallz € M.
(VD) We say a space (M, d, ) satisfies the large scale doubling property (V D)., if there
exists positive reals C,,, o such that

V(z,2r) < CpyV(z,r) (VD)oo

forallx € M and r > rg.
(VD) We say a space (M,d, i) satisfies the global volume doubling property (V D), if
there exists a constant C'p > 0 such that

V(z,2r) < CpV(x,r) (VD)
forallx € M and r > 0.
We collect some basic properties of spaces satisfying the above doubling hypothe-
sis (VD)ioc and (VD).

Lemma 2.6 ([21, Lemma 2.1]). If (M, d, ) satisfies (V D)oc, then for all r1,79 > 0, there
exists Cy, r, such that
V(z,re) < CpyrpV(z,7m1) (2.2)

for all x € M. In particular, for all x,y € M, such that d(x,y) < R, we have
V(z,r) < Cr.perV(y,r)
The large scale doubling property (V D)., along with (V D)), implies a polynomial
volume growth upper bound.
Lemma 2.7. Let (M, d, u) be a metric measure space satisfying (VD))o and (VD).
Then for all b > 0, there exists C, > 0 such that
V(z,2r) < CyV(x,r) (2.3)

for all x € M and r > b. Moreover this C, satisfies
V(x,r) 7\ 9
" < (7) 2.4
V(z,s) — *\s (24)
forallx € M, for allb < s < r and for all § > log, Cp. Furthermore
Vix,r) 5 (T
<o (7) 2.5
Viy,s) — " \s @5
holds for allb < s <r, forallz € M, for ally € B(z,r) and for all § > log, C,.
The equation (2.4) implies a polynomial upper bound on the volume growth. In
quasi-geodesic spaces, we can reverse the inequality (2.4) and obtain a polynomial lower
bound for all radii small enough compared to the diameter. The property stated in

following lemma is often called the reverse volume doubling property which follows from
[44, Exercise 13.1].

Lemma 2.8 ([44, Exercise 13.1]). Let (M, d, ) be a quasi-b-geodesic space with the
measure p satisfying (V D)ioc and (VD). Then there exists ¢,y > 0 such that

e ze() @5

for all x € M and for all b < s < r < diam(M), where diam(M) = sup{d(z,y) : z,y € M}
denotes the diameter of (M, d, u).
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2.3 Quasi-isometry

One of the goals of this work is to develop arguments which are robust to small
perturbations in the geometry of the underlying space; for example addition of few edges
in a graph or small changes in the metric of a Riemannian manifold. We study properties
that depends mainly on the large scale geometry of the underlying space. In this spirit,
the concept of quasi-isometry was introduced by Kanai in [48] and in the more restricted
setting of groups by Gromov in [37]. Informally, two metric spaces are quasi-isometric if
they have the same large scale geometry. Here is a precise definition:

Definition 2.9. A map ¢ : (M;,d,) — (M,,ds), between metric spaces is called a quasi-
isometry if the following conditions are satisfied:

(i) There exists a > 1 and b > 0 such that
a”tdy(z1,22) — b < da(d(21), ¢(22)) < ady (w1, 22) + b

for all x1,x5 € M.
(ii) There exists ¢ > 0, such that for all y € M, there exists x € M; such that
d2(¢($),y) <e

We say metric spaces (M,,d;) and (Ms,ds) are quasi-isometric if there exists a quasi-
isometry ¢ : (My,dy) — (Ma,d2).

We remark that a quasi-isometry is not necessarily a continuous, injective or surjective
map. However, we can construct a quasi-inverse ¢~ : (Ms,dsy) — (My,d1) as ¢~ (y) =«
where x € M is chosen so that da(¢(z),y) < € where ¢ is given by the above definition.

We now describe some well-known examples of quasi-isometry. The space R¢ with
Euclidean metric and Z¢ with standard graph metric are quasi-isometric. Consider a
finitely generated group I" with a finite system of generator A. For an element v # 1,
let |, denote the smallest positive integer k such that a product of k£ elements of
AUA™!, and put [I|, = 0. This ||, is called the word norm of I and defines a word
metric da(y1,72) = 1 "2 ,- In other words, d4 is the graph metric in the Cayley
graph of I' corresponding to the symmetric generating set AU A~!. Assume two finite
generating sets A and B of a group I" which induces metric d4 and dp respectively. Then
(T',d4) and (T',dp) are quasi-isometric (See [65, Proposition 1.15]). Therefore every
finitely generated group defines a unique word metric space up to quasi-isometry and
we may often view a finitely generated group up as a metric space without explicitly
specifying the generating set. A large class of examples of quasi-isometry is given by the
Svarc-Milnor theorem. [65, Theorem 1.18].

Theorem 2.10 (Svarc-Milnor theorem). Suppose that (M, d) is a length space and ' is a
finitely generated group equipped with a word metric acting properly and cocompactly
by isometries on M. Then T is quasi-isometric to (M,d). The map v — ~.xo is a
quasi-isometry for each fixed base point xo € M.

Note that the quasi-isometry between Z? and R? is a special case of Theorem 2.10.
We will give a general construction of net which approximates a quasi-geodesic space
using a graph with combinatorial metric in next subsection.

The notion of quasi-isometry was extended to metric measure spaces by Couhlon and
Saloff-Coste in [21] which they called “isometry at infinity”. Let (M, d;, u;), ¢ = 1,2 be
two metric measure spaces. Define

Vily,7) = i ({z € M; : di(y,2) <r}).
Definition 2.11. A map ¢ : (My,dy, 1) — (Ma, da, j12), between metric measure spaces

is called a quasi-isometry if the following conditions are satisfied:
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(i) ¢: (My,dy) — (Ma,ds) is a quasi-isometry between metric spaces;
(ii) There exists a constant C' > 0 such that

C™WVi(x,1) < Va(g(x),1) < CVi(x, 1)
for all x € M;.

We say metric measure spaces (M, dy, 1) and (Ma, da, o) are quasi-isometric if there
exists a quasi-isometry ¢ : (My,dy, 1) = (M, da, o).

The arguments in this work implies that the long term behavior of natural ran-

dom walks depends mainly on the large scale geometry of the quasi-geodesic space.
Other important examples of properties invariant under quasi-isometries are large scale
doubling and Poincaré inequality. (See Proposition 2.14 and Proposition 3.16). We
conclude this subsection by proving that the large scale doubling property is preserved
by quasi-isometries for metric measure spaces satisfying (V D)joc. It is due to Couhlon
and Saloff-Coste in [21]. We need the following definition:
Definition 2.12. Let (M, d) be a metric space with X C M and let R > 0. Then a subset
Y of X is R-separated if d(y;,y2) > R whenever y;, and y, are distinct points of Y, and
a R-separated subset Y of X is called maximal if it is maximal among all R-separated
subsets of X with respect to the partial order of inclusion.

The existence of maximal R-separated subsets follows from Zorn’s lemma.

The following lemma compares volume of balls between quasi-isometric metric
measure spaces.

Lemma 2.13 ([21, Proposition 2.2]). Let ® : (Mj,dy, 1) and (Ms,ds, us) be a quasi-
isometry between metric measure spaces satisfying (VD). Then for all h > 0, there
exists C;, > 0 such that

C;lvl(%C,;lr) < Vo(®(x),r) < CpVi(z, Cpr)
for all x € M, and for all r > h.

Proof. We denote balls and volumes by B; and V; respectively for : = 1,2. Let R > h such
that aR — b = R’ > 0 where a, b is from Definition 2.9. Let Y be a maximal R-separated
subset of B(z,r). Thus B(z,r) C Uyey B(y, R). Hence

Vi(,r) <> Vi(y,R) (2.7)
yeyY

By Lemma 2.6 and Definition 2.11, we have
Vi(y,R) < C1,rVi(y,1) < C1 rCVa(®(y),1). (2.8)

for all y € Y. The balls {B(y, R/2)},cy are pairwise disjoint and hence the balls
B(®(x;), R'/2) are pairwise disjoint. By Lemma 2.6

Va(®(x:), h) < Ch o Va(®(:), R /2) (2.9)
Combining 2.7, 2.8 and 2.9

‘/1(.%‘,7") S Z CI,RCCI,R’V2(@(ZI/)7 R//Q)
yey

< Cy rCCy g Vo(®(z),ar + b+ R'/2) (2.10)
The last step follows from the definition of quasi-isometry, triangle inequality and that

B(®(x;), R'/2) are pairwise disjoint. We can choose C, large enough so that, ar + b +
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R'/2 < Cor for all r € [h,00). Hence by Lemma 2.7, we have the desired lower bound on
V; for all » > R and by Lemma 2.6 for all » > h. Similar argument applied to quasi-inverse
&~ yields

Va(®(z),r) < CVi (P o ®(x),Cr).

The conclusion follows from the fact that d; (®~! o ®(z), z) is bounded uniformly for all
x € M. O

For metric measure spaces satisfying (V' D))o, the condition (V D), is preserved by
quasi-isometries. This is the content of the following lemma.
Proposition 2.14 ([21, Proposition 2.3]). Let (M;,dy,p1) and (Ms,ds, us) be quasi-
isometric spaces satisfying (VD)ioc. Then (My,dy, 1) satisfies (VD) if and only if
(Ms, ds, po) satisfies (VD).

Proof. Let ® : My — M, be a quasi-isometry. Using Lemma 2.13, there exists C' > 0 such
that
CWa(z,C7'r) < Vi(®(2),7) < CVa(x, Or)

for all x € M5 and r» > 1. Hence by (2.4), we have

Va(z,2r) <2 V1(®(x),2Cr)

Vo) = C @, o) = O 0pEeY’

for all » > max(C, 1). O

2.4 Approximating quasi-geodesic spaces by graphs

One might think of Z? as a graph approximation or discretization of R¢. More
generally, we can approximate quasi-geodesic spaces by graphs. By [76, Proposition
6.2], a metric space is quasi-isometric to a graph if and only if it is quasi-geodesic.
Therefore quasi-geodesic spaces form a natural class of metric spaces that can be
roughly approximated by graphs.

We begin by recalling some standard definitions and notation from graph theory. We
restrict ourselves to simple graphs. A graph G is a pair G = (V, E) where V is a set (finite
or infinite) called the vertices of G and F is a subset of P»(V) (i.e.,two-element subsets of
V) called the edges of G. A graph (V, F) is countable (resp. infinite) if V is a countable
(resp. infinite) set. We say that p is a neighbor of ¢ (or in short p ~ q), if {z,y} € E. The
degree of p is the number of neighbors of p, that is deg(p) = {¢ € V : p ~ ¢}|. A graph
(V, E) is said to have bounded degree if sup, oy deg(v) < oco.

A finite sequence (po, p1, - . ., p;) of points in V' is called a path from p, to p; of length
I, if each py is a neighbor of p;_;. A graph G = (V, E) is said to be connected if for all
p,q € V, there exists a path from p to ¢. For points p,q € V of a graph G = (V, E), let
d(p, q) denote the minimum of the lengths of paths from p to ¢ with dg(p,q) = 400 if
there exists no path from p to ¢. This makes (V, d¢) an extended metric space. The graph
(V, E) is connected if and only if (V,dg) is a metric space. The extended metric dg is
called graph metric or combinatorial metric of GG. Notice that we can recover a graph
(V, E) from its (extended) metric space structure (V, ds) and vice-versa.

Using the above identification, we view a connected graph as a metric space. We
would like to view a connected graph as a metric measure space. This motivates the
definition of weighted graph. A weight m : V' — (0,00) on a graph (V, E) is a positive
function on V. With a slight abuse of notation, m induces a measure on V' (also denoted
by m) as

EJP 28 (2023), paper 64. https://www.imstat.org/ejp
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for each A C V. A weighted graph is a graph (V, E) endowed with a weight m. By
the above, we will identify a weighted graph G = (V, E) with weight m as a (possibly
extended) metric measure space (V,dg, m).

The definition of e-net is due to Kanai in the setting of Riemannian manifolds (See
[48]) and was extended in [21] for weighted Riemannian manifolds.

Definition 2.15. A e-net of a metric measure space (M, d, ) is a weighted graph G =
(V, E) with weight m described as follows: The vertices V is a maximal e-separated
subset of M. The edges E are defined by {x,y} € E if and only if0 < d(z,y) < 3e. The
weight m is defined as m(z) = p (B(x,¢€)). Let dg denote the graph metric of G. We often
alternatively view the e-net as (extended) metric measure space (V,ds,m) defined by
the corresponding weighted graph.

The above definition does not guarantee e-net to be a connected graph. However it is

connected and countable in many situations as described in the lemma below. We collect
the basic properties of nets in Proposition 2.16 which builds on the ideas of [48], [50]
and [21].
Proposition 2.16. Let (M, d, 1) be a quasi-b-geodesic metric measure space satisty-
ing (VD). and let e > b. Let G = (X, E) be an e-net of (M, d, 1) with weight m and let
(X,dg, m) denote the corresponding extended metric measure space. Then we have the
following:

(a) The collection of balls I = {B(x,¢/2) : x € X} is pairwise disjoint and the collection
J ={B(z,€) : x € X} covers M where B(.,.) denotes closed metric ball in (M, d).
(b) Bounded degree property: The graph (X, E) is of bounded degree, that is

sup deg(p) < oo.

peX
(c) (X,dg,m) satisfies (VD)joc.
(d) There exists A > 0 such that
1
€

for all x,y € X. Therefore G is a connected graph and (X,dg,m) is a metric
measure space.
(e) The metric measure spaces (M,d, 1) and (X, dg, m) are quasi-isometric.
() X is a countable set. Moreover if diameter(M, d) = oo, then X is an infinite set.
(g) If (M,d, n) satisfies (V D), then so does (X, dg, m).
(h) Finite overlap property: Define

Np(0) = {z € X : d(z,p) < d}.
for each 6 > 0 and p € M. Then sup,¢,; Np(0) < oo.

The bounded degree property is true for all weighted graphs (X,d,m) satisfy-
ing (VD))o as shown below.
Lemma 2.17. Let (X,d, m) be a metric measure space satisfying (V D),,. that corre-
sponds to a weighted graph G = (X, FE) with weight m. Then G is of bounded degree
and

sup m(y)

=C,, <0 (2.12)
z,yeX: x~y m(x)

Proof. By (V D)., there exists C' > 0 such that
m(y) < V(z,1) < CV(x,1/2) = Cm(x)

for all z,y € X with  ~ y. The above inequality shows that C,, < C and sup,¢ x deg(z) <
Cc? O
EJP 28 (2023), paper 64. https://www.imstat.org/ejp
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3 Poincaré inequalities

Poincaré inequalities and its many variants are functional inequalities that have been
extensively studied. Many results in classical theory of Sobolev spaces, Holder regularity
estimates for solutions of elliptic and parabolic partial differential equations, properties
of harmonic functions, Harnack inequalities can be generalized to spaces satisfying
volume doubling and a Poincaré inequality. See the introduction in [40] for a survey and
references.

Definition 3.1. We say that a complete weighted Riemannian manifold (M, g) with
measure p satisfies a Poincaré inequality (P) gy, if there exists C1 > 0, Co > 1 such that
forall f € C*°(M), for allz € M and for allr > 0,

/ () — Fon| u(dy) < Cur? / lgrad f (y)2s(dy) (P)rm
B(z,r)

B(z,Car)
where fp(, ) denote the u-average of f in B(x,7)

1
TR /B T wa),

and |grad f| denotes the Riemannian length of the gradient vector.

fB=

The above inequality is sometimes called a weak, local, scale-invariant or L? Poincaré
inequality but we will refrain from using such adjectives. The word local means that
we are interested in average and integrals around some point x. This is in contrast
with global Poincaré inequality in which average and integrals are over the whole space
M. The Poincaré inequality is scale-invariant or uniform to emphasize the fact the the
constants C; and C, is independent of z or r. For 1 < p < oo, we might replace (P) g,
with the LP Poincaré inequality

/ () — Fiem|"uldy) < Crr? / lgrad £ ()P u(dy).
B(x,r) B(

z,Car)

instead of L? version presented above. For spaces satisfying global doubling property,
one can always take C5 = 1 in (P)pgy,. This is due to D. Jerison by a Whitney decomposi-
tion argument [45] (see also [70, Section 5.3.2]). The Poincaré inequality with Cy =1 is
called strong Poincaré inequality as opposed to the weak inequality (P)gm-

3.1 Gradient and Poincaré inequality at a given scale

To generalize the Poincaré inequality (P)g., to metric measure spaces, we must find a
suitable definition for “length of gradient”. We will consider a class of random walks that
spreads over different distances. Therefore we define length of gradient over different
scales for a metric measure space. We use the following definition due to [76] for length
of gradient at a scale A for a function f : M — R with f € L>(M, ;1) (denoted by [V f],).

Definition 3.2. Let (M, d, 1) be a metric measure space and let f € LS. (M, ). Then
length of gradient at a scale h for a function f is defined as

1/2
IV fln(x) = (v(;h) /BW) f(y) —f(x)lgu(dy)> : (3.1)

forallx € M.

Remark 3.3. Our definition of |V f|, coincides with [V f|, , in the notation of Tessera
[76].

EJP 28 (2023), paper 64. https://www.imstat.org/ejp
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Now that we are armed with length of gradient, we define the corresponding Poincaré
inequality.

Definition 3.4. We say that a metric measure space (M,d, i) satisfies a Poincaré in-
equality at scale h, if there exists Cy > 0, Cy > 1,79 > 0 such that for all f € L{S.(M, u),
for all x € M and for all v > rg.

/ 7 (9) — oo 2uldy) < Cir? / (9 f1, ()" () (P
B(z,r)

B(z,Car)
where fp(, ) denote the u-average of f in B(z,7)

1
fB= m /B(w,r) f(y)p(dy).

We will denote the above inequality by Py (ro, C1,C2) or simply (Py,).

The rest of the section is devoted to the study of various properties and examples
of the above Poincaré inequality (P),. In particular, we will show that for a weighted
Riemannian manifold the Poincaré inequality at scale h (P);, generalizes the Poincaré
inequality (P) gy, under some mild hypothesis. One of the main results that we will see
in this section is that Poincaré inequality (P)}, is preserved under quasi-isometries.

The following simple fact will be frequently used in rest of this section. Let (M, d, u)
be a metric measure space and let A C M with 0 < u(A) < co. Then for every function
feL>(A)
it [ 1) o utas) = [ 1f(0) = SaPitay (3.2)

a€R

where f, is the p-average of f in A,

1
fA—m/AfdM'

In other words, mean minimizes squared error.
A Poincaré inequality at scale h implies a Poincaré inequality at all larger scales '/
with A’ > h.

Lemma 3.5. Let (M, d, ) be a metric measure space satistying (V D), and Poincaré
inequality (P);, at scale h. Then for all k' > h, (M,d, 11) satisfies (P).

Proof. Assume P, (rg,C1,C3). Then for all functions f € L{S. and for all balls B(z,r) with
r > rgand x € M, we have

/ ‘f - fB(m,r|2 du
B(z,r)

< Cur? / V12 dp
B(z,Car)

Liz,y)<n
:c,ﬂ/ / ) — ) dewsh g g,
! B(x,Car) J B(a,Car+h) )= @) V(y,h)

Li(zy)<n
<Gt [ f F(y) — F()P LD g g
’ B(z,Car) J B(xz,Car+h') V(ya h/)

which is Py (9, C1Ch pr, C2). In the last line above, we used Lemma 2.6. O

Remark 3.6. A question now arises: At what scales h does a Poincaré inequality (P);,
hold? We have a satisfactory answer for length spaces and graphs. If a graph satisfies
Poincaré inequality at some scale, it satisfies Poincaré inequality at all scales h > 1 (See

EJP 28 (2023), paper 64. https://www.imstat.org/ejp
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Corollary 3.15). Moreover, a graph does not satisfy Poincaré inequality for scales smaller
than 1 because the gradient at scales smaller than 1 is identically zero. If a length space
satisfies Poincaré inequality at some scale, then it satisfies Poincaré inequality at all
positive scales (See Corollary 3.17). We will see in Proposition 9.9 that if (P), is satisfied
at for some i > 0 then (P),, is true for all h > b. We analyze an example which is neither
a graph nor a length space (See Example 3.22) to show that A > b is the best possible
bound.

We now show that the constant ry in P, (rg, C, C>) is flexible.

Lemma 3.7. Assume the Poincaré inequality Py (ro, Cy,Cs) holds for a metric measure
space (M,d, 1). Then for every r1 > 0 and there exists constants C4,C} such that the
Poincaré inequality Py, (r1, C1, C4) holds.

Proof. The non-trivial case to check is r; < rg. Assume B(z,r) with r; < r < rg. Then
for all functions f € L (M), by (3.2) we have

loc

/ ’f_fB(m,r)‘2dN§ / ‘f_fB(117’0)|2dM
B(z,r) B(z,r)

< / 1 = P di
B(z,ro)

Combining the above inequality with Py, (rq, C1, Cs) yields

2
/ \f (W) = fBan| dy < 017“3/ IV fl5 dp.
B(z,r) B(x,Carg)
Hence we can choose Cf = C;(ro/r1)? and C} = Co(ro/r1). O

3.2 Robustness under quasi-isometry

Since quasi-isometry between metric measure spaces satisfying (V D))o is an equiv-
alence relation, we may expect that a quasi-isometry preserves certain invariants of
such spaces. For instance, we saw in Proposition 2.14 that quasi-isometry preserves the
large scale doubling property. In this section, we shall see that quasi-isometry preserves
Poincaré inequality (P);. The approach for proving robustness of functional inequalities
can traced back to the seminal works of Kanai [48, 49, 50] and further developments by
Couhlon and Saloff-Coste [21].

The idea is to show that a functional inequality on the metric measure space is
equivalent to a similar functional inequality on its net. Since quasi-isometry is an
equivalence relation, it suffices to show that the functional inequality on graphs is
preserved under quasi-isometries. To compare functional inequalities back and forth
between a metric measure space and its net, we need to be able to transfer functions on
metric measure space to functions on its net and vice-versa. We start by recalling those
tools.

As before, let (M, d, ) be a quasi-b-geodesic metric measure space satisfying (VD)joc
and let (X,dg, m) be its e-net for some fixed ¢ > b. By Proposition 2.16, we have
that (X,dg,m) is a metric measure space satisfying (VD)),.. Moreover the graph
corresponding to (X, dg, m) is connected, countable with bounded degree. Let Dx =
sup,cx deg(x) < oo be the maximum degree. We will denote closed balls in (M, d, 1) and
(X,dg, 1) by B and Bg respectively. Similarly, we denote their corresponding volumes
by V and Vi respectively.

Given a function g € LY (M, 1), we a define a function § : X — R on its net as

~ 1
g(z) = V(e’ﬁae)/B(m,s)ng (3.3)

EJP 28 (2023), paper 64. https://www.imstat.org/ejp
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for all x € M. Conversely, given a function f : X — R on the net, we define f M — R
as

F=>" f@)b. (3.4)
rzeX
where 6, : M — R is defined by
1 xT,€
0.(p) = =2 B0 (3.5)

ZyeX 1B(y,e) (p) .

The sum in (3.4) and denominator of (3.5) is a finite sum due to the finite overlap property
of Proposition 2.16(h). Moreover, there exists a constant cx > 0 such that {0, },cx is a
partition of unity (3, y 0. = 1) satisfying

CX]-B(:L’,e) < em < 1B(:z:7e) (3.6)

for all x € X. The above properties of the partition of unity 6, can be verified using
Proposition 2.16.

We will now compare norms and gradients for the transfer of functions between
metric measure space and its net. For a metric measure space (M,d, ;) and for all
f e LS (A) where A C M, we denote by

loc
1/p
T ( / Ifl”du) .

We adapt the same notation for its net by considering it as a metric measure space.

Definition 3.8. For a function f : X — R on a graph (X, E), we define the discrete
gradient of f at x as

1/2
5f(x) = (Z f(y) —f(x>2> :

This definition of discrete gradient was used to define Poincaré inequality for graphs
in [21]. We now show that our definition of |V f|, is comparable to § f.

Lemma 3.9. Let (X, dg, m) be a weighted graph satisfying (V D)y,.. Then there exists
C > 0 such that

CTHV Sl (2) < 6f(x) < CIV Sl (@)

for all functions f : X — R and forallx € X.

Proof. We write the gradient as

1
(@) + 2 yexiyma M(Y)

S ) - f@)Pmly).

yeX y~x

(V@) = —

The conclusion immediately follows from Lemma 2.17. O

Remark 3.10. Therefore our Poincaré inequality (P); generalizes the Poincaré inequal-
ity for graphs considered by Delmotte [23, 25]. Using the above lemma, our definition of
(P); for graphs is equivalent to the L? version of (P) for graphs in [21].

The next lemma compares gradient of a function on net and with its metric measure
space version.

EJP 28 (2023), paper 64. https://www.imstat.org/ejp
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Lemma 3.11. Let (M, d, 1) be a quasi-b-geodesic metric measure space satistfying (VD)o
and let (X,d, m) be its e-net for some € > b. For all h > 0, there exists positive reals C, C’
such that for all x € M, for all r > 1, and for all functions f : X — R, we have

<CISFI1Z 5 (- o
¥4, wa 18512 5 .o

where T € X is such that d(z,z) < € and f : M — R is defined as in (3.4).

Proof. Using Lemma 2.6, Proposition 2.16 (a) and (2.11), there exists C; > 0 such that

o 0~
P> /se/

s€Bg(z,Cqr)

1d(y 2)<h

dzd 3.7
(yh) i 7

1d(y 2)<h

V(y,h)

forallz € M andr > 1. Foralls € X, y € B(s,¢) and z € B(y,h), we have

f dz dy

Fy) = 1) = D F(00uly) = 0:(2) = D (f(8) = F(5))(B:(y) — 6u(2))

teX teX

= Y. (O F)Ely) — (=)

teX,d(s,t)<2+h

For the last line, if d(s,t) > 2¢ + h, then by triangle inequality d(¢,y) > h +¢, d(t,2) > €
and therefore 0;(y) = 6;(z) = 0 whenever d(s,t) > 2¢ + h. Let Dx < oo be the maximum
degree of the net from Proposition 2.16(b) and ny = A(h + 2¢) + A + h where A is
from (2.11). Since |Bg(s, no)| < 2N™, we have

fo) =) <2 > O - f(=) <4DR s (1) - f(s)  (3.8)

teEBg(s,n0) t€Ba(s,n0)

Let po,p1,---:Pde(s,t) e a path from s to ¢. Forallt € Bg(s,no), by Cauchy-Schwarz
inequality we have

dg(t,s)—1

F(t) = f(s)? < (f(pi) = f(pis1)) | < mo Z 0 f (o). (3.9)

=0 pEBa(s,no)

Combining (3.7), (3.8) and (3.9)

H‘vf’th;B(mg S ANy ST E)Pms)

s€EBg(z,Cyr) teBg(s,n0)

> CpeaNTong > () m(t)

s€Ba(z,C1r) t€Bg(s,n0)

<8CDYmy Y BPm)

s€Bg(z,C3r)

IN

for all x € M and all » > 1. The second line follows from Proposition 2.16 and the last
line from |B(t, ng)| < 2D%’. O

The following proposition shows that Poincaré inequalities can be transferred between
a metric measure space and its net.

Proposition 3.12. Let (M, d, 1) be a b-quasi-geodesic space satisfying (V D)\, and let

(X,d,m) be its e-net for some ¢ > b. Then for all h > b¢, (X,dg, m) satisfies (P); if and
only if (M, d, i) satisfies (P)p,.

EJP 28 (2023), paper 64. https://www.imstat.org/ejp
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Remark 3.13. In general, we do not know if the inequality & > 5¢ in the above statement
is required. We believe that i > b is sufficient but we are unable to prove this.

Proof of Proposition 3.12. Suppose (X, dq, m) satisfies P;(ro,C,C5). Let g € Li?. and
let g: X — R be defined as (3.3). Let x € M and r > ry be arbitrary. Let £ € X be such
that d(z,Z) < e. There exists C; > 0 such that, we have

2
/ 9(¥) — 98| dy (3.10)
B(z,r)

<[ l—oays S [ ) -olay

pEBg(z,C11) B(pe)

<2 ) (/B@,e) lg(y) — §(p)*dy + m(p)[a(p) — a|2>

p€Bg(Z,C1r)

for all @ € R and all functions g. The second line above follows from (3.2), Proposi-
tion 2.16 (a) and (2.11). The last line follows from (a + b)? < 2(a? + b?). The first term
above is bounded using Jensen’s inequality as

[ w50y < () d=dy
B(pe) B(p,e) Y B(p,e)
Hence by Lemma 2.6, we have
h= ¥ / 0(s) ~ 5(p)dy
peBa(z,Cir) Y BP:©)
1 Y,z €
§ CE,G& / / Z)|2M dz dy
PEBG(% Cir) B(p:e) p,e) V(y’ 56)
< Co Vs 3. 5a.com) (3.11)

for some C5, C'5 large enough. We used Lemma 2.6 and triangle inequality in second line
above and Proposition 2.16(h) and (2.11) in the last line. Choose @ = g (z,c,r) in (3.10),
so as to apply P (ro,C1,C%) on (X, d, m) to bound the second term in (3.10) as

~ 2 ~112
L= % m®p) - <Co|86ll3 5y 0mm (3.12)
pEBg(Z,C11)

For all p, q € X satisfying p ~ ¢, by Jensen’s inequality and triangle inequality we have

60) =30 < s [ [ o) = o) dzdy
B(p,e) J B(q,¢)
/ / )| 1d (y,2)<be dz dy
B(pe) B(w)
Hence forall p € X,
69(p )\2 (p)
/ / = 9(2) Lagy,2y<5e d2 dy
le q~p Q7 (p,4e) J B(p,4e)

Lagy,2)<5e
< Cege / / l9(y) — g(2)* FL2=C dz dy
Z B(p,4¢€) J B(y,4e) V(y7 56)

q€X,q~p

1d( z)<5e
< Ce,geDX/ / y) — g(2)P 2222 gy dy (3.13)
B(pe) J B(p,4e) o 2 V(y, 5¢)
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The third line follows from Lemma 2.6 and the last line from bounded degree property of
Proposition 2.16(b). Combining (3.12), (3.13) along with (2.11) and Proposition 2.16(h)
gives

I < Cor® IV dlse 3,50y (3.14)

Combining (3.10), (3.11) and (3.14) yields Poincaré inequality (P)s. for (M,d, 1). By
Lemma 3.5, we get (P), for all h > 5e.

Conversely, suppose that (M,d, u) satisfies P, (r1,C4, C}) for some h > 5e. Let f :
X — R be an arbitrary function and define f : M — R as in (3.4). Denote Bg(p,r) be
an arbitrary ball in (X, d, m) where r > r1. Then using (3.2), (VD). and the inequality
(a+b)? < 2(a® 4 b*) we have

ST @) — foewn| mla) (3.15)
g€Bga (p,r)
< Y Fo-dm@<cs Y [ o dp
g€Bg (p,n) q€Bg(z,n) B(q, 5/2)
<2C. / < ~fly )] + i) - o > dy
q€Bc(pn) B(q,¢/2)

for all @ € R. Using Proposition 2.16(a) and (2.11),there exists positive reals Cg, C11, C12
such that for all » > min(1,r,/Cs) and all functions f, we have

~ 2 ~ 9

O A
aeBatpr) B0/ B(0Cor)

< C ‘V ‘ H < Cr? s 2 . 316

QT f 9. B(p.Chor) 117 || f||2aBG(p,C'12T) ( )

In the second step above, we fix a = fB(p,CQT) and apply Poincaré inequality (P);, a
in the last line we apply Lemma 3.11. Let ¢ € X and y € B(gq,¢/2). Since f( )
EteX:dg(Lq)gl 0:(y) f(t), we have

f@o-fw| =] X awU@-fo)< Y @- o)

teX:d(t,q)<1 teX:d(t,q)<1

< 6f(q)v/Dx.

The last line follows from Cauchy-Schwarz inequality and maximum degree Dx from
Proposition 2.16(b). Using this estimate, we have

n= 3 [ - dsoxCs 3 praPm

g€Bg(p;r) y€Bg(p,r)
< DxCopa 12 pgpr - (3.17)
Thus (P); for (X, d, m) follows from (3.15), (3.16) and (3.17) along with Lemma 3.9. O

We now show that Poincaré inequality (P); is preserved under quasi-isometry for
graphs.

Let (X,d, m) be a weighted graph. Then for the closed balls in the graph, we have
B(z,r) = B(z,|r]). Hence by Lemmas 3.7 and 3.9, we have the following equivalent
definition of (P);: A weighted graph (X, d, m) satisfies (P);, if there exists C; > 0, C; > 1
such that for all f: X — R, forall x € X and for all n € IN*.

2
Yo W) = fom| wldy) <Cin® Y () m(y) (3.18)
yEB(z,n) B(z,Can)
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where fp(, ) is the average of f in B(z,n) with respect to measure m. We will use the
alternate definition for the proposition below.

Proposition 3.14 ([21], Proposition 4.2). Consider weighted graphs (X1,d;, m1) and
(X2, ds, ms) that satisfy (V D). and are quasi-isometric. Then (X1, d;, my) satisfies (P);
if and only if (X5, d2, m2) satisfies (P);.

Corollary 3.15. Let (X, d, m) be a weighted graph satisfying (V D), and let h > 1. Then
(X,d,m) satisfies (P); if and only if (X, d, m) satisfies (P)j,.

Proof. By Lemma 3.5, (P); implies (P)y,.

Conversely, assume (X, d, m) satisfies (P);. Fix k = |h]. Since [V f|, = [V f|, for all
functions f : X — R, (X, d, m) satisfies (P)y. k-fuzz of a weighted graph is defined as
the weighted graph (X, di, m) where the edges are defined by di(z,y) = 1 if and only
if 1 <d(z,y) < k for z,y € X. It is straightforward to verify that the k-fuzz (X, dy, m)
satisfies (VD))o and is quasi-isometric to (X,d, m). Since (X,d, m) satisfies (P), the
k-fuzz (X, d, m) satisfies (P);. Hence by Proposition 3.14, (X, d, m) satisfies (P);. O

As outlined at the start, the robustness of Poincaré inequality on graphs in Proposi-
tion 3.14 can be transferred to arbitrary quasi-geodesic spaces using Proposition 3.12.
Proposition 3.16. For i = 1,2, let (M;,d;, ;1;) be quasi-b;-geodesic spaces satisfy-
ing (VD)joe. Assume (M,,dy,p1) and (Ms,ds, o) are quasi-isometric. Let hy > 5by
and for all hy > 5by. Then (My,dy, 1) satisfies (P)y, if and only if (Ms, da, j12) satisfies
(P)hz'

Proof. 1t is a direct consequence of Propositions 3.12 and 3.14. O

The above Proposition along with the fact that length space is b-geodesic for all b > 0
gives the following.

Corollary 3.17. Let (M,d, ) be a length space satisfying (VD),,.. Then for every
hi,he >0, (M,d, p) satisfies (P)y, if and only if (M, d, 1) satisfies (P)y,.

3.3 Poincaré inequalities in Riemannian manifolds

In this subsection, we see the relationship between various Poincaré inequalities on a
weighted Riemannian manifold. We start by introducing some Poincaré inequalities from
[21].

Definition 3.18. We say that a complete weighted Riemannian manifold (M, g) with
measure . satisfies (P)s, if there exists ro > 0, C; > 0, Cy > 1 such that for all
feC>®(M), forallx € M and for all r > ry, we have

/ F (W) = FBan| 1ldy) < Cpor? / lgrad f(y)|*u(dy) (P)oo
B(z,r)

B(z,Car)

where fp(,,) denote the average of f in B(x,r) with respect to u. We say that a
complete weighted Riemannian manifold (M, g) with measure y satisfies (P)y,. if there
exists Cy > 0, Cy > 1 such that for all f € C*°(M), for all x € M and for all r > 0, we
have

/ () — Fagen|uldy) < C, jgrad £(y)2u(dy) (P)ioc
B(z,r) B(z,Car)

where fp(, ) denote the average of f in B(x,r) with respect to p.

It is clear that (P)g,, implies (P)s and (P)j,.. The inequality (P)i. is a weak
assumption. For instance, manifolds with a lower bound on Ricci curvature satisfy (P)joc.
Inequality (P)« is a large scale version of (P)gy,.
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Proposition 3.19 ([21, Proposition 6.10]). Let (M, g, 1) be a weighted Riemannian mani-
fold satisfying (V D))o and (P)ic and let (X, d, m) be its e-net for some ¢ > 0. Then (M, g)
with measure y satisfies (P), if and only if (X, d, m) satisfies (P);.

Propositions 3.19 and 3.12 along with Corollary 3.17 gives the following

Proposition 3.20. Let (M, g, u) be a weighted Riemannian manifold with Riemannian
distance d. Denote by (X,dg, m) be an e-net of (M, d, i) for some € > 0. Assume (M, d, j1)
satisfies (V D))o and (P)io.. Then the following are equivalent:

(a) (M,d, p) satisfies (P)oo

(b) (M,d, ) satisfies (P)p, for some h > 0.
(c) (M,d, 1) satisfies (P), for all h > 0.

(d) (X,dg,m) satisfies (P);.

(e) (X,dg, m) satisfies (P);, for some h > 1.

3.4 Poincaré inequality: examples and Non-examples

A large class of examples for (P);, can be obtained from Proposition 3.16 and 3.20.
For instance, Buser proved (P)g,, for Riemannian manifolds with non-negative Ricci
curvature. Therefore by Proposition 3.20, Riemannian manifolds with non-negative Ricci
curvature satisfy (P); for all positive scales h. The following example is from [34].

Example 3.21. [Euclidean space with radial weights] Consider R™ with standard Rie-
mannian metric g, Euclidean distance d and measure duq (z) = (14-]21*)*/2 dx. It is easy to
verify that (R", d, i) satisfies (VD)o and (P)ioc. Moreover (R",d, ji,) satisfies (VD)oo
if and only if « > —n. If n > 2, then (R", d, u,,) satisfies (P)~ and therefore (P);, for all
values of « € R and h > 0 (See Remark 3.13 in [34]). However, (R, d, 1, ) does not sat-
isfy (P)s for a > 1. It can be easily seen using the test function fo(z) = [; (1+t2)~*/2 dt.
By [34, Theorem 7.1(1)], (R, d, o) satisfies (P)s if —1 < a < 1. Due to an unpublished
result of Grigor'yan and Saloff-Coste, (R, d, uo) satisfies (P) if and only if o < 1.

Example 3.22. We describe an example of quasi-geodesic space which is neither a
graph, nor a length space. Consider the ‘Broken line’ BL C R

BL=|Jn—1/4n+1/4]
nez

It is quasi-b-geodesic if and only if b > 1/2. We equip it with the Euclidean distance d and
restriction of Lebesgue measure p on BL. (P), is not true for (BL,d,p) if h < 1/2. It
can be seen using the test function f : BL — R defined by f(z) = (—1)l**1/4], However,
it can be shown that for (BL, d, i) satisfies (P), for all h > 1/2.

Example 3.23 (Hyperbolic space). Consider the Hyperbolic n-space H" equipped with
Riemannian distance dy and Riemannian measure p. (H",dy,u) satisfies (VD)ioc
and (P),.. However (H",d, 1) does not satisfy (V D)), because the volume of balls
grows exponentially. Further (H"”, dj, 1) does not satisfy the Poincaré inequality (P).o

Another example in a similar spirit is the infinite d-regular tree T, equipped with
graph distance metric and counting measure. It is easy to very that if d > 3, T, does not
satisfy (VD) and does not satisfy (P)y, for all A > 0.

Examples 3.21 and 3.23 illustrates all the four possibilities that can occur with
properties (VD)o and (P)s. It is summarized in the table below.
4 Markov kernel, semigroup and Dirichlet forms

In this section, we consider Markov chains on metric measure space (M, d, ). Let B
denote the Borel o-algebra on (M, d). Our work concerns long term behavior of a natural
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Table 1: Examples of spaces in relation to the properties (V D), and (P)so.
(VD)oo | (P)so | Examples
True True | (R",d, o) withn >2and o > —norn =1
and a € (—1,1)
True False | (R,d, o) with @ > 1
False True | (R",d, po) with o < —n
False False | (H",dm,n)

family of Markov chains on the state space M. We will recall some standard definitions
and facts about discrete time Markov chains.

A Markov transition function is a map P : M x B : [0,00) such that z — (z,A4) is
B-measurable function on M for all A € B and A — P(x, A) is a probability measure on
(M, B) for all x € M. A Markov transition function P on (M, B) is pu-symmetric if

//u1 x)ua(y)P(x, dy)pu(dx) //m x)u2(y)P(x, dy)u(dr) 4.1)
M M

for all measurable functions uy, us : M — [0, 00).

Remark 4.1. For the rest of this work, we assume that the our Markov transition
function is u-symmetric with respect to some measure u.

Associated with a u-symmetric Markov transition function P is a Markov operator P,
which is a linear operator defined by

Pf(r) = y f(y)P(z,dy) (4.2)

on the set of bounded measurable functions. The operator P extends as a contraction
operator on LP(M) = LP(M, ) for all p € [1,00]. With a slight abuse of notation, we
denote this extension again by P : LP(M) — LP(M) for each 1 < p < oo. Moreover P is
positivity preserving, i.e. if f > 0 then Pf > 0.

The n-th iteration P™ of the operator P is just the operator associated with kernel P"
defined inductively by

P (x, A) := /M P (2, AP (x,dz)

for all z € M, for all measurable sets A € B and P! := P. We now have the Markov
semigroup of linear operators (P"), . where P’ is the identity operator on L?(M). The
Chapman-Kolmogorov equation is given by

Pz, A) = [ P"(z, A)P"(x,dz) (4.3)
M

for all A € B and for all m,n € IN*. By Fubini’s theorem, (4.3) implies the semigroup
property P"*" f = PmP"f for all m,n € Ny and f € L*(M).
The operator A := I — P is the Laplacian which generates the Dirichlet form

(o) = (FAf) pany = / / f(@) = () Pla, dy) p(de).

on L?(M) with full domain D(€) = L*(M
For every Markov transition functlon P on (M,B) there exists a Markov chain
(Xn: Py )neny,cenm on some path space (€2, F) such that

Pz, A) = P, (X, € A).
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(one can always choose the canonical path space Q = M®No F = B®No and X, (w) = w,
for w = (wo, w1, - ..).) The transition function P" is then given by P"(z, A) = P, (X,, € A)
and the operator P" by P" f(x) = E, f(X,). The u-symmetry of P is equivalent to the
p-reversibility of the Markov chain:

IPM(XO €A X e B) = IPM(X1 cA Xy € B)

where P, is a measure (not necessarily a probability measure) defined by P,(-) :=

fM P () p(dz).
If P(z,-) < pforall x € M, we denote its kernel by p : M x M — [0, 00), that is

Pz, 4) = /A P, y)u(dy)

for all x € M and for all A € B. The kernel p is called a Markov kernel with respect to
. The kernel p(z, ) is the Radon-Nikodym derivative of P(z,-) with respect to u, that
is P(x,A) = [, p(z,y)u(dy) for all z € M and all A € B. The u-symmetry of P implies
symmetry of kernel, that is p(z,y) = p(y,z) for all ;1 x p almost every (z,y) € M x M.
By definition, we have p(z,:) € L'(M,p) for all ¥ € M. However, we assume that
p(z,-) € L®(M,p) for all z € M. Under the assumption p(z,-) € L' N L>°, we define
iteratively

Prsa (2,) = [Poi(e, )] () = / il 2o () (4.4)

where p; := p and k£ € IN*. The function p, for k¥ € IN* is called the heat kernel. The
following basic properties of heat kernel defined in (4.4) are easy to verify.

Lemma 4.2. Let (M, d, 1) be a metric measure space and let P be a y-symmetric Markov

transition function satisfying P(z, ) < p forallz € M. Let py(x,-) = %}f‘”) denote the

corresponding Markov kernel. Assume further that p;(z,-) € L>(M,u) for all z € M.
The the kernel p;, defined in (4.4) satisfies

(a) pr(x,-) = %ﬁf“) for all k € N*. That is P*(z, A) = [, pr(x,z)u(dz) for all z € M,
for allk € IN* and forall A € B.

(b) p(z,y) = pr(y,z) € [0,00) for all x,y € M and for all k > 2.
(c) prri(z,y) = P* (pi(z,-)) (y) for all z,y € M and for all k,l € IN*.

The following natural example falls under our framework.

Example 4.3. Let (M, d, n) satisfy (VD)o and let & > 0. Consider the natural ball walk
with Markov kernel & with respect to 4 defined as k(z,y) = %’”}f;’) The corresponding
Markov transition function K is not necessarily py-symmetric because k(x,y) # k(y,z) in

general. Consider the measure p/ < p with %(m) = V(x,h). The Markov kernel of K

with respect to ¢/ is p(z,y) = V:(Lf(}:)im Hence K is y/-symmetric. Such ball walks on

compact Riemannian manifolds were studied in [53].
A Markov chain (X, Py)nen, zenm is said to be lazy if inf e p P (X7 = x) > 0.

Example 4.4. Consider a metric measure space (M, d, ) with a y-symmetric Markov
transition function P. Define the Markov transition function

Pr(z, A) := %(P(m,A) +6,(4))

where 6, (A) = 14(z) denotes the Dirac measure at z. Note that P, p-symmetric and
corresponds to a lazy Markov chain. Assume P has a kernel p with respect to . Then
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‘Pr, has a kernel with respect to p if and only if §, < p for all x € M. If P is the Markov
operator corresponding to P, then P;, = (I + P)/2 is the Markov operator corresponding
to Pr, where I is the identity operator on L?(M). Hence the corresponding Laplacian
operators A and Aj, are related by Ap, = A/2.

Some basic properties of a symmetric Markov kernel are listed without proof in the
lemmas below.

Lemma 4.5 (Folklore). Let P denote a pu-symmetric Markov transition function over a
metric measure space (M,d, ) and let P be the corresponding Markov operator. Then
P is a contraction on all L? (M, i), that is

1P fIl, < 11 (4.5)

for all p € [1,00] and for all f € LP(M). A consequence of (4.5) is the inequality

Ef. f)y=(I-P)f, £y <2|fl3 (4.6)

for all f € L?>(M). Moreover P is self-adjoint on L*(M), that is

(f:Pg)=(Pf,g) 4.7)

for all f,g € L*(M, i) where (f1, f2) = [, f1.f2 dp denotes the inner product on L?(M, p).

Lemma 4.6 (Folklore). Let P denote a p-symmetric Markov transition function over a
metric measure space (M, d, 1) and let p be the corresponding Markov kernel. Then for
all x € M, the function

n Han(xax) (4.8)

is non-increasing. Moreover we have

P2n(2,Y) < pan(z, ) *po,(y, y)'/? (4.9)

for all z,y € M and for alln € IN*.

4.1 Assumptions on the Markov chain
We introduce the main assumptions on the Markov chain in the following definition.
Definition 4.7. For h > 0, a Markov transition function P on (M,B) is said to be
(h,h')-compatible with (M, d, u) if
(a) P is p-symmetric.

(b) There exists a kernel p; such that P(x, A) = [, p1(z,y)u(dy) for allz € M and for all
A € B. By (a), we have p1(z,y) = p1(y, x) for all u x p-almost every (z,y) € M x M.

(c) There exists reals c;,Cy, > 0 and h’ > h such that

Cl Cl
_a - .G | |
V(Lh)lB(m,h)(y) <pi(z,y) < T 15(n)(Y) (4.10)

for all z € M and for p-almost every y € M.
(d) There exists o > 0 such that

pZ(xay) Z Oépl(337y) (411)

for all z € M and for p-almost every y € M, where ps is defined by (4.4).
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The corresponding Markov kernel p; is said to be (h, h')-compatible with (M,d, ). Ifa
Markov transition function P satisfies (a),(b),(c) above we say that P (respectively p;) is
weakly (h, h’)-compatible with (M, d, p).

Similarly, we say the corresponding Markov operator P is (weakly) (h, h')-compatible
with (M, d, u) if the Markov transition function P is (weakly) (h, h')-compatible with
(M. d, ).

We record some important consequences of Condition (d) in Definition 4.7.

Lemma 4.8. Let (M, d, ) be a metric measure space and let P be Markov operator that
is (h, h')-compatible with (M, d, ). Then the corresponding kernel p;, satisfies

Pr+1(x,y) > apg(z,y) (4.12)

for all x,y € M and for all k > 2 where « is same as in (4.11). Moreover the operator
(P — (a/2)I)? is positivity preserving, that is if f : M — R satisfies f > 0, then (P —
(a/2)I)%f > 0.

Proof. Since P* is a Markov operator, by (4.11) and Lemma 4.2(c) we have

Prr2(2,y) — apria(z,y) = P¥ [pa(,-) — api(z,-)] (y) > 0
for all K € IN* and for all z,y € M. This proves (4.12).
By (4.11) and f > 0, we have
(P — (a/2)I)* f(x) = (P? — aP) f(x) + (a/2)* f(x)
> (P~ aP)f(@) = [ FW)ra(o.0) - apr(z,)dy > 0
M

forall x € M. O

The following lemma shows that a large enough convolution power of a weakly
compatible kernel is compatible under some mild conditions.

Lemma 4.9. Let (M, d, 1) be a quasi-b-geodesic space satisfying (V D). and let p; be a
Markov kernel weakly (h, h')-compatible with (M, d, i) for some h > b. Then there exists
k € IN* for which p; is (h,lh')-compatible with (M, d, ) for all | € IN* such that! > k.

Proof. Properties (a) and (b) of Definition 4.7 follows directly from the weak compatibility
of p;. It only remains to check properties (c) and (d). Assume that p, satisfies (4.10).
Let z,y € M with d(x,y) < h’. By Lemma 2.4, there exists even number k € IN* such
that for all [ > k > 2, there exists a b-chain zg,x1,...,2; with x9g = x, x; = y. Define
hi = (h — b)/2. By Chapman-Kolmogorov equation

pi(z,y)

> / / p(x,y1)p(Y1,y2) - p(Yi-1,y) dyrdys . . . dyi 1
B(Il,hhl) B(ml,hl)

-1
il
Z dyldyg ...dyl,1
/B(xll,hl) /B(ocl,hl) V(z,h)V(y1,h) ... V(yi-1,h)
1—1,~2—1
¢ Choap
> . dyrdys - . . dy;—1
/B(a:l_l,hl) /B(xl,hl) V(x,h)V(z1,h)... V(21-1,h)
I—1~2-1
c; C
> 1 h,2h (4.13)
V(z,h)
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The third line above follows weakly (h, h')-compatible condition (4.10) and the fourth
line follows from Lemma 2.6. Combining with the fact that p is weakly (h, h’')-compatible
along with Lemma 2.6 gives the following lower bound: For alll > k£ and [ € IN*, there
exists c¢;; > 0 such that
. C1,1

min(p;(z, y), pre1 (2, y)) > mlB(z,h’)(y) (4.14)
for all x,y € M. Hence by (4.14) and (4.10) we get p;+1 > a;p; for some a; > 0. Since P
is positivity preserving, we have

pa(,y) = (Plilpl—&-l(xa -)) (y) > oy (Pl*lim(»’c’ -)) (y) = ampu(z,y)

which is condition (d) of Definition 4.7. Note that (4.14) implies that p; satisfies the lower
bound in condition (c) of Definition 4.7.

Now we turn to the corresponding upper bound for p;. Since P is a contraction on
L, there exists C; > 0 such that p,,,(z,y) < C1/V(x,h) for all z,y € M and all m € IN*.
By triangle inequality p,,(z,y) = 0 if d(z,y) > mh’ for all m € IN* and for all z,y € M.
Hence by Lemma 2.6 we have the desired conclusion. O

Remark 4.10. We now justify the condition 4 > b in the above lemma. It is to avoid
pathological examples of the following kind: Consider a ball walk of Example 4.3 with
h < 1/2 on Broken line space (BL,d, ;) from Example 3.22. It is easy to check that
such a random walk never leaves a connected component. Similarly, the ball walk of
Example 4.3 with A < 1 on a graph always stays at one point.

4.2 Gaussian estimates

The main property of a Markov kernel that we are interested in are Gaussian estimates
for its iterated kernel p,,.

Definition 4.11. A y-symmetric Markov kernel p on (M, d, 1) is said to satisfy Gaussian
upper bound (GUE) if there exists C1,C> > 0 such that

Po(e.9) < 7 exp (=d(@,)*/Can) (GUE)

for all z,y € M and for alln € IN* satisfying n > 2.
Analogously, a u-symmetric Markov kernel p on a metric measure space (M, d, i) is
said to satisfy Gaussian lower bound (GLFE) if there exists ¢y, c2,cs > 0 such that

pae,) 2 et exp (<d(a,)? ean) (GLE)
for all x,y € M satisfying d(x,y) < csn and for all n € IN* satisfying n > 2.

A u-symmetric Markov kernel p on a metric measure space (M, d, i) is said to satisfy
two sided Gaussian bound (GFE) if it satisfies (GUE) and (GLE).

The condition d(z,y) < csgn in (GLE) is needed because p,(z,y) vanishes for com-
patible kernels if d(z,y) > cn for some constant ¢ > 0. In many situations, the above
Gaussian estimates are equivalent to the following (a priori weaker) estimates which
are easier to prove. We require the estimates in Definition 4.11 to hold only for large
enough n in the definition below.

Definition 4.12. A y-symmetric Markov kernel p on (M, d, u) is said to satisfy Gaussian
upper bound (GUE), if there exists Cy,Cs,ny > 0 such that

pn(z,y) < V(zcifn) exp (—d(%y)?/CQn) (GUE)
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for all x,y € M and for all n € IN* such that n > ny.
The conditions (GLE) and (GE), are defined analogously.

Under mild conditions, we show that (GE). implies (GE).

Lemma 4.13. Let (M, d, i) be a quasi-b-geodesic space satisfying (V D). and let p; be
a Markov kernel weakly (h, h')-compatible with (M, d, 1) for some h > b. The following
hold:

(a) Ifp, satisfies (GUE),, then p, satisfies (GUE).
(b) If p; satisfies (GLE), then p; satisfies (GLE).
(c) Ifp, satisfies (GE)~, then p; satisfies (GE).

Proof. Note that p satisfies (4.10).

(a) The Gaussian upper estimate for p,, where n > ng follows from (GUE) . If n < ny,
we simply use that P is a contraction in L°° along with (4.10) to obtain

Ch 1B(1~,n0 h') (y)

pu(z,y) < V(e )

& d(z,y)?
< - [ S A,
= V(z,v/n) P ( Can
for all z,y € M and for all n < ng. The first line above follows from triangle
inequality, || P||;«_,;~ = 1 and (4.10). The second line follows from Lemma 2.6.

(b) The Gaussian lower bounds for p, where n > ngy follows from (GLE).. Let
hi = min(h/2,h — b). Using ideas similar to the proof of Lemma 4.9 (see (4.13)),
there exists co, c3,c4 > 0 such that

pn(may)
Z/ / p(z,y1)p(yi, y2) - P(Yn—1,Y) dyrdysz . . . dyn—1
B(z,h1) B(z,h1)

c2c51p (20 (y) Cy4 d(z,y)?
> > _
V(xz,h) ~ V(z,v/n) P can

for all n < ng and for all z,y € M such that d(z,y) < (b/ng)n.

(c) Itis a direct consequence of (a) and (b). O

We state the following elementary lemma without proof.

Lemma 4.14. Let (M, d, 1) be a quasi-b-geodesic space satisfying (VD)o and let p be a
Markov kernel weakly (h, h')-compatible with (M, d, i) for some h > b. For some k € IN*,
if py, satisfies (GE)+ then p satisfies (GE).

We describe two examples that does not fall under the framework given by Defini-
tion 4.7 but nevertheless the methods developed in this work still applies.

Example 4.15 (Random walk with jumps supported in an annulus). Consider a measured,
complete, length space (M,d, u) satisfying (VD). and diam(M) = +oo. The P be a
p-symmetric Markov operator whose kernel p(x, y) satisfies the following estimate: there
exists C7 > 0 and A > 0 such that

B(z.2h)\B(x,h) (Y) 1B(z,20)\B(2,h) (¥)

1
o < <C 4.15
1 V(l’,h) —p('ray) =1 V(.’E,h) ( )
for all z € M and for p-almost every y € M.
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In this case, it is easy to verify that the density ps is (h/5,4h)-compatible with
(M,d, ). Note that for all x € M, there exists z € M such that d(z, z) = 3h/2. Note that
by Lemma 2.6 and (4.15), there exists Co > 0 such that for all z,y € M with d(z,y) < h/5

Cy!
ez [ p w2 Gt

and for all z,y € M with d(z,y) < 4h we have

Cy
z,y) < T,w yw) pldw) < ———.
Pl < [ e ) < g

Therefore p, is (h/5,4h) compatible with (M, d, p).

For example, it is clear that the application to Liouville property will not be affected if
we replace the operator P by P2. If the underlying space satisfies volume doubling and
Poincaré inequality we can use our main results to obtain Gaussian estimates (GE)
provided (M, d, u) satisfies (VD). and (P);. To prove the above statement, we simply
note by Theorem 1.1 that p, satisfies (GE) and by a similar argument p; satifies (GE).
Example 4.16. We describe another example similar to Example 4.15. Consider R”

equipped with Euclidean distance d and Lebesgue measure u. Let e denote an arbitrary
unit vector in R™. Consider the p-symmetric random walk with the kernel

1B(z+42¢,1)UB(x—2¢,1) ()
2V (z,1)

p(«I,y) =

Although p is not compatible with (R",d, ), similar to Example 4.15 one can check
that (R™, d, ;1) satisfies that po and ps are (1/3,9)-compatible with (R", d, 1) and that the
kernel py, satisfies (GE)x.

4.3 Comparison of Dirichlet forms

Let (M, d, i) be a metric measure space with a p-symmetric Markov operator P and
corresponding kernel p. Recall that we defined the Dirichlet form £(f,g) = (f, Ag)
for f,g € L*(M). We define another Dirichlet form &, which is the Dirichlet form
corresponding to the Markov operator P2, that is

Ef,9) = (f.(I = Pg) = | £l — IPf]l5-

forall f,g € L*(M).

Remark 4.17. Functional inequalities involving the Dirichlet form (for instance Nash,
Sobolev, log Sobolev, Poincaré inequalities) can be transferred to an inequality concern-
ing the Markov semigroup, which in turn sheds light on asymptotic behavior of Markov
chains. For a continuous time Markov semigroup (P,);>o a crucial identity to carry out

2
this is A2S2 — _og(p, f, P, f) (for instance [3, Theorems 4.2.5 and 6.3.1]) By the above
definition, we have a similar identity for discrete time Markov semigroup:

Ok 1P 11y o= P A1l = PR flly = —£n(PRf. PR ).

for all f € L?(M). This is the main reason why we sometimes prefer &, instead of £.
The above remark motivates us to compare the Dirichlet forms £ and €&,.

Lemma 4.18. Consider a u-symmetric Markov chain on (M, d, 1) with Markov operator

P and Dirichlet forms £ and £, defined as above. We have the following:

(@) E.(f.f) < 26(f. f) for all f € L2(M).
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(b) Assume further that P has a strongly (h, h')-compatible kernel p with respect to
(M,d, ). Then there exists a constant C > 0 such that £(f, f) < CE.(f, f) for all
feL*(M).

Proof. (a) Note that

((P2f. )+ (f. 1)

N |

(PF.1) < 3 (PF,PI+{F,5) =

Hence

EU ) = P = (PE Pt > () — 5 (P2 1)+ (. ) = 5607, 9)

(b) The conclusion follows from Property (d) of Definition 4.7 by observing that

e =5 [ | @)= ) o) dzdy (@.16)
et =3 [ | (@)= 1) pae.y) dady @.17)
O

Remark 4.19. The inequality £(f, f) < CE.(f, f) is not true in general. Consider nearest
neighbor (simple) random walk on a finite bipartite graph. Let f be a function on the
graph that assigns +1 to one partition and —1 to other. It is easy to check that Pf = —f
and therefore 2 ||f|\§ =E(f, f) < CEf, f) =0 fails.

4.4 Markov chains killed on exiting a ball

To obtain lower bounds on the heat kernel, we consider the corresponding Markov
process Kkilled on exiting a ball B (See Section 8). Moreover functional inequalities
like Nash and Sobolev inequalities that we will encounter are local to balls. Motivated
by these considerations, we introduce Markov chains killed on exiting a ball and their
corresponding Markov operator and kernel. Let (X, ),en be a Markov chain on (M, d, i)
driven by a p-symmetric Markov operator P with kernel p; with respect to p. The
corresponding Markov chain (X2), < that is killed on exiting a ball B has state space
B U {05} where Jp is the absorbing cemetery state. The Markov chain (X7),cn killed
on exiting B is defined as

XB =

n

X, ifn<(

where ( is the lifetime of the process defined by
¢ =min{k : X ¢ B}.

For the killed Markov chain, we consider functions f : B U dg — R with the ‘Dirichlet’
boundary condition f(9z) = 0. Therefore, we can define corresponding quantities like
Markov kernel and Markov operator just by restriction to B. Define the restricted kernel
pp : Bx B — R, as a restriction of p; on B x B. We endow B with the measure yp which
is the restriction of 4 to all Borel subsets of B. We denote by L?(B) = L?(B, ug). We
define the Markov operator Pp with kernel pp with respect to up as

Pof(e) = [ fm @) udn) = [ poten)s @l (4.18)

Define the corresponding Dirichlet forms
EP(f 1) = (f,(U=PB)f)ramy,  EP(LF) = (f.(I-PB)f o) (4.19)
EJP 28 (2023), paper 64. https://www.imstat.org/ejp
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for all f € L?(B). Similar to (4.4), we define the kernel p? (z,y) iteratively as

P2 (o, y) = [Popl (z,)] (4) = /B PP (2, 2)pP (y, 2) pu(d2) (4.20)

for all kK € IN* and for all z,y € B. It is easy to check that the proof of Lemma 4.2 (b),(c)
applies to the kernel pp. As before, the function (z,y) — p¥(z,y) is well-defined for all
k > 2. Further pg(z,-) € L'(B) for all z € M. It is easy to see that

pE(z,y) < pr(z,y) (4.21)

for all z,y € M and for all k > 2.

The operator Pg is positivity preserving, that is f > 0 implies Pgf > 0. However
unlike P, the operator Pp is not necessarily conservative, that is Pgl # 1 in general.
Analogous to (4.5), we have that Pg is a contraction on all L?(B) forall 1 < p < 4+o00. We
also define the corresponding ‘Dirichlet Laplacian’ Ap, := I — Pg.

The following comparison of Dirichlet forms is well-known.

Lemma 4.20. Let f € L?(B) and let f € L?>(M) denote an extension of f defined by

~ in B
/= {g E Be (4.22)

Then

@ EB(f, 1) =E(f,f).
() EE(f, f) = &S, ).

We warn the reader of the following abuse of notation. We may consider a function
f € L?(B) as a function in L?(M) using the extension given by (4.22). Alternatively we
may consider a function f € L?(M) as a function in L?(B) by the restriction f|p.

5 Sobolev-type inequalities

We recall the difficulty arising due to Sobolev inequalities mentioned in the intro-
duction. The Sobolev inequalities in the previous works [67, 23, 25, 74] are of the

form o
2 T -
17ass5-2 < gy (EU- D) 072 A1) (5.1)

for all ‘nice’ functions f supported in B(z,r). However (5.1) along with (4.6) implies
that L?(B(x,r)) € L?>%/0=2)(B(z,r)) for all balls B(x,r) which can happen only if the
space is discrete. Hence for discrete time Markov chains on continuous spaces the
Sobolev inequality (5.1) fails to hold. In this section, we prove a weaker form of the
above Sobolev inequality (see (5.2)) and study its properties. In the next two sections,
we will use the Sobolev inequality (5.2) to run the Moser’s iterative method and obtain
elliptic Harnack inequality and Gaussian upper bounds.

We adapt the approach of [67] to obtain a Sobolev inequality using (VD)o and (P)wo
The main result of this section is the following Sobolev inequality.

Theorem 5.1. Let (M,d, ) be a quasi-b-geodesic metric measure space satisfying
(VD)ioe, (VD)o and Poincaré inequality at scale h (P);,. Suppose that a Markov operator
P has a kernel p that is (h, h')-compatible with respect to u. Let Pg and £2 denote the
corresponding Markov operator and Dirichlet form restricted to a ball B C M. Then
there exists § > 2 and Cs > 0 such that for all 7 > 0, for allz € M, and for all f € L*(B),
we have

C 2
175 3s/05-2) < 770 ryerm (E7 059 +r 72 1515) 5.2)
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where B = B(x,r).
Remark 5.2. Since Pg is a contraction, note that (5.1) implies (5.2). Since we rely on
the weaker Sobolev inequality (5.2), our methods give an unified approach to Gaussian

bounds for graphs and continuous spaces. However we will encounter new difficulties
due to (5.2).

Let s > 0and f € L. (M, ). We define f, as

loc

fs('r) = fB(x,s) = %

x,s)

/ (@) p(dz). (5.3)
B(z,s)

5.1 Pseudo-Poincaré and Nash inequalities
As in [67, Lemma 2.4], we need a pseudo-Poincaré inequality.

Lemma 5.3 (Pseudo-Poincaré inequality). Under the hypotheses of Theorem 5.1, there
exists Cy > 0 and sg > 0 such that

If = fslla < Cos*E(S, f) (5.4)

for all f € L*>(M) and for all s > sg.

We omit the proof as it follows from Poincaré inequality using the same argument in
[67, Lemma 2.4]. The following lemma is a consequence of doubling hypothesis.

Lemma 5.4. Let (M, d, 1) be a measure space satisfying (V D))o and (VD). Then for
all b > 0, there exists C, > 0, § > 2 such that

C 5
1505 < gy (5) W91 (5.5)

(z,r
for all f € L'(M) is supported in B = B(z,r) and forallb < s <r

Proof. By Holder inequality, we have

2
1fsllz < N fslloo N1l - (5.6)
Since f is supported in B(x,r) and s < r we have
1 f Vy,3r
Il <11, sup <M, Y3

yEB(z,r+s) V(yv 5) V(ZL'7T‘) yEB(z,r+s) V(yv 5) -

By (2.4), there exists C; > 0 and ¢ > 2 such that

Cl r\9
150 < 307 (5) 11 (5.7)

forall b < s <r and for all f € L! supported in B(x,7).
Further there exists Cs > 0 such that

1
igl= [ s [ G [ u)

1

1
=¢ / dy) pdz) = C (5.8)
’ B(x,r+s) (=) B(zs) V(2,8) pldy) pldz) 2 [1f11

forall b < s < r and for all f € L! supported in B(x,7). The second line follows from
Fubini’s theorem and (5.8) above follows from (2.5). The desired conclusion (5.5) follows
from (5.6), (5.7) and (5.8). O
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Next, we show a Nash inequality using the pseudo-Poincaré inequality and doubling
hypotheses by adapting the approach of [67, Theorem 2.1].

Proposition 5.5. Let (M,d, ) be a quasi-b-geodesic metric measure space satisfy-
ing (VD)iee, (VD)o and Poincaré inequality at scale h (P),. Suppose that a Markov
operator P has a kernel p that is (h, h')-compatible with respect to u. Let £ denote the
Dirichlet form corresponding to P. Then there exists § > 2, Cy > 0 such that

c
P “‘”<W( (F )+ IF13) 1 (5.9)

forallr > 0, for all x € M, and for all f € L?>(M) with f supported in B(x,r).

Proof. We start with an observation that (5.9) follows directly for small values of r. Let
ro > 0 be an arbitrary constant. If » < ry, by (4.10) and (2.2), there exists Cy,Cs > 0
such that for all functions f € L'(M) supported in B(z,r), we have

Gy
I1Pflle < IlFlly  sup <|Iflly  sup
o ! ’L/GB(I r+h’) V(ya h/) ! yEB(z,ro+h’) V(y7 h/)
V(y, 27’0 + n )
< £, sup < I1£1] (5.10)
V(J; TO) ! yEB(z,ro+h’) V(ya hl) V( ) r

By Hoélder inequality along with (5.10) and (4.5), we have C3 > 0 such that

1P1lly < IPAIL NP < o= £ (5.11)

~ V(z, )
for all function f € L?(M) supported in B(z,r) with » < rg. By (5.11) and (4.5) and by
the choice Cy > C;l/é, it suffices to show (5.9) for the case r > 7.
Note that
IPflly < I1Pf—=(Pfslly + I1(PF)slly - (5.12)

We use pseudo-Poincaré inequality (Lemma 5.3) to bound the first term and use the
(h, h')-compatibility of P along with doubling hypotheses to bound the second term. To
obtain (5.9), we minimize the bound on right hand side of (5.12) by varying s.

By Lemma 5.4, there exists Cy > 1 and rg > 0 such that

1P = (Pf)slly < CosvVELS, PS) (5.13)

for all f € L?>(M) and for all s > 7.
By (5.5) and (4.5), there exists Cy > 0 and § > 2 such that

C 5/2
1Pl < i (5) 140 (5.14)

for all f € L?(M) supported in B(x,r) and for all 79 < s < . Combining (5.12), (5.13),
(5.14), we obtain

C
IPfl, < Cos (VEPFLPF) +r7! HPfH2>+V(74)1/2(*> 11 (5.15)

for all f € L?(M) supported in B(z,r) and for all s > ry and for all r > rq. The desired
result follows from minimizing the right hand side by choosing s. O

Before we proceed, we restate the above Nash inequality for functions defined on

balls.
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Corollary 5.6. Let (M,d, ) be a quasi-b-geodesic metric measure space satisfying
(VD)ioe, (VD)o and Poincaré inequality at scale h (P);,. Suppose that a Markov operator
P has a kernel p that is (h, h')-compatible with respect to j. Let Pg and £2 denote the
corresponding Markov operator and Dirichlet form restricted to a ball B C M. Then
there exists 6 > 2, Cy > 0 such that

CNT2

2+(4/5) B ) 2 4/5
P55 < oS (670 +r 2 IS1E) 11 (5.16)

forallr > 0, for allx € M, and for all f € L?>(M) with f supported in B(x,7).

Proof. We define f € L?(M) as in (4.22). Since Pf = Pgf on B, we have ||Pgf|, <

HPfH . Combining this observation along with Hf||p = Hf’
2

tion (5.5) yields (5.16). O

, Lemma 4.20(a) and Proposi-
P

Remark 5.7. It is easy to prove Nash inequality (5.16) using Sobolev inequality (5.2)
just by an application of Holder inequality
1P flly < 1P Flopiasy 1P FIF 2 < |1Ps fllo5 a2y 117/

along with the fact that Pp is a contraction on Lt (B). However proving (5.2) using (5.16)
is harder. There is a direct and elementary approach using slicing of functions developed
in [2]. Their approach was used by Delmotte in the setting of graphs [23, Theorem 4.4]
to prove a Sobolev inequality. However those slicing techniques not so seem to apply
directly for proving (5.2), since the (sub-Markov) operator P does not commute with
the slicing maps f +— (f —s)+ At. It is an interesting open problem to make this approach
work for our Sobolev-type inequalities.

5.2 Ultracontractivity estimate on balls

In light of the above remark, we adapt a different approach based on Hardy-

Littlewood-Sobolev theory for discrete time Markov semigroups as developed in [20,
Theorems 5 and 6] (see also [14] for related work). Our approach is to obtain an
upper bound for ||P§||, ,  using (5.16) which in turn is used to prove the Sobolev
inequality (5.2).
Lemma 5.8. Let (M, d, 1) be a quasi-b-geodesic metric measure space satisfying (V D)oc,
(VD). Suppose that a Markov operator P has a kernel p that is (h, h')-compatible with
respect to 1. Let Pz and £F denote the corresponding Markov operator and Dirichlet
form restricted to a ball B C M. Further assume that the operators Pp satisfy the Nash
inequality (5.16) with constant § > 2. There exists C,, > 0 such that

X Cu(l + 7“2)5/2 (1 + T—Q)k—l
HPBH1—>00 - V(z,r) L6/2

(5.17)

for allx € M, for all r > 0 and for all k € N* where B = B(z,r).

Remark 5.9. If two side Gaussian estimate (GE) holds for p; and if we choose r = V/k,
then the upper bound (5.17) is sharp up to a constant factor.

Proof of Lemma 5.8. Let x € M, r > 0 and B = B(x,r). Our first step is an upper bound
for || P§]|,_,,- Let f € L'(B) be an arbitrary function with || ||, = 1. The constants in this
proof do not depend on the choice of x € M, k € N*, » > 0 or f € L*(B).

Then by Holder inequality,

1Psfl5 < 1P fll 1P5fllo < £ 1P5fllo = 1P5f ]l -
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By (5.10), there exists C; > 0 such that

01(1 + T2)6/2

Pfl? <||P < 5.18
P51 < P8l < S50 (5.18)
By (5.16), along with Lemma 4.20 and Lemma 4.18(b), there exists C'y > 0 such that
I1Pagl3 @ < —ONT (£2(g,g) + 2 Igl2) gl (5.19)
2 = V((E,T)Q/é * ) 2 1 :

forall r > 0, for all z € M, and for all g € L?(B) where B = B(z,r). Define
v = (141726 || PE |

for all k € IN*. Substituting g = P f in (5.19) and using the fact that || P§ f||, <[ f[, =1

and EB(PLF, PE ) = || PEF|? — || PEH1 7%, we obtain the following difference inequality
* B B BJ |2 B 2

for Vi )

1+(2/6) _ COn(1+77)

k+1 < W(”k — Vk41) (5.20)
for all k € IN*. The desired estimate follows from solving the difference inequality given
by (5.20). O

We are ready to prove the Sobolev inequality (5.2) using the ultracontractivity esti-
mate (5.17) above.
For an operator 7, we define the operator (I —T)'/? as

(I-T)'"? = "ayT"
k=0

where a;, is defined by the Taylor series (1 — z)* = Y ;- aga” for 2 € (—1,1). By a
classical estimate on coefficient of Taylor series, there exists C, > 0 such that

ct C,

G g Ge 5.21
k+1)72 =% = 1)1 (-21)

for all & € IN>o.

5.3 Local Sobolev inequality

We use the ultracontractivity estimate (5.17) to obtain Sobolev inequality (5.2).
Proposition 5.10. Let (M, d, 1) be a quasi-b-geodesic metric measure space satisfy-
ing (VD)ioc, (VD)o. Suppose that a Markov operator P has a kernel p that is (h,}’)-

compatible with respect to .. Let Pz and £P denote the corresponding Markov operator
and Dirichlet form restricted to a ball B C M. Assume that there exists C,, > 0 such that

. Cu(l =+ 7,2)6/2 (1 T T—Q)k—l
HPBH1~>00 = V(x,r) 16/2

(5.22)

for all x € M, for all v > 0 and for all k € IN* where B = B(z,r). Then we have the
Sobolev inequality (5.2).

Proof. As in the proof of Nash inequality (5.9), we start by considering the case r < 1.
By (5.10), there exists Cy > 0 such that
Cq

1Pl 00 < Vo) (5.23)
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for all balls B = B(x,r) with » < 1. Since Pg is a contraction on all L?(B), we have

1PBlas—1)(5-2)=2(6-1)/(5—2) < 1- (5.24)

Applying Riesz-Thorin interpolation between (5.23) and (5.24) yields

Cl 1/6
1PBll2s26/(5-2) < (vw))

for all balls B = B(z,r) with » < 1. By choosing Cs > 012/5, we have (5.2) for all balls
B(xz,r) with r < 1.

Next we consider the case r > 1. Since
2

EP(f. )+ 12 A1 = ||+ 7)1 = o)

it suffices to show that there exists C> > 0 such that

(1 + 7,2)1/2

—_— 5.25
2526/(6—2) 2 V(m,r)lﬂ; ( )

[Po (1) 1ps)

for all balls B = B(z,r) with » > 1. To see this, note that Cs = max(Cf/§,2C§) satis-
fies (5.2). Define

(1+1r?) o1 N —1/2
E(B) = ———, Tg:=Pg(I—(1+ P . (5.26)
(B) (B) B s (I—(1+r7%)"'Pp)
Letp e [1,0) and ¢ € [6/(6 — 1), 00) satisfy
pl=qt+o L. (5.27)

For all p € [1,4) and ¢ € [§/(6 — 1), 00) satisfying (5.27), we show that the operator T
is of weak-type (p,¢). An application of Marcinkiewicz interpolation then yields (5.2).
Recall that Tp = 37 ap—1(1 +r~2)~*=D Pk For N € IN*, we define operators

N
RB,N = Zak_l(l + Tﬁz)i(kil)Pg, SB,N =T — RB,N~
k=1

By (5.22) and Riesz-Thorin interpolation, we obtain

5/(ap) (L7 2)E /P

157 (2) (5.28)

1PE], o < CuPE(B)

for all balls B, for all k € IN* and for all 1 < p < co. For each p € [1,6), there exists
C'3 > 0 such that

(o)
1SNl ne < D ara L+ ED PR
k=N+1
< C’}L/”E(B)‘S/(QP)C’Q Z k—1/2)—9/(2p)
k=N+1
< C’gE(B)‘S/(zp)N*‘S/(QQ) (5.29)

for all balls B, where ¢ is given by (5.27). In (5.29) C3 depends only on p, ¢, § but not on
B = B(z,r). In the second line above we use (5.28) and (5.21) and we used (5.27) and
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p € [1,0) in the last line. By the same argument as above and increasing C3 = Cs(p) if
necessary, we may assume that

ITs] < C3E(B)%/Cr) (5.30)

p—oo —
for all balls B.

Let g € LP(B) satisfy [|g[|, = 1. For A > 0, let No = Ny(A, B) denote the smallest
positive integer such that CSE(B)‘S/(QP)N(;S/(M) < \/2. By union bound, for each p € [1,0)
and q given by (5.27), there exists C4,C5 > 0 such that

up{x € B : [Ipg(x)| > A} <pp{z e B : [Rpn,g(z) > N2}
+up{r e B : |Sgn,9(x) > A/2}
<up{zr € B : |Rgn,9(x) > A2}
< (2/NP | Rs.noall,

No p
< CU2/A)P <Z k1/2> < C4(2C,)PAPNE/?
k=1

< C3E(B)1/?\1 (5.31)

for all balls B = B(xz,r). In the second step above we used the definition of Ny. The
third step follows from Chebyshev inequality, the fourth step follows from (5.21) and
HPEHP_W < 1. The last step (5.31) follows from (5.21), (5.27), (5.30) and the definition
of Ny. By Marcinkiewicz interpolation theorem and the estimates given by (5.31), there
exists Cg > 0 such that

||TB||2~>25/(672) < Cﬁ E(B)

for all balls B = B(x,r). This is precisely (5.25) which we intended to prove. O

We record two important consequences of Proposition 5.10 first of which is the proof
of Theorem 5.1

Proof of Theorem 5.1. Theorem 5.1 follows from Corollary 5.6, Lemma 5.8 and Proposi-
tion 5.10. O

The next corollary shows that Sobolev inequality is necessarily true under doubling
hypothesis and Gaussian upper bounds (GUE).

Corollary 5.11. Let (M,d, 1) be a quasi-b-geodesic metric measure space satisfying
(VD)ioc, (VD). Suppose that a Markov operator P has a kernel p that is (h,h') compat-
ible with respect to u. Further assume that iterated kernel p;, that satisfies (GUE). Let
Py and £P denote the corresponding Markov operator and Dirichlet form restricted to a
ball B C M. Then the Sobolev inequality (5.2) holds.

Proof. By Proposition 5.10 it suffices to show the ultracontractivity estimate (5.22) on
| PE|l,_,..- BY (GUE), there exists C; > 0 such that
||P§||1HOO < sup pi(y,2) < sup _ G (5.32)
yEB,2€B yeB(zr) V(y, Vk)
for all balls B = B(xz,r) and for all kK € IN*. By (2.4), there exists 6 > 2 and C5 > 0 such
that

1 | Vi, 2(rvVE) _ 1 2xrvVE)
X T T
S < S ’ < C 5.33
yeBon) Vo VE) ~ V@) yentor Vi vR) - V(@) 2( NG ) 639

for all balls B(x,r) and for all kK € IN*. The desired estimate (5.22) follows from (5.32)
and (5.33). O
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5.4 Sobolev inequality implies large scale doubling property

Next, we show that Sobolev inequality implies (V D)., under natural hypotheses.
More precisely

Proposition 5.12. Let (M, d, ;1) be a metric measure space satisfying (V D)jo.. Let P be
(h, h') compatible Markov operator in a metric measure space (M, d, 1) satisfying Sobolev
inequality (5.2). Then (M, d, ) satisfies the large scale doubling property (VD).

We need the following volume comparison lemma.

Lemma 5.13. Let (M, d, i) be a quasi-b-geodesic metric measure space satisfying (V D)oc
and let ' > b > 0. Then there exists Cy > 0 such that

V(z,r+h') <CoV(z,r) (5.34)
for all x € M and for all r > 3h/'.

Proof. Let Y be a maximal h’-separated subset of B(x,r) where « € M and r > 3h'. The
collection of balls {B(y,h'/2) : y € Y} are disjoint and hence

Viz,r) > > Viy, h'/2). (5.35)

yeYNB(z,r—h')

However since B(z,r) C Uyey B(y, k') and r > 3h/, we have

@ 7& B(J), r—= 2]7'/) - UyEYﬁB(w,Tfh’)B(ya h/)a (536)

By quasi-b-geodesicity and b < i/, there exists C; > 0 such that for all z € B(z,r + 1),
there exists a b-chain zg, x4, ..., z,, b-chain from z to z such that

z; € B(x,r — 2h') and d(z;,2) < C1h'. (5.37)

Combining (5.36) and (5.37), we obtain
B(x,r + 1) € Uyeynp(e,—n) By, (C1 + DI). (5.38)
Combining (5.38),Lemma 2.6 and (5.35), we obtain
Vier+r)< Y V(g (G + 1K)
yEYNB(x,r—h')

S Ch,//Q,(Cl+1)h,/ Z V(y, h//2) S Ch,//Z,(Cl+1)h,’V(xa ’l"). O
yeYNB(xz,r—h’)

Proof of Proposition 5.12. . We adapt the argument of [18, Proposition 2.1]. However
unlike in [18, Proposition 2.1], we do consider volumes of arbitrarily small balls.
Let z € M and r > 31/ be arbitrary. For s > 0, define the ‘tent function’

fs(y) = max(s — d(z,y),0).

By (h, k') compatibility of P, we have Pp(, ;) fsn > h'1p(, 5. Therefore by applying (5.2),
we have

Cgr?
2 (6—2)/5 S 2 —2 2
(h)?V (z,n)072/0 < Vo ((W)?V (., 40") +r~2(30)?V (x,31"))
for all » > 3h' and for all x € M. Combined with Lemma 2.6, there exists C; > 0 such
that Vi)
xZ,Tr 5
) < .
Vi) = Cir (5.39)
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for all r > 3h’ and for all x € M.
Let 3k’ < s <r. Then by (h, ') compatibility of P, we have Pg(, ) fs > (5/6)15(z,s/2)-
Hence by Sobolev inequality (5.2), (4.10) and Lemma 4.20(a), we obtain

057“2

(s/6)°V (x,5/2)°"2/0 < W

(W)?V (2,54 h) + 1725V (z,s))

Combined with Lemma 5.13, there exists C5 > 0 such that
sy 2/68
Vi s) > (@Y g s2)0-208 (5.40)
CQT(S

for all z € M and for all 3k’ < s < r. We replace s by s/2 in (5.40) and iterate to obtain

i1 . . 0 ) 0
Viz,s) >4~ 25=0d(6=2)7/¢ (SV(M V(x,s/20)0=2"/° (5.41)

(2/6) X2526(6-2)7 /87
027“6 )

for all 30 < s/2¢=! < s < r. In particular if we choose i = [log,(s/3h')], we have
(3n')/2 < s/2¢ < 3h'. Hence by (5.41) and (5.39),we have

i—1 J/83 iP5t
o . R 5V((E ,',.) (2/6) 225=0(6—2)7 /8 V(LU 7") (6—-2)"/6
S-S ie-2ise 87V, ) .
Vix,s) >4 0 Cor® Cord (5.42)

for all z € M and for all 3h' < s < r, where i = [log,(s/3h')]. By (5.42), there exists
C3 > 0 such that

E § Cs(r/s)?s0=2"/6"" (5.43)
for all x € M and for all 3%’ < s < r, where i = [log,(s/3h’)]. Since the map s —
exp (6(( — 2)/6)Mos2(s/31")1 1y s) is bounded in [3h/,0), by (5.43) there exists Cy > 0
such that Viw.r) 5

xr,Tr T
5=a()
Vix,s) ~ :
for all z € M and for all 31’ < s < r. The above equation clearly implies (VD). O

6 Elliptic Harnack inequality

In this section, we prove elliptic Harnack inequality for non-negative harmonic
functions. As before, we consider a metric measure space (M,d, ) and a Markov
operator P that is (h, h')-compatible with (M, d, u). Recall that the operator A :=1 — P
is the Laplacian corresponding to P.

6.1 Harmonic functions

Definition 6.1. Let P be a Markov operator on (M,d,u). A function f : U — R is
P-harmonic in B(xz,r) if
Af(y)=fly) - Pfly) =
forally € B(z,r).
Similarly, we say f : M — R is P-subharmonic (resp. P-superharmonic) in B(x,r) if

Af(y) <0 (resp. > 0)

forally € B(z,r).
We say a function f : M — R is P-harmonic (resp. subharmonic, superharmonic) if
Af=0(resp. Af <0, Af >0).
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Remark 6.2.

(a) Consider a Markov operator P that is (h, h')-compatible with (M,d, ). By (4.10),
Pf(y) depends only on f in B(y,h’). Therefore the property that f : M — R is
P-harmonic in B(z,r) depends only on the values of f in B(z,r + h'). Hence in this
case it suffices to have B(x,r + h’) C Domain(f).

(b) We use the term harmonic instead of P-harmonic if the Markov operator P is clear
from the context. Same holds for superharmonic or subharmonic functions.

The main result of the section is the following elliptic Harnack inequality.

Theorem 6.3 (Elliptic Harnack inequality). Let (M, d, u) be a quasi-b-geodesic metric
measure space satisfying (V D)o, (VD)o and Poincaré inequality at scale h (P)y. Sup-
pose that a Markov operator P has a kernel p that is (h, h')-compatible with respect to
w for some h > b. Then there exists ¢ > 0,179 > 0,Cg > 0 such that for all x € M, for
all r > ry and for all non-negative functions v : B(x,r) — R>( that are P-harmonic in
B(z,r) the following Harnack inequality holds:

z€B(z,cr) xe€B(x,cr)

In (6.1), the sup and inf must be understood as essential sup and essential inf with
respect to p.

We follow Moser’s iteration method [58] to prove the elliptic Harnack inequality.
Our approach is an adaptation of Delmotte’s approach except that we have to rely on a
weaker version of Sobolev inequality and a modified version of John-Nirenberg inequality.
Moser’s iteration relies on estimating the quantities

, 1 1/p
o(u,p, B') := (M(B,) /B ulpdu) (6.2)

for different balls B’ C B and for different values of p € R\ {0}. By Jensen’s inequality,
p — ¢(u, p, B') is non-decreasing function. The function ¢ satisfies lim,_, o, ¢(u, p,cB) =
infcp w and limp_, 4 o ¢(u, p, cB) = sup.g u [47, Lemma 14.1.4]. To obtain (6.1), Moser’s
iterative method relies on establishing bounds of the form ¢(u, p1, B') < Cy, ,,¢(u, p2, B”)
for different values of p1, p» € R\ {0} satisfying p; < p2. Sobolev inequality and Poincaré
inequality are crucial ingredients to run this iterative procedure. For a function f that is
defined on a ball B, we denote the mean integral by

fBZ]ifd/LZﬁ/dep.

We start with a local version of the above elliptic Harnack inequality.

Lemma 6.4. Let (M, d, 1) be a quasi-b-geodesic space satistying (VD). and let P be a
weakly (h, h')-compatible Markov operator with (M,d, ) for some h > b. There exists
C > 0 and r¢ > 0 such that

u(y) < Cu(z) (6.3)

for all z € M, for allr > rqg, for all y,z € B(x,r/2) satisfying d(y,z) < h' and for all
non-negative functions u : B(x,r + h’) — R harmonic in B(z,r).

Proof. There exists ¢; > 0 and [ € IN* such that

c1lp(zon) (W)

Vw, ') (6.4)

pi(z,w) = pi(w, 2) >
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for all y,w € M. The proof of (6.4) is analogous to that of (4.13). Therefore by (6.4),

(VD)o weak (h, h')-compatibility of p; and triangle inequality, there exists ¢ > 0 such

that

c1lp(z2n) (W) S c1lpy,ny(w)
V(w,n) = V(w,h)

pl(sz) Z Z chl(way) = CQPl(va) (65)
for all y, z,w € M satisfying d(y,z) < }'.

Choose rg large enough so that r/2 + [h' < r + k' for all r > ry. Note that for every
harmonic function v : B(x,r + h’) — R in B(z,r) with r > ro and for all z € B(z,r/2), we
have

u(z) = Plu(z) = / pi(z, w)u(w) u(dw) (6.6)

B(z,lh’)

By (6.6) and (6.5), we obtain

W= [ wGwupn ze [ s <o) 67

for all non-negative harmonic functions u in B(z,r) for all z € M, for all z,y € B(z,r/2)
with r > . The choice C' = ¢, * satisfies (6.3). O

6.2 John-Nirenberg inequality

Moser [58], used John-Nirenberg inequality to obtain an estimate of the form
o(u,—q,B") < C'¢(u,q,B’) for some ¢,C’ > 0. An alternative approach is to use an
abstract lemma of Bombieri and Guisti was later proposed by Moser [70, Section 2.2.3].

John-Nirenberg inequality is an estimate on distribution of functions of bounded mean
oscillation which were introduced in [46]. A locally integrable function f : B — R define
is of bounded mean oscillation (BMO) if

1
‘= su — fe/ldp < oo.
o = sup o [ 1= fola

John-Nirenberg inequality states that functions of bounded mean oscillation have an
exponentially decaying distribution function.

In [1, Theorem 5.2] a version of John-Nirenberg inequality is shown for spaces
satisfying the doubling hypothesis (VD). However for us, the metric measure space
(M,d, 1) only satisfies (VD)o and (VD). Since we do not have doubling hypothesis
on arbitrarily small balls, we introduce a modified version of BMO seminorm (BMO
seminorm at scale h) defined as

||fHBMo(B(a:O,r0)),h = |f - fB(w‘)’ dp. (6.8)

sup 7/
B(y,r)CB(zo,r0),r>h V(y,r) B(y,r)

Our proof is motivated by the presentation in [1]. We start by recalling the Vitali
covering lemma.

Lemma 6.5 (Vitali covering lemma). [44, Theorem 1.2] Let F be a family of balls with
positive and uniformly bounded radii in a metric space (M, d). Then there exists a disjoint
subfamily G C F such that

U Bc |58

BeF Beg

In fact, every ball B € F meets a ball B’ € G with radius at least half that of B and
therefore satisfies B C 5B’.
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A crucial ingredient in the proof of John-Nirenberg inequality is the following ver-
sion of Calderén-Zygmund decomposition lemma. Since we replaced (V D) by weaker
assumptions (VD). and (V D)., we need some other method to control the behavior of
a BMO function at small length scales. This is why we assume a local Harnack inequality
(by Lemma 6.4 the local Harnack inequality holds for harmonic functions).

Lemma 6.6 (Calderén-Zygmund decomposition lemma). Let (M, d, ) be a metric mea-
sure space satisfying (VD). and (VD). Let f be a non-negative locally integrable
function on B(zg,11ry) for some rq > r; > h > 0. Further we assume that there exists
C1 > 1 such that f satisfies the local Harnack inequality

fy) <Cif(2) (6.9)

for all y,z € B(xg, 79 + h) satisfying d(y, z) < h. Further, assume that

1
VS / fdu (6.10)
’ V(J?(),’I") B(xo,11rq)

Then there exists countable (possibly finite) family of disjoint balls F = {B;} of disjoint
balls centered in B(xg,r) and satisfying 5B; C B(xo, 11rq) for all B; € F so that

(i) f(l‘) < Cl/\O forall x € B(l‘o,’l‘o) \ (UBiE}' 5Bl)
(ii) /\0 < fBi fdu < 02)\0 for all B; € Fy.
(iii) Cy ' Ao < fip. fdp < Ao for all B; € F.

The family of balls F, satisfying the above conditions are called Calderén-Zygmund
balls at level \yg. Moreover if A\g < A1 < ... < Ay, then the family Calderén-Zygmund
balls F,, corresponding to different levels \,, may be chosen in such a way that every
Bi(An+1) € Fn41 is contained in some 5B;(\,,) where B;(\,) € F,.

Proof. We denote B(z,7¢) as By. Define a maximal function

M, £(2) = Mp(a o f(2) = sup f o rau
B(y,r)CB(zo,ro+h): B(y,r)
yE€B(zo,m0),7>h,B(y,r)3

for all z € B(zo,r). We define
E\ = {z € B(zo,10) + Mp(z,r)f () > A}.

First consider Ay. By definition for every « € E),, there exists a ball B, = B(y., )
satisfying y, € By, © € By, B, C B(xg,79 + h), 7 > h and

By

Let k = k, € IN* be such that 5*~!r, < 2ry < 5*r,. Then By C 5*B, C 11By. Combining
this with (6.10), we have

1
][ fdp < / fdp <Xo < An.
5+ B, u(Bo) J11B,

However since fB' fdu > Ay, there exist smallest n, > 1 such that

][ fdp <Ay (6.12)
5nz B,
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and
][ fdu> Ay (6.13)
59 By

forall j = 0,1,...,n, — 1. The balls 5"=~!B, forms a covering of E),. Therefore
by Vitali covering lemma (Lemma 6.5), we pick a family Fn of pairwise disjoint balls
B; = 5"=:~1B,. satisfying Ey, € U Bery OB. We now check the construction above
satisfies the desired properties. By (6.12), (6.13) and (2.4), there exists C;, > 0,6 > 0
such that

Ay < ][ fdu < Ch55][ fdu < Cr5’Ay.
pnz—1pR, 5nx B,

Choosing C5 = 59 C},, we obtain properties (ii) and (iii) of Calderén-Zygmund decomposi-
tion.

It remains to verify (i). If z € By \ (Up,cr5Bi) € Bo \ Exy, we have Mp, f(z) < Ax.
Therefore by (6.9), we have

A = M, f(e) 2 fdnz 7 ).
B(z,h)
This give property (i). We have now constructed the desired decomposition at level
An. Next we consider Ay _1. The rest of the properties follow from the argument in [1,
Lemma 3.8].
O

Remark 6.7. In the above proof, we use (6.9) to obtain property (i) of the Calderén-
Zygmund decomposition. Typically property (i) is proved using Lebesgue differentiation
theorem. However the proof of Lebesgue differentiation theorem typically follows
from (VD) (See [1] and [44, Theorem 1.8]). Even though (VD) is not necessary for
Lebesgue differentiation theorem, it is not clear whether Lebesgue differentiation
theorem holds in our setting.

Next, we prove the John-Nirenberg inequality for spaces satisfying (VD)o and (VD).

Proposition 6.8 (John-Nirenberg inequality). Let (M, d, 1) be a metric measure space
satisfying (VD). and (VD). Let f be a non-negative locally integrable function on
B(xzg, 11rg) for some ro > h > 0. Further we assume that there exists C; > 1 such that f
satisfies the local Harnack inequality

fly) < Cif(2) (6.14)
for all y,z € B(xo, 70 + h) satisfying d(y, z) < h. Then there exists Co > 0 such that
i€ Byt If = fal} > A) < Cop(Bo)exp(—M(Ca | fl o)) (6:15)

for all A > 0. The constant C; depends only on Cy,h and constants associated with
doubling hypotheses (VD)o and (VD).

Proof. The proof of this version of John-Nirenberg inequality follows from the same
argument given in [1, Theorem 5.2] except that we use the version of Calderén-Zygmund
decomposition given in Lemma 6.6. O

Following [23, Corollaire, p. 25], we obtain:

Corollary 6.9. Let (M, d, ;1) be a metric measure space satisfying (VD)o and (VD).
Let f be a non-negative locally integrable function on B(x,11ry) for some ro > h' > 0.
Further we assume that there exists C'y > 1 such that f satisfies the local Harnack
inequality

Fy) < Ci(2) (6.16)
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forally,z € B(xg,70 + ') satisfying d(y, z) < h. Then there exists cy, Cy > 0 such that

/ e(COf(y)/”fHBMO(llBO),h’) dy/ 6(*00f(y)/HfHBMo(nBO),h’) dy < Cg'u(BO)Q (6.17)
B(] BO

where By = B(xg,ro). The constants ¢y, Cy depends only on Cy,h’ and constants associ-
ated with doubling hypotheses (V D))o and (VD).

6.3 Discrete calculus

Before we dive into computations, we introduce simplifying notations and collect
basic rules that mimics calculus rules in a discrete setting. Let f be a function on IN x M
or on M. Depending on context, we may abbreviate f(k,z) to fx(x), fr or even f.

1. ‘Gradient’
Vayf = fly) — f(z) (6.18)
and the ‘time derivative’
Of(z) = f(k+1,2) — f(k,x). (6.19)
2. Differentiation of product
va(fg) = (vaf)g(y) + (vag)f(x) (6.20)
3. Differentiation of square
Vayf? = 2(Vay /) f (@) + (Vay f)*. (6.21)

4. The same formulas for the ‘time derivatives’:

Ok(fg) = (Okf)gr+1 + (Okg) fr (6.22)

and

O (f?) = 200kf) fr + (O f)?. (6.23)

5. Let A = I — P denote the Laplacian corresponding to a p-symmetric Markov
operator P with kernel p;. Then

Af(@)i= (1= P)f(@) = [ p@)Vef dy
M
6. Integration by parts: If f,g € L?(M, j1), then

1
y Af(z)g(x)dx = 3 /M /M(mef)(vzyg)pl (x,y) dy dz. (6.24)

7. Consider a p-symmetric Markov operator with kernel p;. We define |V f| corre-
sponding to the Markov operator P as

Ve fl(x) = / (Vay f)?p1(z,y) dy. (6.25)
M

We caution the reader to be aware of different uses of the symbol V in (3.1), (6.18)
and (6.25) with slight change in subscript. The subscript could be a positive real number,
a pair of points or a Markov operator. We hope the different notations of V would be
clear from the context.

EJP 28 (2023), paper 64. https://www.imstat.org/ejp
Page 41/81


https://doi.org/10.1214/23-EJP954
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Random walks on metric measure spaces

6.4 Logarithm of a harmonic function

If u is a positive harmonic function, then we show that log v has bounded BMO semi-
norm. This combined with John-Nirenberg inequality yields ¢(u, —q, c1 B) < C’¢(u, q, 1 B)
for some ¢,C’ > 0 and ¢; € (0,1).

Lemma 6.10. Let (M,d,n) be a quasi-b-geodesic metric measure space satisfying
(VD)ioe, (VD)o and Poincaré inequality at scale h (P);,. Suppose that a Markov operator
P has a kernel p that is (h, h')-compatible with respect to p for some h > b. Let u be
a positive P-harmonic function on B = B(z,r). Let n be a non-negative function on B
satisfying supp(n) C B(x, (r/2) — h’). There exists Cy > 0 and ro > 2}’ satisfies

u

/3/2 /3/2 <1n ﬂ)zn(ﬁm(y’z) dydz < 00/3/2 /3/2 (V1) 1y, z) dydz  (6.26)

for all balls B, for all functions u, n satisfying the above requirements.

Proof. Define ¢ := n?/u. By product rule (6.20)
Vet = Vi (1/u)n(2)* + (1/u(y)) V= (u?). (6.27)
Using integration by parts (6.24) along with supp(n) C B(z, (r/2) — k'), we deduce

/ / p1(y, 2)(Vy:0)(Vyu) dy dz = 0. (6.28)
B/2.JB/2

Combining (6.27), (6.28), we have
1 2
- 1Y, 2)(Vyzu) ( V= | n(2)” dy dz
B/2JB/2 u
1
< / / P1(y, 2)[V ot |V | — dy dz. (6.29)
B/2JB/2 u(y)

By Lemma 6.4, v satisfies the local Harnack inequality on B/2 for large enough balls B.
Hence there exists ¢;,C; > 0 and 7y > 2h’ such that

o (v, L) = @@ @ () e
(Vy- )<Vyzu> W) > 1< u(z)) (6.30)
Vy.u/u(y) < Cqfln ZEZ;‘ (6.31)

for all positive P-harmonic functions v on B = B(z,r), for all y, z € B/2 with d(y, z) < i/
and r > ro. Combining (6.29), (6.30) and (6.31), we obtain

/3/2 /B/Zpl(y,Z) (IHZEZ;Y??(Z)Q dy dz

o} u(y)
<2 /B . /B AN 0) ()

In ‘dydz (6.32)
u(z)

Since p;(y, z) = p1(z,y) for p x p-almost every (y,z) € M x M, we have

/B/2 /B /2p1(y7z)|vyzn\n(y)
:/3/2 /B/Qm(y,z)wyznm(z)
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By (6.32) and (6.33)

/3/2 /B/Qm(y,z) <ln %)277(2)2 dy d

20
Gl e )IVyznln()ln(y)'dydz 6.30)
B/2.J)B)2

(2)

By Holder inequality
2
In u(y)‘ dy dz)

< Lo IFtin

2
/ / p1(y, z |Vyzn\ dydz - / p1(y, 2) <1n M) n(z)2 dydz. (6.35)
B/2JB/2 B/2JB/2 u(y)

Combining (6.34) and (6.35), we obtain (6.26) with Cy = 4C%/c3. O

In the next proposition, we show that logarithm of a harmonic function has bounded
mean oscillation. Then using John-Nirenberg inequality we prove a weak form of elliptic
Harnack inequality.

Proposition 6.11. Under the assumptions of Theorem 6.3, there exists ¢ > 0, ¢g € (0, 1)
and Cy,rg > 0 such that
é(u, —q,coB) < Cop(u, q,coB) (6.36)

for all P-harmonic functions v on B = B(x,r) withr > r and for all z € M.

Proof. The proof follows from the same argument as [23, Théoreme 3.3] where the use
of [23, Lemme 3.2] is replaced Lemma 6.10. O

6.5 Mean value inequality for subharmonic functions

For the rest of the section, we will rely on (V D)., (VD))o and the obolev inequal-
ity (5.2) to prove Theorem 6.3. We obtain various inequalities on subharmonic functions.
The following elementary property of subharmonic and superharmonic functions and
follows immediately from Jensen’s inequality.

Lemma 6.12. Let P be a Markov operator.

(a) If f is a non-negative function that is P-subharmonic in B(z,r), then f? is P-
subharmonic in B(x,r) for all p € [1,00).

(b) If f is a positive function that is P-superharmonic in B(z, ), then f? is P-subharmonic
in B(zx,r) for all p < 0.

Moser’s iteration relies on repeated application of the following Lemma.

Lemma 6.13. Let (M, d, i) be a quasi-b-geodesic metric measure space satisfying (V D)ioc
and (VD). Suppose that a Markov operator P has a kernel p that is (h, h’)-compatible
with respect to u for some h > b. Further assume that P satisfies the Sobolev inequal-
ity (5.2). There exists Cyy > 0 such that

d(u,2(142/6), B(z, (1 — o)r — h') < Coo %D p(u, 2, Bz, r + 1)) (6.37)

for all x € M, for all r > 3h/, for all ¢ € (0,1/2) and for all functions v that are
non-negative and P-subharmonic on B(zx,r).
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Proof. The proof of this result follows from a similar argument as that of [23, Proposition
5.2] where we use the version of Sobolev ineqaulity given by (5.2) instead. Although the
Sobolev inequality takes a different form compared to [23], we use the subharmonicity
of u to compare Ppu with u (away from boundary of u). O

The following reverse Poincaré inequality.

Lemma 6.14 (Reverse Poincaré inequality). Let (M, d, 1) be a quasi-b-geodesic metric
measure space satisfying (V D). and (V D),. Suppose that a Markov operator P has a
kernel p that is weakly (h, h')-compatible with respect to y for some h > b. For all ) > 1,
there exists C = C(Q) such that for all P-harmonic functions u, for all x € M and for all

r>3h/(Q—-1)
/ N pul® dp < Cr—2 / u? dp. (6.38)
B(z,r) B(z,Qr)

In particular, there exists Cr = C(2) such that such that for all P-harmonic functions u,
for all x € M and for all r > 3h'

/ NV pul® dp < Crr2 / u?dp. (6.39)
B(z,r) B(z,2r)
Proof. Define 0 W d(z.y)
. r— - z,y
= 1 . 4
¥ (y) := max <O7m1n ( Q- — 2w )) (6.40)

Note that ¢ = 0 in B(z,Qr —h')¢and ¢y =1 in B(x,r + k). Since Au = (I — P)u =0, for
allr > 3h'/(Q — 1) and for all x € M we have

B(:L'7SZ7-_h/)
2 1 2 y z 27.L Cyzu z
/B(ac,Qr) ~/B(w,Qr) 1(y’ ) ( Y (,l/) )) ( )dyd

1
= *5/ / Ly, )9 (y) (Vyou)® dy dz
B(z,Qr) J B(z,Qr)
1
- 5/ / P1 (ya Z)U(Z) (vyz¢2) (vyzu) dy dz. (641)
B(z,Qr) J B(z,Qr)

The above steps follows from integration by parts (6.24) and product rule (6.20). We use
the inequality ab < a?/4 + b? to obtain

|U(Z) (Vyzw2)( yzU | = (v (y) + ¥(2))u(z )(vy2¢)(vyzu)|

1
< @) +9%(2) (Vye)” + 26 (2) (V29 (6.42)
Since p1(y, z) = p1(z,y) for u x p-almost every (y, z), we have

/ / Pl 020) (Vo) dyds = [ [ i 20 (V) dydz (0.43)
Bl Bl Bl Bl
where By := B(z,Qr). Combining (6.41), (6.42) and (6.43)

/ / pl(y,z)w )(Vyzu dydz < 4/ / p1(y, 2 z) (V yzw) dy dz. (6.44)
By J By B, JB;
The inequality (a + b)? < 2(a? + b?) along with product rule (6.20) implies

2 ) )
/B1 /B1 P1(Y, 2) (Vye(Yu))” dydz < 2/31 /B1 p1(y, 2)0*(y) (Vysu)” dydz
+2/B /B pi(y, 2)u*(2) (V) dydz. (6.45)
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Combining (6.44) and (6.45), we obtain

[ mwo ) dydz <10 [ [yt (9,00 dyds (6.40)
Bl Bl Bl Bl
By (6.40) and (4.10), there exists C; > 0 such that

(Vy10)* pr(y, 2) < (W) (Q = 1) pa(y, 2)
for all y € M, for y-almost every z € M and for all » > 3h’/(2 — 1). Therefore, we have
/ / p1(y, 2) (Vo (Yu)? dydz < (30)2(Q — 1) 272 / u*(z) dz. (6.47)
By J B, B
for all P-harmonic functions w, for all » > 3h’/(€2 — 1) and for all z € M. Since ¢y =1 in
B(xz,r + h') the desired inequality (6.38) follows from (6.47). O
The next lemma is a L2-mean value inequality for positive P-subharmonic functions.

Lemma 6.15. Let (M, d, i) be a quasi-b-geodesic metric measure space satisfying (V D)ioc
and (VD). Suppose that a Markov operator P has a kernel p that is (h, h')-compatible
with respect to u for some h > b. Further assume that P satisfies the Sobolev inequal-
ity (5.2). There exists C; > 0 and r; > 0 such that

é(u, 00, B(z,7/6)) < Co(u,2, B(xz,r + h')) (6.48)

for all x € M, for all r > ry and for all functions u that are non-negative and P-
subharmonic on B(z,r).

Proof. Define a sequence of radii iteratively by r(1) = r + #/,
i+ 1) = (r(i) =) (1= —— ) =W
- 3i+1
fori=1,2,...,[logr]. By the above definition, there exists ry > 0 such that
r(Mogr] +2) = A >r [ 1= 370+ | —4n’(logr +3) > r/2 > 31’ (6.49)

Jj=1

for all 7 > ry. We define the balls B; = B(z,r(i)) for i € N* and exponents p; = (1 +2/4)"
for i € N>y. By Lemma 6.12 uP* is P-subharmonic for all ¢ € IN>o. By applying
Lemma 6.13 to the function wPi-* that is P-subharmonic in B;, we obtain

(u,2p;, Bipr) < Co/P 3700w, 2p, 4, By) (6.50)
fori=1,2,...,[logr] and r > ry. Combining the estimates in (6.50), there exists Cy > 0
such that

¢(u7 2p]—logr-\ ) B[logr]+1) < C2¢(u7 2, B({I?, T+ h/)) (6.51)

for all x € M, for all r > ry and for all non-negative subharmonic v in B(x,r). There
exists C3, C4y > 0 such that

sup w2Priog r1 < sup P(u2prlogr])
B(w,r/2) B(z,r/2)

C
< sup 73/ u2p[log r] du
YEBTiog r]+1 V<y’ h ) Briog r1+1

S C.?) sup V(y; 27:) / u2p log ] d‘LL
M(Bﬂogr-|+1) yEB(xz,r) V(y’h ) Bliog r1+1
< Cyr? ][ u?Priesr1 dy, (6.52)
Briog r1+1
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The first line above follows from Lemma 6.12, the second line follows from (4.10)
and (6.49), the third line follows from (6.49) and the last line from (2.4) and (6.49).
Combining (6.51) and (6.52), we obtain (6.48). O

The next lemma is analogous to Lemma 6.13 and will be used for an iteration
procedure.

Lemma 6.16. Let (M, d, ) be a quasi-b-geodesic metric measure space satistfying (VD)o
and (VD). Suppose that a Markov operator P has a kernel p that is (h, h')-compatible
with (M, d, ) for some h > b. Further assume that P satisfies the Sobolev inequality (5.2).
There exists Cy > 0,79 > 0 such that

Lol BOPE I 2y
B(z,r/2) a:r/2

1= 1) / [ N drd: (653)
- B(z,r/2) J B(z,r/2)

forallx € M, forallr > rq, for all p € (0,1]\ {1/2}, for all positive functions u that are
P-harmonic on B(z,r) and for all ¢ > 0 with supp(y) C B(z,r/2 — 1’).

Proof. Let n := u??~%, where ¢ > 0 satisfies supp(v)) C B(x,r/2 — h') and v > 0 is
P-harmonic in B(z,r). By product rule (6.20)

Vet = (V= (071) $(y)? +u(2) 7" (Vy21?) .
By integration by parts (6.24), we obtain

//pl(y,z)(vyzu) (Vyz(uzpfl))i/)(y)zdydz (6.54)
—— [ [ m) (Vo) ul ! (9,0%) s

where B := B(xz,r/2). There exists C; > 0 such that

2p — 1| (V2 (uP))? < p*(Vyou) (Ve (1)) (6.55)
Vytuu(2)P~t < Cip ' V. (uP)]. (6.56)

forall p € (0,1], forall y, 2 € M with d(y, z) < k' and for all positive u. The estimate (6.55)
is elementary and is a version of Stroock-Varopoulos inequality. The proof of (6.55) is
essentially contained in [60, Lemma 2.4]. The estimate (6.56) follows from mean value
theorem and the local Harnack inequality given by Lemma 6.4. Combining (6.54), (6.55)
and (6.56), we have

2 1
cr 2 |//p1 (y, )0 ()2 [V (uP)? dy dz

/ / P19, 2)u(2)P IV oo () + () Ve (u?) dy dz

(/ /m Y, 2)u(y) PV dyd2)1/2
9 ( [ [ ooy +w<z>2>|vyz<up>|2dydz)l/2. (6.57)

We use Cauchy-Schwarz inequality and (a + b)? < 2(a? + b?) in the last step. By the
u %X p-almost everywhere symmetry of p;, we have

//p1 Y, 2 \V up| dydz-/ /p1 Y, 2 |V up)|2dydz. (6.58)

EJP 28 (2023), paper 64. https://www.imstat.org/ejp
Page 46/81


https://doi.org/10.1214/23-EJP954
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Random walks on metric measure spaces

Combining (6.57) and (6.58) yields (6.53). O

We do another iteration procedure between the exponents ¢ and 2 using Lemma 6.16.
Lemma 6.17. Let (M, d, 1) be a quasi-b-geodesic metric measure space satistfying (V D)o
and (VD). Suppose that a Markov operator P has a kernel p that is (h, h’)-compatible
to (M,d, ) for some h > b. Further assume that P Sobolev inequality (5.2). For any
fixed q > 0, there exists C; > 0,¢; € (0,1/2) and r1 > 0 such that

¢(’LL,2,B((E,017")) < Cl¢(u,q,B(x,T/2)) (659)
for all x € M, for all r > ry and for all functions u that are non-negative and P-
subharmonic on B(z,r).
Proof. If ¢ > 2, then (6.59) follows from Jensen’s inequality. Hence it suffices to consider
€ (0,2).
Define 6 := 6/(J — 2). We slightly decrease ¢ if necessary so that ¢6* # 1/2 for all
i € IN. Define k € IN* as the integer that satisfies ¢f*~! < 2 < ¢6*. Define ¢, := 4% and
iteratively define
S; == 28;_1+ 20
fori=1,...,k where sq := ¢;r. Fix ro > 0 such that s, < r/2 — &/ for all » > rq where k

and s, are defined as above.
Define ¢; := q0'/2, B; = B(x,s;_;) fori =0,1,..., k. Define the functions

¥i(y) = max (O,min (17 25—i—1+h — d(a:,y)))

Sk—i—1
fori=0,1,...,k — 1. Note that ¢); = 1 in B(z,s;_;—1 + »’) and ¢ = 0in B(x, sx—; — h')°.
By Sobolev inequality (5.2) there exists Cy > 0 such that

1/9 o
(/B (Pg, (:;u)(y))** dy) 28k2;5/ / 1 (Y, 2)|V 2 (u®)? dy dz

2 T / bi(y)2u(y)? dy (6.60)

foralli=0,1,...,k — 1. By (4.10) and Lemma 6.4 there exists C'3 > 0 such that

Pp, (pu)(y) = / u% (2)p1 (y, 2) dz > C3 T u® (y)

B(y,h')

for all y € B; 1. Therefore

1/6 1/6
( / u(y)a+ dy> < (c / (Pg,., (u®)(y))* dy) (6.61)
Bit1 B;

for x € B;;1. There exists Cy, C5,Cg > 0 such that

/ / Py, )= ()P dy dz
<2/ / P1(y, 2)0(Y)* Vs (u?)

2q; 2 )
( ) +1 / / p1(y. 2) [Vt “uly)?® dy dz
2¢q; — 1 B; JB;
2

dydz+2/ / p1(y, 2) IVt u(2)? dy dz

<y

C 2q; .
< = 5 < & ) +1 / u(2)*% dz
Sk—i—1 29 — 1 B;
C .
< = 6 / u(2)?% dz. (6.62)
Sk—i—1 JB
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In the first step above, we used product rule (6.20) and the inequality (a+b)? < 2(a?+b?).
In the second step we use Lemma 6.16 and in the third step we use (4.10). In the last
step, we simply bound 2¢;/[2¢; — 1| by maxo<;<k 2p;/2p; — 1| < oo.

Combining (6.60), (6.61), (6.62) along with sx_;/sx—i—1 < 4k yields

1/0
_ Cy _
” 2¢i+1 d < 7/ u 2q; d

for some C7 > 0. Combined with » > rg and (2.4), we deduce

?(u, 2¢i+1, Biv1) < Cso(u, 2gi, B;) (6.63)
for: = 0,1,...,k — 1, for all x € M, for all » > ry and for all P-harmonic v > 0.
The estimates (6.63) along with Jensen’s inequality implies (6.59) with C; = C¥ and
c1 = 47k, O

We are now ready to prove elliptic Harnack inequality.

Proof of Theorem 6.3. 1t suffices to consider the case u > 0 because we can replace
u > 0byu+eandlete] 0.

Note that we have Sobolev inequality (5.2) by Theorem 5.1. There exists ro > 0
C; > 0,¢; € (0,1) for 1 <4 < 5 such that for all z € M and for all » > rq and for all
positive functions u that are P-harmonic on B := B(z,7)

o(u,00,c1B) < C1¢(u, ca, B)
< Cy¢(u,q,c3B)

S C3¢(ua —q,Cq, )

(

< Cyp(u, —00, c5B).

The first line above follows from Lemma 6.15, the second line above follows from
Lemma 6.17 and the third line follows from Proposition 6.11. The last line follows from
applying Lemma 6.15 to the function v~%2 which is subharmonic by Lemma 6.12(b).
Choosing ¢ = min(cy, ¢5) yields the elliptic Harnack inequality. O

The constant ¢ € (0,1) in (6.1) is flexible. More precisely, we can slightly improve the
conclusion of Theorem 6.3 for b-geodesic spaces by an easy chaining.

Corollary 6.18 (Elliptic Harnack inequality). Let (M, d, 1) be a b-geodesic space satis-
fying (VD)ioc, (VD)o and Poincaré inequality (P);, at scale h. Suppose that a Markov
operator P has a kernel p that is (h, h')-compatible with (M, d, 1) for some h > b. Then
for all ¢ € (0, 1), there exists rq > 0,Cg > 0 such that for all x € M, for all r > ry and for
all non-negative functions v : B(x,r) — R>( that are P-harmonic in B(z,r) the following
Harnack inequality holds:

sup u<Cg inf . (6.64)

zE€B(z,cr) z€B(x,cr)

The above corollary is a consequence of Theorem 6.3 applied repeatedly to a sequence
of points in an approximate geodesic. We do not use the above corollary. The proof of
Corollary 6.18 is left to the reader.

6.6 Applications of elliptic Harnack inequality

We present two immediate and well-known applications of elliptic Harnack inequality.
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Proposition 6.19 (Liouville property). Let (M, d, 1) be a quasi-b-geodesic metric measure
space satistying (V D)ioe, (VD) and Poincaré inequality (P), at scale h. Suppose that a
Markov operator P has a kernel p that is (h, h')-compatible with (M, d, 1) for some h > b.
Then all non-negative P-harmonic functions are constant (strong Liouville property).
Therefore all bounded harmonic functions are constant (weak Liouville property).

Proof. Let u be a non-negative harmonic function. Then v = u — inf v is a non-negative
harmonic function with inf v = 0. By elliptic Harnack inequality, there exists ¢ € (0,1)
and C > 1 such that supp(, ) v < Cinfp(, ) v for all large enough r. Letting r — oo,
we have sup,, v < 0 which implies v = 0. This proves strong Liouville property. The weak
Liouville property follows from the observation that for any bounded harmonic function
h, the function h — inf h is a non-negative harmonic function. O

The following Holder regularity-type estimate is a direct consequence of elliptic
Harnack inequality. Our argument is an adaptation of Moser’s argument [58, Section 5]
which uses an oscillation inequality.

Proposition 6.20. There exists ¢ € (0,1), « > 0, C > 0 and r1 > 0 such that

max(d(y, z), 1))0‘

r

sup u (6.65)
B(z,r)

M@MM§O<

for all y,z € B(x,cr), for all x € M, for all r > ry and for all non-negative functions
u: M — R that is P-harmonic on B(x,r) with B(z,r) # M.

Proof. The proof follows from using Moser’s argument [58, Section 5] by iterating the
oscillation lemma at all large enough scales. O

Note that above result does not give Holder continuity for harmonic functions which
is in contrast to [58, Section 5]. However we will see that Proposition 6.20 is useful. In
particular, we use Proposition 6.20 to prove Gaussian lower bounds in Section 8.

7 Gaussian upper bounds

The goal of this section is to prove the following Gaussian upper bounds using Sobolev
inequality. The results of this section rely only on (V D)., (VD) and the Sobolev
inequality (5.2). We do not assume the Poincaré inequality (P); to show Gaussian upper
bounds. More precisely, we show

Proposition 7.1. Let (M,d, ) be a quasi-b-geodesic metric measure space satisfy-
ing (VD)o and (VD). Suppose that a Markov operator P has a kernel p that is
(h, h')-compatible with (M,d, ) for some h > b. Further assume that P satisfies the
Sobolev inequality (5.2). There exists C' > 0 such that

C _d(xvy)Q
pn(z,y) < Vi vo) exp( Cn ) (7.1)

forallz ¢ M and for alln € N>».

The first step is to obtain the following on-diagonal upper bound.
Proposition 7.2. Let (M,d, ) be a quasi-b-geodesic metric measure space satisfy-
ing (VD)o and (VD). Suppose that a Markov operator P has a kernel p that is
(h,h')-compatible with (M,d, ) for some h > b. Further assume that P satisfies the
Sobolev inequality (5.2). There exists Cy > 0 such that

c

pn(z,x) < m (7.2)

for all v € M and for all n € IN>».
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A crucial ingredient in the proof of Proposition 7.2 is a L' to L> mean value inequality
for the solutions of a heat equation. We again rely on Moser’s iterative method and the
calculations are similar but more involved than those encountered in Section 6.5 for
harmonic functions. The lazy walk defined in Example 4.4 will play an important role in
this section. Recall that for a Markov operator P, the corresponding ‘lazy’ versions of
Markov operator and Laplacian are given by

Po=(I+P)/2and A, =A/2= (- P)/2. (7.3)
For a,b € IN, we denote the integer intervals by
[a,b] :={i e N : a <i<b}.

The following definition is analogous to Definition 6.1. Caloric functions are solutions to
heat equation.

Definition 7.3. Let P be a Markov operator on (M,d, ) and let a,b € IN. A function
u:IN x M — R is P-caloric (respectively Py -caloric) in [a,b] x B(z,r) if

Ou(y) + Aug(y) =0 (respectively Oru(y) + Apug(y) = 0)

for all k € [a,b] and for ally € B(x,r).
Similarly, we say a function u : N x R — R is P-subcaloric (resp. P-supercaloric) in
[a,b] x B(z,r) if
Oru(y) + Aug(y) <0 (respectively > 0)

for all k € [a,b] and for all y € B(x,r). Analogously, we define Pj-subcaloric and
Pp-supercaloric functions simply by replacing A with Ay, in the equation above.

Remark 7.4.

(a) We can restate the above definitions using Oxu+ Aug = ugy1 — Puy, and Opu+Apuy =
Uk+1 — PLuk.

(b) Consider a Markov operator P that is (h, h’')-compatible with (M, d, ). Similar to
Remark 6.2(a), the property that v : IN x M — R is P-caloric (or Pp-caloric) in
[a,b] x B(x,r) depends only on the value of w in [a,b+ 1] x B(z,r + h'). Therefore
it suffices if the function v has a domain that satisfies [a,b + 1] x B(z,r + k') C
Domain(u).

Although our eventual goal is to prove parabolic Harnack inequality for P-caloric
functions, the Moser’s iteration procedure is applied to Py -caloric functions. The laziness
is introduced to handle certain technical difficulties that arise due to discreteness of
time. Another method to avoid these technical difficulties that arise due to discreteness
of time is to carry out Moser’s iteration method for solutions of the continuous time heat
equation %7; + Au = 0 (See [25, Section 2] for this method on graphs).

A(u?)
ot
however for discrete time the analogous formula is 0 (u2) = 2u,duy + (Oyu)>. The
‘error term’ (8;€u)2 due to discreteness of time is a source of difficulty in the proofs of
Caccioppoli inequality and an integral maximum principle for P-caloric and P-subcaloric
functions. However as we shall see, this ‘error term’ can be handled using a Cauchy-
Schwarz inequality for Pp-caloric and Pr-subcaloric functions (See Remark 7.9). As a
result, we will primarily be concerned with Pr-caloric and P -subcaloric functions for
now. The assumption (d) in Definition 4.7 will allow to compare the random walks driven

by P and FPy.

The following lemma and its proof is analogous to that of Lemma 6.12.

In continuous time case the product rule of differentiation implies

— 9q,9u.
_ 2u6u'
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Lemma 7.5. Let P be a Markov operator. Assume that the functionu : IN x M — R>g
is P-subcaloric in [a,b] x B(x,r) for some x € M, r > 0 and a,b € IN. Then u? is a
P-subcaloric in [a,b] x B(x,r) forallp > 1.

Proof. Note that
up o (y) = (Oku +ur)?(y) < (—Aug + ug)? = (Pur(y))” < P(u})(y)

for all (k,y) € [a,b] x B(x,r). The first inequality above follows from the fact that u > 0
is P-subcaloric in [a,b] x B(z,r) and the second follows from Jensen'’s inequality. O

For a function f : N x M — R and a Markov operator P on M, we denote the function
Pf:-NxM-—R
Pf(k,x):= (Pf(k,))(x) = (Pfi)(x)
for all k € IN and for all x € M. We require the following property of subcaloric functions.

Lemma 7.6. Let (M,d, 1) be a metric measure space and let P be a Markov operator
that is (h, h')-compatible to (M, d, ). If u : N x M — R is Py-subcaloric in [[a,b] x B(z,r),
then Pu is Pp-subcaloric in [a,b] x B(xz,r — h')) for all z € M and for all r > h/'.

Proof. If (k,y) € [a,b] x B(z,r—h') and v : N x M — R is Pr-subcaloric in [a, b] x B(z,r),
then
[(Pu)ky1 = Pr(Pu)il(y) = P (uk+1 — Prug) (y) < 0.

In the above equality, we used that P and P;, commute. The inequality follows from (4.10)
and the fact that any Markov operator is positivity preserving. O

7.1 Mean value inequality for subcaloric functions

We will prove the following mean value inequality in a weak form. The inequality
bounds from above a weak version of L° norm on a space-time cylinder by a weak
version of L' norm. Our version of the mean value inequality in Lemma 7.7 is weaker
than the one known for graphs [18, Theorem 4.1] mainly because we rely on a weaker
Sobolev-type inequality (5.2). Although the mean value inequality is weaker, we will
obtain on-diagonal upper bounds using Lemma 7.7. Using an integral maximum principle
argument, we will obtain Gaussian upper bounds in Section 7.

Lemma 7.7. Under the assumptions of Proposition 7.2, there exists C; > 0,11, > 0 such
that
&

inf sup p2log ‘/m+2uk(y) < ———— sup

ug dpt (7.4)
K€[0.] ye B,y /2) V{2, /1) refon] /1.3(:,;,\/5+h/)

for all n € IN* satisfying n > ny, for all x € M, for all non-negative functions u : N x M —
R that is Pp-subcaloric in [0,n] X B(x,/n).

The proof of Lemma 7.7 relies on Moser’s iteration procedure. Couhlon and Grigor’yan
[18, Section 4] obtained a similar (stronger) mean value inequality in the graph setting
using an iteration procedure. However they relied on a Faber-Krahn inequality that is
equivalent to the Sobolev inequality (5.1) and therefore does not hold for discrete time
Markov chains on continuous spaces.

In this section, we carry out Moser’s iteration procedure for subcaloric functions
relying on the weaker! Sobolev inequality (5.2). To prove the elementary iterative step
of iteration, we need the following discrete Caccioppoli inequality. The proof is an
adaptation [18, Proposition 4.5]. The next two Lemmas together may be regarded as the
parabolic version of Lemma 6.13.

1weaker’ compared to Sobolev inequalities in [67, 68, 74, 23, 25, 42].
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Lemma 7.8 (Caccioppoli inequality). Under the assumptions on Proposition 7.2, we have

1 17
o) dut gl ) < 5 [ [ Wl did:  @5)
M 8 8 M JM

for all x € M, for all r > 0, for all non-negative functions ¢ : M — Rs>q satisfying
supp(v) C B(x,r), for all a,b € N, for all k € [a,b] and for all non-negative functions
u: IN x M — R such that u is Pp-subcaloric in [a,b] x B(z,r).

Proof. Fix z € M, r > b/ and define B := B(z,7+ h'). Let u : N x M — R>( be such that
u is Pp-subcaloric in [a, b] x B(z,r). We start with the elementary inequality

04(0)(y) < —un(y) Au(y) + 1 (Dug(y))’ (7.6)
for all (k,y) € [a,b] x B(x,r), as we now show. Since u is Py -subcaloric in [a, b] x B(z,),
we have ug41(y) < Pruk(y) for all (k,y) € [a,b] x B(x,r). Combined with the fact that u
is non-negative, we have u? ,(y) < (Ppur(y))” for all (k,y) € [a,b] x B(x,r) which can
be rearranged into (7.6).
Let (k,y) € [a,b] x B(z,r). Recall that B = B(z,r + h’). Using (7.6), integration by
parts (6.24) and supp(¢)) C B(z,r), we have

/Bw23k(u2)duf _%/;L(VyZUk) (Vyz(ukw2))p1(yaz)dydz
+3 [ Guwrem a. 7.7)

The second term in (7.7) can be handled using Cauchy-Schwarz inequality as

(Aun(y))? = (— [ Fuuninnto.) dz>2

< (/M p1(y, 2) dz) </M(Vyzuk)2pl(y’z) dz>

= / (vyzuk)2p1 (y,2)dz. (7.8)
M
For the first term in (7.7), we use product rule (6.20)

Vs (upth?) = up(2)Vyath? + 9% (y) Vyoup. (7.9)

Combining (7.7), (7.8) and (7.9), we have
2 2 1 2 2
| oyt [ [ (Fyw) @) dyds
B B/B
1
< —5/ / uk(2) (Vyz0?) (Vyzur) p1(y, 2) dy dz. (7.10)
BJB

The right side of (7.10) can be bounded using t1ts < t%/8 + 2t§ as

+ uk ()Y (2) (V=) (Vyzup)|

< S0 + 0 (Vysun)?

+ 4ud (2)|V .0 (7.11)
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Using p1(y, 2) = p1(z,y) for p x p-almost every (y, z), we obtain

//wz(y) (Vyzuk)2p1(y,z)dydz://z/JQ(z) (Vyzuk)2p1(y,z)dydz. (7.12)
BJB BJB

Combining (7.10), (7.11) and (7.12), we deduce

[ o+ [ ] 702 @) s
< Q/B/Bui(z) (Vyzw)Zpl(y,z) dy dz. (7.13)

Since supp(¢) C B(xo,r — k'), using integration by parts (6.24) we have

1
E(up, Puy) = 5/ / V= () *pi(y, 2) dy dz. (7.14)
BJB
Using product rule (6.20) and the inequality (¢; + t2)? < 2(t7 + t3), we obtain

Ve (ur)® = (W) (Vyur) + un(2)(Vy2 )
<2 (V2 () (Vyour)? + ui (2)(Vy210)?) . (7.15)

Combining (7.13), (7.14), (7.15) and p x py-almost everywhere symmetry of p; yields (7.5).
O

Remark 7.9. Recall the product rule of differentiation 9y (u?) = 2ujduy, + (Opu)> gives
rise to the ‘error term’ (aku)2 which occurs due to discreteness of time. This error term
occurs in (7.7) and is controlled using Cauchy-Schwarz inequality in (7.8). However the
estimate given by (7.8) is sufficient to prove Caccioppoli inequality only in the presence
of some laziness. A similar difficulty arises in the proof of discrete integral maximum
principle and is the reason behind considering the operator P;, as opposed to P in this
section.

Next, we prove the elementary iterative step of Moser’s iteration in parabolic setting.
The proof relies on Caccioppoli inequality (7.5) and Sobolev inequality (5.2). Let p.
denote the counting measure on IN and let (M, d, u) be a metric measure space. We
denote the product measure on IN x M by i := p. x p. Similar to (6.2), we define

. 1 o 1/p
o(u,p, Q) := </1(Q)/Qu du> (7.16)

forall p > 0, for all @ C IN x M and for all functions v : IN x M — R>.

Lemma 7.10. Under the assumptions of Proposition 7.2, for all K, > 1, there exists
Cy > 0,7, > 0 (depending on K1) such that

d(Pu, 2+ (4/9),[[(1 — Hag + 0%a1],a1] x Bz, (1 — o)r — h'))
< Crot(u,2, [ag, ar] x B(z,r + h')) (7.17)
for all o € (0,1/2), for all x € M, for all r > ry, for all ag,a; € W satisfying Kf1r2 <

as — a1 < K;ir? and for all non-negative functions v : IN x M — R>o such that u is
Py -subcaloric in [ag,a1] x B(z,r).

Proof. Letx € M, o € (0,1/2) and let r > r; > 4h/, where r; will be determined later.
Let u be a non-negative function that is Pp-subcaloric in [ag, a1] x B(z, ).
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We start by defining appropriate cut-off functions in space and time. Define B :=
B(z,r+h')and ¢ : M — R>q as

Yy (y) := max (o, min (1, W)) .

Note that supp(¢,) € B(z,r) and ¢ = 1 on B(z, (1—0)r). Define a, := [(1—0%)ag+c%a;]
and y : N — R as

1 ifk>a,
Xo(k) =140 if k < ag
f_if;’o otherwise.

Since u is non-negative and Pj,-subcaloric in [ag, a1] x B(x,r), by Caccioppoli inequality
(Lemma 7.8) and product rule (6.22), we obtain

xa(k+1)

] 6B(w0uk7wauk)

/ (O (xou)?) 2 dp +
B

17
<50+ [ [ Mt dmdyd ool [ detan 718)
BJB B

for all k € [a,b). Since p; is (h, h')-compatible with (M, d, i), we have

V(.0 < L0
Yz pl(y»z) = (O_r)gp1<yaz>- (719)

We use product rule (6.22), triangle inequality, x, < 1 and a, — ag > o2(a; — ag) >
02K 'r? to deduce

2 2K,
912 < (vo(k + 1 >N Ok Yol < 2108 x0l < < 7.20
9] < O+ 1) X0 D Pixel € 20006 € (s < T35 (7:20)
Combining (7.18), (7.19) and (7.20), there exists Cs > 0 such that
‘(k+1 C!
/w (O (xou)?) dpu+ 2222 (8 )SB(wauk,wauk)saz;/Buidu (7.21)
for all k € Jag, a1]. In (7.21), C2 depends only on K7 and A'.
Adding (7.21), from k = ag to k € [aop, a1], yields
sup / w u% dp (7.22)
k€las,a1]
8C
> ) < 2 Z / o d. (7.23)

k=a, k=ago

Define wy, := Pg(¥,ui). Since ¢ = 1 on B(z, (1 — o)r), by (4.10) wy, = Pg(ouir) = Pug
on B(z, (1 —o)r —h'). Combined with H6lder inequality, we have

5 2/8 05 /(59 (6—2)/6
/ (Puk)2(1+2/ ) dp < (/ w,% du) (/ wy, /(6= )du> . (7.24)
B(z,(1—0)r—h') B B

Since Pg is a contraction in L?(B), we have

/wid,ug/ w(z,uid,u. (7.25)
B B
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By Sobolev inequality (5.2), Lemma 4.20(a) and (4.10), we obtain
(6-2)/8 2
25/(5-2) Csr 2 [ 29
(/B wy, du) < Vo, )77 <€(wguk,w0uk) +r /nguk du) (7.26)

By (7.22), (7.23), (7.24), (7.25), (7.26) and a1 — ag < K172, there exists C5 > 0 such that

ai C 2 a1 1+2/6
PU 2(1+2/5) du S 477’. ro -2 / u2 d/*L . (727)
> /B(L(I_U)T_h,)( k) Ve, 12 (ro)2 ) 5

k=a, k=ao

We choose 71 > 4h’ so that a; < a1/2 < (ag + a1)/2 for all ap,a; € IN so that a; — ap >
K;'r}. Since r > 4h/ and ¢ < 1/2, we have (1 — o)r — h/ > (r/2) — h' > r/4. Hence
by (2.4), K;'r? < a; — ap < K72 along with (7.27), we have (7.17). O

Proof of Lemma 7.7. We carry out Moser’s iteration in two stages. In the first stage of
the iteration, we obtain a L' to L? mean value inequality and in the second stage we
show a L? to L>° mean value inequality. Combining the two stages yields the desired L!
to L*° mean value inequality. The proof relies on repeated application of the elementary
iterative step given by Lemma 7.10.

Let m1(0) := /n+ 1, a1(0) := 0, N := [log+/n| and 0 := 1 + (2/6). For the first stage
of iteration, we iteratively define the quantities

. . 41
7"1(2 + 1) = (7"1(1) — h/) (1 — 3]\7+11> — hl
. 472 ) 42
Cll(Z + 1) = ’7<1 — 9M+1l> Cl1(l) + W[’nj‘
forv=0,1,..., N. We define a non-increasing sequence of space-time cylinders

Qi(i) = Ja1(2),n] x B(x,r;), fori=0,1,...,N+1.

The following estimates are straightforward from definitions of ; and a;: There exists
ng > 0 such that for all n > ng, we have

N+1
r(N+1)>vn[1-47") 377 | —2(logvn + 3+ 1)
j=1
> (7/8)v/n — 2(log v/n + 3+ 1') > (6/7)v/n, (7.28)
N+1
n—ay(N+1)>n|1-472>"977 | —2(N+1)
j=1
> (31/32)n — 2(log v/n + 2) > (15/16)n. (7.29)

Let u: IN x M — Ry>( be an arbitrary non-negative function that is Pr-subcaloric in
[0,n] x B(x,/n) where n > n;. By Lemma 7.6 P'u is Pp-subcaloric in [0, n] x B(z, /n—ih')
and therefore Py -subcaloric in [a;(i),n] x B(x,r1(i)—h') foralli =0,1,..., N+ 1. Hence
by applying Lemma 7.10 for the function P'u which is P-subcaloric on [a;(i),n] x
B(z,7r1(i) — h') with o = 4713 (V+1-9) we have C5 > 0 such that

(P 1,20, Qiy1) < Co3NTHTG(Plu, 2, Q) (7.30)

forall: =0,1,..., N. We may choose K; = 8 in the application of Lemma 7.10 above
due to (7.28) and (7.29).
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By Holder inequality along with (7.28), (7.29) and (2.4), there exists C'3 > 0 such that
G(P 1, 2,Q1 (i + 1)) < C3d(P ™, 1,Q1 (i + 1)p(P™ 1w, 20,Q, (i + 1)) (7.31)

foralli = 1,2,...,N, where « = 1 - = 2/(6 +4). By (4.10), v > 0, (7.28), (7.29)
and (2.4), there exists C4 > 0 such that

S(P'u,1,Q1(i)) < Cag(u,1,Q1(0)) (7.32)

foralli =0,1,...,N 4+ 1. Combining (7.30), (7.31), (7.32), there exists C5 > 0 such that

(P 1u,2,Q1(i+1)) < Cs3° V06 (u,1,Q1(0)*¢(Pu, 2, Q1 (i) (7.33)
forv=1,...,N. By iterating (7.33), we obtain

SPVT 1,2, Qu(N + 1)) < G 35T G(u, 1,04(0) P G(Pu, 2,Q1(1))%" . (7.34)

Since u > 0, by Holder inequality, (4.10) and (2.4), there exists Cg, C7 > 0 such that

/ Pu, ) du < ( sup Puz> / Pu; du
B(z,r1(1)) B(z,r1( B(z,r1(1))
2
/ "
w; dis sup
B(z,\/n+h’) yEB(z,/n) V(ya ' )

2
C7Tl /
——— | sup w; dp (7.35)
V(z,y/n) <i€[[0,n]] Bz, /i+h) )

for all i € [0,n]. Combining (7.34), (7.35) along with (2.4) yields

IN

IN

~ Cs
G(PY MU, 2,Q1(N +1)) < - sup / e 7
! V((ﬂ, \/ﬁ) ke[0,n] J B(z,v/n+h')

for some Cg > 0. The inequality (7.36) is a L' to L? mean value inequality and this
concludes the first part of iteration.

For the second part, we define v = PN*1y, a3(0) = a1 (N + 1) and r5(0) = (N + 1).
As before, we iteratively define

ro(i +1) := (r2(i) — h') (1 - ;:1) — W,

i1 = [(1 ) ]

fort=1,2,..., N+1. As before, define a non-increasing sequence of space-time cylinders
by Q2(i) := [[ag( ),n]] x B(z,re(i)) for i = 0,1,...,n. Note that Q2(0) = Q1(N + 1).
Similar to (7.28) and (7.29), there exists n; > ng such that for all n > nq,

ra(i) > r2(N +1) > V/n/2 (7.37)
n—as(i) >n—ax(N+1)>n/2 (7.38)

foralli =0,1,...,N 4+ 1. By Jensen’s inequality, we have
. i 3 i 0
(Pi+1ly)0™ < (P [(sz)e ]) (7.39)
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for all i € N. By Lemma 7.6 and Lemma 7.5, the function (P?v)? is Pp-subcaloric in
las(i),n] x B(x,r9(i) — h) forall i = 0,1,..., N + 1. Therefore by Lemma 7.10 for the
function (Piv)(’l and (7.39), there exists Cy > 0 such that

(P, 207 Qy(i + 1)) < €8 30D §(Piy 207 Qy(d)) (7.40)
fori=0,1,..., N — 1. Iterating the inequalities (7.40), there exists C1g > 0 such that
$(PV0, 20", Q2(N)) < C100(v,2,Q2(0)) = Cr06(v,2,Qu(N +1)).  (7.41)

There exists C1,C12,C13 > 0 such that, forall k € N

sup PNHvk(y) <Cn 7[ PN dp
yEB(z,r2(N+1)) J B(y,h’)

1/(20™)
<Cn ][ (PNup)®" du
B(y,h’)
1/(20™)
< Cyon®/(40%) (][ (PNUk)%N dﬂ)
B(z,r2(N))

1/(20™)
< Cis (][ (Pva)zeN du) (7.42)
B(z,r2(N))

The first line above follows from (4.10), the second line follows from Jensen’s inequality,
the third line follows from (2.4) and the last line follows from the fact that n s n®/(4¢'*")
is bounded in [2,00). By (7.41), (7.42) and v = PV*!u, we have a L? to L> mean value
inequality

inf sup  PPVF2y < CoCrsp (PN T, 2, Q1 (N + 1)). (7.43)
kel0,n] B(x,ry(N+1))
Combining (7.36) and (7.43), we have the desired inequality (7.4). O

7.2 On-diagonal upper bound
The following lemma provides a useful example of P -caloric function.

Lemma 7.11. Let (M,d, 1) be a metric measure space. Let P be Markov operator
equipped with kernel (py)rew that is (h,h')-compatible with (M,d, ). Define for all
k € IN, the function hy : M x M — R by

. n n
ha(@,) = (Phpa(e,)) () =27 S (Z.>pi+2<x,y> (7.44)
=0
where P, = (I + P)/2 as before. Then for all x € M, the function

is Pr-caloric in IN x M.

Proof. The second equality in (7.44) is a consequence of binomial theorem and Lemma
4.2(c). Note that

Pr(hi(x,))(y) = P(Prpa(e, ) (y) = PL (pa(a,-)) (y) = hira (2, y).

Therefore (k,y) — hi(x,y) is Pr-caloric in N x M for all z € M. O
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We are ready to prove Proposition 7.2 using the mean value inequality (7.4).
Proof of Proposition 7.2. Let hy(z,y) be defined as (7.44). Choose n; € IN such that
2[logv/n] +4<n (7.45)

for all n > n;. By Lemma 7.7, Lemma 7.11 and fM hi(z,y)dy = 1, there exists ny > nq
and C; > 0 such that the Pp-caloric function (k,y) — hi(z,y) satisfies the mean value
inequality
C
inf p2llos \/ﬁthk r,2) < inf sup p2llog ‘/ﬁHQhk z,y) < 1 (7.46)
kelo,n] ( ) ~ kelo,n] yEB(z,\/1/2) ( ) o V(Z‘, \/ﬁ)

for all z € M and for all n € IN satisfying n > no.
By (4.11), we have ps(z,-) — api(x,-) > 0 p-almost everywhere for each = € M.
By (4.12) of Lemma 4.8 and Lemma 4.6, we have

pr(x, @) < a 'papkye (@, 2) < ooy (2, 1) = o pon () ) (7.47)
for all z € M and for all 2 < k < 2n. By (7.47) and (7.45),
PQUOgm”hk(x,x) > a_lpgn(x,x) (7.48)

for all x € M, for all k € [0,n] and for all n > ny. Combining (7.48), (4.12), (7.44)
and (7.46), there exists Cy > 0 such that
Cs
(2, %) < ——— 7.49

Pl ®) < ) 749
for all n > 2n,. Since P is a contraction in L*° by (4.10), Lemma 4.2(c) and (2.4), there
exists C3,Cy > 0 and § > 2 such that

Cg < 04716/2

V(z,h') = V(z,\/n)
for all x € M and for all n € IN with n > 2. Combining (7.49) and (7.50) gives the
diagonal bound (7.2). O

pn(z,x) < (7.50)

7.3 Discrete integral maximum principle

We use Discrete integral maximum principle and diagonal upper bound to obtain
Gaussian upper bounds. This approach is detailed in [19] for graphs. A crucial assump-
tion in [19] is the laziness assumption for the corresponding Markov chain (X,,),en
given by inf ¢y P, (X1 = ) > 0. As explained in [19, Section 3] this laziness assumption
is not too restrictive for graphs because under natural conditions the iterated operator
P2 corresponds to a lazy Markov chain. However this fails to be true for continuous
spaces.

Since the laziness assumption is unavoidable for discrete integral maximum principle,
we consider the Markov operator P;, = (I + P)/2 instead of P. Using discrete integral
maximum principle corresponding to P; and diagonal estimate on p;, we obtain off-
diagonal estimates on hj defined in (7.44). We rely on careful comparison between
off-diagonal estimates of h; and the Markov kernel p;. The comparison arguments are
new but elementary and involves Stirling’s approximation. Our comparison arguments
rely crucially on the compatibility assumption (4.11). Similar comparison arguments for
off-diagonal estimates was carried out in [25, Section 3.2] to compare Markov chains on
graphs with its corresponding continuous time version.

The main technical tool to prove Gaussian upper bounds is the following discrete
integral maximum principle. The proposition adapted from [19, Proposition 2.1] and the
proof follows from essentially the same argument.
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Proposition 7.12 (Discrete integral maximum principle). Suppose that P is a Markov
operator that is (h,h')-compatible with a metric measure space (M,d,u). Let f be a
strictly positive continuous function on [0,n] x M such that,

2

M(m) <0. (7.51)
4fre1

for all x € M and k € [0,n — 1] where |Vpf| is as defined in (6.25). Letu : N x M

bounded function that is Py,-caloric on [0,n — 1] x M satisfying supp(ug) C B(w, R) for

some w € M, R € (0,00). Then the function

Ok f(x) +

ks Jp = Ji(u) ::/ ug fr dp
M

is non-increasing in [0, n].
The following lemma essentially follow from [19, Proposition 2.5]. Lemma 7.13

provides a weight function f that will be used in the application of discrete integral
maximum principle.

Lemma 7.13. Let (M, d, 1) be a metric measure space and let P be a Markov operator
that is (h, h')-compatible with (M,d, ;). Let o : M — R be a 1-Lipschitz function such
that inf o > h'. There exists a positive number D, such that for all D > D,, the weight
function

2
fr(z) = f (z) == exp (—D(n:(f)_kJ (7.52)
satisfies
VP fria]”

forallz € M, for allm € N* and k € [0,n — 1].

Next, we need the following estimate on hj defined in (7.44). The proof uses the
diagonal estimate in Proposition 7.2.

Lemma 7.14. Under the assumptions of Proposition 7.1, there exists Cy > 0 such that

Co
h? dy < ———2 7.53

for alln € N and for all x € M where h is as defined in (7.44).

Proof. By (7.44) of Lemma 7.11, Lemma 4.2(c) and Vandermonde’s convolution formula,

we have
/M(hn(x,y))2 dy=4"" /M (i (?)pi+2(x, y)> 2 dy

i=0
2n
. 2n
=4 Z ( ; Diya(x,x) (7.54)
i=0

for all z € M. By Proposition 7.2, there exists C'; > 0 such that

o
V(z, Vk)

pr(z,x) <
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for all £ > 2 and for all x € M. Combined with (7.54) and (2.4), we obtain Cy > 0, > 2
such that

=0

02 B 2n o, 2n+4 6/2
< —= 4" 7.55
= Ve, v2n 1 ) Z(z’)(i+4) (7.55)

=0

for all n € IN and all x € M. By the above inequality, we have

2n 6/2 2n K
2n 2n+4 2n 2n+ 4
47"5 <4*"E
<i>(i+4) - <1)<Z+4)

i=0 i=0
2n
<4?r Y (2_” + “) 9= (2n+r) < 420, (7.56)
o \NUTR
where k := [0/2] € N*. Combining (7.55), (7.56) along with (2.4) implies (7.53). O

Our next result involves repeated application of the discrete integral maximum
principle.

Lemma 7.15. Let (M, d, 1) be a quasi-b-geodesic metric measure space satistfying (VD)o
and (VD). Suppose that a Markov operator P has a kernel p that is (h, h’')-compatible
with (M, d, ) for some h > b. Further assume that P satisfies the Sobolev inequality (5.2).
Define

2
Ep(k,x) ::/ hi(z, z) exp (dl(Dx];Z)> dz (7.57)
M

for all k € N* and « € M, where dy(x, z) := max(d(z, z),h’) and hy, is defined by (7.44).
There exists C, D > 0 such that

(7.58)

for all x € M and for all k € IN*.

The proof follows from a modification of the argument in [19, Proposition 5.4] using
the diagonal upper bound in Lemma 7.14. We omit the details. We use Lemma 7.15 to
prove a Gaussian upper bound for hy.

Lemma 7.16. Under the assumptions of Proposition 7.1, there exists positive reals
Co, Dy such that

CO dz(xay)>
h < ——m— —_ 7.59
2/6(337:[/) = V(x7 \/E) €xp ( Dok ( )

for all x,y € M and for all k € IN*.
Proof. By triangle inequality and the inequality (a + b)? < 2(a® + b?), we have
di(x,y)? < 2(dy(z, 2)? + di(y, 2)?) (7.60)

for all z,y,z € M, where d;(z,y) := max(d(x,y),h’) as before. By (4.12), (7.60) and
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Cauchy-Schwarz inequality we have

haok(z,y) = ik: <2f> (;>2kpi+2($ay)

=0

. 2k s\ /1) 28 »
<a3 () (5) pelrn=a [ mie .2 d:
=0

< a—z/ hk(x7Z)hk(z’y)edl(ac,z)2/2Dked1(z,y)2/2Dke—d1(x,y)2/4Dk dz
M

S a72\/ED(ka x)ED(k’ y)eid%(m’y)/‘le
< O‘_2\/ED(]€,$)ED(]<;’y)e—d(z,y)2/4Dk 7.61)

for all z,y € M, for all £k € IN* and for all D > 0, where a > 0 is from (4.11). The equality
in the second line above follows from a calculation analogous to (7.54).
The bound (7.61) and Lemma 7.15 implies that there exists C;, D; > 0 such that

e (Ve m;y, i)’ o <—dl(>xﬂcy)> 762

for all z,y € M and for all £k € IN*. However by (2.4), there exists C5,C3,Cy > 0,0 > 0
such that

V(x,Vk)
V(y, Vk)

Vo vErday) o, (1 N d(w))‘;

V(y, Vk) vk

&2z, )\ d?(x,y)
< _— < _— .
< (s (1—!— B ) _C4exp< D1k ) (7.63)

for all z,y € M. Combining (7.62) and (7.63) yields the desired Gaussian upper
bound (7.59). 0

7.4 Comparison with lazy random walks

We want to convert the Gaussian bounds on hj; given by Lemma 7.16 to Gaussian
bounds on p;. To accomplish this we need the following elementary polynomial identities.

Lemma 7.17. For all 3 > 0 and for all n € IN*, we have the following polynomial
identities

= Y <Z> Bk — gy, (7.64)

ke[1,n],k odd

+ > (n;1)ﬂ”‘1"“(z—6)’“‘1(z2—252%

k€[l,n—1],k odd

() -2 L0 e oo

ke[1,n],k odd

T S N O e

ke[1,n—1],k odd

where (z — 3)° = 1 and

b = (14 )10 3 <7> <Z - 1) otk s (n; 1)

i=k+1
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Proof. Note that

for all z # B3. To obtain (7.64), we expand 2", 2"~ %, (28 — 2)", (28 — 2)" ! in (7.66) using
binomial expansion and the substitution

z=p4+(z—pF)and 28—z =5 — (z — ).

To show (7.65), we use binomial expansion on (1 + z)” and then use (7.64) to obtain

(14 2)" = 1+iz:; <7Z)zz
—1+ f: 3 (’Z) <;>ﬁi_k(z — B

i=1 ke[[1,i],k odd

DS (?)(T)ﬂ“’f<z—5>“<z2—2ﬂz>. (7.67)

i=1 ke[1,i—1],k odd

The coefficient of (z — 3)¥~1z in (7.67) is

iz:; (7;) C“) e (;D z:; (7;_1]:) gt = (Z) (14 8)"*.

Similarly, the coefficient of (z — 3)*~1(22 — 282) in (7.67) is

- n\[(i—1\ 1 (n—1 - n n—1—k\ . 1_;

2 0= (0) 25050

1=k+1 i=k-+1
S n—1 - n—1—k gi-1-k
- k , i1—1—k

1=k-+1
_ n—1 (1—|—,@)n717k
= b .
This gives (7.65) with s, x > (" "). O

We are now prepared to prove Gaussian upper bounds for py.

Proof of Proposition 7.1. By Lemma 4.8 there exists # > 0 such that u, v, : M x M — R
satisfy
u(,y) = [(P = BI)*p2(z. )] (y) 2 0, (7.68)
vz, y) = [(P = BI)* (ps(x,.) — 2Bp2(z,))] (y) 2 0 (7.69)
for all #,y € M and for all even non-negative integers k. For instance 5 = /2 where «

is given by (4.11) would satisfy the above requirements.
Using Lemma 4.2(c) and (7.64) of Lemma 7.17, we have

Prt1(@,y) = [P"pi(z, )] (y)
n _
= Z <k) B" kukfl(mvy)
ke[1,n],k odd

n—1 n—1—k

or (M) et 7.70)
ke[1,n—1],k odd

EJP 28 (2023), paper 64. https://www.imstat.org/ejp

Page 62/81


https://doi.org/10.1214/23-EJP954
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Random walks on metric measure spaces

for all n € IN* and for all x,y € M. By (7.68), (7.69), Lemma 4.8 and Lemma 7.17, we
have

han(,y) = [((+ P)/2)* ol )] (9)

S| 2 e e

ke[1,2n],k odd
2n—1—k k+1
1+ 1
ﬁ) () V1 (2,y) (7.71)

+ « 5 5

Son.k (
1<k<2n—1,k odd
for all z,y € M. Define the ratio of coefficients in (7.70) and (7.71) as
2n—k 2n—1-—1
2n\ (148 1\k oan—1\ (143
() @ ()
AV and 0y, = —1\ pn—1—
(w)Bn* (")t

for each k € [1,n] and foreach [ € [1,] —1]. If k € [1,n — 1], then

)lJrl

o=

(7.72)

Ak.n =

Ak4+1,n _ B 2n—k
agn 1+8n—k°

Therefore ayy1, > ak, if and only if £ > n(1 — 3). Thus ay, reaches minimum for
k = [n(1 — B)]. By Stirling’s approximation there exists constant C; > 0 such that for all
r € IN¥,

C;lrr+(1/2)€_r <rl < 01TT+(1/2)6_T.

We use the Stirling’s approximation to estimate ax, at k¥ = n(l — ) + ¢ where ¢ =
[n(1—08)] —n(l—pB) €0,1). There exists ¢; > 0 such that
kgﬁl}"ﬂ Gk, Z An(1-p)1,
01—4(2n)2n+(1/2)672n<ﬁn _ 6)5n+(1/2)*€e*6n+6 (1+ ﬂ)(pfﬁ)”*e
22nnn+(1/2)€—n(n(1 + ﬁ) _ 6)n(1+5)+(1/2)—ee—n(l+[3)+eﬁﬁn—e

>Cl

for all n € IN* satisfying n > 2/3. Therefore there exists ¢2 > 0 such that
Ak n Z Co (773)

for all n € IN* and for all k£ € [1, k]]. Similarly,

1 1
bin = 3+1n > 52 (7.74)
for all n € IN* and for all [ € [1,n — 1]. Combining (7.68), (7.69), (7.70), (7.71), (7.72),
(7.73) and (7.74), there exists ¢3 > 0 such that

h2n($7y) Z C3pn+1($7y) (775)

for all n € IN*, and for all x,y € M. Combining (7.75) along with Lemma 7.16 yields the
Gaussian upper bound (7.1). O

We have shown the following equivalence

Theorem 7.18. Let (M,d, ) be a quasi-b-geodesic metric measure space satisfying
(VD)joc. Suppose that a Markov operator P has a kernel p that is (h, h')-compatible with
(M,d, 1) for some h > b. Then the following are equivalent:
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(i) Sobolev inequality (5.2).
(ii) Large scale volume doubling property (V D)., and Gaussian upper bounds (GUE).

Proof. By Corollary 5.11, (ii) implies (i).
Next, we assume the Sobolev inequality (5.2). By Proposition 5.12 we have (VD).
In addition, by Proposition 7.1 we have (GUE). This proves (i) implies (ii). O

8 Gaussian lower bounds

In this section, we use elliptic Harnack inequality and Gaussian upper bounds to
establish Gaussian lower bounds. The proofs in this section is adapted from [42]. In [42],
Hebisch and Saloff-Coste provide an alternate approach to prove parabolic Harnack
inequality using elliptic Harnack inequality and Gaussian upper bounds. This method
avoids relying on the full strength of Moser’s iteration method in parabolic setting.

The main result of this section is the following Gaussian lower bound.

Proposition 8.1. Let (M,d, ) be a quasi-b-geodesic metric measure space satisfy-
ing (VD)oe, (VD)o, diam(M) = oo and Poincaré inequality at scale h (P);. Suppose
that a Markov operator P has a kernel p that is (h, h')-compatible with respect to p for
some h > b. Then the corresponding kernel p;, satisfies Gaussian lower bounds (GLE).

Note that under the assumptions of Proposition 8.1, we have Gaussian upper bounds
(GUE). This is a direct consequence of Theorem 5.1 and Proposition 7.1.

We focus on the case diam(M) = oo just for simplicity. In fact, we expect these
methods to work when diam(M) < oco. However when the space has finite diameter,
it is important to find optimal constants (or close to optimal) for various functional
inequalities. To compute these optimal constants, one has to exploit the specific structure
of the Markov chain under consideration. We plan to address the finite diameter case in
a sequel.

The first step is to obtain lower bounds on py(x,z). It is well-known that Gaussian
upper bounds implies a matching diagonal lower bounds. The follows from [42, Proof of
(3.1)1.

Lemma 8.2. Under the assumption of Proposition 8.1, there exists co > 0 such that
Co

V(z,v/n)

for all z € M and for all n € N satisfyingn > 2.

pn(z, ) >

The following lemma is a discrete time analog of [42, Lemma 3.7], where we transfer
the on-diagonal lower bound given by Lemma 8.2 to on-diagonal lower bound for the
‘Dirichlet kernel’ p? on a ball B defined in (4.20). We omit its proof as it follows from
the same argument as in [42].

Lemma 8.3. Under the assumptions of Proposition 8.1, there exists ¢ > 0 and A >

max(1,h’) such that
c

V(z,v/n)
forallx € M, for alln € N* withn > 2 and for all r > A/n

Our next result is a bound on the spectrum of Pp or alternatively on the Dirichlet
Laplacian Ap,. The following Proposition is a discrete time analog of [42, Theorem

2.5]. However unlike [42], we cannot apply the stronger Sobolev inequality (5.1).
Nevertheless, the weaker variant (5.2) is sufficient for that argument.

P (2, @) >

Proposition 8.4. Let (M,d, ;1) be a quasi-b-geodesic metric measure space satisfy-
ing (VD)iee, (VD)o and Poincaré inequality at scale h (P);. Suppose that a Markov
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operator P has a kernel p that is (h,h’)-compatible with respect to y for some h > b.
Then there exists positive reals a, ¢y such that

a
Pgs.r = Pgs.r <1l-— 8.1
H B(z, )H2—>2 feLQ(B(ili-I))),llsz:l H B(z, )fH2 r2 (8.1)

for all x € M and for all r € R satisfying r > h' and r < ¢y diam(M).
Remark 8.5.

(a) A simple consequence of Proposition 8.4 is that there exists a, ¢y > 0 such that
Spectrum(Pp) C [— (1 —ar™?),1 —ar™?], Spectrum(Ap,) C [ar 2,2 — ar™?]
for all z € M and for all r satisfying » > h’' and r < ¢ diam(M).
(b) If diam(M) = oo, then for all balls B = B(z,r) with r € (0,0), we have

||PB 5 < 1.

||2—>

The case r > h' is clear from Proposition 8.4. The case r < h’ follows from || Pg||,_,, <

||PB(QI,‘,}LI) 24,2'

(c) Note that if diam(M) < oo, then the conclusion Proposition 8.4 is vacuously true
as one can choose ¢y = h'/(2diam(M)). However if b/ < diam(M) and if we have
good control of the constants in various functional inequalities, we can prove useful
estimates which in turn yields applications to estimates on mixing times. We will
extend the techniques developed here to finite diameter spaces elsewhere.

(d) Note that the condition r < ¢y diam(M) is necessary. Too see this consider the case
when diam(M) < oo and B(z,r) = M. It is clear that (8.1) fails to be true because
Ppprl=1.

8.1 Near diagonal lower bound

As in [42, Proposition 3.5], the following near diagonal estimate is an important step
in obtaining Gaussian lower bounds.

Proposition 8.6 (Near diagonal lower bound). Under the assumptions of Proposition 8.1,
there exists positive reals €1, ¢y such that p; satisfies the lower bound

inf pule,y) > ——
k(T Y) 2 ———=
yeB(w,e1 V) V(x,Vk)

for all x € M and for all k € IN* satisfying k > 2.

From the above near diagonal lower bound, we will see that the Gaussian lower
bound follows by a well-established ‘chaining argument’.

The idea behind the proof of Proposition 8.6 is to convert the elliptic Holder-like
regularity estimate (Proposition 6.20) into a parabolic Holder-like regularity estimate for
the function (k,y) — p?(z,y) as follows:

(8.2)

Lemma 8.7. Under the assumptions of Proposition 8.1, for all o > 0 and all A > 1, there
exists three positive reals C, 4, g < A and Ny > 2 such that

pE (z,y) — pi (z,2)| < [G+CJ,A (d(x’\%“ﬂ V(;\/%) (8.3)

forallz € M, k € N* with k > N, and for all y € B(x,ey\k), where B = B(z, AV/k) and
« is the exponent in (6.65).
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The proof of Lemma 8.7 is long and involves many technical estimates. We will need
some upper bounds on pZ(y, z) and its ‘time derivative’

Op® (Y, 2) = prs1(y, 2) — pr(y, 2)

forall y,z € B.
Lemma 8.8. Under the assumptions of Proposition 8.1, the following estimates hold:

(i) There exists C1, Dy > 0 such that

N c d(y, 2)*

forall x € M, for all k € IN*, for all j > 2, forall A> 1 and for all y, z € B(x,A\/E).

(ii) There exists Cy, > 0 such that

CyA®
3kpB(I’A\/E) (yvz)‘ < m (8.5)

forallz € M, forallk € N>o, forall A> 1 and for all y, z € B(z, AVE).

(iii) For all A > 1V I/, there exists €,a; > 0, such that for all § € (0,1), there exists Cy
such that,

6 .
PP oy < Cod (1-4) (8.6)

Vievk \ A%
for all € M, for all k € IN*, for all j € N satisfying j > max(2,0k) and for all
y,z € B(x, AVE).

The above Lemma follows from the argument in [42, Proof of Lemma 3.9].

Remark 8.9. The constants Cy,C,Cs,Cy and a1 in Lemma 8.8 do not depend on A, =
and k.

Lemma 8.7 now follows from the argument in [42, Section 3.4], where the use of [42,
Lemma 3.9] is replaced with Lemma 8.8 instead. Next, we prove the near diagonal lower
bound using Lemmas 8.7 and 8.3.

Proof of Proposition 8.6. By Lemma 8.3, there exists A > 1V &' and ¢ > 0 such that

B(z,AVE) >_ ¢ 8.7
pk (x,a:) e V(LE, \/E) ( )

for all x € M and for all £ € IN* with k£ > 2. By Lemma 8.7, there exists C; > 1, Ny > 2,
e € (0,1),a > 0 such that

e (z,y) — pi (z,2)| < [; +C (d(x’%v I)T V(;\/E) (8.8)

for all z € M, for all k € IN* with k > N, for all y € B(z,eVk) where B = B(z, AVE).
Next, we choose ¢; € (0,¢) and N; > Ny such that for all £ > Ny, we have

VRN .
By the above choice of ¢, N7 along with (8.7), (8.8) and the triangle inequality, we have
. B(z,AVk) c
inf p (@,y) > ——~
yEB(z,e1Vk) k 3V(£E, \/E)
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for all x € M and for all £k € IN* with £ > N;. Since pkB < px, the above equation yields
the desired near diagonal lower bound (8.2) for all £ > V.

If k € [2, N1], then we reduce ¢ if necessary so that ¢ < h//N;. Hence d(z,y) < eVk
and k£ < N; implies d(z,y) < h. Therefore by (4.12) of Lemma 4.8 and (4.10), we
obtain (8.2) for all k£ € [2, N]. O

8.2 Off-diagonal lower bounds

The near diagonal lower bound of Proposition 8.6 can be easily upgraded to full
Gaussian lower bounds (GLFE) by a well-known chaining argument (See [41, Theorem
5.1], [25, Theorem 3.8]). For general quasi-geodesic spaces, we rely on the chain lemma
(Lemma 2.4). We now prove the main result of this section, i.e. Gaussian lower bound.

Proof of Proposition 8.1. By Lemma 2.4 there exists C; > 1 such that for all b; > b and

for all z,y € M, there exists a b;-chain z = g, z1, ..., T, = y with
Cid
m < [15“’)} . (8.9)
1

By Proposition 8.6, there exists € > 0,¢; > 0 such that

inf  pr(x,y) > ———— (8.10)
y€B(z,eVk) ( ) V(I, \/E)
for all x € M and for all k¥ > 2. If
0162](1
§:=————2>0b, (8.11)
CQd(xv y)
then there exists a s-chain x = x¢, z1,..., 2, = y between x and y with
C2d(xa y)2
= | . 8.12
mim |24 (8.12)

However (8.11) holds whenever d(x,y) < c3k and c3 < C1e2/Cyb. If Cy > 1 and d(z,y) >
ev'k, we have

C2d(xa y>2 202d($7y)2
= < . .
m { o . (8.13)
If d(z,y) < c3k and ¢3 < €/+/(2C,), we have
27.2 2
b _ck c >2 (8.14)

—_ >
m — Cod(x,y)? — CQC% -

We fix ¢3 = min (e/\/(202), Clez/Cgb), so that (8.11), (8.12) and (8.14) are satisfied. We
will fix Cy > 1 later.
We will require

C1€2k € k € k
dzizip1) <s=s——=<\5- <35t/ |= 1
(@i, wi1) < 8 Cod(z,y) — 3V 2m — 3 {mJ (8.15)

foralli=0,1,...,m — 1 and for all k£ > m. We fix Cy := 36C? > 1, so that by (8.13) we

deduce
2 21,2 1/2
s = Cie’k € ek Sf,/igf ﬁ (8.16)
Cod(z,y) — 3 \ 4C2d(z,y)? 3Va2m — 3\ |[m
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for all z,y € M and k € IN* such that d(x,y) > evk and k/m > 2, where s, m is as defined
in (8.11) and (8.12). Define ko, ...,k _1 such that

o [E] 2]

satisfying 2251 k; = k. Consider the s-chain x = zg,...,z,, = y between z and y
where s, m are given by (8.11), (8.12). By (8.16) and definition of k;, for all w; €
B(xz;, (¢/3)\/|k/m]), fori=0,1,...,m — 1 we have

d(wi, wip1) < e/ k/m] < e\/k;.
Therefore by (8.10), (8.14) and (2.5), there exists c4,¢5 € (0,1) such that for all for
i=0,1,...,m—1, w; € B(xy,(¢/3)y/|k/m]), we have

C1 Cy4 Cs
Viwn Vi) = ViwsJToim]) = Ve TRim])

for all 2,y € M, k > 2 satisfying d(z,y) > vk and d(z,y) < csk.
Define B; = B(z;, (¢/3)+/|k/m]). By Chapman-Kolmogorov equation and (8.17), for
all z,y € M, k > 2 satisfying d(z,y) > eVk and d(z,y) < c3k, we obtain

Pr; (Wi, wiyr) > (8.17)

(2, y

)
=/ / p(z0, w1)p(w1,w2) ... p(Win—2, Wy—1)p(Wim—1,y) dwi . .. dwy, 1
M Ju

v

/ e / p(IOa wl)p(wh w2> .. -p(wm—27 wm—l)p(wm—17 y) dwl e dwnz—l
Bi—1 B1
m—1

Sy » §ACRCL N1
B V(xa \/E) i=1 V(zia V Lk/mJ)
By (2.4), (8.13), (8.14) and (8.18), there exists ¢g, ¢y € (0,1) such that

(2,9) cg e (202d(x, y)?log 06> 1
JY) > ———— >ex
PRSI =y e vE) 7P &k V(z, VE)

1 d(wvy)Q)
> — 8.19
Vv P ( crk (8.19)

for all z,y € M, k > 2 satisfying d(x,y) > vk and d(z,y) < csk. This yields (GLE) for
the case d(z,y) > eVk.
The case d(z,y) < eVk follows from (8.10). This completes the proof of (GLE). O

(8.18)

V

9 Parabolic Harnack inequality

In this section, we use the two sided Gaussian estimates on the heat kernel to prove
parabolic Harnack inequality. Moreover, we show the necessity of Poincaré inequality
and large scale volume doubling using parabolic Harnack inequality.

Based on ideas of Nash [62], Fabes and Stroock [29] gave a proof of parabolic Harnack
inequality using Gaussian bounds on the heat kernel for uniformly elliptic operators on
RR™. This idea of using Gaussian estimates on the heat kernel to prove parabolic Harnack
inequality was extended in various settings [72, 66, 25, 8]. Delmotte [25] introduced a
discrete version of balayage formula to prove parabolic Harnack inequality on graphs.
We use a direct adaptation of Delmotte’s method to prove parabolic Harnack inequality.

Recall that we defined caloric function as solutions to the discrete time heat equation
Oxu + Aug = 0 in Definition 7.3. We introduce the parabolic Harnack inequality for
non-negative caloric functions.
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Definition 9.1. Let (M, d, 1) be a metric measure space and let P be a Markov operator
on (M,d,u). Let0 < { <1land0 < 0 < 03 < 03 < 04. We that a u-symmetric Markov
operator P (or equivalently its heat kernel py) on (M,d, 1) satisfies the discrete-time
parabolic Harnack inequality

H((,01,0,05,60,)

if there exists positive reals C, R such that for all x € M,r € R,a € N with r > R and
every non-negative P-caloric function v : N x M — R>¢ on

Q = [a,a + [047%]] x B(z,7),

we have
supu < Cinfu,
Qo Qo
where
Q@ = [[a, + |—91T2-| ,a + |_02T2JI| X B(I, C’/’),
Qo = la+ [05r*],a + (040 ]] x B(x,Cr).
Remark 9.2.

(i) The exact values of the constants ¢ € (0,1) and 64, 65, 65,04 are unimportant. For
example, for graphs and length spaces if the parabolic Harnack inequality is
satisfied for one set of constants, then it is satisfied for every other set of constants.
The argument in [8, Proposition 5.2(iv)] can be adapted for graphs and length
spaces in the above discrete-time setting.

(ii) It suffices to consider the case a = 0 in the definition above by simply by shifting
the function in the time component.

(iii) Analogous to Remark 7.4(b), if P is (h, h’')-compatible with (M, d, 1) we may only
require the function u to be defined on a smaller domain.

9.1 Gaussian estimates implies parabolic Harnack inequality

In this subsection, we prove the following parabolic Harnack inequality using two
sided Gaussian bounds.

Proposition 9.3. Let (M,d, ;1) be a quasi-b-geodesic metric measure space satisfy-
ing (VD)joc. Suppose that a Markov operator P has a kernel py, that is weakly (h, h')-
compatible with respect to u for some h > b. Moreover, suppose that p; satisfies two
sided Gaussian estimate (GE). Then there exists n € (0,1) such that P satisfies the
parabolic Harnack inequality H(n/2,7m%/2,1?,2n?%, 4n?).

First we start by verifying that Gaussian lower bound implies large scale volume
doubling property.

Lemma 9.4. Let (M, d, 1) be a quasi-b-geodesic metric measure space satisfying (V D)jqc.
Suppose that a Markov operator P has a kernel p;, that satisfies (GLE). Then (M,d, 1)
satisfies (VD).

Proof. By (GLFE) there exists ¢1, ¢, c3 > 0 such that
c
oz, y) > V(Tl\/ﬁ) exp (—d(z,y)*/con)

for all z,y € M satisfying d(z,y) < csn and for all n € IN*. Therefore there exists N; > 1
such that 41/n < ¢3n for all n > N;. By the Gaussian lower bound above

_ V@ AVn) (/e
1= [ = [ ey z GEe ea-1/e)
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for all x € M and for all n > N;. Therefore there exists R := N12 such that forall z € M
and for all » > R, we have
Viz,r) > V(z,|r]) > c1exp(—4/ca)V(x,4|r]) > c1 exp(—4/c2)V (x, 2r). O
We show the following near diagonal lower bounds as a consequence of two sided
Gaussian bound (GE).

Lemma 9.5. Under the assumptions of Proposition 9.3, there exists ¢; > 0, n € (0,1)
and Ry > 0 such that for all x € M, for all r > Ry, for all y,z € B(x,nr), for all k € IN*
satisfying (nr)? < k < (2nr)?, we have

C1
V(z,Vk)

Proof. We abbreviate B(z,r) by B. We denote the exit time from ball B by
7:=min{n : X, ¢ B}

B(z,r)

Pe (Y, 2) > (9.1)

where (X, )nen is the Markov chain on M corresponding to the kernel py.
By strong Markov property and p-symmetry, the Dirichlet kernel pkB can be expressed
in terms of py as

PR (Y:2) = (Y, 2) = By [pr—r (2, X7) 11 k17 (7)] (9.2)
for all n > 2 and for all € M, where [E, denotes that the Markov chain starts at X, = y.
We choose Ry > (1 —n)~'h/, so that by (4.10)
E, [pk—T(Z7 X'r)]-[[l,kfl]] (7)] =E, [pk—‘r(za XT)1|12,]€72]] (7-)}
forally,z € B(x,nr), forall k > 2, for all z € M and for all » € R with » > Ry. Combining
this with (9.2) and X, ¢ B, we have

PR (Y. 2) = prly.2) — sup  sup  pi(z,w) (9.3)
le[2,k] w¢B(x,r)
forall y,z € B(x,nr), forall k > 2, for all x € M and for all » € R with r > (1 —n)~h’.
Note that by Lemma 9.4 we have (VD). Therefore by (GLE), (2.4) and k > (nr)?,
there exists co,c3 > 0 and R; > 0 such that

ca (2nr)? cs
(Y, 2) > ———=exp (— > (9.4)
V(y, Vk) c2(nr)® )~ V(x,Vk)
for all 2 € M, for all » > Ry, for all n € (0,1), for all y,z € B(x,nr) and for all k € IN*
satisfying (nr)? < k.
For the second term in (9.3) by (GUE), there exists C; > 0 such that

forall ] € N* with [ > 2, forall z € M, forall »r > 0, for all n € (0,1), for all z €
B(z,nr) and for all w ¢ B(z,r). Combined this with (2.4) and k < (2nr)?, there exists
Cy,C3,C4,6 > 0 such that for all n € (0,1/2), for all x € M, for all z € B(z,nr), for all
k € IN* satisfying (nr)? < k < (2nr)?, for all [ € [2,k] and for all w ¢ B(z,r), we have

n(zw) < — (’;)gexp (-

V(z,Vk) Cil

G2 () ()
s S X _

= Ve /R \ 1 P\ T1cn

04772(S

< . (9.5)

V(z,Vk)
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The second line above follows from 1 < 1/2 and (2.4) and the last line follows from
the fact the function ¢ — % exp(—t/4C) is bounded in (0,00). Combining (9.3), (9.4)
and (9.5), there exists ¢; > 0 and Ry > 0 such that p,f satisfies (9.1). O

The following lemma provides a discrete time version of Balayage decomposition for
the heat equation.

Lemma 9.6. Let (M, d, 1) be a quasi-b-geodesic metric measure space satisfying (V D)oc.
Suppose that a Markov operator P has a kernel p;, that is weakly (h, h’)-compatible with
respect to y for some h > b. Then for all x € M, for all r > h/, for all r; such that
0<m <ri+h <r, forallab e N, for all non-negative function u : N x M — Rx¢
that is P-caloric in [a,b] x B(z,r), there exists a non-negative functionv: N x M — R
(depending on u) such that supp(v) C [a + 1,b] x (B(z,r1 + k') \ B(z,r1)) and for all
y € B(x,r) and for all k € [a,b+ 1], we have

k—1

u(k,y) = / PPy, 2ula,2)dz+ Y
B(z,r1+h’) l=a+1

/ pE (g, wv(l,w)dw, (9.6)
B(z,r1+h’)
where B = B(z,r).
Proof. Denote by By = B(z,r; + ') and B = B(xz,r). Define
b =ulh) = [ P ula,)ds
B(z,r1+h’)
for all (k,y) € [a+ 1,b+ 1] x B(z,r + h’). Note that
(k.y) = [ pia(y, 2)ula, 2) dz
B

is P-caloric in [a + 1,b] x B(x,r1). Since u > 0, by (4.10) we have v1(a + 1,y) = 0 for all
y € B(x,r1) and by maximum principle v; > 01in [a + 1,b+ 1] x B(z,r1).
Next, we construct v : IN x M — R iteratively. We assume that supp(v) C [a + 1,b] x
(B(xz,r1 + k') \ B(x,r1)). Define v(a+1,y) = vi(a+1,y) for ally € B(x,r1 + h') \ B(z, 7).
Since v, is a difference of two P-caloric functions, we have v; is P-caloric in [a +
1,b] x B(x,r1). We repeat this construction iteratively by defining

vier (k) = vilk,y) — / PPy 2Yvslat iy 2) dz 9.7)
B(z,r1+h’)

for all (k,y) € [a+i+1,b+ 1] x B(xz,r1 + k') and
U(ZI—FZ—FI,’LU) :Ui+1(a+i+17w)

forall w € B(x,r1 + ')\ B(xz,r) and ¢ = 0,1,...,b — a — 1. By the same argument as

above, v; is non-negative and caloric in [a + ¢,b] x B(z,r) foralli =0,1,...,b —a+ 1.
Further

ui(a+1i,2) =0 (9.8)
forall zin B(z,r)andi=1,2,...,b — a. Combining (9.7), (9.8) and gives (9.6). O

We are now ready to prove the parabolic Harnack inequality.

Proof of Proposition 9.3. Let n € (0,1) be as given by Lemma 9.5. Note that for all
r > 12h'/n, we have nr — b/ > 2nr/3 > n/2. Moreover for all » > 12h'/n, for all
y € B(z,nr/2) and for all z € B(x,nr) \ B(z,nr — k') we have d(y,z) > 2h’. Let Ry :=
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1 + max(Ry, 12h//n,10/n) where Ry is the constant from Lemma 9.5. By the above
remarks, (4.10) and Lemma 9.6, for all x € M, for all » > R;, for all non-negative
function u that is P-caloric in [0, [4n%r?]] x B where B = B(x,r), there exists a non-
negative function v supported in B(z,nr) \ B(z,nr — k') such that

k—2

> / pE_(y, w)v(l,w) dw (9.9)
B(z,nr)

u(ky) = / PP (y, 2yua, 2) dz +
B(x,nr) =1

for all (k,y) € [1,[4n*r?] + 1] x B(z,nr/2).
For some fixed € M and r > R;, we define

Qo = [[nPr2/2], [Pr2]] x Bla,nr/2), Qo = (12022, [47%12]] x Ble.nr/2)  (9.10)

and Q := [0, [4n*7?]|] x B(x,nr).

By Lemma 9.4 we have (VD). Therefore by Lemma 9.5 and (2.4) there exists
¢1,¢2 > 0 such that for all « € M, for all r > Ry, for all y € B(x,nr/2), for all z € B(z,nr),
we have

inf  pP(y,z) > inf a a @

> n > > . (9.11)
(k,y)EQe kelr2n?r2), 4221 V (2, VEk) — V(z,2nr) = V(z,nr)

Similarly by Lemma 9.5 for all € M, for all » > Ry, for all y € B(x,nr/2), for all
2 € B(z,nr)\ B(z,npr — 1), for all [ € [1, [n*r?] — 2] we have

inf pi(y,2) 2 inf = >

> n > . (9.12)
(k.4)€Qa kelrzn2r21,4n2r2 ] V(z, /(k — 1)) ~ V(z,nr)

For upper bounds in Qg we simply use (GUE) as follows. By (GUE) and (2.5), there
exists Cy,Cy > 0 such that for all © € M, for all » > Ry, for all y € B(x,nr/2), for all
z € B(x,nr) we have

Cy Cy

B
sup  pi(y,z) < sup  pi(y,z) < sup < . (9.13)
(k1)EQo (k1)€Qe (ka)eo Vy, VEk) ~ Vi(z,nr)

Similarly by (GUFE) and (2.4), there exists C3, Cy4,C5,6 > 0 such that for all z € M, for
allr > Ry, forall y € B(z,nr/2), for all z € B(x,nr) \ B(z,nr —h’), for all (k,y) € Qg and
foralll € [1, k — 2] we have

C d(y, 2)?
Pe1(y,2) < pri(y, 2) < 3 (y,2) )

Vi JE-D) " (‘ Cy(k —1)

Cy n2r? 5/2 - n2r?
Vi) \&-10) P\ 36050k — 1)

Cs
< -
— V(x,nr)

IN

(9.14)

The last line follows from the fact that the function ¢ — t%/2 exp(—t/(36C3)) is bounded
in (0, 00) along with (2.5).

Combining the inequalities (9.11), (9.12), (9.13) and (9.14) along with the balayage
formula (9.9) for all x € M, for all » > R;, for all non-negative function u that is P-caloric
in [0, [4n*r?|] x B(z,r), we have

sup  u(k,y) < cy'max(Co,Cs) inf  wu(k,y)
(k7y)€Q9 (k,y)EQ@

where (g, Qg are as defined in (9.10). Note that by Remark 9.2(ii), we have the desired
Harnack inequality. O
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9.2 Necessity of Poincaré inequality and large scale volume doubling

In the previous sections, we have obtain two-sided Gaussian bounds on the heat
kernel and parabolic Harnack inequality assuming large scale volume doubling and
a Poincaré inequality. Now we show that large scale volume doubling and Poincaré
inequality are necessary to have two-sided Gaussian bounds on the heat kernel and
parabolic Harnack inequality. The was first proved by Saloff-Coste in [67, Theorem 3.1]
using an argument due to Kusuoka and Stroock [52].Delmotte [25] followed the same
strategy in discrete-time setting for random walk on graphs. The following proposition
follows from the argument in [67, 25].

Proposition 9.7. Let (M,d, ) be a quasi-b-geodesic metric measure space satisfy-
ing (VD)oc. Suppose that a Markov operator P has a kernel py, that is weakly (h, h')-
compatible with respect to u for some h > b and there exists n € (0,1) such that
P satisfies the parabolic Harnack inequality H(n/2,7?/2,7?,2n% 4n?). Then (M,d, i)
satisfies (VD) and (P)p.

We now have all the ingredients to prove our main result in a slightly weaker form.
Proposition 9.8. Let (M,d, 1) be a quasi-b-geodesic metric measure space satisfy-
ing (VD)o and diam(M) = +oo. Suppose that a Markov operator P has a kernel
p that is (h, h')-compatible with (M, d, i) with either h = b’ > b or b’ > h > 5b. Then the
following are equivalent:

(i) Parabolic Harnack inequality: there exists n € (0,1) such that P satisfies the
parabolic Harnack inequality H(n/2,1m%/2,m?,2n?, 4n?).

(ii) Gaussian bounds on the heat kernel: the heat kernel py, satisfies (GE).

(iii) The conjunction of large scale volume doubling property (V D)., and Poincaré
inequality (P)y,.

Proof. The implication “(iii) implies (ii)” follows from Theorem 5.1, Proposition 7.1 and
Proposition 8.1. (ii) implies (i) follows from Proposition 9.3. (i) implies (iii) follows from
Proposition 9.7 and Corollary 3.17. O

Next, we answer the question raised in Remark 3.6.

Proposition 9.9. Let (M,d, ) be a quasi-b-geodesic metric measure space satisfy-
ing (VD)ioe, (VD)oo, (P)y for some h' > b and diam(M) = +oo. Then (M,d,u) sat-
isfies (P)y, for all h > b.

Proof. By Lemma 3.5 it suffices to consider the case b < h < h'. Consider the Markov
chain with density

]-B(w,h) (y)
Q@)Qy)v/V(x,h)V(y, h)

that is symmetric with respect to the measure p'(dz) = Q(x)u(dz), where

p(z,y) =

_ 1Bz (Y)
M A V(xz,h)V(y,h)

By (VD)joc, there exists C; > 0 such that

Q(x)

p(dy).

C7l<Qx) <y (9.15)

for all x € M. Therefore the space (M, d, u) satisfies (VD)ioe, (VD)oo, (P)n for some
h' > b. Moreover by (9.15), p is weakly (h, h)-compatible with (M, d, ). By the same
argument as Lemma 4.9, there exists | € N* such that p; is (h/,lh) compatible with
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(M,d, ). Therefore by Proposition 9.8 and Lemma 4.14 the kernel p; satisfies (GE).
The Poincaré inequality (P);, for (M, d, ') then follows from Propositions 9.3 and 9.7. An
easy comparison argument using (9.15) gives (P), for (M, d, p). O

The following the main result of our work.

Theorem 9.10. Let (M, d, ) be a quasi-b-geodesic metric measure space satisfying
(VD)o and diam(M) = +oo. Suppose that a Markov operator P has a kernel p that is
(h, h')-compatible with (M,d, ), where b’ > h > b. Then the following are equivalent:

(i) Parabolic Harnack inequality: there exists € (0,1) such that P satisfies the
parabolic Harnack inequality H(n/2,n?/2,n?,2n%, 4n?).

(ii) Gaussian bounds on the heat kernel: the heat kernel py, satisfies (GE).

(iii) The conjunction of large scale volume doubling property (V D)., and Poincaré
inequality (P)y,.

Proof. Combining Propositions 9.8 and 9.9 yields the desired result. O

As announced in the introduction, we will show Theorem 1.1 and [25, Theorem 1.7]
are covered by our results. Since [25, Theorem 1.7] is a special case of Theorem 9.10, it
remains to verify Theorem 1.1.

Proof of Theorem 1.1. We need only to check the implication (c) implies (b) as the other
implications follow as in Theorem 9.10. Although p; is only weakly (h, h’)-compatible
to (M,d, ), by Lemma 4.9, Theorem 9.10 and Lemma 4.14, we have that p;, satisfies
(GE). O

10 Applications and examples

Perhaps the most important application of the characterization of parabolic Harnack
inequality and Gaussian bounds on the heat kernel is the stability under quasi-isometries.

Theorem 10.1. Let (M,,d;, u;) be a quasi-b;-geodesic metric measure spaces satisfy-
ing (VD))o and diam(M;) = oo, fori = 1,2. Moreover we assume that (M, d;, u, and
(M, ds, u2) are quasi-isometric metric measure spaces. Suppose that a Markov operator
P; has a kernel that is (h;, hl;)-compatible with (M;,d;, u;) with b}, > h; > b; fori = 1,2.
Then

(i) The kernel corresponding to P; satisfies (GE) if and only if the kernel corresponding
to P, satisfies (GE).

(ii) The operator P, satisfies the Harnack inequality H(n/2,1m%/2,n?,2n?, 4n?) for some
n € (0,1) if and only if P, satisfies H((/2,(?/2,¢?,2¢?%,4¢?) for some ¢ € (0,1).

Proof. The is a direct consequence of Theorem 9.10 along with stability of (V D), given
by Proposition 2.14, stability of (P); given by Proposition 3.16, Proposition 9.9 and
Lemma 3.5. O

Recall that we proved an elliptic Holder regularity estimate for P-harmonic functions
in Proposition 6.20 and we used the regularity in the proof of Gaussian lower bounds
(Lemma 8.7). There is an analogous parabolic Holder regularity estimate which follows
from parabolic Harnack inequality. The proof is similar, for example the proof given
in [70, Theorem 5.4.7] can be adapted for the present setting. Such parabolic Holder
continuity estimates were first obtained by Nash [62].
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Proposition 10.2. Let (M, d, 1) be a quasi-b-geodesic metric measure space satisfy-
ing (VD)o and diam(M) = +oo. Suppose that a Markov operator P has a kernel p
that is weakly (h, h')-compatible with (M, d, 1) and satisfies parabolic Harnack inequality
H(n/2,m%/2,12,2n?, 4n?) for some n € (0,1). Then there exists C >0, R > 0 and a > 0
such that for all x € M, for all »r > R and for any non-negative functionu : N x M — R
that is P-caloric in [0, |4n?r?|] x B(x,r) = Q, we have the regularity estimate

|’LL(]€1, xl) — U(kg, IEQ)|

sup = < —supu.
(k1,@1),(kaswa) €[[2n2r2], [4n2r2 [ x B(z,r) (Max(L, k1 — kgl 4+ d(z1,22)) T Q

Note that we do not obtain continuity, because we do not have Hoélder continuity
estimate at arbitrarily small distances. Another application of elliptic Harnack inequality
is Liouville property for harmonic functions that was shown in Proposition 6.19.

Next, we turn attention to application of two sides Gaussian estimates (GE). Of
course, the estimates given by (GFE) has enough information to determine whether or
not the the random walk is transient. The estimate given by [25, Proposition 4.3] can be
easily generalized to metric measure spaces in which case we obtain

Proposition 10.3. Let (M, d, 1) be a quasi-b-geodesic metric measure space satisfy-
ing (VD)o and diam(M) = 4+oo. Consider a u-symmetric Markov operator P that is
(h, h')-compatible with (M, d, i) for some h > b and whose kernel p, satisfies (GE). Then
the random walk corresponding to P is transient if and only if

> n
10.1
;V(x,n) < +00 (10.1)

for some x € M.

It is easy to see that the convergence of the series in (10.1) does not depend on
the choice of x € M. Unless the space is discrete, we do not have a ‘Green’s function’
as the Green operator A~ = >"°° P’ does not have a kernel as there is ‘delta mass’
singularity at the starting point. However, we may consider the off-diagonal part of the
Green operator given by the “Green’s function” G(z,y) = > .-, pi(x,y). The estimate
given by [25, Proposition 4.3] can be again generalized as follows.

Proposition 10.4. Under the assumptions of Proposition 10.3, there exists C' > 0 such
that

< = ; < 10.2
¢ Z V(z,n) — G(@,y) sz(x,y) =¢ Z V(z,n) (10:2)
n=[d(z,y)] =1 n=[d(z,y)]

for some x € M and for all y € M with d(z,y) > h'.

As noted in [41, Theorem 9.1], the Gaussian estimate is sufficient to prove law of
iterated logarithm in a weak form. The proof in [41] can be generalized for metric
measure spaces.

Proposition 10.5. Under the assumptions of Proposition 10.3, there exist C > 0 such
that for all starting points Xy € M

d(Xo, Xn)

)1/2

_Lefn) <o
(nloglogn

C~! <lim sup
almost surely, where (Xj)ren is the Markov chain corresponding to P.
We refer the reader to [41, Section 9] for other probabilistic applications in similar
spirit.

If the space has finite diameter the techniques developed here can be used to prove
upper and lower bounds on mixing times. In this case p is a finite measure on M and can
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be normalized if necessary to be the stationary probability measure. Roughly speaking,
in this case for (h, h)-compatible Markov operator on a space with diameter D, it takes
(D/h)? steps of the Markov chain to get close to the stationary distribution p. The
Poincaré inequality and Gaussian upper bounds can be used to obtain upper bounds on
mixing time as outlined in [28, Lemma 2.1 and Remark 1 after Lemma 2.2]. For lower
bounds on the mixing time one would need Gaussian lower bounds. We plan to address
these questions in a sequel and obtain results complementary to those in [53]. We refer
the reader to [26, 27] for other recent works in this direction.

10.1 Harmonic functions with polynomial volume growth

In [17], Colding and Minicozzi proved that the space of harmonic functions with
polynomial volume growth with fixed rate on a manifold satisfying volume doubling
and Poincaré inequality is finite dimensional. As a corollary, they prove a conjecture of
S. T. Yau on manifolds that asserts the above property for Riemannian manifolds with
non-negative Ricci curvature. A recent surprising application of this result is an alternate
proof of Gromov’s theorem on groups of polynomial volume growth due to Kleiner [51].

Definition 10.6. For a metric measure space (M,d, ) and a p-symmetric Markov op-
erator P on M, we define the space of P-harmonic functions with growth rate d as the
vector space Hq(M, P) consisting of all P-harmonic functions u such that there exists
C > 0,p € M (depending on u) such that u(z)] < C(1+ d(z,p)") forallz € M.

We have the following theorem that would extend the result of Colding and Minicozzi
for random walks on metric measure spaces.

Theorem 10.7. Let (M,d, 1) be a quasi-geodesic metric measure spaces satisfying
diam(M) = +oo, volume doubling hypotheses (V D)o, (VD) and Poincaré inequal-
ity (P)n. Let P be a Markov operator that is (h, h')-compatible with (M, d, i1). Then the
space of P-harmonic functions Hq4(M, P) with a fixed growth rate d is finite dimensional
for any d > 0.

The proof of Colding and Minicozzi’s theorem in [17] relies on three ingredients:
volume doubling hypotheses (V' D), a Poincaré inequality and a reverse Poincaré inequal-
ity for harmonic functions. We have all the three ingredients (with some changes) as
we showed the reverse Poincaré inequality in Lemma 6.14. A caveat is that we have
to rely on weaker versions of all the three ingredients but nevertheless we will see
that Theorem 10.7 can be proved using the techniques introduced of [17]. T. Delmotte
adapted an alternate approach due to P. Li [54] to prove a similar statement for random
walks on graphs satisfying doubling and Poincaré inequality [24].

The following below is a slightly weaker version of [17, Proposition 2.5].

Proposition 10.8. Let (M, d, 1) be a quasi-geodesic metric measure spaces satisfying
diam(M) = +oo, volume doubling hypotheses (V D)., (VD) and Poincaré inequal-
ity (P), and let P be a Markov operator that is (h,h')-compatible with (M, d, j1). There
exists e € (0,1) such that for all p € M, for all k > 1 satisfying r > k/e and for all
functions f1, fa, ..., fn € L (M) satisfying

loc

/ fZdp=V(p,r) (10.3)
B(p,r)

foralli =1,2,...,n;

V(p,r)

<
2

(10.4)

| hgya
B(p,r)
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foralll <i< j<n;and
[ (84 @A) du < V) 10.5)
B(p,2r)

foralli =1,2,...,n, we have n < N/, where N depends on k but does not depend on
r>k/eorpe M.

Proof. The proof follows from modifying the proof of [17, Proposition 2.5] by using our
modified versions of volume doubling, Poincaré and reverse Poincaré inequalities. O

The following proposition and its proof is a slight modification of a result due to
Colding and Minicozzi [17, Proposition 4.16].

Proposition 10.9. Consider a metric measure space (M,d, 1) satisfying the hypothe-
ses (VD)ioe, (VD)o and diam(M) = +oco. Let P be a Markov operator that is (h,h’')-
compatible with (M,d, ) for some 0 < h < h'. Suppose that uj,us,...,us € Hqs(M, P)
are linearly independent. There exists 6 > 0, p € M such that for alld > 0, Q2 > 1 and
mg > 0, there exists m > my, | > £Q~449, and functions vy, ..., v, in the linear span of
u; such that

2044+ (p ) = 2044+ / v? dp > / v? dp (10.6)
B(p,2m) B(p,Qm+1)

and
/ ViV du = (51‘,]“/(]97 Qm) (107)
B(p,Q™)

In Proposition 10.9, we may choose § as the constant in Lemma 2.7. We are now
ready to prove Theorem 10.7.

Proof of Theorem 10.7. Fix Q > max(4,3h'), d >0andp € M. Let A > 1, C4 > 0 and
Cp >0 and § = log, Cp be as given in Lemma 2.7. Let Cr be as given by Lemma 6.14
and set k? = (8Cg + 2)Q%*+2, Let e € (0,1) be given by Proposition 10.8. We choose
mg € IN* such that Q™0 > k/e. Let dim Hq(M, P) > N := 4Q*+2° A/ where N is given by
Proposition 10.8 where £ is as defined above.

Suppose that uy, ua,...,un, € Hq(M, P) be linearly independent. Then by Proposi-
tion 10.9 and reverse Poincaré inequality (Lemma 6.14) there exists Cr > 0 and m > my

such that for all f € L{° (M, 1), we have harmonic functions vy, v, . .., v; satisfying
1
1> 1/\/09—4‘1—25 =N, (10.8)
/ V;Vj d/L = V(p, Q’”)éi,j, (109)
B(p,Q2™)
/ v2 dp < 20RQMF2Y (p, ™), (10.10)
B(p,Q"L+1)
and
/ Vpvi dp < CRQ™2™ / v? dp < 204420 72my (M), (10.11)
B(p,2Q™) B(p,4Q™)
Note that (10.9), (10.10), (10.11) and 2 > 4 implies that vy, vo, . . ., v; satisfy (10.3), (10.3)
/ o2 4 (202 puif? dpp < (8Ck + 2)Q42V (p,7) (10.12)
B(p,QQ""‘)

forall: =1,...,l. Note that (10.8), (10.9), (10.12) along with Proposition 10.8 implies
the desired contradiction. Therefore dim Hq4(M, P) < Ny < 0. O
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10.2 Directions for future work

We end with a direction for future work. One of the features of our work is that it
provides an unified approach to Gaussian estimates for discrete time Markov chains on
both discrete and continuous spaces. Recently, there has been considerable interest
in analysis and probability on fractals and fractal-like manifolds and graphs. For many
natural family of fractals the heat kernel satisfies sub-Gaussian estimates of the form

C d l',y B 1/(6_1)
pe(z,y) < V(Ttll/ﬁ)e)(p <—Cz ((t))

forallt > 0 and for all x,y € M and 8 > 1 is a parameter (See [10, Theorem 1.5(e)] for
an early example). Here =< means that both inequalities < and > hold with different
values of constants C7, (5. Similar to the characterizations of Gaussian estimates in
[30, 67, 74, 25, 40] there exists various characterizations for sub-Gaussian estimates
both in the setting of diffusions on local Dirichlet spaces [5] and for discrete time Markov
chains on graphs [4, 7, 35, 36]. As in the case of Gaussian estimates, it is desirable to
obtain characterizations of sub-Gaussian estimates that are stable under quasi-isometries.
This was achieved using a condition called cutoff-Sobolev inequality first introduced by
Barlow and Bass [4] (See also [5]). Our work naturally raises an analogous question for
sub-Gaussian estimates on Markov chains with more general space-time scaling.

Problem 10.10. Characterize sub-Gaussian estimates for discrete time Markov chains
on quasi-geodesic metric measure spaces using geometric conditions that are stable
with respect to quasi-isometries.

Another direction for future work is to clarify the applications to mixing times in the
finite diameter case as mentioned in Remark 8.5(b).
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