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Abstract

We characterize Gaussian estimates for transition probability of a discrete time Markov
chain in terms of geometric properties of the underlying state space. In particular,
we show that the following are equivalent: (1) Two sided Gaussian bounds on heat
kernel (2) A scale invariant Parabolic Harnack inequality (3) Volume doubling property
and a scale invariant Poincaré inequality. The underlying state space is a metric
measure space, a setting that includes both manifolds and graphs as special cases. An
important feature of our work is that our techniques are robust to small perturbations
of the underlying space and the Markov kernel. In particular, we show the stability
of the above properties under quasi-isometries. We discuss various applications and
examples.
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1 Introduction

The goal of this work is to characterize Gaussian estimates for Markov chains and
parabolic Harnack inequality for a corresponding discrete time version of heat equation
by two geometric properties on the state space: Large scale volume doubling property
and Poincaré inequality. Our main result is that equivalence between the following
properties:

(1) Two sided Gaussian bounds on heat kernel.

(2) Parabolic Harnack inequality.

(3) Volume doubling property and a scale invariant Poincaré inequality.
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Random walks on metric measure spaces

The above result is due to Grigor’yan [30] and Saloff-Coste [67] for diffusion on Rie-
mannian manifolds (or more generally, local Dirichlet spaces due to Sturm [74]) and
extended to random walks on graphs by Delmotte [25]. Different versions of this result
was shown for diffusions, random walks on graphs, and jump processes admitting for
more general space-time scaling (space need not scale like square of time). A (partial)
list of works in this direction are [11, 4, 5, 15, 35, 36, 75]. We emphasize that we only
consider the standard space time scaling (quadratic in distance) and leave more general
cases for future work (see Problem 10.10).

The hardest and most useful implication in the equivalence above is that the con-
junction of the volume doubling property and Poincaré inequality implies the two sided
Gaussian estimates and parabolic Harnack inequality. Also, an important consequence
of this characterization is the stability of Gaussian estimates and parabolic Harnack
inequality under quasi-isometric transformation of the underlying space. This result
extends Moser’s stability result of Harnack inequalities on Rn [58, 59]. Moser’s work
also provides an alternate approach to regularity of weak solutions to elliptic equations
previously obtained by de Giorgi and Nash [22, 62]. Examples of spaces satisfying Gaus-
sian heat kernel bounds include manifolds with non-negative Ricci curvature [16, 55, 13],
convex domains and complement of convex domains [39], subelliptic operators on groups
of polynomial growth [41, 77], weighted Euclidean spaces [34]. We refer to [71, Section
3.3] for a more extensive list of examples and further details. Recently, this characteriza-
tion of parabolic Harnack inequality led to a similar characterization and stability of the
elliptic Harnack inequality [11, 9, 6].

The goal of this work is to obtain the equivalence for random walks on metric
spaces. A motivation comes from the work of Hebisch and Saloff-Coste [41] on random
walks on groups. By the main results of [41], we know that many natural translation-
invariant Markov chains on groups (discrete and continuous groups) of polynomial
volume growth satisfy two-sided Gaussian estimates. However the arguments in [41]
for proving Gaussian lower bounds are specific to the case of translation-invariant
Markov chains as the authors of [41] note “We want to emphasize that a number of key
points of the argument presented below are specific to the case of translation invariant
Markov chains”. To this end they conjecture “We have no doubt that, if G has polynomial
volume growth a corresponding Gaussian lower bound holds for (non transition-invariant)
Markov chains as well. However, we have not been able to prove this result. We hope
to come back to this question in the future.” [41, Remark 2]. Our work validates their
conjecture.

1.1 Main results

Next, we state a version of our main result in a restricted setting. Recall that
a weighted Riemannian manifold (M, g, µ) is a Riemannian manifold (M, g) equipped
with a measure µ such that µ(dy) = σ(y)ν(dy), where ν is the Riemannian measure
and σ ∈ C∞(M) is the weight function. We denote integer intervals by Ja, bK :=

{i ∈ Z : a ≤ i ≤ b}.
Theorem 1.1. Let (M, g, µ) be a complete non-compact, weighted Riemannian manifold
such that there exists K ≥ 0 such that Ric ≥ −Kg. Furthermore there exists C1 ≥ 1

such that the weight function σ satisfies C−1
1 ≤ σ(x)/σ(y) ≤ C1 for all x, y ∈ M with

d(x, y) ≤ 1. Consider a Markov chain on M with a symmetric kernel pk with respect to µ.
Further we assume that there exists C0 > 1, h > 0, h′ ≥ h such that

C−1
0

1B(x,h)(y)

V (x, h)
≤ p1(x, y) ≤ C0

1B(x,h′)(y)

V (x, h′)
(1.1)

for all x ∈M and for µ-almost every y ∈M . Then the following properties are equivalent:
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Random walks on metric measure spaces

(a) The parabolic Harnack inequality: there exists η ∈ (0, 1), CH > 1, RH > 0 such that
for all balls B(x, r), x ∈M , r > RH and for all non-negative functions u : N×M → R

that satisfies ∂ku+ ∆uk ≡ 0 in J0, b4η2r2cK×B(x, r), we have

sup
Q	

u ≤ CH inf
Q⊕

u

where

Q	 = Jd(η2/2)r2e, bη2r2cK×B(x, (η/2)r),

Q⊕ = Jd2η2r2e, b4η2r2cK×B(x, (η/2)r)

(b) Two sided Gaussian bounds on the heat kernel: there exists C1, C2 > 0 such that for
all x, y ∈M and for all n ∈ N∗ satisfying n ≥ 2, we have

pn(x, y) ≤ C1

V (x,
√
n)

exp

(
−d(x, y)2

C2n

)
(1.2)

Further there exists c1, c2, c3 > 0 such that for all x, y ∈ M satisfying d(x, y) ≤ c3n

and for all n ∈ N∗ satisfying n ≥ 2

pn(x, y) ≥ c1
V (x,

√
n)

exp

(
−d(x, y)2

c2n

)
(1.3)

(c) The conjunction of

• The volume doubling property: there exists CD > 0 such that for all x ∈M , for
all r > 0 we have

V (x, 2r) ≤ CDV (x, r)

• The Poincaré inequality: there exists CP > 0, κ ≥ 1 such that for any ball
B = B(x, r), x ∈M , r > 1 and for all f ∈ L2(M,µ), we have

ˆ
B

|f − fB|2 dµ ≤ CP r2

ˆ
κB

(
1

V (y, 1)

ˆ
B(y,1)

|f(z)− f(y)|2 µ(dz)

)
µ(dy), (1.4)

where κB = B(x, κr), fB = 1
µ(B)

´
B
f dµ.

The role of Theorem 1.1 is only to illustrate our main result introducing additional
definitions. We provide an unified approach to study random walks on both discrete and
continuous spaces. We prove Theorem 1.1 as a corollary of a general result that also
gives an alternate proof of Delmotte’s theorem [25, Theroem 1.7] for random walks on
graphs. We also provide a characterization of Gaussian upper bounds on heat kernel in
Theorem 7.18.

Given the previous works on characterization of parabolic Harnack inequality and
Gaussian bounds [30, 67, 74, 25, 42] our results should not be surprising. However we
encounter new difficulties that had to be resolved here and which were not present in
previous works. The Sobolev inequalities in the previous settings are of the form

‖f‖2δ/(δ−2)
2 ≤ Cr2

Vµ(x, r)2/δ

(
E(f, f) + r−2 ‖f‖22

)
(1.5)

for all ‘nice’ functions f supported in B(x, r). However for discrete time Markov chains,
the Dirichlet form satisfies the inequality E(f, f) = 〈(I − P )f, f〉 ≤ 2 ‖f‖22. This along
with (1.5) implies that L2(B(x, r)) ⊆ L2δ/(δ−2)(B(x, r)) for all balls B(x, r) which can hap-
pen only if the space is discrete. Hence for discrete time Markov chains on Riemannian
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Random walks on metric measure spaces

manifolds the Sobolev inequality (1.5) cannot possibly be true. We prove and rely on a
weaker form of the Sobolev inequality (1.5) which seems to be too weak to run Moser’s
iteration directly to prove parabolic Harnack inequality (See Theorem 5.1). Instead
we use Moser’s iteration to prove a version of the mean value inequality which in turn
gives Gaussian upper bounds. We adapt a method of [42] which uses elliptic Harnack
inequality and Gaussian upper bounds to prove Gaussian lower bounds (See Section 8).
Another difficulty that is new to our setting is explained in the beginning of Section 7.3.

1.2 Outline for the paper

This paper is organized as follows. In Section 2, we present the setting of quasi-
geodesic spaces satisfying certain doubling hypotheses, study its basic properties and
develop techniques that would let us compare discrete and continuous spaces. In
Section 3, we introduce Poincaré inequalities and discuss various examples. We study
the relationship between our new Poincaré inequalities on metric measure spaces with
previous versions on manifolds on graphs. We study stability properties of Poincaré
inequalities. In Section 4, we introduce hypotheses on Markov chain, Dirichlet forms and
recall their basic properties. In Section 5, we introduce and prove a Sobolev inequality
under the assumptions of large scale volume doubling and Poincaré inequality. In
Section 6, we use Sobolev inequality and Poincaré inequality to run the Moser iteration
argument to prove elliptic Harnack inequality.

Section 7 is devoted to the proof of Gaussian upper bounds using Sobolev inequality.
In addition, we show that Sobolev inequality is equivalent to the conjunction of Gaussian
upper bounds on the heat kernel and large scale volume doubling property. In Section 8
we prove Gaussian lower bounds using elliptic Harnack inequality and Gaussian upper
bounds. This completes the proof that large scale volume doubling property and Poincaré
inequality implies two sided Gaussian bound on the heat kernel. In Section 9, we prove
parabolic Harnack inequality using Gaussian bounds. Moreover, we prove large scale
volume doubling property and Poincaré inequality using parabolic Harnack inequality,
and thereby completing the proof of the characterization parabolic Harnack inequality
and Gaussian bounds. In Section 10, we mention some applications of Gaussian estimates
and describe some examples. Many of the proofs that rely on small modifications to
known methods have been omitted but an interested reader can find more complete
proofs on arXiv [61].

2 Metric geometry

Let (M,d, µ) be a locally compact metric measure space where µ is a Radon measure
with full support. Let B(M) denote the Borel σ-algebra on (M,d). Let B(x, r) := {y ∈
M : d(x, y) ≤ r} denote the closed ball in M for metric d with center x and radius r > 0.
Let V (x, r) := µ(B(x, r)) denote the volume of the closed ball centered at x of radius r.
Since M is a Radon measure with full support, we have that V (x, r) is finite and positive
for all x ∈ M and for all r > 0. In this section, we introduce some assumptions on the
metric d and measure µ and study some consequences of those assumptions.

2.1 Quasi-geodesic spaces

The main assumption on the metric d of the metric measure space (M,d, µ) is that
of quasi-geodesicity. In Riemannian geometry, the distance between two points of a
manifold is defined as the infimum of lengths of curves joining them. Such a relation
between distance and length of curves is observed more generally in length spaces.

Definition 2.1. Let (M,d) be a metric space. For x, y ∈ M , a path from x to y is a
continuous map γ : [0, 1] → M such that γ(0) = x and γ(1) = y. We define the length
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L(γ) ∈ [0,∞] of a path γ is the supremum

L(γ) = sup
P [0,1]

∑
i

d(γ(ti−1), γ(ti)).

taken over all partition 0 = t0 < t1 < . . . < tk = 1 of [0, 1].

The length of a path is a non-negative real number or +∞.

Definition 2.2. The inner metric or length metric associated with metric space (M,d)

is the function di : M ×M → [0,∞] defined by

di(x, y) = inf
γ
L(γ)

where the infimum is taken over all paths γ from x to y. (M,d) is called a length space if
di = d. A metric for which d = di is called an intrinsic metric.

One of the goals of this work is to provide an unified approach to the study of
random walks in continuous spaces like Riemannian manifolds and discrete spaces like
graphs. We would like to consider spaces more general than length spaces to include
disconnected metric spaces like graphs. Quasi-geodesic spaces provides a natural setting
to include both length spaces and graphs as special cases. Quasi-geodesic spaces are
equipped with a weak notion of geodesics called chains. We recall the following definition
of chain and various notions of geodesicity as presented by Tessera in [76].

Definition 2.3. Consider a metric space (M,d) and b > 0. For x, y ∈ M , a b-chain
between from x to y, is a sequence γ : x = x0, x2, . . . , xm = y in M such that for every
0 ≤ i < m, d(xi, xi+1) ≤ b. We define the length l(γ) of a b-chain γ : x0, x1, . . . , xm by
setting

l(γ) =

m−1∑
i=0

d(xi, xi+1).

Define a new distance function db : M ×M → [0,∞] as

db(x, y) = inf
γ
l(γ) (2.1)

where γ runs over every b-chain from x to y. We say a metric space (M,d) is

• b-geodesic if d(x, y) = db(x, y) for all x, y ∈M .

• quasi-b-geodesic if there exists C > 0 such that db(x, y) ≤ Cd(x, y) for all x, y ∈M .

• quasi-geodesic if there exists b > 0 such that (M,d) is quasi-b-geodesic.

The following lemma guarantees that quasi-geodesic spaces are endowed with suffi-
ciently short chains at many length scales. The proof follows easily from the definition of
quasi-geodesic space.

Lemma 2.4 (Chain lemma). Let (M,d) be a quasi-b-geodesic space for some b > 0. Then
there exists C1 ≥ 1 such that for all b1 ≥ b and for all x, y ∈ M , there exists a b1-chain

x = x0, x1, . . . , xm = y with m ≤
⌈
C1d(x,y)

b1

⌉
.

2.2 Doubling hypotheses

The main assumption that we recall below on the Radon measure µ is the doubling
property. For a metric measure space (M,d, µ), we denote volume of balls by V (x, r) =

µ(B(x, r)).

Definition 2.5. We define the following doubling hypothesis:
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(V D)loc We say a space (M,d, µ) satisfies the local volume doubling property (V D)loc, if for
all r > 0, there exists Cr such that

V (x, 2r) ≤ CrV (x, r) (V D)loc

for all x ∈M .
(V D)∞ We say a space (M,d, µ) satisfies the large scale doubling property (V D)∞, if there

exists positive reals Cr0 , r0 such that

V (x, 2r) ≤ Cr0V (x, r) (V D)∞

for all x ∈M and r ≥ r0.
(V D) We say a space (M,d, µ) satisfies the global volume doubling property (V D), if

there exists a constant CD > 0 such that

V (x, 2r) ≤ CDV (x, r) (V D)

for all x ∈M and r > 0.

We collect some basic properties of spaces satisfying the above doubling hypothe-
sis (V D)loc and (V D)∞.

Lemma 2.6 ([21, Lemma 2.1]). If (M,d, µ) satisfies (V D)loc, then for all r1, r2 > 0, there
exists Cr1,r2 such that

V (x, r2) ≤ Cr1,r2V (x, r1) (2.2)

for all x ∈M . In particular, for all x, y ∈M , such that d(x, y) ≤ R, we have

V (x, r) ≤ Cr,R+rV (y, r)

The large scale doubling property (V D)∞ along with (V D)loc implies a polynomial
volume growth upper bound.

Lemma 2.7. Let (M,d, µ) be a metric measure space satisfying (V D)loc and (V D)∞.
Then for all b > 0, there exists Cb > 0 such that

V (x, 2r) ≤ CbV (x, r) (2.3)

for all x ∈M and r ≥ b. Moreover this Cb satisfies

V (x, r)

V (x, s)
≤ Cb

(r
s

)δ
(2.4)

for all x ∈M , for all b ≤ s < r and for all δ ≥ log2 Cb. Furthermore

V (x, r)

V (y, s)
≤ C2

b

(r
s

)δ
(2.5)

holds for all b ≤ s ≤ r, for all x ∈M , for all y ∈ B(x, r) and for all δ ≥ log2 Cb.

The equation (2.4) implies a polynomial upper bound on the volume growth. In
quasi-geodesic spaces, we can reverse the inequality (2.4) and obtain a polynomial lower
bound for all radii small enough compared to the diameter. The property stated in
following lemma is often called the reverse volume doubling property which follows from
[44, Exercise 13.1].

Lemma 2.8 ([44, Exercise 13.1]). Let (M,d, µ) be a quasi-b-geodesic space with the
measure µ satisfying (V D)loc and (V D)∞. Then there exists c, γ > 0 such that

V (x, r)

V (x, s)
≥ c

(r
s

)γ
(2.6)

for all x ∈M and for all b ≤ s ≤ r ≤ diam(M), where diam(M) = sup{d(x, y) : x, y ∈M}
denotes the diameter of (M,d, µ).
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2.3 Quasi-isometry

One of the goals of this work is to develop arguments which are robust to small
perturbations in the geometry of the underlying space; for example addition of few edges
in a graph or small changes in the metric of a Riemannian manifold. We study properties
that depends mainly on the large scale geometry of the underlying space. In this spirit,
the concept of quasi-isometry was introduced by Kanai in [48] and in the more restricted
setting of groups by Gromov in [37]. Informally, two metric spaces are quasi-isometric if
they have the same large scale geometry. Here is a precise definition:

Definition 2.9. A map φ : (M1, d1)→ (M2, d2), between metric spaces is called a quasi-
isometry if the following conditions are satisfied:

(i) There exists a ≥ 1 and b ≥ 0 such that

a−1d1(x1, x2)− b ≤ d2(φ(x1), φ(x2)) ≤ ad1(x1, x2) + b

for all x1, x2 ∈M1.

(ii) There exists ε > 0, such that for all y ∈ M2 there exists x ∈ M1 such that
d2(φ(x), y) < ε.

We say metric spaces (M1, d1) and (M2, d2) are quasi-isometric if there exists a quasi-
isometry φ : (M1, d1)→ (M2, d2).

We remark that a quasi-isometry is not necessarily a continuous, injective or surjective
map. However, we can construct a quasi-inverse φ− : (M2, d2)→ (M1, d1) as φ−(y) = x

where x ∈M1 is chosen so that d2(φ(x), y) < ε where ε is given by the above definition.
We now describe some well-known examples of quasi-isometry. The space Rd with

Euclidean metric and Zd with standard graph metric are quasi-isometric. Consider a
finitely generated group Γ with a finite system of generator A. For an element γ 6= 1,
let |γ|A denote the smallest positive integer k such that a product of k elements of
A ∪ A−1, and put |1|A = 0. This |·|A is called the word norm of Γ and defines a word
metric dA(γ1, γ2) =

∣∣γ−1
1 γ2

∣∣
A

. In other words, dA is the graph metric in the Cayley
graph of Γ corresponding to the symmetric generating set A ∪A−1. Assume two finite
generating sets A and B of a group Γ which induces metric dA and dB respectively. Then
(Γ, dA) and (Γ, dB) are quasi-isometric (See [65, Proposition 1.15]). Therefore every
finitely generated group defines a unique word metric space up to quasi-isometry and
we may often view a finitely generated group up as a metric space without explicitly
specifying the generating set. A large class of examples of quasi-isometry is given by the
Švarc-Milnor theorem. [65, Theorem 1.18].

Theorem 2.10 (Švarc-Milnor theorem). Suppose that (M,d) is a length space and Γ is a
finitely generated group equipped with a word metric acting properly and cocompactly
by isometries on M . Then Γ is quasi-isometric to (M,d). The map γ 7→ γ.x0 is a
quasi-isometry for each fixed base point x0 ∈M .

Note that the quasi-isometry between Zd and Rd is a special case of Theorem 2.10.
We will give a general construction of net which approximates a quasi-geodesic space
using a graph with combinatorial metric in next subsection.

The notion of quasi-isometry was extended to metric measure spaces by Couhlon and
Saloff-Coste in [21] which they called “isometry at infinity”. Let (Mi, di, µi), i = 1, 2 be
two metric measure spaces. Define

Vi(y, r) = µi ({z ∈Mi : di(y, z) ≤ r}) .

Definition 2.11. A map φ : (M1, d1, µ1)→ (M2, d2, µ2), between metric measure spaces
is called a quasi-isometry if the following conditions are satisfied:
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(i) φ : (M1, d1)→ (M2, d2) is a quasi-isometry between metric spaces;

(ii) There exists a constant C > 0 such that

C−1V1(x, 1) ≤ V2(φ(x), 1) ≤ CV1(x, 1)

for all x ∈M1.

We say metric measure spaces (M1, d1, µ1) and (M2, d2, µ2) are quasi-isometric if there
exists a quasi-isometry φ : (M1, d1, µ1)→ (M2, d2, µ2).

The arguments in this work implies that the long term behavior of natural ran-
dom walks depends mainly on the large scale geometry of the quasi-geodesic space.
Other important examples of properties invariant under quasi-isometries are large scale
doubling and Poincaré inequality. (See Proposition 2.14 and Proposition 3.16). We
conclude this subsection by proving that the large scale doubling property is preserved
by quasi-isometries for metric measure spaces satisfying (V D)loc. It is due to Couhlon
and Saloff-Coste in [21]. We need the following definition:

Definition 2.12. Let (M,d) be a metric space with X ⊆M and let R > 0. Then a subset
Y of X is R-separated if d(y1, y2) > R whenever y1 and y2 are distinct points of Y , and
a R-separated subset Y of X is called maximal if it is maximal among all R-separated
subsets of X with respect to the partial order of inclusion.

The existence of maximal R-separated subsets follows from Zorn’s lemma.
The following lemma compares volume of balls between quasi-isometric metric

measure spaces.

Lemma 2.13 ([21, Proposition 2.2]). Let Φ : (M1, d1, µ1) and (M2, d2, µ2) be a quasi-
isometry between metric measure spaces satisfying (V D)loc. Then for all h > 0, there
exists Ch > 0 such that

C−1
h V1(x,C−1

h r) ≤ V2(Φ(x), r) ≤ ChV1(x,Chr)

for all x ∈M1 and for all r ≥ h.

Proof. We denote balls and volumes by Bi and Vi respectively for i = 1, 2. Let R ≥ h such
that aR− b = R′ > 0 where a, b is from Definition 2.9. Let Y be a maximal R-separated
subset of B(x, r). Thus B(x, r) ⊆ ∪y∈YB(y,R). Hence

V1(x, r) ≤
∑
y∈Y

V1(y,R) (2.7)

By Lemma 2.6 and Definition 2.11, we have

V1(y,R) ≤ C1,RV1(y, 1) ≤ C1,RCV2(Φ(y), 1). (2.8)

for all y ∈ Y . The balls {B(y,R/2)}y∈Y are pairwise disjoint and hence the balls
B(Φ(xi), R

′/2) are pairwise disjoint. By Lemma 2.6

V2(Φ(xi), h) ≤ Ch,R′V2(Φ(xi), R
′/2) (2.9)

Combining 2.7, 2.8 and 2.9

V1(x, r) ≤
∑
y∈Y

C1,RCC1,R′V2(Φ(y), R′/2)

≤ C1,RCC1,R′V2(Φ(x), ar + b+R′/2) (2.10)

The last step follows from the definition of quasi-isometry, triangle inequality and that
B(Φ(xi), R

′/2) are pairwise disjoint. We can choose C2 large enough so that, ar + b +
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R′/2 ≤ C2r for all r ∈ [h,∞). Hence by Lemma 2.7, we have the desired lower bound on
V2 for all r ≥ R and by Lemma 2.6 for all r ≥ h. Similar argument applied to quasi-inverse
Φ−1 yields

V2(Φ(x), r) ≤ CV1(Φ−1 ◦ Φ(x), Cr).

The conclusion follows from the fact that d1(Φ−1 ◦ Φ(x), x) is bounded uniformly for all
x ∈M1.

For metric measure spaces satisfying (V D)loc, the condition (V D)∞ is preserved by
quasi-isometries. This is the content of the following lemma.

Proposition 2.14 ([21, Proposition 2.3]). Let (M1, d1, µ1) and (M2, d2, µ2) be quasi-
isometric spaces satisfying (V D)loc. Then (M1, d1, µ1) satisfies (V D)∞ if and only if
(M2, d2, µ2) satisfies (V D)∞.

Proof. Let Φ : M2 →M1 be a quasi-isometry. Using Lemma 2.13, there exists C > 0 such
that

C−1V2(x,C−1r) ≤ V1(Φ(x), r) ≤ CV2(x,Cr)

for all x ∈M2 and r ≥ 1. Hence by (2.4), we have

V2(x, 2r)

V2(x, r)
≤ C2 V1(Φ(x), 2Cr)

V1(Φ(x), C−1r)
≤ C2CD(2C2)δ

for all r ≥ max(C, 1).

2.4 Approximating quasi-geodesic spaces by graphs

One might think of Zd as a graph approximation or discretization of Rd. More
generally, we can approximate quasi-geodesic spaces by graphs. By [76, Proposition
6.2], a metric space is quasi-isometric to a graph if and only if it is quasi-geodesic.
Therefore quasi-geodesic spaces form a natural class of metric spaces that can be
roughly approximated by graphs.

We begin by recalling some standard definitions and notation from graph theory. We
restrict ourselves to simple graphs. A graph G is a pair G = (V,E) where V is a set (finite
or infinite) called the vertices of G and E is a subset of P2(V ) (i.e.,two-element subsets of
V ) called the edges of G. A graph (V,E) is countable (resp. infinite) if V is a countable
(resp. infinite) set. We say that p is a neighbor of q (or in short p ∼ q), if {x, y} ∈ E. The
degree of p is the number of neighbors of p, that is deg(p) = |{q ∈ V : p ∼ q}|. A graph
(V,E) is said to have bounded degree if supv∈V deg(v) <∞.

A finite sequence (p0, p1, . . . , pl) of points in V is called a path from p0 to pl of length
l, if each pk is a neighbor of pk−1. A graph G = (V,E) is said to be connected if for all
p, q ∈ V , there exists a path from p to q. For points p, q ∈ V of a graph G = (V,E), let
dG(p, q) denote the minimum of the lengths of paths from p to q with dG(p, q) = +∞ if
there exists no path from p to q. This makes (V, dG) an extended metric space. The graph
(V,E) is connected if and only if (V, dG) is a metric space. The extended metric dG is
called graph metric or combinatorial metric of G. Notice that we can recover a graph
(V,E) from its (extended) metric space structure (V, dG) and vice-versa.

Using the above identification, we view a connected graph as a metric space. We
would like to view a connected graph as a metric measure space. This motivates the
definition of weighted graph. A weight m : V → (0,∞) on a graph (V,E) is a positive
function on V . With a slight abuse of notation, m induces a measure on V (also denoted
by m) as

m(A) =
∑
v∈A

m(v)
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for each A ⊆ V . A weighted graph is a graph (V,E) endowed with a weight m. By
the above, we will identify a weighted graph G = (V,E) with weight m as a (possibly
extended) metric measure space (V, dG,m).

The definition of ε-net is due to Kanai in the setting of Riemannian manifolds (See
[48]) and was extended in [21] for weighted Riemannian manifolds.

Definition 2.15. A ε-net of a metric measure space (M,d, µ) is a weighted graph G =

(V,E) with weight m described as follows: The vertices V is a maximal ε-separated
subset of M . The edges E are defined by {x, y} ∈ E if and only if 0 < d(x, y) ≤ 3ε. The
weight m is defined as m(x) = µ (B(x, ε)). Let dG denote the graph metric of G. We often
alternatively view the ε-net as (extended) metric measure space (V, dG,m) defined by
the corresponding weighted graph.

The above definition does not guarantee ε-net to be a connected graph. However it is
connected and countable in many situations as described in the lemma below. We collect
the basic properties of nets in Proposition 2.16 which builds on the ideas of [48], [50]
and [21].

Proposition 2.16. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfy-
ing (V D)loc and let ε ≥ b. Let G = (X,E) be an ε-net of (M,d, µ) with weight m and let
(X, dG,m) denote the corresponding extended metric measure space. Then we have the
following:

(a) The collection of balls I = {B(x, ε/2) : x ∈ X} is pairwise disjoint and the collection
J = {B(x, ε) : x ∈ X} covers M where B(., .) denotes closed metric ball in (M,d).

(b) Bounded degree property: The graph (X,E) is of bounded degree, that is

sup
p∈X

deg(p) <∞.

(c) (X, dG,m) satisfies (V D)loc.
(d) There exists A > 0 such that

1

3ε
d(x, y) ≤ dG(x, y) ≤ Ad(x, y) +A (2.11)

for all x, y ∈ X. Therefore G is a connected graph and (X, dG,m) is a metric
measure space.

(e) The metric measure spaces (M,d, µ) and (X, dG,m) are quasi-isometric.
(f) X is a countable set. Moreover if diameter(M,d) =∞, then X is an infinite set.
(g) If (M,d, µ) satisfies (V D)∞, then so does (X, dG,m).
(h) Finite overlap property: Define

Np(δ) = |{x ∈ X : d(x, p) ≤ δ}|.

for each δ > 0 and p ∈M . Then supp∈M Np(δ) <∞.

The bounded degree property is true for all weighted graphs (X, d,m) satisfy-
ing (V D)loc as shown below.

Lemma 2.17. Let (X, d,m) be a metric measure space satisfying (V D)loc that corre-
sponds to a weighted graph G = (X,E) with weight m. Then G is of bounded degree
and

sup
x,y∈X:x∼y

m(y)

m(x)
= Cm <∞ (2.12)

Proof. By (V D)loc, there exists C > 0 such that

m(y) ≤ V (x, 1) ≤ CV (x, 1/2) = Cm(x)

for all x, y ∈ X with x ∼ y. The above inequality shows that Cm ≤ C and supx∈X deg(x) ≤
C2
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3 Poincaré inequalities

Poincaré inequalities and its many variants are functional inequalities that have been
extensively studied. Many results in classical theory of Sobolev spaces, Hölder regularity
estimates for solutions of elliptic and parabolic partial differential equations, properties
of harmonic functions, Harnack inequalities can be generalized to spaces satisfying
volume doubling and a Poincaré inequality. See the introduction in [40] for a survey and
references.

Definition 3.1. We say that a complete weighted Riemannian manifold (M, g) with
measure µ satisfies a Poincaré inequality (P )Rm if there exists C1 > 0, C2 ≥ 1 such that
for all f ∈ C∞(M), for all x ∈M and for all r > 0,

ˆ
B(x,r)

∣∣f(y)− fB(x,r)

∣∣2µ(dy) ≤ C1r
2

ˆ
B(x,C2r)

|grad f(y)|2µ(dy) (P )Rm

where fB(x,r) denote the µ-average of f in B(x, r)

fB =
1

V (x, r)

ˆ
B(x,r)

f(y)µ(dy),

and |grad f| denotes the Riemannian length of the gradient vector.

The above inequality is sometimes called a weak, local, scale-invariant or L2 Poincaré
inequality but we will refrain from using such adjectives. The word local means that
we are interested in average and integrals around some point x. This is in contrast
with global Poincaré inequality in which average and integrals are over the whole space
M . The Poincaré inequality is scale-invariant or uniform to emphasize the fact the the
constants C1 and C2 is independent of x or r. For 1 ≤ p <∞, we might replace (P )Rm
with the Lp Poincaré inequality

ˆ
B(x,r)

∣∣f(y)− fB(x,r)

∣∣pµ(dy) ≤ C1r
p

ˆ
B(x,C2r)

|grad f(y)|pµ(dy).

instead of L2 version presented above. For spaces satisfying global doubling property,
one can always take C2 = 1 in (P )Rm. This is due to D. Jerison by a Whitney decomposi-
tion argument [45] (see also [70, Section 5.3.2]). The Poincaré inequality with C2 = 1 is
called strong Poincaré inequality as opposed to the weak inequality (P )Rm.

3.1 Gradient and Poincaré inequality at a given scale

To generalize the Poincaré inequality (P )Rm to metric measure spaces, we must find a
suitable definition for “length of gradient”. We will consider a class of random walks that
spreads over different distances. Therefore we define length of gradient over different
scales for a metric measure space. We use the following definition due to [76] for length
of gradient at a scale h for a function f : M → R with f ∈ L∞(M,µ) (denoted by |∇f|h).

Definition 3.2. Let (M,d, µ) be a metric measure space and let f ∈ L∞loc(M,µ). Then
length of gradient at a scale h for a function f is defined as

|∇f|h(x) =

(
1

V (x, h)

ˆ
B(x,h)

|f(y)− f(x)|2µ(dy)

)1/2

. (3.1)

for all x ∈M .

Remark 3.3. Our definition of |∇f|h coincides with |∇f|h,2 in the notation of Tessera
[76].

EJP 28 (2023), paper 64.
Page 11/81

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP954
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Random walks on metric measure spaces

Now that we are armed with length of gradient, we define the corresponding Poincaré
inequality.

Definition 3.4. We say that a metric measure space (M,d, µ) satisfies a Poincaré in-
equality at scale h, if there exists C1 > 0, C2 ≥ 1, r0 > 0 such that for all f ∈ L∞loc(M,µ),
for all x ∈M and for all r ≥ r0.

ˆ
B(x,r)

∣∣f(y)− fB(x,r)

∣∣2µ(dy) ≤ C1r
2

ˆ
B(x,C2r)

(|∇f|h(y))
2
µ(dy) (P )h

where fB(x,r) denote the µ-average of f in B(x, r)

fB =
1

V (x, r)

ˆ
B(x,r)

f(y)µ(dy).

We will denote the above inequality by Ph(r0, C1, C2) or simply (Ph).

The rest of the section is devoted to the study of various properties and examples
of the above Poincaré inequality (P )h. In particular, we will show that for a weighted
Riemannian manifold the Poincaré inequality at scale h (P )h, generalizes the Poincaré
inequality (P )Rm under some mild hypothesis. One of the main results that we will see
in this section is that Poincaré inequality (P )h is preserved under quasi-isometries.

The following simple fact will be frequently used in rest of this section. Let (M,d, µ)

be a metric measure space and let A ⊂M with 0 < µ(A) <∞. Then for every function
f ∈ L∞(A)

inf
α∈R

ˆ
A

|f(y)− α|2µ(dy) =

ˆ
A

|f(y)− fA|2µ(dy) (3.2)

where fA is the µ-average of f in A,

fA =
1

µ(A)

ˆ
A

f dµ.

In other words, mean minimizes squared error.
A Poincaré inequality at scale h implies a Poincaré inequality at all larger scales h′

with h′ ≥ h.

Lemma 3.5. Let (M,d, µ) be a metric measure space satisfying (V D)loc and Poincaré
inequality (P )h at scale h. Then for all h′ ≥ h, (M,d, µ) satisfies (P )h′ .

Proof. Assume Ph(r0, C1, C2). Then for all functions f ∈ L∞loc and for all balls B(x, r) with
r ≥ r0 and x ∈M , we have

ˆ
B(x,r)

∣∣f − fB(x,r

∣∣2 dµ
≤ C1r

2

ˆ
B(x,C2r)

|∇hf|2 dµ

= C1r
2

ˆ
B(x,C2r)

ˆ
B(x,C2r+h′)

|f(y)− f(z)|2
1d(x,y)≤h

V (y, h)
dz dy

≤ Ch,h′C1r
2

ˆ
B(x,C2r)

ˆ
B(x,C2r+h′)

|f(y)− f(z)|2
1d(x,y)≤h′

V (y, h′)
dz dy

which is Ph′(r0, C1Ch,h′ , C2). In the last line above, we used Lemma 2.6.

Remark 3.6. A question now arises: At what scales h does a Poincaré inequality (P )h
hold? We have a satisfactory answer for length spaces and graphs. If a graph satisfies
Poincaré inequality at some scale, it satisfies Poincaré inequality at all scales h ≥ 1 (See
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Corollary 3.15). Moreover, a graph does not satisfy Poincaré inequality for scales smaller
than 1 because the gradient at scales smaller than 1 is identically zero. If a length space
satisfies Poincaré inequality at some scale, then it satisfies Poincaré inequality at all
positive scales (See Corollary 3.17). We will see in Proposition 9.9 that if (P )h is satisfied
at for some h > 0 then (P )h is true for all h > b. We analyze an example which is neither
a graph nor a length space (See Example 3.22) to show that h > b is the best possible
bound.

We now show that the constant r0 in Ph(r0, C1, C2) is flexible.

Lemma 3.7. Assume the Poincaré inequality Ph(r0, C1, C2) holds for a metric measure
space (M,d, µ). Then for every r1 > 0 and there exists constants C ′1, C

′
2 such that the

Poincaré inequality Ph(r1, C
′
1, C

′
2) holds.

Proof. The non-trivial case to check is r1 < r0. Assume B(x, r) with r1 ≤ r < r0. Then
for all functions f ∈ L∞loc(M), by (3.2) we have

ˆ
B(x,r)

∣∣f − fB(x,r)

∣∣2 dµ ≤ ˆ
B(x,r)

∣∣f − fB(x,r0)

∣∣2 dµ
≤
ˆ
B(x,r0)

∣∣f − fB(x,r0)

∣∣2 dµ.
Combining the above inequality with Ph(r0, C1, C2) yields

ˆ
B(x,r)

∣∣f(y)− fB(x,r)

∣∣2 dy ≤ C1r
2
0

ˆ
B(x,C2r0)

|∇f|2h dµ.

Hence we can choose C ′1 = C1(r0/r1)2 and C ′2 = C2(r0/r1).

3.2 Robustness under quasi-isometry

Since quasi-isometry between metric measure spaces satisfying (V D)loc is an equiv-
alence relation, we may expect that a quasi-isometry preserves certain invariants of
such spaces. For instance, we saw in Proposition 2.14 that quasi-isometry preserves the
large scale doubling property. In this section, we shall see that quasi-isometry preserves
Poincaré inequality (P )h. The approach for proving robustness of functional inequalities
can traced back to the seminal works of Kanai [48, 49, 50] and further developments by
Couhlon and Saloff-Coste [21].

The idea is to show that a functional inequality on the metric measure space is
equivalent to a similar functional inequality on its net. Since quasi-isometry is an
equivalence relation, it suffices to show that the functional inequality on graphs is
preserved under quasi-isometries. To compare functional inequalities back and forth
between a metric measure space and its net, we need to be able to transfer functions on
metric measure space to functions on its net and vice-versa. We start by recalling those
tools.

As before, let (M,d, µ) be a quasi-b-geodesic metric measure space satisfying (V D)loc

and let (X, dG,m) be its ε-net for some fixed ε ≥ b. By Proposition 2.16, we have
that (X, dG,m) is a metric measure space satisfying (V D)loc. Moreover the graph
corresponding to (X, dG,m) is connected, countable with bounded degree. Let DX =

supx∈X deg(x) <∞ be the maximum degree. We will denote closed balls in (M,d, µ) and
(X, dG, µ) by B and BG respectively. Similarly, we denote their corresponding volumes
by V and VG respectively.

Given a function g ∈ L∞loc(M,µ), we a define a function g̃ : X → R on its net as

g̃(x) =
1

V (x, ε)

ˆ
B(x,ε)

g dµ. (3.3)
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for all x ∈M . Conversely, given a function f : X → R on the net, we define f̂ : M → R

as

f̂ =
∑
x∈X

f(x)θx (3.4)

where θx : M → R is defined by

θx(p) =
1B(x,ε)(p)∑
y∈X 1B(y,ε)(p)

. (3.5)

The sum in (3.4) and denominator of (3.5) is a finite sum due to the finite overlap property
of Proposition 2.16(h). Moreover, there exists a constant cX > 0 such that {θx}x∈X is a
partition of unity (

∑
x∈X θx ≡ 1) satisfying

cX1B(x,ε) ≤ θx ≤ 1B(x,ε) (3.6)

for all x ∈ X. The above properties of the partition of unity θx can be verified using
Proposition 2.16.

We will now compare norms and gradients for the transfer of functions between
metric measure space and its net. For a metric measure space (M,d, µ) and for all
f ∈ L∞loc(A) where A ⊂M , we denote by

‖f‖p,A =

(ˆ
A

|f|p dµ
)1/p

.

We adapt the same notation for its net by considering it as a metric measure space.

Definition 3.8. For a function f : X → R on a graph (X,E), we define the discrete
gradient of f at x as

δf(x) =

(∑
y∼x
|f(y)− f(x)|2

)1/2

.

This definition of discrete gradient was used to define Poincaré inequality for graphs
in [21]. We now show that our definition of |∇f|1 is comparable to δf .

Lemma 3.9. Let (X, dG,m) be a weighted graph satisfying (V D)loc. Then there exists
C > 0 such that

C−1|∇f|1(x) ≤ δf(x) ≤ C|∇f|1(x)

for all functions f : X → R and for all x ∈ X.

Proof. We write the gradient as

(|∇f|1(x))
2

=
1

m(x) +
∑
y∈X:y∼xm(y)

∑
y∈X:y∼x

|f(y)− f(x)|2m(y).

The conclusion immediately follows from Lemma 2.17.

Remark 3.10. Therefore our Poincaré inequality (P )1 generalizes the Poincaré inequal-
ity for graphs considered by Delmotte [23, 25]. Using the above lemma, our definition of
(P )1 for graphs is equivalent to the L2 version of (P ) for graphs in [21].

The next lemma compares gradient of a function on net and with its metric measure
space version.
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Lemma 3.11. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfying (V D)loc

and let (X, d,m) be its ε-net for some ε ≥ b. For all h > 0, there exists positive reals C,C ′

such that for all x ∈M , for all r ≥ 1, and for all functions f : X → R, we have∥∥∥∣∣∣∇f̂∣∣∣
h

∥∥∥2

2,B(x,r)
≤ C ‖δf‖22,BG(x̄,C′r)

where x̄ ∈ X is such that d(x, x̄) ≤ ε and f̂ : M → R is defined as in (3.4).

Proof. Using Lemma 2.6, Proposition 2.16 (a) and (2.11), there exists C1 > 0 such that
ˆ
B(x,r)

ˆ
M

∣∣∣f̂(y)− f̂(z)
∣∣∣2 1d(y,z)≤h

V (y, h)
dz dy (3.7)

≤
∑

s∈BG(x̄,C1r)

ˆ
B(s,ε)

ˆ
M

∣∣∣f̂(y)− f̂(z)
∣∣∣2 1d(y,z)≤h

V (y, h)
dz dy

for all x ∈M and r ≥ 1. For all s ∈ X, y ∈ B(s, ε) and z ∈ B(y, h), we have

f̂(y)− f̂(z) =
∑
t∈X

f(t)(θt(y)− θt(z)) =
∑
t∈X

(f(t)− f(s))(θt(y)− θt(z))

=
∑

t∈X,d(s,t)≤2ε+h

(f(t)− f(s))(θt(y)− θt(z))

For the last line, if d(s, t) > 2ε+ h, then by triangle inequality d(t, y) > h+ ε, d(t, z) > ε

and therefore θt(y) = θt(z) = 0 whenever d(s, t) > 2ε+ h. Let DX <∞ be the maximum
degree of the net from Proposition 2.16(b) and n0 = A(h + 2ε) + A + h where A is
from (2.11). Since |BG(s, n0)| ≤ 2Nn0 , we have∣∣∣f̂(p1)− f̂(p2)

∣∣∣ ≤ 2
∑

t∈BG(s,n0)

|f(t)− f(s)| ≤ 4Dn0

X sup
t∈BG(s,n0)

|f(t)− f(s)| (3.8)

Let p0, p1, . . . , pdG(s,t) be a path from s to t. For all t ∈ BG(s, n0), by Cauchy-Schwarz
inequality we have

|f(t)− f(s)|2 ≤

dG(t,s)−1∑
i=0

(f(pi)− f(pi+1))

2

≤ n0

∑
p∈BG(s,n0)

|δf(p)|2. (3.9)

Combining (3.7), (3.8) and (3.9)∥∥∥∣∣∣∇f̂∣∣∣
h

∥∥∥2

2,B(x,r)
≤

∑
s∈BG(x̄,C1r)

4N2n0n0

∑
t∈BG(s,n0)

|δf(t)|2m(s)

≤
∑

s∈BG(x̄,C1r)

Cn0
m 4N2n0n0

∑
t∈BG(s,n0)

|δf(t)|2m(t)

≤ 8Cn0
m D3n0

X n0

∑
s∈BG(x̄,C3r)

|δf(t)|2m(t)

for all x ∈M and all r ≥ 1. The second line follows from Proposition 2.16 and the last
line from |B(t, n0)| ≤ 2Dn0

X .

The following proposition shows that Poincaré inequalities can be transferred between
a metric measure space and its net.

Proposition 3.12. Let (M,d, µ) be a b-quasi-geodesic space satisfying (V D)loc and let
(X, d,m) be its ε-net for some ε ≥ b. Then for all h ≥ 5ε, (X, dG,m) satisfies (P )1 if and
only if (M,d, µ) satisfies (P )h.
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Remark 3.13. In general, we do not know if the inequality h ≥ 5ε in the above statement
is required. We believe that h > b is sufficient but we are unable to prove this.

Proof of Proposition 3.12. Suppose (X, dG,m) satisfies P1(r0, C
′
1, C

′
2). Let g ∈ L∞loc and

let g̃ : X → R be defined as (3.3). Let x ∈M and r ≥ r0 be arbitrary. Let x̄ ∈ X be such
that d(x, x̄) ≤ ε. There exists C1 > 0 such that, we have

ˆ
B(x,r)

∣∣g(y)− gB(x,r)

∣∣2dy (3.10)

≤
ˆ
B(x,r)

|g(y)− α|2dy ≤
∑

p∈BG(x̄,C1r)

ˆ
B(p,ε)

|g(y)− α|2dy

≤ 2
∑

p∈BG(x̄,C1r)

(ˆ
B(p,ε)

|g(y)− g̃(p)|2dy +m(p)|̃g(p)− α|2
)

for all α ∈ R and all functions g. The second line above follows from (3.2), Proposi-
tion 2.16 (a) and (2.11). The last line follows from (a+ b)2 ≤ 2(a2 + b2). The first term
above is bounded using Jensen’s inequality asˆ

B(p,ε)

|g(y)− g̃(p)|2dy ≤ 1

V (p, ε)

ˆ
B(p,ε)

ˆ
B(p,ε)

|g(y)− g(z)|2 dz dy

Hence by Lemma 2.6, we have

I1 =
∑

p∈BG(x̄,C1r)

ˆ
B(p,ε)

|g(y)− g̃(p)|2dy

≤ Cε,6ε
∑

p∈BG(x̄,C1r)

ˆ
B(p,ε)

ˆ
B(p,ε)

|g(y)− g(z)|2
1d(y,z)≤2ε

V (y, 5ε)
dz dy

≤ C2 ‖|∇g|5ε‖
2
2,B(x,C3r)

(3.11)

for some C2, C3 large enough. We used Lemma 2.6 and triangle inequality in second line
above and Proposition 2.16(h) and (2.11) in the last line. Choose α = g̃BG(x̄,C1r) in (3.10),
so as to apply P1(r0, C

′
1, C

′
2) on (X, d,m) to bound the second term in (3.10) as

I2 =
∑

p∈BG(x̄,C1r)

m(p)|̃g(p)− α|2 ≤ C4r
2 ‖δg̃‖22,BG(x̄,C5r)

(3.12)

For all p, q ∈ X satisfying p ∼ q, by Jensen’s inequality and triangle inequality we have

|̃g(p)− g̃(q)|2 ≤ 1

m(p)m(q)

ˆ
B(p,ε)

ˆ
B(q,ε)

|g(y)− g(z)|2 dz dy

≤ 1

m(p)m(q)

ˆ
B(p,ε)

ˆ
B(q,ε)

|g(y)− g(z)|21d(y,z)≤5ε dz dy

Hence for all p ∈ X,

|δg̃(p)|2m(p)

≤
∑

q∈X,q∼p

1

V (q, ε)

ˆ
B(p,4ε)

ˆ
B(p,4ε)

|g(y)− g(z)|21d(y,z)≤5ε dz dy

≤ Cε,9ε
∑

q∈X,q∼p

ˆ
B(p,4ε)

ˆ
B(y,4ε)

|g(y)− g(z)|2
1d(y,z)≤5ε

V (y, 5ε)
dz dy

≤ Cε,9εDX

ˆ
B(p,4ε)

ˆ
B(p,4ε)

|g(y)− g(z)|2
1d(y,z)≤5ε

V (y, 5ε)
dz dy (3.13)
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The third line follows from Lemma 2.6 and the last line from bounded degree property of
Proposition 2.16(b). Combining (3.12), (3.13) along with (2.11) and Proposition 2.16(h)
gives

I2 ≤ C6r
2 ‖|∇g|5ε‖

2
2,B(x,C7r)

. (3.14)

Combining (3.10), (3.11) and (3.14) yields Poincaré inequality (P )5ε for (M,d, µ). By
Lemma 3.5, we get (P )h for all h ≥ 5ε.

Conversely, suppose that (M,d, µ) satisfies Ph(r1, C
′
3, C

′
4) for some h ≥ 5ε. Let f :

X → R be an arbitrary function and define f̂ : M → R as in (3.4). Denote BG(p, r) be
an arbitrary ball in (X, d,m) where r ≥ r1. Then using (3.2), (V D)loc and the inequality
(a+ b)2 ≤ 2(a2 + b2) we have∑

q∈BG(p,r)

∣∣f(q)− fBG(x,r)

∣∣2m(q) (3.15)

≤
∑

q∈BG(p,n)

|f(q)− α|2m(q) ≤ Cε/2
∑

q∈BG(x,n)

ˆ
B(q,ε/2)

|f(q)− α|2 dµ

≤ 2Cε/2
∑

q∈BG(p,n)

ˆ
B(q,ε/2)

(∣∣∣f(q)− f̂(y)
∣∣∣2 +

∣∣∣f̂(y)− α
∣∣∣2) dy

for all α ∈ R. Using Proposition 2.16(a) and (2.11),there exists positive reals C8, C11, C12

such that for all r ≥ min(1, r1/C8) and all functions f , we have

J2 =
∑

q∈BG(p,r)

ˆ
B(q,ε/2)

∣∣∣f̂(y)− α
∣∣∣2 dy ≤ ˆ

B(p,C8r)

∣∣∣f̂(y)− α
∣∣∣2 dy

≤ C9r
2
∥∥∥∣∣∣∇f̂∣∣∣

h

∥∥∥2

2,B(p,C10r)
≤ C11r

2 ‖δf‖22,BG(p,C12r)
. (3.16)

In the second step above, we fix α = f̂B(p,C2r) and apply Poincaré inequality (P )h and

in the last line we apply Lemma 3.11. Let q ∈ X and y ∈ B(q, ε/2). Since f̂(y) =∑
t∈X:dG(t,q)≤1 θt(y)f(t), we have

∣∣∣f(q)− f̂(y)
∣∣∣ =

∣∣∣∣∣∣
∑

t∈X:d(t,q)≤1

θt(y)(f(q)− f(t))

∣∣∣∣∣∣ ≤
∑

t∈X:d(t,q)≤1

|(f(q)− f(t))|

≤ δf(q)
√
DX .

The last line follows from Cauchy-Schwarz inequality and maximum degree DX from
Proposition 2.16(b). Using this estimate, we have

J1 =
∑

q∈BG(p,r)

ˆ
B(q,ε/2)

∣∣∣f(y)− f̂(y)
∣∣∣2 dy ≤ DXCε/2

∑
y∈BG(p,r)

|δf(q)|2m(q)

≤ DXCε/2 ‖δf‖
2
2,BG(p,r) . (3.17)

Thus (P )1 for (X, d,m) follows from (3.15), (3.16) and (3.17) along with Lemma 3.9.

We now show that Poincaré inequality (P )1 is preserved under quasi-isometry for
graphs.

Let (X, d,m) be a weighted graph. Then for the closed balls in the graph, we have
B(x, r) = B(x, brc). Hence by Lemmas 3.7 and 3.9, we have the following equivalent
definition of (P )1: A weighted graph (X, d,m) satisfies (P )1, if there exists C1 > 0, C2 ≥ 1

such that for all f : X → R, for all x ∈ X and for all n ∈ N∗.∑
y∈B(x,n)

∣∣f(y)− fB(x,n)

∣∣2µ(dy) ≤ C1n
2

∑
B(x,C2n)

|δf(y)|2m(y) (3.18)
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where fB(x,n) is the average of f in B(x, n) with respect to measure m. We will use the
alternate definition for the proposition below.

Proposition 3.14 ([21], Proposition 4.2). Consider weighted graphs (X1, d1,m1) and
(X2, d2,m2) that satisfy (V D)loc and are quasi-isometric. Then (X1, d1,m1) satisfies (P )1

if and only if (X2, d2,m2) satisfies (P )1.

Corollary 3.15. Let (X, d,m) be a weighted graph satisfying (V D)loc and let h ≥ 1. Then
(X, d,m) satisfies (P )1 if and only if (X, d,m) satisfies (P )h.

Proof. By Lemma 3.5, (P )1 implies (P )h.
Conversely, assume (X, d,m) satisfies (P )h. Fix k = bhc. Since |∇f|h = |∇f|k for all

functions f : X → R, (X, d,m) satisfies (P )k. k-fuzz of a weighted graph is defined as
the weighted graph (X, dk,m) where the edges are defined by dk(x, y) = 1 if and only
if 1 ≤ d(x, y) ≤ k for x, y ∈ X. It is straightforward to verify that the k-fuzz (X, dk,m)

satisfies (V D)loc and is quasi-isometric to (X, d,m). Since (X, d,m) satisfies (P )k, the
k-fuzz (X, dk,m) satisfies (P )1. Hence by Proposition 3.14, (X, d,m) satisfies (P )1.

As outlined at the start, the robustness of Poincaré inequality on graphs in Proposi-
tion 3.14 can be transferred to arbitrary quasi-geodesic spaces using Proposition 3.12.

Proposition 3.16. For i = 1, 2, let (Mi, di, µi) be quasi-bi-geodesic spaces satisfy-
ing (V D)loc. Assume (M1, d1, µ1) and (M2, d2, µ2) are quasi-isometric. Let h1 ≥ 5b1
and for all h2 ≥ 5b2. Then (M1, d1, µ1) satisfies (P )h1 if and only if (M2, d2, µ2) satisfies
(P )h2 .

Proof. It is a direct consequence of Propositions 3.12 and 3.14.

The above Proposition along with the fact that length space is b-geodesic for all b > 0

gives the following.

Corollary 3.17. Let (M,d, µ) be a length space satisfying (V D)loc. Then for every
h1, h2 > 0, (M,d, µ) satisfies (P )h1

if and only if (M,d, µ) satisfies (P )h2
.

3.3 Poincaré inequalities in Riemannian manifolds

In this subsection, we see the relationship between various Poincaré inequalities on a
weighted Riemannian manifold. We start by introducing some Poincaré inequalities from
[21].

Definition 3.18. We say that a complete weighted Riemannian manifold (M, g) with
measure µ satisfies (P )∞ if there exists r0 > 0, C1 > 0, C2 ≥ 1 such that for all
f ∈ C∞(M), for all x ∈M and for all r ≥ r0, we have

ˆ
B(x,r)

∣∣f(y)− fB(x,r)

∣∣2µ(dy) ≤ Cr0r2

ˆ
B(x,C2r)

|grad f(y)|2µ(dy) (P )∞

where fB(x,r) denote the average of f in B(x, r) with respect to µ. We say that a
complete weighted Riemannian manifold (M, g) with measure µ satisfies (P )loc if there
exists C1 > 0, C2 ≥ 1 such that for all f ∈ C∞(M), for all x ∈ M and for all r ≥ 0, we
have ˆ

B(x,r)

∣∣f(y)− fB(x,r)

∣∣2µ(dy) ≤ Cr
ˆ
B(x,C2r)

|grad f(y)|2µ(dy) (P )loc

where fB(x,r) denote the average of f in B(x, r) with respect to µ.

It is clear that (P )Rm implies (P )∞ and (P )loc. The inequality (P )loc is a weak
assumption. For instance, manifolds with a lower bound on Ricci curvature satisfy (P )loc.
Inequality (P )∞ is a large scale version of (P )Rm.
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Proposition 3.19 ([21, Proposition 6.10]). Let (M, g, µ) be a weighted Riemannian mani-
fold satisfying (V D)loc and (P )loc and let (X, d,m) be its ε-net for some ε > 0. Then (M, g)

with measure µ satisfies (P )∞ if and only if (X, d,m) satisfies (P )1.

Propositions 3.19 and 3.12 along with Corollary 3.17 gives the following

Proposition 3.20. Let (M, g, µ) be a weighted Riemannian manifold with Riemannian
distance d. Denote by (X, dG,m) be an ε-net of (M,d, µ) for some ε > 0. Assume (M,d, µ)

satisfies (V D)loc and (P )loc. Then the following are equivalent:

(a) (M,d, µ) satisfies (P )∞.

(b) (M,d, µ) satisfies (P )h for some h > 0.

(c) (M,d, µ) satisfies (P )h for all h > 0.

(d) (X, dG,m) satisfies (P )1.

(e) (X, dG,m) satisfies (P )h for some h ≥ 1.

3.4 Poincaré inequality: examples and Non-examples

A large class of examples for (P )h can be obtained from Proposition 3.16 and 3.20.
For instance, Buser proved (P )Rm for Riemannian manifolds with non-negative Ricci
curvature. Therefore by Proposition 3.20, Riemannian manifolds with non-negative Ricci
curvature satisfy (P )h for all positive scales h. The following example is from [34].

Example 3.21. [Euclidean space with radial weights] Consider Rn with standard Rie-
mannian metric g, Euclidean distance d and measure dµα(x) = (1+|x|2)α/2 dx. It is easy to
verify that (Rn, d, µα) satisfies (V D)loc and (P )loc. Moreover (Rn, d, µα) satisfies (V D)∞
if and only if α > −n. If n ≥ 2, then (Rn, d, µα) satisfies (P )∞ and therefore (P )h for all
values of α ∈ R and h > 0 (See Remark 3.13 in [34]). However, (R, d, µα) does not sat-
isfy (P )∞ for α ≥ 1. It can be easily seen using the test function fα(x) =

´ x
0

(1+ t2)−α/2 dt.
By [34, Theorem 7.1(i)], (R, d, µα) satisfies (P )∞ if −1 < α < 1. Due to an unpublished
result of Grigor’yan and Saloff-Coste, (R, d, µα) satisfies (P )∞ if and only if α < 1.

Example 3.22. We describe an example of quasi-geodesic space which is neither a
graph, nor a length space. Consider the ‘Broken line’ BL ⊂ R

BL =
⋃
n∈Z

[n− 1/4, n+ 1/4]

It is quasi-b-geodesic if and only if b ≥ 1/2. We equip it with the Euclidean distance d and
restriction of Lebesgue measure µ on BL. (P )h is not true for (BL, d, µ) if h ≤ 1/2. It
can be seen using the test function f : BL→ R defined by f(x) = (−1)bx+1/4c. However,
it can be shown that for (BL, d, µ) satisfies (P )h for all h > 1/2.

Example 3.23 (Hyperbolic space). Consider the Hyperbolic n-space Hn equipped with
Riemannian distance dH and Riemannian measure µ. (Hn, dH , µ) satisfies (V D)loc

and (P )loc. However (Hn, d, µ) does not satisfy (V D)loc because the volume of balls
grows exponentially. Further (Hn, dH , µ) does not satisfy the Poincaré inequality (P )∞.

Another example in a similar spirit is the infinite d-regular tree Td equipped with
graph distance metric and counting measure. It is easy to very that if d ≥ 3, Td does not
satisfy (V D)∞ and does not satisfy (P )h for all h > 0.

Examples 3.21 and 3.23 illustrates all the four possibilities that can occur with
properties (V D)∞ and (P )∞. It is summarized in the table below.

4 Markov kernel, semigroup and Dirichlet forms

In this section, we consider Markov chains on metric measure space (M,d, µ). Let B
denote the Borel σ-algebra on (M,d). Our work concerns long term behavior of a natural
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Table 1: Examples of spaces in relation to the properties (V D)∞ and (P )∞.
(V D)∞ (P )∞ Examples
True True (Rn, d, µα) with n ≥ 2 and α > −n or n = 1

and α ∈ (−1, 1)

True False (R, d, µα) with α ≥ 1

False True (Rn, d, µα) with α ≤ −n
False False (Hn, dH , µ)

family of Markov chains on the state space M . We will recall some standard definitions
and facts about discrete time Markov chains.

A Markov transition function is a map P : M × B : [0,∞) such that x 7→ (x,A) is
B-measurable function on M for all A ∈ B and A 7→ P(x,A) is a probability measure on
(M,B) for all x ∈M . A Markov transition function P on (M,B) is µ-symmetric if

ˆ
M

ˆ
M

u1(x)u2(y)P(x, dy)µ(dx) =

ˆ
M

ˆ
M

u1(x)u2(y)P(x, dy)µ(dx) (4.1)

for all measurable functions u1, u2 : M → [0,∞).

Remark 4.1. For the rest of this work, we assume that the our Markov transition
function is µ-symmetric with respect to some measure µ.

Associated with a µ-symmetric Markov transition function P is a Markov operator P ,
which is a linear operator defined by

Pf(x) =

ˆ
M

f(y)P(x, dy) (4.2)

on the set of bounded measurable functions. The operator P extends as a contraction
operator on Lp(M) = Lp(M,µ) for all p ∈ [1,∞]. With a slight abuse of notation, we
denote this extension again by P : Lp(M)→ Lp(M) for each 1 ≤ p ≤ ∞. Moreover P is
positivity preserving, i.e. if f ≥ 0 then Pf ≥ 0.

The n-th iteration Pn of the operator P is just the operator associated with kernel Pn
defined inductively by

Pn(x,A) :=

ˆ
M

Pn−1(z,A)P(x, dz)

for all x ∈ M , for all measurable sets A ∈ B and P1 := P. We now have the Markov
semigroup of linear operators (Pn)n∈N0

where P 0 is the identity operator on L2(M). The
Chapman-Kolmogorov equation is given by

Pm+n(x,A) =

ˆ
M

Pn(z,A)Pm(x, dz) (4.3)

for all A ∈ B and for all m,n ∈ N∗. By Fubini’s theorem, (4.3) implies the semigroup
property Pm+nf = PmPnf for all m,n ∈ N0 and f ∈ L1(M).

The operator ∆ := I − P is the Laplacian which generates the Dirichlet form

E(f, f) = 〈f,∆f〉L2(M) =
1

2

ˆ
M

ˆ
M

(f(x)− f(y))
2 P(x, dy)µ(dx).

on L2(M) with full domain D(E) = L2(M).
For every Markov transition function P on (M,B) there exists a Markov chain

(Xn,Px)n∈N0,x∈M on some path space (Ω,F) such that

P(x,A) = Px(X1 ∈ A).
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(one can always choose the canonical path space Ω = M⊗N0 ,F = B⊗N0 and Xn(ω) = ωn
for ω = (ω0, ω1, . . .).) The transition function Pn is then given by Pn(x,A) = Px(Xn ∈ A)

and the operator Pn by Pnf(x) = Exf(Xn). The µ-symmetry of P is equivalent to the
µ-reversibility of the Markov chain:

Pµ(X0 ∈ A,X1 ∈ B) = Pµ(X1 ∈ A,X0 ∈ B)

where Pµ is a measure (not necessarily a probability measure) defined by Pµ(·) :=´
M

Px(·)µ(dx).
If P(x, ·)� µ for all x ∈M , we denote its kernel by p : M ×M → [0,∞), that is

P(x,A) =

ˆ
A

p(x, y)µ(dy)

for all x ∈M and for all A ∈ B. The kernel p is called a Markov kernel with respect to
µ. The kernel p(x, ·) is the Radon-Nikodym derivative of P(x, ·) with respect to µ, that
is P(x,A) =

´
A
p(x, y)µ(dy) for all x ∈ M and all A ∈ B. The µ-symmetry of P implies

symmetry of kernel, that is p(x, y) = p(y, x) for all µ × µ almost every (x, y) ∈ M ×M .
By definition, we have p(x, ·) ∈ L1(M,µ) for all x ∈ M . However, we assume that
p(x, ·) ∈ L∞(M,µ) for all x ∈ M . Under the assumption p(x, ·) ∈ L1 ∩ L∞, we define
iteratively

pk+1(x, y) := [Ppk(x, ·)] (y) =

ˆ
M

pk(x, z)p1(y, z)µ(dz) (4.4)

where p1 := p and k ∈ N∗. The function pk for k ∈ N∗ is called the heat kernel. The
following basic properties of heat kernel defined in (4.4) are easy to verify.

Lemma 4.2. Let (M,d, µ) be a metric measure space and let P be a µ-symmetric Markov
transition function satisfying P(x, ·)� µ for all x ∈M . Let p1(x, ·) = dP(x,·)

dµ denote the
corresponding Markov kernel. Assume further that p1(x, ·) ∈ L∞(M,µ) for all x ∈ M .
The the kernel pk defined in (4.4) satisfies

(a) pk(x, ·) = dPk(x,·)
dµ for all k ∈ N∗. That is Pk(x,A) =

´
A
pk(x, z)µ(dz) for all x ∈ M ,

for all k ∈ N∗ and for all A ∈ B.

(b) pk(x, y) = pk(y, x) ∈ [0,∞) for all x, y ∈M and for all k ≥ 2.

(c) pk+l(x, y) = P k (pl(x, ·)) (y) for all x, y ∈M and for all k, l ∈ N∗.

The following natural example falls under our framework.

Example 4.3. Let (M,d, µ) satisfy (V D)loc and let h > 0. Consider the natural ball walk

with Markov kernel k with respect to µ defined as k(x, y) =
1B(x,h)(y)

V (x,h) . The corresponding

Markov transition function K is not necessarily µ-symmetric because k(x, y) 6= k(y, x) in

general. Consider the measure µ′ � µ with dµ′

dµ (x) = V (x, h). The Markov kernel of K
with respect to µ′ is p(x, y) =

1B(x,h)(y)

V (x,h)V (y,h) . Hence K is µ′-symmetric. Such ball walks on
compact Riemannian manifolds were studied in [53].

A Markov chain (Xn,Px)n∈N0,x∈M is said to be lazy if infx∈M Px(X1 = x) > 0.

Example 4.4. Consider a metric measure space (M,d, µ) with a µ-symmetric Markov
transition function P. Define the Markov transition function

PL(x,A) :=
1

2
(P(x,A) + δx(A))

where δx(A) = 1A(x) denotes the Dirac measure at x. Note that PL µ-symmetric and
corresponds to a lazy Markov chain. Assume P has a kernel p with respect to µ. Then

EJP 28 (2023), paper 64.
Page 21/81

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP954
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Random walks on metric measure spaces

PL has a kernel with respect to µ if and only if δx � µ for all x ∈M . If P is the Markov
operator corresponding to P, then PL = (I +P )/2 is the Markov operator corresponding
to PL, where I is the identity operator on Lp(M). Hence the corresponding Laplacian
operators ∆ and ∆L are related by ∆L = ∆/2.

Some basic properties of a symmetric Markov kernel are listed without proof in the
lemmas below.

Lemma 4.5 (Folklore). Let P denote a µ-symmetric Markov transition function over a
metric measure space (M,d, µ) and let P be the corresponding Markov operator. Then
P is a contraction on all Lp(M,µ), that is

‖Pf‖p ≤ ‖f‖p (4.5)

for all p ∈ [1,∞] and for all f ∈ Lp(M). A consequence of (4.5) is the inequality

E(f, f) = 〈(I − P )f, f〉 ≤ 2 ‖f‖22 (4.6)

for all f ∈ L2(M). Moreover P is self-adjoint on L2(M), that is

〈f, Pg〉 = 〈Pf, g〉 (4.7)

for all f, g ∈ L2(M,µ) where 〈f1, f2〉 =
´
M
f1f2 dµ denotes the inner product on L2(M,µ).

Lemma 4.6 (Folklore). Let P denote a µ-symmetric Markov transition function over a
metric measure space (M,d, µ) and let p be the corresponding Markov kernel. Then for
all x ∈M , the function

n 7→ p2n(x, x) (4.8)

is non-increasing. Moreover we have

p2n(x, y) ≤ p2n(x, x)1/2p2n(y, y)1/2 (4.9)

for all x, y ∈M and for all n ∈ N∗.

4.1 Assumptions on the Markov chain

We introduce the main assumptions on the Markov chain in the following definition.

Definition 4.7. For h > 0, a Markov transition function P on (M,B) is said to be
(h, h′)-compatible with (M,d, µ) if

(a) P is µ-symmetric.

(b) There exists a kernel p1 such that P(x,A) =
´
A
p1(x, y)µ(dy) for all x ∈M and for all

A ∈ B. By (a), we have p1(x, y) = p1(y, x) for all µ× µ-almost every (x, y) ∈M ×M .

(c) There exists reals c1, C1 > 0 and h′ ≥ h such that

c1
V (x, h)

1B(x,h)(y) ≤ p1(x, y) ≤ C1

V (x, h′)
1B(x,h′)(y) (4.10)

for all x ∈M and for µ-almost every y ∈M .

(d) There exists α > 0 such that

p2(x, y) ≥ αp1(x, y) (4.11)

for all x ∈M and for µ-almost every y ∈M , where p2 is defined by (4.4).
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The corresponding Markov kernel p1 is said to be (h, h′)-compatible with (M,d, µ). If a
Markov transition function P satisfies (a),(b),(c) above we say that P (respectively p1) is
weakly (h, h′)-compatible with (M,d, µ).

Similarly, we say the corresponding Markov operator P is (weakly) (h, h′)-compatible
with (M,d, µ) if the Markov transition function P is (weakly) (h, h′)-compatible with
(M,d, µ).

We record some important consequences of Condition (d) in Definition 4.7.

Lemma 4.8. Let (M,d, µ) be a metric measure space and let P be Markov operator that
is (h, h′)-compatible with (M,d, µ). Then the corresponding kernel pk satisfies

pk+1(x, y) ≥ αpk(x, y) (4.12)

for all x, y ∈ M and for all k ≥ 2 where α is same as in (4.11). Moreover the operator
(P − (α/2)I)2 is positivity preserving, that is if f : M → R satisfies f ≥ 0, then (P −
(α/2)I)2f ≥ 0.

Proof. Since P k is a Markov operator, by (4.11) and Lemma 4.2(c) we have

pk+2(x, y)− αpk+1(x, y) = P k [p2(x, ·)− αp1(x, ·)] (y) ≥ 0

for all k ∈ N∗ and for all x, y ∈M . This proves (4.12).
By (4.11) and f ≥ 0, we have

(P − (α/2)I)2f(x) = (P 2 − αP )f(x) + (α/2)2f(x)

≥ (P 2 − αP )f(x) =

ˆ
M

f(y)(p2(x, y)− αp1(x, y)) dy ≥ 0

for all x ∈M .

The following lemma shows that a large enough convolution power of a weakly
compatible kernel is compatible under some mild conditions.

Lemma 4.9. Let (M,d, µ) be a quasi-b-geodesic space satisfying (V D)loc and let p1 be a
Markov kernel weakly (h, h′)-compatible with (M,d, µ) for some h > b. Then there exists
k ∈ N∗ for which pl is (h, lh′)-compatible with (M,d, µ) for all l ∈ N∗ such that l ≥ k.

Proof. Properties (a) and (b) of Definition 4.7 follows directly from the weak compatibility
of p1. It only remains to check properties (c) and (d). Assume that p1 satisfies (4.10).
Let x, y ∈ M with d(x, y) ≤ h′. By Lemma 2.4, there exists even number k ∈ N∗ such
that for all l ≥ k ≥ 2, there exists a b-chain x0, x1, . . . , xl with x0 = x, xl = y. Define
h1 = (h− b)/2. By Chapman-Kolmogorov equation

pl(x, y)

≥
ˆ
B(xl−1,h1)

. . .

ˆ
B(x1,h1)

p(x, y1)p(y1, y2) . . . p(yl−1, y) dy1dy2 . . . dyl−1

≥
ˆ
B(xl−1,h1)

. . .

ˆ
B(x1,h1)

cl−1
1

V (x, h)V (y1, h) . . . V (yl−1, h)
dy1dy2 . . . dyl−1

≥
ˆ
B(xl−1,h1)

. . .

ˆ
B(x1,h1)

cl−1
1 C2−l

h,2h

V (x, h)V (x1, h) . . . V (xl−1, h)
dy1dy2 . . . dyl−1

≥
cl−1
1 C2−l

h,2h

V (x, h)
(4.13)

EJP 28 (2023), paper 64.
Page 23/81

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP954
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Random walks on metric measure spaces

The third line above follows weakly (h, h′)-compatible condition (4.10) and the fourth
line follows from Lemma 2.6. Combining with the fact that p is weakly (h, h′)-compatible
along with Lemma 2.6 gives the following lower bound: For all l ≥ k and l ∈ N∗, there
exists c1,l > 0 such that

min(pl(x, y), pl+1(x, y)) ≥ c1,l
V (x,′ h)

1B(x,h′)(y) (4.14)

for all x, y ∈M . Hence by (4.14) and (4.10) we get pl+1 ≥ αlp1 for some αl > 0. Since P
is positivity preserving, we have

p2l(x, y) =
(
P l−1pl+1(x, .)

)
(y) ≥ αl

(
P l−1p1(x, .)

)
(y) = αlpl(x, y)

which is condition (d) of Definition 4.7. Note that (4.14) implies that pl satisfies the lower
bound in condition (c) of Definition 4.7.

Now we turn to the corresponding upper bound for pl. Since P is a contraction on
L∞, there exists C1 > 0 such that pm(x, y) ≤ C1/V (x, h) for all x, y ∈M and all m ∈ N∗.
By triangle inequality pm(x, y) = 0 if d(x, y) > mh′ for all m ∈ N∗ and for all x, y ∈ M .
Hence by Lemma 2.6 we have the desired conclusion.

Remark 4.10. We now justify the condition h > b in the above lemma. It is to avoid
pathological examples of the following kind: Consider a ball walk of Example 4.3 with
h ≤ 1/2 on Broken line space (BL, d, µ) from Example 3.22. It is easy to check that
such a random walk never leaves a connected component. Similarly, the ball walk of
Example 4.3 with h < 1 on a graph always stays at one point.

4.2 Gaussian estimates

The main property of a Markov kernel that we are interested in are Gaussian estimates
for its iterated kernel pn.

Definition 4.11. A µ-symmetric Markov kernel p on (M,d, µ) is said to satisfy Gaussian
upper bound (GUE) if there exists C1, C2 > 0 such that

pn(x, y) ≤ C1

V (x,
√
n)

exp
(
−d(x, y)2/C2n

)
(GUE)

for all x, y ∈M and for all n ∈ N∗ satisfying n ≥ 2.
Analogously, a µ-symmetric Markov kernel p on a metric measure space (M,d, µ) is

said to satisfy Gaussian lower bound (GLE) if there exists c1, c2, c3 > 0 such that

pn(x, y) ≥ c1
V (x,

√
n)

exp
(
−d(x, y)2/c2n

)
(GLE)

for all x, y ∈M satisfying d(x, y) ≤ c3n and for all n ∈ N∗ satisfying n ≥ 2.
A µ-symmetric Markov kernel p on a metric measure space (M,d, µ) is said to satisfy

two sided Gaussian bound (GE) if it satisfies (GUE) and (GLE).

The condition d(x, y) ≤ c3n in (GLE) is needed because pn(x, y) vanishes for com-
patible kernels if d(x, y) ≥ cn for some constant c > 0. In many situations, the above
Gaussian estimates are equivalent to the following (a priori weaker) estimates which
are easier to prove. We require the estimates in Definition 4.11 to hold only for large
enough n in the definition below.

Definition 4.12. A µ-symmetric Markov kernel p on (M,d, µ) is said to satisfy Gaussian
upper bound (GUE)∞ if there exists C1, C2, n0 > 0 such that

pn(x, y) ≤ C1

V (x,
√
n)

exp
(
−d(x, y)2/C2n

)
(GUE)∞
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for all x, y ∈M and for all n ∈ N∗ such that n ≥ n0.
The conditions (GLE)∞ and (GE)∞ are defined analogously.

Under mild conditions, we show that (GE)∞ implies (GE).

Lemma 4.13. Let (M,d, µ) be a quasi-b-geodesic space satisfying (V D)loc and let p1 be
a Markov kernel weakly (h, h′)-compatible with (M,d, µ) for some h > b. The following
hold:

(a) If p1 satisfies (GUE)∞, then p1 satisfies (GUE).

(b) If p1 satisfies (GLE)∞, then p1 satisfies (GLE).

(c) If p1 satisfies (GE)∞, then p1 satisfies (GE).

Proof. Note that p satisfies (4.10).

(a) The Gaussian upper estimate for pn where n ≥ n0 follows from (GUE)∞. If n < n0,
we simply use that P is a contraction in L∞ along with (4.10) to obtain

pn(x, y) ≤
C11B(x,n0h′)(y)

V (x, h′)

≤ C2

V (x,
√
n)

exp

(
−d(x, y)2

C2n

)
for all x, y ∈ M and for all n < n0. The first line above follows from triangle
inequality, ‖P‖L∞→L∞ = 1 and (4.10). The second line follows from Lemma 2.6.

(b) The Gaussian lower bounds for pn where n ≥ n0 follows from (GLE)∞. Let
h1 = min(h/2, h − b). Using ideas similar to the proof of Lemma 4.9 (see (4.13)),
there exists c2, c3, c4 > 0 such that

pn(x, y)

≥
ˆ
B(x,h1)

. . .

ˆ
B(x,h1)

p(x, y1)p(y1, y2) . . . p(yn−1, y) dy1dy2 . . . dyn−1

≥
c2c

n
31B(x,b)(y)

V (x, h)
≥ c4
V (x,

√
n)

exp

(
−d(x, y)2

c4n

)
for all n < n0 and for all x, y ∈M such that d(x, y) ≤ (b/n0)n.

(c) It is a direct consequence of (a) and (b).

We state the following elementary lemma without proof.

Lemma 4.14. Let (M,d, µ) be a quasi-b-geodesic space satisfying (V D)loc and let p be a
Markov kernel weakly (h, h′)-compatible with (M,d, µ) for some h > b. For some k ∈ N∗,
if pk satisfies (GE)∞ then p satisfies (GE).

We describe two examples that does not fall under the framework given by Defini-
tion 4.7 but nevertheless the methods developed in this work still applies.

Example 4.15 (Random walk with jumps supported in an annulus). Consider a measured,
complete, length space (M,d, µ) satisfying (V D)loc and diam(M) = +∞. The P be a
µ-symmetric Markov operator whose kernel p(x, y) satisfies the following estimate: there
exists C1 > 0 and h > 0 such that

C−1
1

1B(x,2h)\B(x,h)(y)

V (x, h)
≤ p(x, y) ≤ C1

1B(x,2h)\B(x,h)(y)

V (x, h)
(4.15)

for all x ∈M and for µ-almost every y ∈M .
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In this case, it is easy to verify that the density p2 is (h/5, 4h)-compatible with
(M,d, µ). Note that for all x ∈M , there exists z ∈M such that d(x, z) = 3h/2. Note that
by Lemma 2.6 and (4.15), there exists C2 > 0 such that for all x, y ∈M with d(x, y) ≤ h/5

p2(x, y) ≥
ˆ
B(z,h/4)

p1(x,w)p1(y, w)µ(dw) ≥ C−1
2

V (x, h/5)

and for all x, y ∈M with d(x, y) ≤ 4h we have

p2(x, y) ≤
ˆ
B(x,2h)

p1(x,w)p1(y, w)µ(dw) ≤ C2

V (x, 4h)
.

Therefore p2 is (h/5, 4h) compatible with (M,d, µ).
For example, it is clear that the application to Liouville property will not be affected if

we replace the operator P by P 2. If the underlying space satisfies volume doubling and
Poincaré inequality we can use our main results to obtain Gaussian estimates (GE)∞
provided (M,d, µ) satisfies (V D)∞ and (P )h. To prove the above statement, we simply
note by Theorem 1.1 that p2 satisfies (GE) and by a similar argument p3 satifies (GE).

Example 4.16. We describe another example similar to Example 4.15. Consider Rn

equipped with Euclidean distance d and Lebesgue measure µ. Let e denote an arbitrary
unit vector in Rn. Consider the µ-symmetric random walk with the kernel

p(x, y) =
1B(x+2e,1)∪B(x−2e,1)(y)

2V (x, 1)
.

Although p is not compatible with (Rn, d, µ), similar to Example 4.15 one can check
that (Rn, d, µ) satisfies that p2 and p3 are (1/3, 9)-compatible with (Rn, d, µ) and that the
kernel pk satisfies (GE)∞.

4.3 Comparison of Dirichlet forms

Let (M,d, µ) be a metric measure space with a µ-symmetric Markov operator P and
corresponding kernel p. Recall that we defined the Dirichlet form E(f, g) = 〈f,∆g〉
for f, g ∈ L2(M). We define another Dirichlet form E∗ which is the Dirichlet form
corresponding to the Markov operator P 2, that is

E∗(f, g) = 〈f, (I − P 2)g〉 = ‖f‖22 − ‖Pf‖
2
2 .

for all f, g ∈ L2(M).

Remark 4.17. Functional inequalities involving the Dirichlet form (for instance Nash,
Sobolev, log Sobolev, Poincaré inequalities) can be transferred to an inequality concern-
ing the Markov semigroup, which in turn sheds light on asymptotic behavior of Markov
chains. For a continuous time Markov semigroup (Pt)t≥0 a crucial identity to carry out

this is
d‖Ptf‖22

dt = −2E(Ptf, Ptf) (for instance [3, Theorems 4.2.5 and 6.3.1]) By the above
definition, we have a similar identity for discrete time Markov semigroup:

∂k
∥∥P kf∥∥2

2
:=
∥∥P k+1f

∥∥2

2
−
∥∥P kf∥∥2

2
= −E∗(P kf, P kf).

for all f ∈ L2(M). This is the main reason why we sometimes prefer E∗ instead of E .

The above remark motivates us to compare the Dirichlet forms E and E∗.
Lemma 4.18. Consider a µ-symmetric Markov chain on (M,d, µ) with Markov operator
P and Dirichlet forms E and E∗ defined as above. We have the following:

(a) E∗(f, f) ≤ 2E(f, f) for all f ∈ L2(M).
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(b) Assume further that P has a strongly (h, h′)-compatible kernel p with respect to
(M,d, µ). Then there exists a constant C > 0 such that E(f, f) ≤ CE∗(f, f) for all
f ∈ L2(M).

Proof. (a) Note that

〈Pf, f〉 ≤ 1

2
(〈Pf, Pf〉+ 〈f, f〉) =

1

2

(
〈P 2f, f〉+ 〈f, f〉

)
Hence

E(f, f) = 〈f, f〉M − 〈Pf, f〉M ≥ 〈f, f〉 −
1

2

(
〈P 2f, f〉+ 〈f, f〉

)
=

1

2
E∗(f, f)

(b) The conclusion follows from Property (d) of Definition 4.7 by observing that

E(f, f) =
1

2

ˆ
M

ˆ
M

(f(x)− f(y))2p(x, y) dx dy (4.16)

E∗(f, f) =
1

2

ˆ
M

ˆ
M

(f(x)− f(y))2p2(x, y) dx dy (4.17)

Remark 4.19. The inequality E(f, f) ≤ CE∗(f, f) is not true in general. Consider nearest
neighbor (simple) random walk on a finite bipartite graph. Let f be a function on the
graph that assigns +1 to one partition and −1 to other. It is easy to check that Pf = −f
and therefore 2 ‖f‖22 = E(f, f) ≤ CE∗(f, f) = 0 fails.

4.4 Markov chains killed on exiting a ball

To obtain lower bounds on the heat kernel, we consider the corresponding Markov
process killed on exiting a ball B (See Section 8). Moreover functional inequalities
like Nash and Sobolev inequalities that we will encounter are local to balls. Motivated
by these considerations, we introduce Markov chains killed on exiting a ball and their
corresponding Markov operator and kernel. Let (Xn)n∈N be a Markov chain on (M,d, µ)

driven by a µ-symmetric Markov operator P with kernel p1 with respect to µ. The
corresponding Markov chain (XB

n )n∈N that is killed on exiting a ball B has state space
B ∪ {∂B} where ∂B is the absorbing cemetery state. The Markov chain (XB

n )n∈N killed
on exiting B is defined as

XB
n =

{
Xn if n < ζ

∂B if n ≥ ζ

where ζ is the lifetime of the process defined by

ζ = min {k : Xk /∈ B} .

For the killed Markov chain, we consider functions f : B ∪ ∂B → R with the ‘Dirichlet’
boundary condition f(∂B) = 0. Therefore, we can define corresponding quantities like
Markov kernel and Markov operator just by restriction to B. Define the restricted kernel
pB : B×B → R, as a restriction of p1 on B×B. We endow B with the measure µB which
is the restriction of µ to all Borel subsets of B. We denote by L2(B) = L2(B,µB). We
define the Markov operator PB with kernel pB with respect to µB as

PBf(x) :=

ˆ
B

f(y)p1(x, y)µ(dy) =

ˆ
B

pB(x, y)f(y)µB(dy). (4.18)

Define the corresponding Dirichlet forms

EB(f, f) := 〈f, (I − PB)f〉L2(B), EB∗ (f, f) := 〈f, (I − P 2
B)f〉L2(B) (4.19)
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for all f ∈ L2(B). Similar to (4.4), we define the kernel pBk (x, y) iteratively as

pBk+1(x, y) :=
[
PBp

B
k (x, ·)

]
(y) =

ˆ
B

pBk (x, z)pB1 (y, z)µ(dz) (4.20)

for all k ∈ N∗ and for all x, y ∈ B. It is easy to check that the proof of Lemma 4.2 (b),(c)
applies to the kernel pB. As before, the function (x, y) 7→ pBk (x, y) is well-defined for all
k ≥ 2. Further pB(x, ·) ∈ L1(B) for all x ∈M . It is easy to see that

pBk (x, y) ≤ pk(x, y) (4.21)

for all x, y ∈M and for all k ≥ 2.
The operator PB is positivity preserving, that is f ≥ 0 implies PBf ≥ 0. However

unlike P , the operator PB is not necessarily conservative, that is PB1 6= 1 in general.
Analogous to (4.5), we have that PB is a contraction on all Lp(B) for all 1 ≤ p ≤ +∞. We
also define the corresponding ‘Dirichlet Laplacian’ ∆PB := I − PB.

The following comparison of Dirichlet forms is well-known.

Lemma 4.20. Let f ∈ L2(B) and let f̃ ∈ L2(M) denote an extension of f defined by

f̃ =

{
f in B

0 in Bc.
(4.22)

Then

(a) EB(f, f) = E(f̃ , f̃).

(b) EB∗ (f, f) ≥ E∗(f̃ , f̃).

We warn the reader of the following abuse of notation. We may consider a function
f ∈ L2(B) as a function in L2(M) using the extension given by (4.22). Alternatively we
may consider a function f ∈ L2(M) as a function in L2(B) by the restriction fB.

5 Sobolev-type inequalities

We recall the difficulty arising due to Sobolev inequalities mentioned in the intro-
duction. The Sobolev inequalities in the previous works [67, 23, 25, 74] are of the
form

‖f‖22δ/(δ−2) ≤
Cr2

Vµ(x, r)2/δ

(
E(f, f) + r−2 ‖f‖22

)
(5.1)

for all ‘nice’ functions f supported in B(x, r). However (5.1) along with (4.6) implies
that L2(B(x, r)) ⊆ L2δ/(δ−2)(B(x, r)) for all balls B(x, r) which can happen only if the
space is discrete. Hence for discrete time Markov chains on continuous spaces the
Sobolev inequality (5.1) fails to hold. In this section, we prove a weaker form of the
above Sobolev inequality (see (5.2)) and study its properties. In the next two sections,
we will use the Sobolev inequality (5.2) to run the Moser’s iterative method and obtain
elliptic Harnack inequality and Gaussian upper bounds.

We adapt the approach of [67] to obtain a Sobolev inequality using (V D)∞ and (P )∞.
The main result of this section is the following Sobolev inequality.

Theorem 5.1. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfying
(V D)loc, (V D)∞ and Poincaré inequality at scale h (P )h. Suppose that a Markov operator
P has a kernel p that is (h, h′)-compatible with respect to µ. Let PB and EB denote the
corresponding Markov operator and Dirichlet form restricted to a ball B ⊂ M . Then
there exists δ > 2 and CS > 0 such that for all r > 0, for all x ∈M , and for all f ∈ L2(B),
we have

‖PBf‖22δ/(δ−2) ≤
CSr

2

V (x, r)2/δ

(
EB(f, f) + r−2 ‖f‖22

)
(5.2)
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where B = B(x, r).

Remark 5.2. Since PB is a contraction, note that (5.1) implies (5.2). Since we rely on
the weaker Sobolev inequality (5.2), our methods give an unified approach to Gaussian
bounds for graphs and continuous spaces. However we will encounter new difficulties
due to (5.2).

Let s > 0 and f ∈ L1
loc(M,µ). We define fs as

fs(x) := fB(x,s) =
1

V (x, s)

ˆ
B(x,s)

f(x)µ(dx). (5.3)

5.1 Pseudo-Poincaré and Nash inequalities

As in [67, Lemma 2.4], we need a pseudo-Poincaré inequality.

Lemma 5.3 (Pseudo-Poincaré inequality). Under the hypotheses of Theorem 5.1, there
exists C0 > 0 and s0 > 0 such that

‖f − fs‖22 ≤ C0s
2E(f, f) (5.4)

for all f ∈ L2(M) and for all s ≥ s0.

We omit the proof as it follows from Poincaré inequality using the same argument in
[67, Lemma 2.4]. The following lemma is a consequence of doubling hypothesis.

Lemma 5.4. Let (M,d, µ) be a measure space satisfying (V D)loc and (V D)∞. Then for
all b > 0, there exists Cb > 0, δ > 2 such that

‖fs‖22 ≤
Cb

V (x, r)

(r
s

)δ
‖f‖21 (5.5)

for all f ∈ L1(M) is supported in B = B(x, r) and for all b ≤ s ≤ r

Proof. By Hölder inequality, we have

‖fs‖22 ≤ ‖fs‖∞ ‖fs‖1 . (5.6)

Since f is supported in B(x, r) and s ≤ r we have

‖fs‖∞ ≤ ‖f‖1 sup
y∈B(x,r+s)

1

V (y, s)
≤
‖f‖1
V (x, r)

sup
y∈B(x,r+s)

V (y, 3r)

V (y, s)
.

By (2.4), there exists C1 > 0 and δ > 2 such that

‖fs‖∞ ≤
C1

V (x, r)

(r
s

)δ
‖f‖1 (5.7)

for all b ≤ s ≤ r and for all f ∈ L1 supported in B(x, r).
Further there exists C2 > 0 such that

‖fs‖1 =

ˆ
B(x,r+s)

|fs(y)|µ(dy) ≤
ˆ
B(x,r+s)

1

V (y, s)

ˆ
B(y,s)

|f(z)|µ(dz)µ(dy)

≤
ˆ
B(x,r+s)

|f(z)|
ˆ
B(z,s)

1

V (y, s)
µ(dy)µ(dz)

≤ C2

ˆ
B(x,r+s)

|f(z)|
ˆ
B(z,s)

1

V (z, s)
µ(dy)µ(dz) = C2 ‖f‖1 (5.8)

for all b ≤ s ≤ r and for all f ∈ L1 supported in B(x, r). The second line follows from
Fubini’s theorem and (5.8) above follows from (2.5). The desired conclusion (5.5) follows
from (5.6), (5.7) and (5.8).
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Next, we show a Nash inequality using the pseudo-Poincaré inequality and doubling
hypotheses by adapting the approach of [67, Theorem 2.1].

Proposition 5.5. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfy-
ing (V D)loc, (V D)∞ and Poincaré inequality at scale h (P )h. Suppose that a Markov
operator P has a kernel p that is (h, h′)-compatible with respect to µ. Let E denote the
Dirichlet form corresponding to P . Then there exists δ > 2, CN > 0 such that

‖Pf‖2+(4/δ)
2 ≤ CNr

2

V (x, r)2/δ

(
E(f, f) + r−2 ‖f‖22

)
‖f‖4/δ1 (5.9)

for all r > 0, for all x ∈M , and for all f ∈ L2(M) with f supported in B(x, r).

Proof. We start with an observation that (5.9) follows directly for small values of r. Let
r0 > 0 be an arbitrary constant. If r ≤ r0, by (4.10) and (2.2), there exists C1, C2 > 0

such that for all functions f ∈ L1(M) supported in B(x, r), we have

‖Pf‖∞ ≤ ‖f‖1 sup
y∈B(x,r+h′)

C1

V (y, h′)
≤ ‖f‖1 sup

y∈B(x,r0+h′)

C1

V (y, h′)

≤ C1

V (x, r0)
‖f‖1 sup

y∈B(x,r0+h′)

V (y, 2r0 + h′)

V (y, h′)
≤ C2

V (x, r)
‖f‖1 . (5.10)

By Hölder inequality along with (5.10) and (4.5), we have C3 > 0 such that

‖Pf‖2 ≤ ‖Pf‖
1/2
∞ ‖Pf‖

1/2
1 ≤ C3

V (x, r)1/2
‖f‖1 (5.11)

for all function f ∈ L2(M) supported in B(x, r) with r ≤ r0. By (5.11) and (4.5) and by

the choice CN ≥ C4/δ
3 , it suffices to show (5.9) for the case r > r0.

Note that
‖Pf‖2 ≤ ‖Pf − (Pf)s‖2 + ‖(Pf)s‖2 . (5.12)

We use pseudo-Poincaré inequality (Lemma 5.3) to bound the first term and use the
(h, h′)-compatibility of P along with doubling hypotheses to bound the second term. To
obtain (5.9), we minimize the bound on right hand side of (5.12) by varying s.

By Lemma 5.4, there exists C0 ≥ 1 and r0 > 0 such that

‖Pf − (Pf)s‖2 ≤ C0s
√
E(Pf, Pf) (5.13)

for all f ∈ L2(M) and for all s ≥ r0.
By (5.5) and (4.5), there exists C4 > 0 and δ > 2 such that

‖(Pf)s‖2 ≤
C4

V (x, r)1/2

(r
s

)δ/2
‖f‖1 (5.14)

for all f ∈ L2(M) supported in B(x, r) and for all r0 ≤ s ≤ r. Combining (5.12), (5.13),
(5.14), we obtain

‖Pf‖2 ≤ C0s
(√
E(Pf, Pf) + r−1 ‖Pf‖2

)
+

C4

V (x, r)1/2

(r
s

)δ/2
‖f‖1 (5.15)

for all f ∈ L2(M) supported in B(x, r) and for all s ≥ r0 and for all r ≥ r0. The desired
result follows from minimizing the right hand side by choosing s.

Before we proceed, we restate the above Nash inequality for functions defined on
balls.
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Corollary 5.6. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfying
(V D)loc, (V D)∞ and Poincaré inequality at scale h (P )h. Suppose that a Markov operator
P has a kernel p that is (h, h′)-compatible with respect to µ. Let PB and EB denote the
corresponding Markov operator and Dirichlet form restricted to a ball B ⊂ M . Then
there exists δ > 2, CN > 0 such that

‖PBf‖2+(4/δ)
2 ≤ CNr

2

V (x, r)2/δ

(
EB(f, f) + r−2 ‖f‖22

)
‖f‖4/δ1 (5.16)

for all r > 0, for all x ∈M , and for all f ∈ L2(M) with f supported in B(x, r).

Proof. We define f̃ ∈ L2(M) as in (4.22). Since P f̃ = PBf on B, we have ‖PBf‖2 ≤∥∥∥P f̃∥∥∥
2
. Combining this observation along with ‖f‖p =

∥∥∥f̃∥∥∥
p
, Lemma 4.20(a) and Proposi-

tion (5.5) yields (5.16).

Remark 5.7. It is easy to prove Nash inequality (5.16) using Sobolev inequality (5.2)
just by an application of Hölder inequality

‖PBf‖2 ≤ ‖PBf‖
δ/(δ+2)
2δ/(δ−2) ‖PBf‖

2/(δ+2)
1 ≤ ‖PBf‖δ/(δ+2)

2δ/(δ−2) ‖f‖
2/(δ+2)
1

along with the fact that PB is a contraction on L1(B). However proving (5.2) using (5.16)
is harder. There is a direct and elementary approach using slicing of functions developed
in [2]. Their approach was used by Delmotte in the setting of graphs [23, Theorem 4.4]
to prove a Sobolev inequality. However those slicing techniques not so seem to apply
directly for proving (5.2), since the (sub-Markov) operator PB does not commute with
the slicing maps f 7→ (f−s)+∧ t. It is an interesting open problem to make this approach
work for our Sobolev-type inequalities.

5.2 Ultracontractivity estimate on balls

In light of the above remark, we adapt a different approach based on Hardy-
Littlewood-Sobolev theory for discrete time Markov semigroups as developed in [20,
Theorems 5 and 6] (see also [14] for related work). Our approach is to obtain an
upper bound for

∥∥P kB∥∥1→∞ using (5.16) which in turn is used to prove the Sobolev
inequality (5.2).

Lemma 5.8. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfying (V D)loc,
(V D)∞. Suppose that a Markov operator P has a kernel p that is (h, h′)-compatible with
respect to µ. Let PB and EB denote the corresponding Markov operator and Dirichlet
form restricted to a ball B ⊂M . Further assume that the operators PB satisfy the Nash
inequality (5.16) with constant δ > 2. There exists Cu > 0 such that

∥∥P kB∥∥1→∞ ≤
Cu(1 + r2)δ/2

V (x, r)

(1 + r−2)k−1

kδ/2
(5.17)

for all x ∈M , for all r > 0 and for all k ∈ N∗ where B = B(x, r).

Remark 5.9. If two side Gaussian estimate (GE) holds for pk and if we choose r �
√
k,

then the upper bound (5.17) is sharp up to a constant factor.

Proof of Lemma 5.8. Let x ∈M , r > 0 and B = B(x, r). Our first step is an upper bound
for
∥∥P kB∥∥1→2

. Let f ∈ L1(B) be an arbitrary function with ‖f‖1 = 1. The constants in this
proof do not depend on the choice of x ∈M , k ∈ N∗, r > 0 or f ∈ L1(B).

Then by Hölder inequality,

‖PBf‖22 ≤ ‖PBf‖1 ‖PBf‖∞ ≤ ‖f‖1 ‖PBf‖∞ = ‖PBf‖∞ .
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By (5.10), there exists C1 > 0 such that

‖PBf‖22 ≤ ‖PBf‖∞ ≤
C1(1 + r2)δ/2

V (x, r)
. (5.18)

By (5.16), along with Lemma 4.20 and Lemma 4.18(b), there exists CN > 0 such that

‖PBg‖2+(4/δ)
2 ≤ CNr

2

V (x, r)2/δ

(
EB∗ (g, g) + r−2 ‖g‖22

)
‖g‖4/δ1 (5.19)

for all r > 0, for all x ∈M , and for all g ∈ L2(B) where B = B(x, r). Define

vk := (1 + r−2)−(k−1)
∥∥P kBf∥∥2

2

for all k ∈ N∗. Substituting g = P kBf in (5.19) and using the fact that
∥∥P kBf∥∥1

≤ ‖f‖1 = 1

and EB∗ (P kBf, P
k
Bf) =

∥∥P kBf∥∥2

2
−
∥∥P k+1

B f
∥∥2

2
, we obtain the following difference inequality

for vk:

v
1+(2/δ)
k+1 ≤ CN (1 + r2)

V (x, r)2/δ
(vk − vk+1) (5.20)

for all k ∈ N∗. The desired estimate follows from solving the difference inequality given
by (5.20).

We are ready to prove the Sobolev inequality (5.2) using the ultracontractivity esti-
mate (5.17) above.

For an operator T , we define the operator (I − T )1/2 as

(I − T )1/2 =

∞∑
k=0

akT
k

where ak is defined by the Taylor series (1 − x)α =
∑∞
k=0 akx

k for x ∈ (−1, 1). By a
classical estimate on coefficient of Taylor series, there exists Ca > 0 such that

C−1
a

(k + 1)1/2
≤ ak ≤

Ca
(k + 1)1/2

(5.21)

for all k ∈ N≥0.

5.3 Local Sobolev inequality

We use the ultracontractivity estimate (5.17) to obtain Sobolev inequality (5.2).

Proposition 5.10. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfy-
ing (V D)loc, (V D)∞. Suppose that a Markov operator P has a kernel p that is (h, h′)-
compatible with respect to µ. Let PB and EB denote the corresponding Markov operator
and Dirichlet form restricted to a ball B ⊂M . Assume that there exists Cu > 0 such that

∥∥P kB∥∥1→∞ ≤
Cu(1 + r2)δ/2

V (x, r)

(1 + r−2)k−1

kδ/2
(5.22)

for all x ∈ M , for all r > 0 and for all k ∈ N∗ where B = B(x, r). Then we have the
Sobolev inequality (5.2).

Proof. As in the proof of Nash inequality (5.9), we start by considering the case r ≤ 1.
By (5.10), there exists C2 > 0 such that

‖PB‖1→∞ ≤
C1

V (x, r)
(5.23)
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for all balls B = B(x, r) with r ≤ 1. Since PB is a contraction on all Lp(B), we have

‖PB‖2(δ−1)/(δ−2)→2(δ−1)/(δ−2) ≤ 1. (5.24)

Applying Riesz-Thorin interpolation between (5.23) and (5.24) yields

‖PB‖2→2δ/(δ−2) ≤
(

C1

V (x, r)

)1/δ

for all balls B = B(x, r) with r ≤ 1. By choosing CS ≥ C
2/δ
1 , we have (5.2) for all balls

B(x, r) with r ≤ 1.
Next we consider the case r > 1. Since

EB(f, f) + r−2 ‖f‖22 =
∥∥∥((1 + r−2)I − PB

)1/2
f
∥∥∥2

,

it suffices to show that there exists C2 > 0 such that∥∥∥PB (I − (1 + r−2)−1PB
)−1/2

∥∥∥
2→2δ/(δ−2)

≤ C2
(1 + r2)1/2

V (x, r)1/δ
(5.25)

for all balls B = B(x, r) with r > 1. To see this, note that CS = max(C
2/δ
1 , 2C2

2 ) satis-
fies (5.2). Define

E(B) :=
(1 + r2)

µ(B)
, TB := PB

(
I − (1 + r−2)−1PB

)−1/2
. (5.26)

Let p ∈ [1, δ) and q ∈ [δ/(δ − 1),∞) satisfy

p−1 = q−1 + δ−1. (5.27)

For all p ∈ [1, δ) and q ∈ [δ/(δ − 1),∞) satisfying (5.27), we show that the operator TB
is of weak-type (p, q). An application of Marcinkiewicz interpolation then yields (5.2).
Recall that TB =

∑∞
k=1 ak−1(1 + r−2)−(k−1)P kB. For N ∈ N∗, we define operators

RB,N :=

N∑
k=1

ak−1(1 + r−2)−(k−1)P kB , SB,N := TB −RB,N .

By (5.22) and Riesz-Thorin interpolation, we obtain

∥∥P kB∥∥p→∞ ≤ C1/p
u E(B)δ/(2p)

(1 + r−2)(k−1)/p

kδ/(2p)
(5.28)

for all balls B, for all k ∈ N∗ and for all 1 ≤ p < ∞. For each p ∈ [1, δ), there exists
C3 > 0 such that

‖SB,N‖p→∞ ≤
∞∑

k=N+1

ak−1(1 + r−2)−(k−1)
∥∥P kB∥∥p→∞

≤ C1/p
u E(B)δ/(2p)Ca

∞∑
k=N+1

k−1/2k−δ/(2p)

≤ C3E(B)δ/(2p)N−δ/(2q) (5.29)

for all balls B, where q is given by (5.27). In (5.29) C3 depends only on p, q, δ but not on
B = B(x, r). In the second line above we use (5.28) and (5.21) and we used (5.27) and
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p ∈ [1, δ) in the last line. By the same argument as above and increasing C3 = C3(p) if
necessary, we may assume that

‖TB‖p→∞ ≤ C3E(B)δ/(2p) (5.30)

for all balls B.
Let g ∈ Lp(B) satisfy ‖g‖p = 1. For λ > 0, let N0 = N0(λ,B) denote the smallest

positive integer such that C3E(B)δ/(2p)N
−δ/(2q)
0 ≤ λ/2. By union bound, for each p ∈ [1, δ)

and q given by (5.27), there exists C4, C5 > 0 such that

µB {x ∈ B : |TBg(x)| > λ} ≤ µB {x ∈ B : |RB,N0
g(x)| > λ/2}

+ µB {x ∈ B : |SB,N0g(x)| > λ/2}
≤ µB {x ∈ B : |RB,N0g(x)| > λ/2}
≤ (2/λ)p ‖RB,N0

g‖pp

≤ Cpu(2/λ)p

(
N0∑
k=1

k−1/2

)p
≤ C4(2Cu)pλ−pN

p/2
0

≤ C5E(B)q/2λ−q (5.31)

for all balls B = B(x, r). In the second step above we used the definition of N0. The
third step follows from Chebyshev inequality, the fourth step follows from (5.21) and∥∥P kB∥∥p→p ≤ 1. The last step (5.31) follows from (5.21), (5.27), (5.30) and the definition
of N0. By Marcinkiewicz interpolation theorem and the estimates given by (5.31), there
exists C6 > 0 such that

‖TB‖2→2δ/(δ−2) ≤ C6

√
E(B)

for all balls B = B(x, r). This is precisely (5.25) which we intended to prove.

We record two important consequences of Proposition 5.10 first of which is the proof
of Theorem 5.1

Proof of Theorem 5.1. Theorem 5.1 follows from Corollary 5.6, Lemma 5.8 and Proposi-
tion 5.10.

The next corollary shows that Sobolev inequality is necessarily true under doubling
hypothesis and Gaussian upper bounds (GUE).

Corollary 5.11. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfying
(V D)loc, (V D)∞. Suppose that a Markov operator P has a kernel p that is (h, h′) compat-
ible with respect to µ. Further assume that iterated kernel pk that satisfies (GUE). Let
PB and EB denote the corresponding Markov operator and Dirichlet form restricted to a
ball B ⊂M . Then the Sobolev inequality (5.2) holds.

Proof. By Proposition 5.10 it suffices to show the ultracontractivity estimate (5.22) on∥∥P kB∥∥1→∞. By (GUE), there exists C1 > 0 such that∥∥P kB∥∥1→∞ ≤ sup
y∈B,z∈B

pk(y, z) ≤ sup
y∈B(x,r)

C1

V (y,
√
k)

(5.32)

for all balls B = B(x, r) and for all k ∈ N∗. By (2.4), there exists δ > 2 and C2 > 0 such
that

sup
y∈B(x,r)

1

V (x,
√
k)
≤ 1

V (x, r)
sup

y∈B(x,r)

V (x, 2(r ∨
√
k))

V (y,
√
k)

≤ 1

V (x, r)
C2

(
2(r ∨

√
k)√

k

)δ
(5.33)

for all balls B(x, r) and for all k ∈ N∗. The desired estimate (5.22) follows from (5.32)
and (5.33).
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5.4 Sobolev inequality implies large scale doubling property

Next, we show that Sobolev inequality implies (V D)∞ under natural hypotheses.
More precisely

Proposition 5.12. Let (M,d, µ) be a metric measure space satisfying (V D)loc. Let P be
(h, h′) compatible Markov operator in a metric measure space (M,d, µ) satisfying Sobolev
inequality (5.2). Then (M,d, µ) satisfies the large scale doubling property (V D)∞.

We need the following volume comparison lemma.

Lemma 5.13. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfying (V D)loc

and let h′ ≥ b > 0. Then there exists C0 > 0 such that

V (x, r + h′) ≤ C0V (x, r) (5.34)

for all x ∈M and for all r ≥ 3h′.

Proof. Let Y be a maximal h′-separated subset of B(x, r) where x ∈M and r ≥ 3h′. The
collection of balls {B(y, h′/2) : y ∈ Y } are disjoint and hence

V (x, r) ≥
∑

y∈Y ∩B(x,r−h′)

V (y, h′/2). (5.35)

However since B(x, r) ⊆ ∪y∈YB(y, h′) and r ≥ 3h′, we have

∅ 6= B(x, r − 2h′) ⊆ ∪y∈Y ∩B(x,r−h′)B(y, h′), (5.36)

By quasi-b-geodesicity and b ≤ h′, there exists C1 > 0 such that for all z ∈ B(x, r+ h′),
there exists a b-chain x0, x1, . . . , xm b-chain from x to z such that

xi ∈ B(x, r − 2h′) and d(xi, z) ≤ C1h
′. (5.37)

Combining (5.36) and (5.37), we obtain

B(x, r + h′) ⊆ ∪y∈Y ∩B(x,r−h′)B(y, (C1 + 1)h′). (5.38)

Combining (5.38),Lemma 2.6 and (5.35), we obtain

V (x, r + h′) ≤
∑

y∈Y ∩B(x,r−h′)

V (y, (C1 + 1)h′)

≤ Ch′/2,(C1+1)h′

∑
y∈Y ∩B(x,r−h′)

V (y, h′/2) ≤ Ch′/2,(C1+1)h′V (x, r).

Proof of Proposition 5.12. . We adapt the argument of [18, Proposition 2.1]. However
unlike in [18, Proposition 2.1], we do consider volumes of arbitrarily small balls.

Let x ∈M and r ≥ 3h′ be arbitrary. For s > 0, define the ‘tent function’

fs(y) = max(s− d(x, y), 0).

By (h, h′) compatibility of P , we have PB(x,r)f3h′ ≥ h′1B(x,h′). Therefore by applying (5.2),
we have

(h′)2V (x, h′)(δ−2)/δ ≤ CSr
2

V (x, r)2/δ

(
(h′)2V (x, 4h′) + r−2(3h′)2V (x, 3h′)

)
for all r ≥ 3h′ and for all x ∈ M . Combined with Lemma 2.6, there exists C1 > 0 such
that

V (x, r)

V (x, h′)
≤ C1r

δ (5.39)
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for all r ≥ 3h′ and for all x ∈M .
Let 3h′ ≤ s ≤ r. Then by (h, h′) compatibility of P , we have PB(x,r)fs ≥ (s/6)1B(x,s/2).

Hence by Sobolev inequality (5.2), (4.10) and Lemma 4.20(a), we obtain

(s/6)2V (x, s/2)(δ−2)/δ ≤ CSr
2

V (x, r)2/δ

(
(h′)2V (x, s+ h) + r−2s2V (x, s)

)
Combined with Lemma 5.13, there exists C2 > 0 such that

V (x, s) ≥
(
sδV (x, r)

C2rδ

)2/δ

V (x, s/2)(δ−2)/δ (5.40)

for all x ∈M and for all 3h′ ≤ s ≤ r. We replace s by s/2 in (5.40) and iterate to obtain

V (x, s) ≥ 4−
∑i−1
j=0 j(δ−2)j/δj

(
sδV (x, r)

C2rδ

)(2/δ)
∑i−1
j=0(δ−2)j/δj

V (x, s/2i)(δ−2)i/δi (5.41)

for all 3h′ ≤ s/2i−1 ≤ s ≤ r. In particular if we choose i = dlog2(s/3h′)e, we have
(3h′)/2 ≤ s/2i ≤ 3h′. Hence by (5.41) and (5.39),we have

V (x, s) ≥ 4−
∑∞
j=0 j(δ−2)j/δj

(
sδV (x, r)

C2rδ

)(2/δ)
∑i−1
j=0(δ−2)j/δj (

V (x, r)

C1rδ

)(δ−2)i/δi

(5.42)

for all x ∈ M and for all 3h′ ≤ s ≤ r, where i = dlog2(s/3h′)e. By (5.42), there exists
C3 > 0 such that

V (x, r)

V (x, s)
≤ C3(r/s)δs(δ−2)i/δi−1

(5.43)

for all x ∈ M and for all 3h′ ≤ s ≤ r, where i = dlog2(s/3h′)e. Since the map s 7→
exp

(
δ((δ − 2)/δ)dlog2(s/3h′)e ln s

)
is bounded in [3h′,∞), by (5.43) there exists C4 > 0

such that
V (x, r)

V (x, s)
≤ C4

(r
s

)δ
for all x ∈M and for all 3h′ ≤ s ≤ r. The above equation clearly implies (V D)∞.

6 Elliptic Harnack inequality

In this section, we prove elliptic Harnack inequality for non-negative harmonic
functions. As before, we consider a metric measure space (M,d, µ) and a Markov
operator P that is (h, h′)-compatible with (M,d, µ). Recall that the operator ∆ := I − P
is the Laplacian corresponding to P .

6.1 Harmonic functions

Definition 6.1. Let P be a Markov operator on (M,d, µ). A function f : U → R is
P -harmonic in B(x, r) if

∆f(y) = f(y)− Pf(y) = 0

for all y ∈ B(x, r).
Similarly, we say f : M → R is P -subharmonic (resp. P -superharmonic) in B(x, r) if

∆f(y) ≤ 0 (resp. ≥ 0)

for all y ∈ B(x, r).
We say a function f : M → R is P -harmonic (resp. subharmonic, superharmonic) if

∆f ≡ 0 (resp. ∆f ≤ 0, ∆f ≥ 0).
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Remark 6.2.

(a) Consider a Markov operator P that is (h, h′)-compatible with (M,d, µ). By (4.10),
Pf(y) depends only on f in B(y, h′). Therefore the property that f : M → R is
P -harmonic in B(x, r) depends only on the values of f in B(x, r + h′). Hence in this
case it suffices to have B(x, r + h′) ⊆ Domain(f).

(b) We use the term harmonic instead of P -harmonic if the Markov operator P is clear
from the context. Same holds for superharmonic or subharmonic functions.

The main result of the section is the following elliptic Harnack inequality.

Theorem 6.3 (Elliptic Harnack inequality). Let (M,d, µ) be a quasi-b-geodesic metric
measure space satisfying (V D)loc, (V D)∞ and Poincaré inequality at scale h (P )h. Sup-
pose that a Markov operator P has a kernel p that is (h, h′)-compatible with respect to
µ for some h > b. Then there exists c > 0, r0 > 0, CE > 0 such that for all x ∈ M , for
all r ≥ r0 and for all non-negative functions u : B(x, r) → R≥0 that are P -harmonic in
B(x, r) the following Harnack inequality holds:

sup
x∈B(x,cr)

u ≤ CE inf
x∈B(x,cr)

u. (6.1)

In (6.1), the sup and inf must be understood as essential sup and essential inf with
respect to µ.

We follow Moser’s iteration method [58] to prove the elliptic Harnack inequality.
Our approach is an adaptation of Delmotte’s approach except that we have to rely on a
weaker version of Sobolev inequality and a modified version of John-Nirenberg inequality.
Moser’s iteration relies on estimating the quantities

φ(u, p,B′) :=

(
1

µ(B′)

ˆ
B′
|u|p dµ

)1/p

(6.2)

for different balls B′ ⊂ B and for different values of p ∈ R \ {0}. By Jensen’s inequality,
p 7→ φ(u, p,B′) is non-decreasing function. The function φ satisfies limp→−∞ φ(u, p, cB) =

infcB u and limp→+∞ φ(u, p, cB) = supcB u [47, Lemma 14.1.4]. To obtain (6.1), Moser’s
iterative method relies on establishing bounds of the form φ(u, p1, B

′) ≤ Cp1,p2φ(u, p2, B
′′)

for different values of p1, p2 ∈ R \ {0} satisfying p1 < p2. Sobolev inequality and Poincaré
inequality are crucial ingredients to run this iterative procedure. For a function f that is
defined on a ball B, we denote the mean integral by

fB =

 
B

f dµ =
1

µ(B)

ˆ
B

f dµ.

We start with a local version of the above elliptic Harnack inequality.

Lemma 6.4. Let (M,d, µ) be a quasi-b-geodesic space satisfying (V D)loc and let P be a
weakly (h, h′)-compatible Markov operator with (M,d, µ) for some h > b. There exists
C > 0 and r0 > 0 such that

u(y) ≤ Cu(z) (6.3)

for all x ∈ M , for all r ≥ r0, for all y, z ∈ B(x, r/2) satisfying d(y, z) ≤ h′ and for all
non-negative functions u : B(x, r + h′)→ R harmonic in B(x, r).

Proof. There exists c1 > 0 and l ∈ N∗ such that

pl(z, w) = pl(w, z) ≥
c11B(z,2h′)(w)

V (w, h′)
(6.4)
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for all y, w ∈ M . The proof of (6.4) is analogous to that of (4.13). Therefore by (6.4),
(V D)loc weak (h, h′)-compatibility of p1 and triangle inequality, there exists c2 > 0 such
that

pl(z, w) ≥
c11B(z,2h′)(w)

V (w, h′)
≥
c11B(y,h′)(w)

V (w, h′)
≥ c2p1(w, y) = c2p1(y, w) (6.5)

for all y, z, w ∈M satisfying d(y, z) ≤ h′.
Choose r0 large enough so that r/2 + lh′ ≤ r + h′ for all r ≥ r0. Note that for every

harmonic function u : B(x, r+ h′)→ R in B(x, r) with r ≥ r0 and for all z ∈ B(x, r/2), we
have

u(z) = P lu(z) =

ˆ
B(z,lh′)

pl(z, w)u(w)µ(dw) (6.6)

By (6.6) and (6.5), we obtain

u(z) =

ˆ
B(z,lh′)

pl(z, w)u(w)µ(dw) ≥ c2
ˆ
B(y,h′)

p1(y, w)u(w)µ(dw) = c2u(y) (6.7)

for all non-negative harmonic functions u in B(x, r) for all x ∈M , for all z, y ∈ B(x, r/2)

with r ≥ r0. The choice C = c−1
2 satisfies (6.3).

6.2 John-Nirenberg inequality

Moser [58], used John-Nirenberg inequality to obtain an estimate of the form
φ(u,−q,B′) ≤ C ′φ(u, q,B′) for some q, C ′ > 0. An alternative approach is to use an
abstract lemma of Bombieri and Guisti was later proposed by Moser [70, Section 2.2.3].

John-Nirenberg inequality is an estimate on distribution of functions of bounded mean
oscillation which were introduced in [46]. A locally integrable function f : B → R define
is of bounded mean oscillation (BMO) if

‖f‖BMO(B) := sup
B′⊂B

1

µ(B′)

ˆ
B′
|f − fB′| dµ <∞.

John-Nirenberg inequality states that functions of bounded mean oscillation have an
exponentially decaying distribution function.

In [1, Theorem 5.2] a version of John-Nirenberg inequality is shown for spaces
satisfying the doubling hypothesis (V D). However for us, the metric measure space
(M,d, µ) only satisfies (V D)loc and (V D)∞. Since we do not have doubling hypothesis
on arbitrarily small balls, we introduce a modified version of BMO seminorm (BMO
seminorm at scale h) defined as

‖f‖BMO(B(x0,r0)),h = sup
B(y,r)⊆B(x0,r0),r≥h

1

V (y, r)

ˆ
B(y,r)

∣∣f − fB(y,r)

∣∣ dµ. (6.8)

Our proof is motivated by the presentation in [1]. We start by recalling the Vitali
covering lemma.

Lemma 6.5 (Vitali covering lemma). [44, Theorem 1.2] Let F be a family of balls with
positive and uniformly bounded radii in a metric space (M,d). Then there exists a disjoint
subfamily G ⊆ F such that ⋃

B∈F
B ⊆

⋃
B∈G

5B.

In fact, every ball B ∈ F meets a ball B′ ∈ G with radius at least half that of B and
therefore satisfies B ⊆ 5B′.
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A crucial ingredient in the proof of John-Nirenberg inequality is the following ver-
sion of Calderón-Zygmund decomposition lemma. Since we replaced (V D) by weaker
assumptions (V D)loc and (V D)∞, we need some other method to control the behavior of
a BMO function at small length scales. This is why we assume a local Harnack inequality
(by Lemma 6.4 the local Harnack inequality holds for harmonic functions).

Lemma 6.6 (Calderón-Zygmund decomposition lemma). Let (M,d, µ) be a metric mea-
sure space satisfying (V D)loc and (V D)∞. Let f be a non-negative locally integrable
function on B(x0, 11r0) for some r0 ≥ r1 ≥ h > 0. Further we assume that there exists
C1 ≥ 1 such that f satisfies the local Harnack inequality

f(y) ≤ C1f(z) (6.9)

for all y, z ∈ B(x0, r0 + h) satisfying d(y, z) ≤ h. Further, assume that

λ0 ≥
1

V (x0, r)

ˆ
B(x0,11r0)

f dµ (6.10)

Then there exists countable (possibly finite) family of disjoint balls F = {Bi} of disjoint
balls centered in B(x0, r) and satisfying 5Bi ⊆ B(x0, 11r0) for all Bi ∈ F0 so that

(i) f(x) ≤ C1λ0 for all x ∈ B(x0, r0) \
(⋃

Bi∈F 5Bi
)
.

(ii) λ0 <
ffl
Bi
f dµ ≤ C2λ0 for all Bi ∈ F0.

(iii) C−1
2 λ0 <

ffl
5Bi

f dµ ≤ λ0 for all Bi ∈ F0.

The family of balls F0 satisfying the above conditions are called Calderón-Zygmund
balls at level λ0. Moreover if λ0 ≤ λ1 ≤ . . . ≤ λN , then the family Calderón-Zygmund
balls Fn corresponding to different levels λn may be chosen in such a way that every
Bi(λn+1) ∈ Fn+1 is contained in some 5Bj(λn) where Bj(λn) ∈ Fn.

Proof. We denote B(x0, r0) as B0. Define a maximal function

MB0
f(x) = MB(x0,r0)f(x) = sup

B(y,r)⊂B(x0,r0+h):
y∈B(x0,r0),r≥h,B(y,r)3x

 
B(y,r)

f dµ

for all x ∈ B(x0, r). We define

Eλ =
{
x ∈ B(x0, r0) : MB(x0,r0)f(x) > λ

}
.

First consider λN . By definition for every x ∈ EλN , there exists a ball Bx = B(yx, rx)

satisfying yx ∈ B0, x ∈ Bx, Bx ⊆ B(x0, r0 + h), rx ≥ h and

λ0 ≤ λ1 ≤ . . . ≤ λN <

 
Bx

f dµ. (6.11)

Let k = kx ∈ N∗ be such that 5k−1rx ≤ 2r0 ≤ 5krx. Then B0 ⊆ 5kBx ⊆ 11B0. Combining
this with (6.10), we have

 
5kBx

f dµ ≤ 1

µ(B0)

ˆ
11B0

f dµ ≤ λ0 ≤ λN .

However since
ffl
Bx
f dµ > λN , there exist smallest nx ≥ 1 such that

 
5nxBx

f dµ ≤ λN (6.12)
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and  
5jBx

f dµ > λN (6.13)

for all j = 0, 1, . . . , nx − 1. The balls 5nx−1Bx forms a covering of EλN . Therefore
by Vitali covering lemma (Lemma 6.5), we pick a family FN of pairwise disjoint balls
Bi = 5nxi−1Bxi satisfying EλN ⊆

⋃
B∈FN 5B. We now check the construction above

satisfies the desired properties. By (6.12), (6.13) and (2.4), there exists Ch > 0, δ > 0

such that

λN <

 
5nx−1Bx

f dµ ≤ Ch5δ
 

5nxBx

f dµ ≤ Ch5δλN .

Choosing C2 = 5δCh, we obtain properties (ii) and (iii) of Calderón-Zygmund decomposi-
tion.

It remains to verify (i). If x ∈ B0 \
(⋃

Bi∈F 5Bi
)
⊆ B0 \ EλN , we have MB0

f(x) ≤ λN .
Therefore by (6.9), we have

λN ≥MB0
f(x) ≥

 
B(x,h)

f dµ ≥ C−1
1 f(x).

This give property (i). We have now constructed the desired decomposition at level
λN . Next we consider λN−1. The rest of the properties follow from the argument in [1,
Lemma 3.8].

Remark 6.7. In the above proof, we use (6.9) to obtain property (i) of the Calderón-
Zygmund decomposition. Typically property (i) is proved using Lebesgue differentiation
theorem. However the proof of Lebesgue differentiation theorem typically follows
from (V D) (See [1] and [44, Theorem 1.8]). Even though (V D) is not necessary for
Lebesgue differentiation theorem, it is not clear whether Lebesgue differentiation
theorem holds in our setting.

Next, we prove the John-Nirenberg inequality for spaces satisfying (V D)loc and (V D)∞.

Proposition 6.8 (John-Nirenberg inequality). Let (M,d, µ) be a metric measure space
satisfying (V D)loc and (V D)∞. Let f be a non-negative locally integrable function on
B(x0, 11r0) for some r0 ≥ h > 0. Further we assume that there exists C1 ≥ 1 such that f
satisfies the local Harnack inequality

f(y) ≤ C1f(z) (6.14)

for all y, z ∈ B(x0, r0 + h) satisfying d(y, z) ≤ h. Then there exists C2 > 0 such that

µ ({x ∈ B0 : |f − fB0
|} > λ) ≤ C2µ(B0) exp(−λ/(C2 ‖f‖BMO(11B0),h)) (6.15)

for all λ > 0. The constant C2 depends only on C1, h and constants associated with
doubling hypotheses (V D)loc and (V D)∞.

Proof. The proof of this version of John-Nirenberg inequality follows from the same
argument given in [1, Theorem 5.2] except that we use the version of Calderón-Zygmund
decomposition given in Lemma 6.6.

Following [23, Corollaire, p. 25], we obtain:

Corollary 6.9. Let (M,d, µ) be a metric measure space satisfying (V D)loc and (V D)∞.
Let f be a non-negative locally integrable function on B(x0, 11r0) for some r0 ≥ h′ > 0.
Further we assume that there exists C1 ≥ 1 such that f satisfies the local Harnack
inequality

f(y) ≤ C1f(z) (6.16)
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for all y, z ∈ B(x0, r0 + h′) satisfying d(y, z) ≤ h. Then there exists c0, C0 > 0 such that

ˆ
B0

e(c0f(y)/‖f‖BMO(11B0),h′) dy

ˆ
B0

e(−c0f(y)/‖f‖BMO(11B0),h′) dy ≤ C2
0µ(B0)2 (6.17)

where B0 = B(x0, r0). The constants c0, C0 depends only on C1, h
′ and constants associ-

ated with doubling hypotheses (V D)loc and (V D)∞.

6.3 Discrete calculus

Before we dive into computations, we introduce simplifying notations and collect
basic rules that mimics calculus rules in a discrete setting. Let f be a function on N×M
or on M . Depending on context, we may abbreviate f(k, x) to fk(x), fk or even f .

1. ‘Gradient’
∇xyf := f(y)− f(x) (6.18)

and the ‘time derivative’

∂kf(x) := f(k + 1, x)− f(k, x). (6.19)

2. Differentiation of product

∇xy(fg) = (∇xyf)g(y) + (∇xyg)f(x). (6.20)

3. Differentiation of square

∇xyf2 = 2(∇xyf)f(x) + (∇xyf)2. (6.21)

4. The same formulas for the ‘time derivatives’:

∂k(fg) = (∂kf)gk+1 + (∂kg)fk (6.22)

and
∂k(f2) = 2(∂kf)fk + (∂kf)2. (6.23)

5. Let ∆ = I − P denote the Laplacian corresponding to a µ-symmetric Markov
operator P with kernel p1. Then

∆f(x) := (I − P )f(x) =

ˆ
M

p1(x, y)∇yxf dy.

6. Integration by parts: If f, g ∈ L2(M,µ), then

ˆ
M

∆f(x)g(x)dx =
1

2

ˆ
M

ˆ
M

(∇xyf)(∇xyg)p1(x, y) dy dx. (6.24)

7. Consider a µ-symmetric Markov operator with kernel p1. We define |∇f| corre-
sponding to the Markov operator P as

|∇P f|2(x) :=

ˆ
M

(∇xyf)2p1(x, y) dy. (6.25)

We caution the reader to be aware of different uses of the symbol ∇ in (3.1), (6.18)
and (6.25) with slight change in subscript. The subscript could be a positive real number,
a pair of points or a Markov operator. We hope the different notations of ∇ would be
clear from the context.
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6.4 Logarithm of a harmonic function

If u is a positive harmonic function, then we show that log u has bounded BMO semi-
norm. This combined with John-Nirenberg inequality yields φ(u,−q, c1B) ≤ C ′φ(u, q, c1B)

for some q, C ′ > 0 and c1 ∈ (0, 1).

Lemma 6.10. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfying
(V D)loc, (V D)∞ and Poincaré inequality at scale h (P )h. Suppose that a Markov operator
P has a kernel p that is (h, h′)-compatible with respect to µ for some h > b. Let u be
a positive P -harmonic function on B = B(x, r). Let η be a non-negative function on B

satisfying supp(η) ⊂ B(x, (r/2)− h′). There exists C0 > 0 and r0 > 2h′ satisfies

ˆ
B/2

ˆ
B/2

(
ln
u(y)

u(z)

)2

η(z)2p1(y, z) dy dz ≤ C0

ˆ
B/2

ˆ
B/2

(∇yzη)
2
p1(y, z) dy dz (6.26)

for all balls B, for all functions u, η satisfying the above requirements.

Proof. Define ψ := η2/u. By product rule (6.20)

∇yzψ = ∇yz(1/u)η(z)2 + (1/u(y))∇yz(u2). (6.27)

Using integration by parts (6.24) along with supp(η) ⊂ B(x, (r/2)− h′), we deduce

ˆ
B/2

ˆ
B/2

p1(y, z)(∇yzψ)(∇yzu) dy dz = 0. (6.28)

Combining (6.27), (6.28), we have

−
ˆ
B/2

ˆ
B/2

p1(y, z)(∇yzu)

(
∇yz

1

u

)
η(z)2 dy dz

≤
ˆ
B/2

ˆ
B/2

p1(y, z)|∇yzu|
∣∣∇yzη2

∣∣ 1

u(y)
dy dz. (6.29)

By Lemma 6.4, u satisfies the local Harnack inequality on B/2 for large enough balls B.
Hence there exists c1, C1 > 0 and r0 > 2h′ such that

−(∇yzu)

(
∇yz

1

u

)
=

(u(y)− u(z))2

u(y)u(z)
≥ c1

(
ln
u(y)

u(z)

)2

(6.30)

|∇yzu|/u(y) ≤ C1

∣∣∣∣ln u(y)

u(z)

∣∣∣∣ (6.31)

for all positive P -harmonic functions u on B = B(x, r), for all y, z ∈ B/2 with d(y, z) ≤ h′
and r > r0. Combining (6.29), (6.30) and (6.31), we obtain

ˆ
B/2

ˆ
B/2

p1(y, z)

(
ln
u(y)

u(z)

)2

η(z)2 dy dz

≤ C1

c1

ˆ
B/2

ˆ
B/2

p1(y, z)|∇yzη|(η(y) + η(z))

∣∣∣∣ln u(y)

u(z)

∣∣∣∣ dy dz (6.32)

Since p1(y, z) = p1(z, y) for µ× µ-almost every (y, z) ∈M ×M , we have

ˆ
B/2

ˆ
B/2

p1(y, z)|∇yzη|η(y)

∣∣∣∣ln u(y)

u(z)

∣∣∣∣ dy dz
=

ˆ
B/2

ˆ
B/2

p1(y, z)|∇yzη|η(z)

∣∣∣∣ln u(y)

u(z)

∣∣∣∣ dy dz (6.33)
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By (6.32) and (6.33)

ˆ
B/2

ˆ
B/2

p1(y, z)

(
ln
u(y)

u(z)

)2

η(z)2 dy dz

≤ 2C1

c1

ˆ
B/2

ˆ
B/2

p1(y, z)|∇yzη|η(z)

∣∣∣∣ln u(y)

u(z)

∣∣∣∣ dy dz (6.34)

By Hölder inequality(ˆ
B/2

ˆ
B/2

p1(y, z)|∇yzη|η(z)

∣∣∣∣ln u(y)

u(z)

∣∣∣∣ dy dz
)2

≤
ˆ
B/2

ˆ
B/2

p1(y, z)|∇yzη|2 dy dz ·
ˆ
B/2

ˆ
B/2

p1(y, z)

(
ln
u(x)

u(y)

)2

η(z)2 dy dz. (6.35)

Combining (6.34) and (6.35), we obtain (6.26) with C0 = 4C2
1/c

2
1.

In the next proposition, we show that logarithm of a harmonic function has bounded
mean oscillation. Then using John-Nirenberg inequality we prove a weak form of elliptic
Harnack inequality.

Proposition 6.11. Under the assumptions of Theorem 6.3, there exists q > 0, c0 ∈ (0, 1)

and C0, r0 > 0 such that

φ(u,−q, c0B) ≤ C0φ(u, q, c0B) (6.36)

for all P -harmonic functions u on B = B(x, r) with r ≥ r0 and for all x ∈M .

Proof. The proof follows from the same argument as [23, Théorème 3.3] where the use
of [23, Lemme 3.2] is replaced Lemma 6.10.

6.5 Mean value inequality for subharmonic functions

For the rest of the section, we will rely on (V D)∞, (V D)loc and the obolev inequal-
ity (5.2) to prove Theorem 6.3. We obtain various inequalities on subharmonic functions.
The following elementary property of subharmonic and superharmonic functions and
follows immediately from Jensen’s inequality.

Lemma 6.12. Let P be a Markov operator.

(a) If f is a non-negative function that is P -subharmonic in B(x, r), then fp is P -
subharmonic in B(x, r) for all p ∈ [1,∞).

(b) If f is a positive function that is P -superharmonic inB(x, r), then fp is P -subharmonic
in B(x, r) for all p < 0.

Moser’s iteration relies on repeated application of the following Lemma.

Lemma 6.13. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfying (V D)loc

and (V D)∞. Suppose that a Markov operator P has a kernel p that is (h, h′)-compatible
with respect to µ for some h > b. Further assume that P satisfies the Sobolev inequal-
ity (5.2). There exists C0 > 0 such that

φ(u, 2(1 + 2/δ), B(x, (1− σ)r − h′) ≤ C0σ
−δ/(δ+2)φ(u, 2, B(x, r + h′)) (6.37)

for all x ∈ M , for all r ≥ 3h′, for all σ ∈ (0, 1/2) and for all functions u that are
non-negative and P -subharmonic on B(x, r).
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Proof. The proof of this result follows from a similar argument as that of [23, Proposition
5.2] where we use the version of Sobolev ineqaulity given by (5.2) instead. Although the
Sobolev inequality takes a different form compared to [23], we use the subharmonicity
of u to compare PBu with u (away from boundary of u).

The following reverse Poincaré inequality.

Lemma 6.14 (Reverse Poincaré inequality). Let (M,d, µ) be a quasi-b-geodesic metric
measure space satisfying (V D)loc and (V D)∞. Suppose that a Markov operator P has a
kernel p that is weakly (h, h′)-compatible with respect to µ for some h > b. For all Ω > 1,
there exists C = C(Ω) such that for all P -harmonic functions u, for all x ∈M and for all
r > 3h′/(Ω− 1) ˆ

B(x,r)

|∇Pu|2 dµ ≤ Cr−2

ˆ
B(x,Ωr)

u2 dµ. (6.38)

In particular, there exists CR = C(2) such that such that for all P -harmonic functions u,
for all x ∈M and for all r > 3h′ˆ

B(x,r)

|∇Pu|2 dµ ≤ CRr−2

ˆ
B(x,2r)

u2 dµ. (6.39)

Proof. Define

ψ(y) := max

(
0,min

(
1,

Ωr − h′ − d(x, y)

(Ω− 1)r − 2h′

))
. (6.40)

Note that ψ ≡ 0 in B(x,Ωr − h′)c and ψ ≡ 1 in B(x, r + h′). Since ∆u = (I − P )u = 0, for
all r > 3h′/(Ω− 1) and for all x ∈M we have

0 = −
ˆ
M

ψ2(y)u(y)∆u(y) dy = −
ˆ
B(x,Ωr−h′)

ψ2(y)u(y)∆u(y) dy

= −1

2

ˆ
B(x,Ωr)

ˆ
B(x,Ωr)

p1(y, z)
(
∇yz(ψ2u)

)
(∇yzu) dy dz

= −1

2

ˆ
B(x,Ωr)

ˆ
B(x,Ωr)

p1(y, z)ψ2(y) (∇yzu)
2
dy dz

− 1

2

ˆ
B(x,Ωr)

ˆ
B(x,Ωr)

p1(y, z)u(z)
(
∇yzψ2

)
(∇yzu) dy dz. (6.41)

The above steps follows from integration by parts (6.24) and product rule (6.20). We use
the inequality ab ≤ a2/4 + b2 to obtain∣∣u(z)

(
∇yzψ2

)
(∇yzu)

∣∣ = |(ψ(y) + ψ(z))u(z)(∇yzψ)(∇yzu)|

≤ 1

4
(ψ2(y) + ψ2(z)) (∇yzu)

2
+ 2u2(z) (∇yzψ)

2
. (6.42)

Since p1(y, z) = p1(z, y) for µ× µ-almost every (y, z), we haveˆ
B1

ˆ
B1

p1(y, z)ψ2(y) (∇yzu)
2
dy dz =

ˆ
B1

ˆ
B1

p1(y, z)ψ2(z) (∇yzu)
2
dy dz (6.43)

where B1 := B(x,Ωr). Combining (6.41), (6.42) and (6.43)ˆ
B1

ˆ
B1

p1(y, z)ψ2(y) (∇yzu)
2
dy dz ≤ 4

ˆ
B1

ˆ
B1

p1(y, z)u2(z) (∇yzψ)
2
dy dz. (6.44)

The inequality (a+ b)2 ≤ 2(a2 + b2) along with product rule (6.20) impliesˆ
B1

ˆ
B1

p1(y, z) (∇yz(ψu))
2
dy dz ≤ 2

ˆ
B1

ˆ
B1

p1(y, z)ψ2(y) (∇yzu)
2
dy dz

+ 2

ˆ
B1

ˆ
B1

p1(y, z)u2(z) (∇yzψ)
2
dy dz. (6.45)
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Combining (6.44) and (6.45), we obtainˆ
B1

ˆ
B1

p1(y, z) (∇yz(ψu))
2
dy dz ≤ 10

ˆ
B1

ˆ
B1

p1(y, z)u2(z) (∇yzψ)
2
dy dz. (6.46)

By (6.40) and (4.10), there exists C1 > 0 such that

(∇yzψ)
2
p1(y, z) ≤ (3h′)2(Ω− 1)−2r−2p1(y, z)

for all y ∈M , for µ-almost every z ∈M and for all r > 3h′/(Ω− 1). Therefore, we haveˆ
B1

ˆ
B1

p1(y, z) (∇yz(ψu))
2
dy dz ≤ (3h′)2(Ω− 1)−2r−2

ˆ
B1

u2(z) dz. (6.47)

for all P -harmonic functions u, for all r > 3h′/(Ω− 1) and for all x ∈M . Since ψ ≡ 1 in
B(x, r + h′) the desired inequality (6.38) follows from (6.47).

The next lemma is a L2-mean value inequality for positive P -subharmonic functions.

Lemma 6.15. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfying (V D)loc

and (V D)∞. Suppose that a Markov operator P has a kernel p that is (h, h′)-compatible
with respect to µ for some h > b. Further assume that P satisfies the Sobolev inequal-
ity (5.2). There exists C1 > 0 and r1 > 0 such that

φ(u,∞, B(x, r/6)) ≤ Cφ(u, 2, B(x, r + h′)) (6.48)

for all x ∈ M , for all r ≥ r1 and for all functions u that are non-negative and P -
subharmonic on B(x, r).

Proof. Define a sequence of radii iteratively by r(1) = r + h′,

r(i+ 1) = (r(i)− h′)
(

1− 1

3i+1

)
− h′

for i = 1, 2, . . . , dlog re. By the above definition, there exists r0 > 0 such that

r(dlog re+ 2)− h′ ≥ r

1−
i∑

j=1

3−(i+1)

− 4h′(log r + 3) ≥ r/2 ≥ 3h′ (6.49)

for all r ≥ r0. We define the balls Bi = B(x, r(i)) for i ∈ N∗ and exponents pi = (1 + 2/δ)i

for i ∈ N≥0. By Lemma 6.12 upi is P -subharmonic for all i ∈ N≥0. By applying
Lemma 6.13 to the function upi−1 that is P -subharmonic in Bi, we obtain

φ(u, 2pi, Bi+1) ≤ C1/pi−1

0 3−(i+1)/piφ(u, 2pi−1, Bi) (6.50)

for i = 1, 2, . . . , dlog re and r ≥ r0. Combining the estimates in (6.50), there exists C2 > 0

such that
φ(u, 2pdlog re, Bdlog re+1) ≤ C2φ(u, 2, B(x, r + h′)) (6.51)

for all x ∈ M , for all r ≥ r0 and for all non-negative subharmonic u in B(x, r). There
exists C3, C4 > 0 such that

sup
B(x,r/2)

u2pdlog re ≤ sup
B(x,r/2)

P (u2pdlog re)

≤ sup
y∈Bdlog re+1

C3

V (y, h′)

ˆ
Bdlog re+1

u2pdlog re dµ

≤ C3

µ(Bdlog re+1)

(
sup

y∈B(x,r)

V (y, 2r)

V (y, h′)

) ˆ
Bdlog re+1

u2pdlog re dµ

≤ C4r
δ

 
Bdlog re+1

u2pdlog re dµ (6.52)
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The first line above follows from Lemma 6.12, the second line follows from (4.10)
and (6.49), the third line follows from (6.49) and the last line from (2.4) and (6.49).
Combining (6.51) and (6.52), we obtain (6.48).

The next lemma is analogous to Lemma 6.13 and will be used for an iteration
procedure.

Lemma 6.16. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfying (V D)loc

and (V D)∞. Suppose that a Markov operator P has a kernel p that is (h, h′)-compatible
with (M,d, µ) for some h > b. Further assume that P satisfies the Sobolev inequality (5.2).
There exists C0 > 0, r0 > 0 such thatˆ

B(x,r/2)

ˆ
B(x,r/2)

ψ(y)2|∇yz(up)|p1(y, z) dy dz

≤ C0

(
2p

2p− 1

)2 ˆ
B(x,r/2)

ˆ
B(x,r/2)

u(y)2p|∇yzψ|p1(y, z) dy dz (6.53)

for all x ∈M , for all r ≥ r0, for all p ∈ (0, 1] \ {1/2}, for all positive functions u that are
P -harmonic on B(x, r) and for all ψ ≥ 0 with supp(ψ) ⊆ B(x, r/2− h′).

Proof. Let η := u2p−1ψ, where ψ ≥ 0 satisfies supp(ψ) ⊆ B(x, r/2 − h′) and u > 0 is
P -harmonic in B(x, r). By product rule (6.20)

∇yzη =
(
∇yz(u2p−1)

)
ψ(y)2 + u(z)2p−1

(
∇yzψ2

)
.

By integration by parts (6.24), we obtainˆ
B

ˆ
B

p1(y, z)(∇yzu)
(
∇yz(u2p−1)

)
ψ(y)2 dy dz (6.54)

= −
ˆ
B

ˆ
B

p1(y, z) (∇yzu)u(z)2p−1
(
∇yz(ψ2)

)
dy dz

where B := B(x, r/2). There exists C1 > 0 such that

|2p− 1| (∇yz(up))2 ≤ p2(∇yzu)(∇yz(u2p−1)) (6.55)

|∇yzu|u(z)p−1 ≤ C1p
−1|∇yz(up)|. (6.56)

for all p ∈ (0, 1], for all y, z ∈M with d(y, z) ≤ h′ and for all positive u. The estimate (6.55)
is elementary and is a version of Stroock-Varopoulos inequality. The proof of (6.55) is
essentially contained in [60, Lemma 2.4]. The estimate (6.56) follows from mean value
theorem and the local Harnack inequality given by Lemma 6.4. Combining (6.54), (6.55)
and (6.56), we have

C−1
1

|2p− 1|
p

ˆ
B

ˆ
B

p1(y, z)ψ(y)2|∇yz(up)|2 dy dz

≤
ˆ
B

ˆ
B

p1(y, z)u(z)p|∇yzψ||ψ(y) + ψ(z)||∇yz(up)| dy dz

≤
(ˆ

B

ˆ
B

p1(y, z)u(y)2p|∇yzψ|2 dy dz
)1/2

×
(ˆ

B

ˆ
B

p1(y, z)2(ψ(y)2 + ψ(z)2)|∇yz(up)|2 dy dz
)1/2

. (6.57)

We use Cauchy-Schwarz inequality and (a + b)2 ≤ 2(a2 + b2) in the last step. By the
µ× µ-almost everywhere symmetry of p1, we haveˆ

B

ˆ
B

p1(y, z)ψ(z)2|∇yz(up)|2 dy dz =

ˆ
B

ˆ
B

p1(y, z)ψ(y)2|∇yz(up)|2 dy dz. (6.58)
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Combining (6.57) and (6.58) yields (6.53).

We do another iteration procedure between the exponents q and 2 using Lemma 6.16.

Lemma 6.17. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfying (V D)loc

and (V D)∞. Suppose that a Markov operator P has a kernel p that is (h, h′)-compatible
to (M,d, µ) for some h > b. Further assume that P Sobolev inequality (5.2). For any
fixed q > 0, there exists C1 > 0, c1 ∈ (0, 1/2) and r1 > 0 such that

φ(u, 2, B(x, c1r)) ≤ C1φ(u, q,B(x, r/2)) (6.59)

for all x ∈ M , for all r ≥ r1 and for all functions u that are non-negative and P -
subharmonic on B(x, r).

Proof. If q ≥ 2, then (6.59) follows from Jensen’s inequality. Hence it suffices to consider
q ∈ (0, 2).

Define θ := δ/(δ − 2). We slightly decrease q if necessary so that qθk 6= 1/2 for all
i ∈ N. Define k ∈ N∗ as the integer that satisfies qθk−1 < 2 ≤ qθk. Define c1 := 4−k and
iteratively define

si := 2si−1 + 2h′

for i = 1, . . . , k, where s0 := c1r. Fix r0 > 0 such that sk ≤ r/2− h′ for all r ≥ r0 where k
and sk are defined as above.

Define qi := qθi/2, Bi = B(x, sk−i) for i = 0, 1, . . . , k. Define the functions

ψi(y) = max

(
0,min

(
1,

2sk−i−1 + h′ − d(x, y)

sk−i−1

))
for i = 0, 1, . . . , k − 1. Note that ψi ≡ 1 in B(x, sk−i−1 + h′) and ψ ≡ 0 in B(x, sk−i − h′)c.

By Sobolev inequality (5.2) there exists C2 > 0 such that(ˆ
Bi

(PBi(ψiu
qi)(y))

2θ
dy

)1/θ

≤
C2s

2
k−i

µ(Bi)2/δ

ˆ
Bi

ˆ
Bi

p1(y, z)|∇yz(ψiuqi)|2 dy dz

+
C2

µ(Bi)2/δ

ˆ
Bi

ψi(y)2u(y)2qi dy (6.60)

for all i = 0, 1, . . . , k − 1. By (4.10) and Lemma 6.4 there exists C3 > 0 such that

PBi(ψu
qi)(y) =

ˆ
B(y,h′)

uqi(z)p1(y, z) dz ≥ C−qi3 uqi(y)

for all y ∈ Bi+1. Therefore(ˆ
Bi+1

u(y)2qi+1 dy

)1/θ

≤
(
Cqi3

ˆ
Bi

(
PBi+1

(ψuqi)(y)
)2θ

dy

)1/θ

(6.61)

for x ∈ Bi+1. There exists C4, C5, C6 > 0 such thatˆ
Bi

ˆ
Bi

p1(y, z)|∇yz(ψuqi)|2 dy dz

≤ 2

ˆ
Bi

ˆ
Bi

p1(y, z)ψ(y)2|∇yz(uqi)|2 dy dz + 2

ˆ
Bi

ˆ
Bi

p1(y, z)|∇yzψ|2u(z)2qi dy dz

≤ C4

[(
2qi

2qi − 1

)2

+ 1

] ˆ
Bi

ˆ
Bi

p1(y, z)|∇yzψi|2u(y)2qi dy dz

≤ C5

s2
k−i−1

[(
2qi

2qi − 1

)2

+ 1

] ˆ
Bi

u(z)2qi dz

≤ C6

s2
k−i−1

ˆ
Bi

u(z)2qi dz. (6.62)

EJP 28 (2023), paper 64.
Page 47/81

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP954
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Random walks on metric measure spaces

In the first step above, we used product rule (6.20) and the inequality (a+b)2 ≤ 2(a2 +b2).
In the second step we use Lemma 6.16 and in the third step we use (4.10). In the last
step, we simply bound 2qi/|2qi − 1| by max0≤i≤k 2pi/|2pi − 1| <∞.

Combining (6.60), (6.61), (6.62) along with sk−i/sk−i−1 ≤ 4k yields(ˆ
Bi+1

u(y)2qi+1 dy

)1/θ

≤ C7

µ(Bi)2/δ

ˆ
Bi

u(y)2qi dy

for some C7 > 0. Combined with r ≥ r0 and (2.4), we deduce

φ(u, 2qi+1, Bi+1) ≤ C8φ(u, 2qi, Bi) (6.63)

for i = 0, 1, . . . , k − 1, for all x ∈ M , for all r ≥ r0 and for all P -harmonic u > 0.
The estimates (6.63) along with Jensen’s inequality implies (6.59) with C1 = Ck8 and
c1 = 4−k.

We are now ready to prove elliptic Harnack inequality.

Proof of Theorem 6.3. It suffices to consider the case u > 0 because we can replace
u ≥ 0 by u+ ε and let ε ↓ 0.

Note that we have Sobolev inequality (5.2) by Theorem 5.1. There exists r0 > 0

Ci > 0, ci ∈ (0, 1) for 1 ≤ i ≤ 5 such that for all x ∈ M and for all r ≥ r0 and for all
positive functions u that are P -harmonic on B := B(x, r)

φ(u,∞, c1B) ≤ C1φ(u, c2, B)

≤ C2φ(u, q, c3B)

≤ C3φ(u,−q, c4, B)

≤ C4φ(u,−∞, c5B).

The first line above follows from Lemma 6.15, the second line above follows from
Lemma 6.17 and the third line follows from Proposition 6.11. The last line follows from
applying Lemma 6.15 to the function u−q/2 which is subharmonic by Lemma 6.12(b).
Choosing c = min(c1, c5) yields the elliptic Harnack inequality.

The constant c ∈ (0, 1) in (6.1) is flexible. More precisely, we can slightly improve the
conclusion of Theorem 6.3 for b-geodesic spaces by an easy chaining.

Corollary 6.18 (Elliptic Harnack inequality). Let (M,d, µ) be a b-geodesic space satis-
fying (V D)loc, (V D)∞ and Poincaré inequality (P )h at scale h. Suppose that a Markov
operator P has a kernel p that is (h, h′)-compatible with (M,d, µ) for some h > b. Then
for all c ∈ (0, 1), there exists r0 > 0, CE > 0 such that for all x ∈M , for all r ≥ r0 and for
all non-negative functions u : B(x, r)→ R≥0 that are P -harmonic in B(x, r) the following
Harnack inequality holds:

sup
x∈B(x,cr)

u ≤ CE inf
x∈B(x,cr)

u. (6.64)

The above corollary is a consequence of Theorem 6.3 applied repeatedly to a sequence
of points in an approximate geodesic. We do not use the above corollary. The proof of
Corollary 6.18 is left to the reader.

6.6 Applications of elliptic Harnack inequality

We present two immediate and well-known applications of elliptic Harnack inequality.
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Proposition 6.19 (Liouville property). Let (M,d, µ) be a quasi-b-geodesic metric measure
space satisfying (V D)loc, (V D)∞ and Poincaré inequality (P )h at scale h. Suppose that a
Markov operator P has a kernel p that is (h, h′)-compatible with (M,d, µ) for some h > b.
Then all non-negative P -harmonic functions are constant (strong Liouville property).
Therefore all bounded harmonic functions are constant (weak Liouville property).

Proof. Let u be a non-negative harmonic function. Then v = u− inf u is a non-negative
harmonic function with inf v = 0. By elliptic Harnack inequality, there exists c ∈ (0, 1)

and C > 1 such that supB(x,cr) v ≤ C infB(x,cr) v for all large enough r. Letting r → ∞,
we have supM v ≤ 0 which implies v ≡ 0. This proves strong Liouville property. The weak
Liouville property follows from the observation that for any bounded harmonic function
h, the function h− inf h is a non-negative harmonic function.

The following Hölder regularity-type estimate is a direct consequence of elliptic
Harnack inequality. Our argument is an adaptation of Moser’s argument [58, Section 5]
which uses an oscillation inequality.

Proposition 6.20. There exists c ∈ (0, 1), α > 0, C > 0 and r1 > 0 such that

|u(y)− u(z)| ≤ C
(

max(d(y, z), 1)

r

)α
sup
B(x,r)

u (6.65)

for all y, z ∈ B(x, cr), for all x ∈ M , for all r ≥ r1 and for all non-negative functions
u : M → R that is P -harmonic on B(x, r) with B(x, r) 6= M .

Proof. The proof follows from using Moser’s argument [58, Section 5] by iterating the
oscillation lemma at all large enough scales.

Note that above result does not give Hölder continuity for harmonic functions which
is in contrast to [58, Section 5]. However we will see that Proposition 6.20 is useful. In
particular, we use Proposition 6.20 to prove Gaussian lower bounds in Section 8.

7 Gaussian upper bounds

The goal of this section is to prove the following Gaussian upper bounds using Sobolev
inequality. The results of this section rely only on (V D)loc, (V D)∞ and the Sobolev
inequality (5.2). We do not assume the Poincaré inequality (P )h to show Gaussian upper
bounds. More precisely, we show

Proposition 7.1. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfy-
ing (V D)loc and (V D)∞. Suppose that a Markov operator P has a kernel p that is
(h, h′)-compatible with (M,d, µ) for some h > b. Further assume that P satisfies the
Sobolev inequality (5.2). There exists C > 0 such that

pn(x, y) ≤ C

V (x,
√
n)

exp

(
−d(x, y)2

Cn

)
(7.1)

for all x ∈M and for all n ∈ N≥2.

The first step is to obtain the following on-diagonal upper bound.

Proposition 7.2. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfy-
ing (V D)loc and (V D)∞. Suppose that a Markov operator P has a kernel p that is
(h, h′)-compatible with (M,d, µ) for some h > b. Further assume that P satisfies the
Sobolev inequality (5.2). There exists C0 > 0 such that

pn(x, x) ≤ C

V (x,
√
n)

(7.2)

for all x ∈M and for all n ∈ N≥2.
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A crucial ingredient in the proof of Proposition 7.2 is a L1 to L∞ mean value inequality
for the solutions of a heat equation. We again rely on Moser’s iterative method and the
calculations are similar but more involved than those encountered in Section 6.5 for
harmonic functions. The lazy walk defined in Example 4.4 will play an important role in
this section. Recall that for a Markov operator P , the corresponding ‘lazy’ versions of
Markov operator and Laplacian are given by

PL = (I + P )/2 and ∆L = ∆/2 = (I − P )/2. (7.3)

For a, b ∈ N, we denote the integer intervals by

Ja, bK := {i ∈ N : a ≤ i ≤ b} .

The following definition is analogous to Definition 6.1. Caloric functions are solutions to
heat equation.

Definition 7.3. Let P be a Markov operator on (M,d, µ) and let a, b ∈ N. A function
u : N×M → R is P -caloric (respectively PL-caloric) in Ja, bK×B(x, r) if

∂ku(y) + ∆uk(y) = 0 (respectively ∂ku(y) + ∆Luk(y) = 0)

for all k ∈ Ja, bK and for all y ∈ B(x, r).
Similarly, we say a function u : N×R→ R is P -subcaloric (resp. P -supercaloric) in

Ja, bK×B(x, r) if
∂ku(y) + ∆uk(y) ≤ 0 (respectively ≥ 0)

for all k ∈ Ja, bK and for all y ∈ B(x, r). Analogously, we define PL-subcaloric and
PL-supercaloric functions simply by replacing ∆ with ∆L in the equation above.

Remark 7.4.

(a) We can restate the above definitions using ∂ku+∆uk = uk+1−Puk and ∂ku+∆Luk =

uk+1 − PLuk.

(b) Consider a Markov operator P that is (h, h′)-compatible with (M,d, µ). Similar to
Remark 6.2(a), the property that u : N × M → R is P -caloric (or PL-caloric) in
Ja, bK×B(x, r) depends only on the value of u in Ja, b+ 1K×B(x, r + h′). Therefore
it suffices if the function u has a domain that satisfies Ja, b + 1K × B(x, r + h′) ⊆
Domain(u).

Although our eventual goal is to prove parabolic Harnack inequality for P -caloric
functions, the Moser’s iteration procedure is applied to PL-caloric functions. The laziness
is introduced to handle certain technical difficulties that arise due to discreteness of
time. Another method to avoid these technical difficulties that arise due to discreteness
of time is to carry out Moser’s iteration method for solutions of the continuous time heat
equation ∂u

∂t + ∆u = 0 (See [25, Section 2] for this method on graphs).

In continuous time case the product rule of differentiation implies ∂(u2)
∂t = 2u∂u∂u ;

however for discrete time the analogous formula is ∂k(u2) = 2uk∂uk + (∂ku)
2. The

‘error term’ (∂ku)
2 due to discreteness of time is a source of difficulty in the proofs of

Caccioppoli inequality and an integral maximum principle for P -caloric and P -subcaloric
functions. However as we shall see, this ‘error term’ can be handled using a Cauchy-
Schwarz inequality for PL-caloric and PL-subcaloric functions (See Remark 7.9). As a
result, we will primarily be concerned with PL-caloric and PL-subcaloric functions for
now. The assumption (d) in Definition 4.7 will allow to compare the random walks driven
by P and PL.

The following lemma and its proof is analogous to that of Lemma 6.12.
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Lemma 7.5. Let P be a Markov operator. Assume that the function u : N×M → R≥0

is P -subcaloric in Ja, bK × B(x, r) for some x ∈ M , r > 0 and a, b ∈ N. Then up is a
P -subcaloric in Ja, bK×B(x, r) for all p ≥ 1.

Proof. Note that

upk+1(y) = (∂ku+ uk)p(y) ≤ (−∆uk + uk)p = (Puk(y))
p ≤ P (upk)(y)

for all (k, y) ∈ Ja, bK×B(x, r). The first inequality above follows from the fact that u ≥ 0

is P -subcaloric in Ja, bK×B(x, r) and the second follows from Jensen’s inequality.

For a function f : N×M → R and a Markov operator P on M , we denote the function
Pf : N×M → R

Pf(k, x) := (Pf(k, ·))(x) = (Pfk)(x)

for all k ∈ N and for all x ∈M . We require the following property of subcaloric functions.

Lemma 7.6. Let (M,d, µ) be a metric measure space and let P be a Markov operator
that is (h, h′)-compatible to (M,d, µ). If u : N×M → R is PL-subcaloric in Ja, bK×B(x, r),
then Pu is PL-subcaloric in Ja, bK×B(x, r − h′)) for all x ∈M and for all r > h′.

Proof. If (k, y) ∈ Ja, bK×B(x, r−h′) and u : N×M → R is PL-subcaloric in Ja, bK×B(x, r),
then

[(Pu)k+1 − PL(Pu)k](y) = P (uk+1 − PLuk) (y) ≤ 0.

In the above equality, we used that P and PL commute. The inequality follows from (4.10)
and the fact that any Markov operator is positivity preserving.

7.1 Mean value inequality for subcaloric functions

We will prove the following mean value inequality in a weak form. The inequality
bounds from above a weak version of L∞ norm on a space-time cylinder by a weak
version of L1 norm. Our version of the mean value inequality in Lemma 7.7 is weaker
than the one known for graphs [18, Theorem 4.1] mainly because we rely on a weaker
Sobolev-type inequality (5.2). Although the mean value inequality is weaker, we will
obtain on-diagonal upper bounds using Lemma 7.7. Using an integral maximum principle
argument, we will obtain Gaussian upper bounds in Section 7.

Lemma 7.7. Under the assumptions of Proposition 7.2, there exists C1 > 0, n1 > 0 such
that

inf
k∈J0,nK

sup
y∈B(x,

√
n/2)

P 2dlog
√
ne+2uk(y) ≤ C1

V (x,
√
n)

sup
k∈J0,nK

ˆ
B(x,

√
n+h′)

uk dµ (7.4)

for all n ∈ N∗ satisfying n > n1, for all x ∈M , for all non-negative functions u : N×M →
R that is PL-subcaloric in J0, nK×B(x,

√
n).

The proof of Lemma 7.7 relies on Moser’s iteration procedure. Couhlon and Grigor’yan
[18, Section 4] obtained a similar (stronger) mean value inequality in the graph setting
using an iteration procedure. However they relied on a Faber-Krahn inequality that is
equivalent to the Sobolev inequality (5.1) and therefore does not hold for discrete time
Markov chains on continuous spaces.

In this section, we carry out Moser’s iteration procedure for subcaloric functions
relying on the weaker1 Sobolev inequality (5.2). To prove the elementary iterative step
of iteration, we need the following discrete Caccioppoli inequality. The proof is an
adaptation [18, Proposition 4.5]. The next two Lemmas together may be regarded as the
parabolic version of Lemma 6.13.

1‘weaker’ compared to Sobolev inequalities in [67, 68, 74, 23, 25, 42].
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Lemma 7.8 (Caccioppoli inequality). Under the assumptions on Proposition 7.2, we have

ˆ
M

∂k(u2)ψ2 dµ+
1

8
E(ukψ, ukψ) ≤ 17

8

ˆ
M

ˆ
M

|∇yzψ|2u2
k(y)p1(y, z) dy dz (7.5)

for all x ∈ M , for all r > 0, for all non-negative functions ψ : M → R≥0 satisfying
supp(ψ) ⊆ B(x, r), for all a, b ∈ N, for all k ∈ Ja, bK and for all non-negative functions
u : N×M → R≥0 such that u is PL-subcaloric in Ja, bK×B(x, r).

Proof. Fix x ∈M , r > h′ and define B := B(x, r+ h′). Let u : N×M → R≥0 be such that
u is PL-subcaloric in Ja, bK×B(x, r). We start with the elementary inequality

∂k(u2)(y) ≤ −uk(y)∆uk(y) +
1

4
(∆uk(y))

2 (7.6)

for all (k, y) ∈ Ja, bK×B(x, r), as we now show. Since u is PL-subcaloric in Ja, bK×B(x, r),
we have uk+1(y) ≤ PLuk(y) for all (k, y) ∈ Ja, bK×B(x, r). Combined with the fact that u
is non-negative, we have u2

k+1(y) ≤ (PLuk(y))
2 for all (k, y) ∈ Ja, bK× B(x, r) which can

be rearranged into (7.6).
Let (k, y) ∈ Ja, bK× B(x, r). Recall that B = B(x, r + h′). Using (7.6), integration by

parts (6.24) and supp(ψ) ⊆ B(x, r), we have

ˆ
B

ψ2∂k(u2) dµ ≤ −1

2

ˆ
B

ˆ
B

(∇yzuk)
(
∇yz(ukψ2)

)
p1(y, z) dy dz

+
1

4

ˆ
B

(∆uk(y))2ψ2(y) dy. (7.7)

The second term in (7.7) can be handled using Cauchy-Schwarz inequality as

(∆uk(y))2 =

(
−
ˆ
M

(∇yzuk)p1(y, z) dz

)2

≤
(ˆ

M

p1(y, z) dz

)(ˆ
M

(∇yzuk)2p1(y, z) dz

)
=

ˆ
M

(∇yzuk)2p1(y, z) dz. (7.8)

For the first term in (7.7), we use product rule (6.20)

∇yz(ukψ2) = uk(z)∇yzψ2 + ψ2(y)∇yzuk. (7.9)

Combining (7.7), (7.8) and (7.9), we have

ˆ
B

ψ2(y)∂k(u2)(y) dy +
1

4

ˆ
B

ˆ
B

(∇yzuk)
2
ψ2(y)p1(y, z) dy dz

≤ −1

2

ˆ
B

ˆ
B

uk(z)
(
∇yzψ2

)
(∇yzuk) p1(y, z) dy dz. (7.10)

The right side of (7.10) can be bounded using t1t2 ≤ t21/8 + 2t22 as∣∣−uk(z)
(
∇yzψ2

)
(∇yzuk)

∣∣ ≤ uk(z)ψ(y)|(∇yzψ) (∇yzuk)|
+ uk(z)ψ(z)|(∇yzψ) (∇yzuk)|

≤ 1

8
(ψ2(y) + ψ2(z)) (∇yzuk)

2

+ 4u2
k(z)|∇yzψ|2. (7.11)
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Using p1(y, z) = p1(z, y) for µ× µ-almost every (y, z), we obtain

ˆ
B

ˆ
B

ψ2(y) (∇yzuk)
2
p1(y, z) dy dz =

ˆ
B

ˆ
B

ψ2(z) (∇yzuk)
2
p1(y, z) dy dz. (7.12)

Combining (7.10), (7.11) and (7.12), we deduce

ˆ
B

ψ2(y)∂k(u2)(y) dy +
1

8

ˆ
B

ˆ
B

(∇yzuk)
2
ψ2(y)p1(y, z) dy dz

≤ 2

ˆ
B

ˆ
B

u2
k(z) (∇yzψ)

2
p1(y, z) dy dz. (7.13)

Since supp(ψ) ⊆ B(x0, r − h′), using integration by parts (6.24) we have

E(ψuk, ψuk) =
1

2

ˆ
B

ˆ
B

|∇yz(ukψ)|2p1(y, z) dy dz. (7.14)

Using product rule (6.20) and the inequality (t1 + t2)2 ≤ 2(t21 + t22), we obtain

|∇yz(ukψ)|2 = |ψ(y)(∇yzuk) + uk(z)(∇yzψ)|2

≤ 2
(
ψ2(y)(∇yzuk)2 + u2

k(z)(∇yzψ)2
)
. (7.15)

Combining (7.13), (7.14), (7.15) and µ×µ-almost everywhere symmetry of p1 yields (7.5).

Remark 7.9. Recall the product rule of differentiation ∂k(u2) = 2uk∂uk + (∂ku)
2 gives

rise to the ‘error term’ (∂ku)
2 which occurs due to discreteness of time. This error term

occurs in (7.7) and is controlled using Cauchy-Schwarz inequality in (7.8). However the
estimate given by (7.8) is sufficient to prove Caccioppoli inequality only in the presence
of some laziness. A similar difficulty arises in the proof of discrete integral maximum
principle and is the reason behind considering the operator PL as opposed to P in this
section.

Next, we prove the elementary iterative step of Moser’s iteration in parabolic setting.
The proof relies on Caccioppoli inequality (7.5) and Sobolev inequality (5.2). Let µc
denote the counting measure on N and let (M,d, µ) be a metric measure space. We
denote the product measure on N×M by µ̃ := µc × µ. Similar to (6.2), we define

φ̃(u, p,Q) :=

(
1

µ̃(Q)

ˆ
Q

up dµ̃

)1/p

(7.16)

for all p > 0, for all Q ⊂ N×M and for all functions u : N×M → R≥0.

Lemma 7.10. Under the assumptions of Proposition 7.2, for all K1 ≥ 1, there exists
C1 > 0, r1 > 0 (depending on K1) such that

φ̃(Pu, 2 + (4/δ), Jd(1− σ2)a0 + σ2a1e, a1K×B(x, (1− σ)r − h′))

≤ C1σ
−1φ̃(u, 2, Ja0, a1K×B(x, r + h′)) (7.17)

for all σ ∈ (0, 1/2), for all x ∈ M , for all r ≥ r1, for all a0, a1 ∈ N satisfying K−1
1 r2 ≤

a2 − a1 ≤ K1r
2 and for all non-negative functions u : N × M → R≥0 such that u is

PL-subcaloric in Ja0, a1K×B(x, r).

Proof. Let x ∈ M , σ ∈ (0, 1/2) and let r > r1 ≥ 4h′, where r1 will be determined later.
Let u be a non-negative function that is PL-subcaloric in Ja0, a1K×B(x, r).
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We start by defining appropriate cut-off functions in space and time. Define B :=

B(x, r + h′) and ψ : M → R≥0 as

ψσ(y) := max

(
0,min

(
1,
r − d(x, y)

σr

))
.

Note that supp(ψσ) ⊆ B(x, r) and ψ ≡ 1 on B(x, (1−σ)r). Define aσ := d(1−σ2)a0 +σ2a1e
and χ : N→ R as

χσ(k) =


1 if k ≥ aσ
0 if k ≤ a0

k−a0
aσ−a0 otherwise.

Since u is non-negative and PL-subcaloric in Ja0, a1K×B(x, r), by Caccioppoli inequality
(Lemma 7.8) and product rule (6.22), we obtain

ˆ
B

(
∂k(χσu)2

)
ψ2
σ dµ+

χ2
σ(k + 1)

8
EB(ψσuk, ψσuk)

≤ 17

8
χ2
σ(k + 1)

ˆ
B

ˆ
B

|∇yzψσ|2u2
k(y)p1(y, z) dy dz + ∂kχ

2
σ

ˆ
B

u2
kψ

2
σ dµ (7.18)

for all k ∈ [a, b). Since p1 is (h, h′)-compatible with (M,d, µ), we have

|∇yzψ|2p1(y, z) ≤ (h′)2

(σr)2
p1(y, z). (7.19)

We use product rule (6.22), triangle inequality, χσ ≤ 1 and aσ − a0 ≥ σ2(a1 − a0) ≥
σ2K−1

1 r2 to deduce

∣∣∂kχ2
σ

∣∣ ≤ (χσ(k + 1) + χσ(k))|∂kχσ| ≤ 2|∂kχσ| ≤
2

(aσ − a0)
≤ 2K1

σ2r2
(7.20)

Combining (7.18), (7.19) and (7.20), there exists C2 > 0 such that

ˆ
B

ψ2
σ

(
∂k(χσu)2

)
dµ+

χ2
σ(k + 1)

8
EB(ψσuk, ψσuk) ≤ C2

σ2r2

ˆ
B

u2
k dµ (7.21)

for all k ∈ Ja0, a1K. In (7.21), C2 depends only on K1 and h′.
Adding (7.21), from k = a0 to k ∈ Ja0, a1K, yields

sup
k∈[aσ,a1]

ˆ
B

ψ2
σu

2
k dµ ≤

C2

σ2r2

a1∑
k=a0

ˆ
B

u2
k dµ (7.22)

a1∑
k=aσ

E(ψσuk, ψσuk) ≤ 8C2

σ2r2

a1∑
k=a0

ˆ
B

u2
k dµ. (7.23)

Define wk := PB(ψσuk). Since ψ ≡ 1 on B(x, (1− σ)r), by (4.10) wk = PB(ψσuk) = Puk
on B(x, (1− σ)r − h′). Combined with Hölder inequality, we have

ˆ
B(x,(1−σ)r−h′)

(Puk)
2(1+2/δ)

dµ ≤
(ˆ

B

w2
k dµ

)2/δ (ˆ
B

w
2δ/(δ−2)
k dµ

)(δ−2)/δ

. (7.24)

Since PB is a contraction in L2(B), we have

ˆ
B

w2
k dµ ≤

ˆ
B

ψ2
σu

2
k dµ. (7.25)

EJP 28 (2023), paper 64.
Page 54/81

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP954
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Random walks on metric measure spaces

By Sobolev inequality (5.2), Lemma 4.20(a) and (4.10), we obtain(ˆ
B

w
2δ/(δ−2)
k dµ

)(δ−2)/δ

≤ CSr
2

V (x0, r)2/δ

(
E(ψσuk, ψσuk) + r−2

ˆ
B

ψ2
σu

2
k dµ

)
(7.26)

By (7.22), (7.23), (7.24), (7.25), (7.26) and a1 − a0 ≤ K1r
2, there exists C3 > 0 such that

a1∑
k=aσ

ˆ
B(x,(1−σ)r−h′)

(Puk)
2(1+2/δ)

dµ ≤ C4r
2

V (x, r)2/δ

(
(rσ)−2

a1∑
k=a0

ˆ
B

u2
k dµ

)1+2/δ

. (7.27)

We choose r1 ≥ 4h′ so that aσ ≤ a1/2 ≤ (a0 + a1)/2 for all a0, a1 ∈ N so that a1 − a0 ≥
K−1

1 r2
1. Since r ≥ 4h′ and σ < 1/2, we have (1 − σ)r − h′ ≥ (r/2) − h′ ≥ r/4. Hence

by (2.4), K−1
1 r2 ≤ a1 − a0 ≤ K1r

2 along with (7.27), we have (7.17).

Proof of Lemma 7.7. We carry out Moser’s iteration in two stages. In the first stage of
the iteration, we obtain a L1 to L2 mean value inequality and in the second stage we
show a L2 to L∞ mean value inequality. Combining the two stages yields the desired L1

to L∞ mean value inequality. The proof relies on repeated application of the elementary
iterative step given by Lemma 7.10.

Let r1(0) :=
√
n+ h′, a1(0) := 0, N := dlog

√
ne and θ := 1 + (2/δ). For the first stage

of iteration, we iteratively define the quantities

r1(i+ 1) := (r1(i)− h′)
(

1− 4−1

3N+1−i

)
− h′

a1(i+ 1) :=

⌈(
1− 4−2

9Nr+1−i

)
a1(i) +

4−2

9Nr+1−in

⌉
for i = 0, 1, . . . , N . We define a non-increasing sequence of space-time cylinders

Qi(i) = Ja1(i), nK×B(x, ri), for i = 0, 1, . . . , N + 1.

The following estimates are straightforward from definitions of r1 and a1: There exists
n0 > 0 such that for all n ≥ n0, we have

r1(N + 1) ≥
√
n

1− 4−1
N+1∑
j=1

3−j

− 2(log
√
n+ 3 + h′)

≥ (7/8)
√
n− 2(log

√
n+ 3 + h′) ≥ (6/7)

√
n, (7.28)

n− a1(N + 1) ≥ n

1− 4−2
N+1∑
j=1

9−j

− 2(N + 1)

≥ (31/32)n− 2(log
√
n+ 2) ≥ (15/16)n. (7.29)

Let u : N×M → R≥0 be an arbitrary non-negative function that is PL-subcaloric in
J0, nK×B(x,

√
n) where n ≥ n1. By Lemma 7.6 P iu is PL-subcaloric in J0, nK×B(x,

√
n−ih′)

and therefore PL-subcaloric in Ja1(i), nK×B(x, r1(i)−h′) for all i = 0, 1, . . . , N +1. Hence
by applying Lemma 7.10 for the function P iu which is PL-subcaloric on Ja1(i), nK ×
B(x, r1(i)− h′) with σ = 4−13−(N+1−i), we have C2 > 0 such that

φ̃(P i+1u, 2θ,Qi+1) ≤ C23N+1−iφ̃(P iu, 2, Qi) (7.30)

for all i = 0, 1, . . . , N . We may choose K1 = 8 in the application of Lemma 7.10 above
due to (7.28) and (7.29).
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By Hölder inequality along with (7.28), (7.29) and (2.4), there exists C3 > 0 such that

φ̃(P i+1u, 2, Q1(i+ 1)) ≤ C3φ̃(P i+1u, 1, Q1(i+ 1))αφ̃(P i+1u, 2θ,Q1(i+ 1))β (7.31)

for all i = 1, 2, . . . , N , where α = 1 − β = 2/(δ + 4). By (4.10), u ≥ 0, (7.28), (7.29)
and (2.4), there exists C4 > 0 such that

φ̃(P iu, 1, Q1(i)) ≤ C4φ̃(u, 1, Q1(0)) (7.32)

for all i = 0, 1, . . . , N + 1. Combining (7.30), (7.31), (7.32), there exists C5 > 0 such that

φ̃(P i+1u, 2, Q1(i+ 1)) ≤ C53β(N+1−i)φ̃(u, 1, Q1(0))αφ̃(P iu, 2, Q1(i))β (7.33)

for i = 1, . . . , N . By iterating (7.33), we obtain

φ̃(PN+1u, 2, Q1(N + 1)) ≤ C
∑∞
i=0 β

i

5 3
∑∞
i=1 iβ

i

φ̃(u, 1, Q1(0))(1−βN )φ̃(Pu, 2, Q1(1))β
N

. (7.34)

Since u ≥ 0, by Hölder inequality, (4.10) and (2.4), there exists C6, C7 > 0 such that

ˆ
B(x,r1(1))

(Pui)
2 dµ ≤

(
sup

B(x,r1(1))

Pui

) ˆ
B(x,r1(1))

Pui dµ

≤

(ˆ
B(x,

√
n+h′)

ui dµ

)2

sup
y∈B(x,

√
n)

C6

V (y, h′)

≤ C7n
δ/2

V (x,
√
n)

(
sup

i∈J0,nK

ˆ
B(x,

√
n+h′)

ui dµ

)2

(7.35)

for all i ∈ J0, nK. Combining (7.34), (7.35) along with (2.4) yields

φ̃(PN+1u, 2, Q1(N + 1)) ≤ C8

V (x,
√
n)

sup
k∈J0,nK

ˆ
B(x,

√
n+h′)

uk dµ (7.36)

for some C8 > 0. The inequality (7.36) is a L1 to L2 mean value inequality and this
concludes the first part of iteration.

For the second part, we define v = PN+1u, a2(0) = a1(N + 1) and r2(0) = r1(N + 1).
As before, we iteratively define

r2(i+ 1) := (r2(i)− h′)
(

1− 4−1

3i+1

)
− h′,

a2(i+ 1) :=

⌈(
1− 4−2

9i+1

)
a2(i) +

4−2

9i+1
n

⌉
for i = 1, 2, . . . , N+1. As before, define a non-increasing sequence of space-time cylinders
by Q2(i) := Ja2(i), nK×B(x, r2(i)) for i = 0, 1, . . . , n. Note that Q2(0) = Q1(N + 1).

Similar to (7.28) and (7.29), there exists n1 ≥ n0 such that for all n ≥ n1,

r2(i) ≥ r2(N + 1) ≥
√
n/2 (7.37)

n− a2(i) ≥ n− a2(N + 1) ≥ n/2 (7.38)

for all i = 0, 1, . . . , N + 1. By Jensen’s inequality, we have

(P i+1v)θ
i+1

≤
(
P
[
(P iv)θ

i
])θ

(7.39)
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for all i ∈ N. By Lemma 7.6 and Lemma 7.5, the function (P iv)θ
i

is PL-subcaloric in
Ja2(i), nK × B(x, r2(i) − h) for all i = 0, 1, . . . , N + 1. Therefore by Lemma 7.10 for the
function (P iv)θ

i

and (7.39), there exists C9 > 0 such that

φ̃(P i+1v, 2θi+1, Q2(i+ 1)) ≤ Cθ
−i

9 3(i+1)θ−i φ̃(P iv, 2θi, Q2(i)) (7.40)

for i = 0, 1, . . . , N − 1. Iterating the inequalities (7.40), there exists C10 > 0 such that

φ̃(PNv, 2θN , Q2(N)) ≤ C10φ̃(v, 2, Q2(0)) = C10φ̃(v, 2, Q1(N + 1)). (7.41)

There exists C11, C12, C13 > 0 such that, for all k ∈ N

sup
y∈B(x,r2(N+1))

PN+1vk(y) ≤ C11

 
B(y,h′)

PNvk dµ

≤ C11

( 
B(y,h′)

(PNvk)2θN dµ

)1/(2θN )

≤ C12n
δ/(4θN )

( 
B(x,r2(N))

(PNvk)2θN dµ

)1/(2θN )

≤ C13

( 
B(x,r2(N))

(PNvk)2θN dµ

)1/(2θN )

(7.42)

The first line above follows from (4.10), the second line follows from Jensen’s inequality,
the third line follows from (2.4) and the last line follows from the fact that n 7→ nδ/(4θ

log n)

is bounded in [2,∞). By (7.41), (7.42) and v = PN+1u, we have a L2 to L∞ mean value
inequality

inf
k∈J0,nK

sup
B(x,r2(N+1))

P 2N+2u ≤ C10C13φ̃(PN+1u, 2, Q1(N + 1)). (7.43)

Combining (7.36) and (7.43), we have the desired inequality (7.4).

7.2 On-diagonal upper bound

The following lemma provides a useful example of PL-caloric function.

Lemma 7.11. Let (M,d, µ) be a metric measure space. Let P be Markov operator
equipped with kernel (pk)k∈N that is (h, h′)-compatible with (M,d, µ). Define for all
k ∈ N, the function hk : M ×M → R by

hk(x, y) :=
(
P kLp2(x, ·)

)
(y) = 2−n

n∑
i=0

(
n

i

)
pi+2(x, y) (7.44)

where PL = (I + P )/2 as before. Then for all x ∈M , the function

(k, y) 7→ hk(x, y)

is PL-caloric in N×M .

Proof. The second equality in (7.44) is a consequence of binomial theorem and Lemma
4.2(c). Note that

PL(hk(x, ·))(y) = PL(P kLp2(x, ·))(y) = P k+1
L (p2(x, ·)) (y) = hk+1(x, y).

Therefore (k, y) 7→ hk(x, y) is PL-caloric in N×M for all x ∈M .
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We are ready to prove Proposition 7.2 using the mean value inequality (7.4).

Proof of Proposition 7.2. Let hk(x, y) be defined as (7.44). Choose n1 ∈ N such that

2dlog
√
ne+ 4 ≤ n (7.45)

for all n ≥ n1. By Lemma 7.7, Lemma 7.11 and
´
M
hk(x, y) dy = 1, there exists n2 ≥ n1

and C1 > 0 such that the PL-caloric function (k, y) 7→ hk(x, y) satisfies the mean value
inequality

inf
k∈J0,nK

P 2dlog
√
ne+2hk(x, x) ≤ inf

k∈J0,nK
sup

y∈B(x,
√
n/2)

P 2dlog
√
ne+2hk(x, y) ≤ C1

V (x,
√
n)

(7.46)

for all x ∈M and for all n ∈ N satisfying n ≥ n2.
By (4.11), we have p2(x, ·) − αp1(x, ·) ≥ 0 µ-almost everywhere for each x ∈ M .

By (4.12) of Lemma 4.8 and Lemma 4.6, we have

pk(x, x) ≤ α−1p2dk/2e(x, x) ≤ α−1p2dk/2e(x, x) ≥ α−1p2n(x, x) (7.47)

for all x ∈M and for all 2 ≤ k ≤ 2n. By (7.47) and (7.45),

P 2dlog
√
ne+2hk(x, x) ≥ α−1p2n(x, x) (7.48)

for all x ∈ M , for all k ∈ J0, nK and for all n ≥ n2. Combining (7.48), (4.12), (7.44)
and (7.46), there exists C2 > 0 such that

pn(x, x) ≤ C2

V (x,
√
n)

(7.49)

for all n ≥ 2n2. Since P is a contraction in L∞ by (4.10), Lemma 4.2(c) and (2.4), there
exists C3, C4 > 0 and δ > 2 such that

pn(x, x) ≤ C3

V (x, h′)
≤ C4n

δ/2

V (x,
√
n)

(7.50)

for all x ∈ M and for all n ∈ N with n ≥ 2. Combining (7.49) and (7.50) gives the
diagonal bound (7.2).

7.3 Discrete integral maximum principle

We use Discrete integral maximum principle and diagonal upper bound to obtain
Gaussian upper bounds. This approach is detailed in [19] for graphs. A crucial assump-
tion in [19] is the laziness assumption for the corresponding Markov chain (Xn)n∈N
given by infx∈M Px(X1 = x) > 0. As explained in [19, Section 3] this laziness assumption
is not too restrictive for graphs because under natural conditions the iterated operator
P 2 corresponds to a lazy Markov chain. However this fails to be true for continuous
spaces.

Since the laziness assumption is unavoidable for discrete integral maximum principle,
we consider the Markov operator PL = (I + P )/2 instead of P . Using discrete integral
maximum principle corresponding to PL and diagonal estimate on pk, we obtain off-
diagonal estimates on hk defined in (7.44). We rely on careful comparison between
off-diagonal estimates of hk and the Markov kernel pk. The comparison arguments are
new but elementary and involves Stirling’s approximation. Our comparison arguments
rely crucially on the compatibility assumption (4.11). Similar comparison arguments for
off-diagonal estimates was carried out in [25, Section 3.2] to compare Markov chains on
graphs with its corresponding continuous time version.

The main technical tool to prove Gaussian upper bounds is the following discrete
integral maximum principle. The proposition adapted from [19, Proposition 2.1] and the
proof follows from essentially the same argument.
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Proposition 7.12 (Discrete integral maximum principle). Suppose that P is a Markov
operator that is (h, h′)-compatible with a metric measure space (M,d, µ). Let f be a
strictly positive continuous function on J0, nK×M such that,

∂kf(x) +
|∇P fk+1|2

4fk+1
(x) ≤ 0. (7.51)

for all x ∈ M and k ∈ J0, n − 1K where |∇P f| is as defined in (6.25). Let u : N ×M
bounded function that is PL-caloric on J0, n− 1K×M satisfying supp(u0) ⊂ B(w,R) for
some w ∈M,R ∈ (0,∞). Then the function

k 7→ Jk = Jk(u) :=

ˆ
M

u2
kfk dµ

is non-increasing in J0, nK.

The following lemma essentially follow from [19, Proposition 2.5]. Lemma 7.13
provides a weight function f that will be used in the application of discrete integral
maximum principle.

Lemma 7.13. Let (M,d, µ) be a metric measure space and let P be a Markov operator
that is (h, h′)-compatible with (M,d, µ). Let σ : M → R be a 1-Lipschitz function such
that inf σ ≥ h′. There exists a positive number D1 such that for all D ≥ D1, the weight
function

fk(x) = fDk (x) := exp

(
− σ2(x)

D(n+ 1− k)

)
(7.52)

satisfies

∂kf(x) +
|∇P fk+1|2

4fk+1
(x) ≤ 0.

for all x ∈M , for all n ∈ N∗ and k ∈ J0, n− 1K.

Next, we need the following estimate on hk defined in (7.44). The proof uses the
diagonal estimate in Proposition 7.2.

Lemma 7.14. Under the assumptions of Proposition 7.1, there exists C0 > 0 such that

ˆ
M

h2
n(x, y)dy ≤ C0

V (x,
√
n+ 2)

(7.53)

for all n ∈ N and for all x ∈M where h is as defined in (7.44).

Proof. By (7.44) of Lemma 7.11, Lemma 4.2(c) and Vandermonde’s convolution formula,
we have

ˆ
M

(hn(x, y))2 dy = 4−n
ˆ
M

(
n∑
i=0

(
n

i

)
pi+2(x, y)

)2

dy

= 4−n
2n∑
i=0

(
2n

i

)
pi+4(x, x) (7.54)

for all x ∈M . By Proposition 7.2, there exists C1 > 0 such that

pk(x, x) ≤ C1

V (x,
√
k)
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for all k ≥ 2 and for all x ∈M . Combined with (7.54) and (2.4), we obtain C2 > 0, δ > 2

such that

ˆ
M

(hn(x, y))2 dy ≤ 4−n
2n∑
i=0

(
2n

i

)
C1

V (x,
√
i+ 4)

≤ C2

V (x,
√

2n+ 4)
4−n

2n∑
i=0

(
2n

i

)(
2n+ 4

i+ 4

)δ/2
(7.55)

for all n ∈ N and all x ∈M . By the above inequality, we have

4−n
2n∑
i=0

(
2n

i

)(
2n+ 4

i+ 4

)δ/2
≤ 4−n

2n∑
i=0

(
2n

i

)(
2n+ 4

i+ 4

)κ

≤ 42κκ!
2n∑
i=0

(
2n+ κ

i+ κ

)
2−(2n+κ) ≤ 42κκ! (7.56)

where κ := dδ/2e ∈ N∗. Combining (7.55), (7.56) along with (2.4) implies (7.53).

Our next result involves repeated application of the discrete integral maximum
principle.

Lemma 7.15. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfying (V D)loc

and (V D)∞. Suppose that a Markov operator P has a kernel p that is (h, h′)-compatible
with (M,d, µ) for some h > b. Further assume that P satisfies the Sobolev inequality (5.2).
Define

ED(k, x) :=

ˆ
M

h2
k(x, z) exp

(
d2

1(x, z)

Dk

)
dz (7.57)

for all k ∈ N∗ and x ∈ M , where d1(x, z) := max(d(x, z), h′) and hk is defined by (7.44).
There exists C,D > 0 such that

ED(k, x) ≤ C

V (x,
√
k)

(7.58)

for all x ∈M and for all k ∈ N∗.

The proof follows from a modification of the argument in [19, Proposition 5.4] using
the diagonal upper bound in Lemma 7.14. We omit the details. We use Lemma 7.15 to
prove a Gaussian upper bound for hk.

Lemma 7.16. Under the assumptions of Proposition 7.1, there exists positive reals
C0, D0 such that

h2k(x, y) ≤ C0

V (x,
√
k)

exp

(
−d

2(x, y)

D0k

)
(7.59)

for all x, y ∈M and for all k ∈ N∗.

Proof. By triangle inequality and the inequality (a+ b)2 ≤ 2(a2 + b2), we have

d1(x, y)2 ≤ 2(d1(x, z)2 + d1(y, z)2) (7.60)

for all x, y, z ∈ M , where d1(x, y) := max(d(x, y), h′) as before. By (4.12), (7.60) and
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Cauchy-Schwarz inequality we have

h2k(x, y) =
2k∑
i=0

(
2k

i

)(
1

2

)2k

pi+2(x, y)

≤ α−2
2k∑
i=0

(
2k

i

)(
1

2

)2k

pi+4(x, y) = α−2

ˆ
M

hk(x, z)hk(y, z) dz

≤ α−2

ˆ
M

hk(x, z)hk(z, y)ed1(x,z)2/2Dked1(z,y)2/2Dke−d1(x,y)2/4Dk dz

≤ α−2
√
ED(k, x)ED(k, y)e−d

2
1(x,y)/4Dk

≤ α−2
√
ED(k, x)ED(k, y)e−d(x,y)2/4Dk (7.61)

for all x, y ∈M , for all k ∈ N∗ and for all D > 0, where α > 0 is from (4.11). The equality
in the second line above follows from a calculation analogous to (7.54).

The bound (7.61) and Lemma 7.15 implies that there exists C1, D1 > 0 such that

h2k(x, y) ≤ C1(
V (x,

√
k)V (y,

√
k)
)1/2

exp

(
−d

2(x, y)

D1k

)
(7.62)

for all x, y ∈ M and for all k ∈ N∗. However by (2.4), there exists C2, C3, C4 > 0, δ > 0

such that

V (x,
√
k)

V (y,
√
k)
≤ V (y,

√
k + d(x, y))

V (y,
√
k)

≤ C2

(
1 +

d(x, y)√
k

)δ
≤ C3

(
1 +

d2(x, y)

k

)δ/2
≤ C4 exp

(
d2(x, y)

2D1k

)
(7.63)

for all x, y ∈ M . Combining (7.62) and (7.63) yields the desired Gaussian upper
bound (7.59).

7.4 Comparison with lazy random walks

We want to convert the Gaussian bounds on hk given by Lemma 7.16 to Gaussian
bounds on pk. To accomplish this we need the following elementary polynomial identities.

Lemma 7.17. For all β > 0 and for all n ∈ N∗, we have the following polynomial
identities

zn =
∑

k∈J1,nK,k odd

(
n

k

)
βn−k(z − β)k−1z (7.64)

+
∑

k∈J1,n−1K,k odd

(
n− 1

k

)
βn−1−k(z − β)k−1(z2 − 2βz),

(
1 + z

2

)n
=

1

2n
+

∑
k∈J1,nK,k odd

(
n

k

)(
1 + β

2

)n−k (
1

2

)k
(z − β)k−1z (7.65)

+
∑

k∈J1,n−1K,k odd

sn,k

(
1 + β

2

)n−1−k (
1

2

)k+1

(z − β)k−1(z2 − 2βz)

where (z − β)0 = 1 and

sn,k = (1 + β)−(n−1−k)
n∑

i=k+1

(
n

i

)(
i− 1

k

)
βi−1−k ≥

(
n− 1

k

)
.
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Proof. Note that

zn = z

(
zn − (2β − z)n

2(z − β)

)
+ (z2 − 2βz)

(
zn−1 − (2β − z)n−1

2(z − β)

)
(7.66)

for all z 6= β. To obtain (7.64), we expand zn, zn−1, (2β − z)n, (2β − z)n−1 in (7.66) using
binomial expansion and the substitution

z = β + (z − β) and 2β − z = β − (z − β).

To show (7.65), we use binomial expansion on (1 + z)n and then use (7.64) to obtain

(1 + z)n = 1 +
n∑
i=1

(
n

i

)
zi

= 1 +
n∑
i=1

∑
k∈J1,iK,k odd

(
n

i

)(
i

k

)
βi−k(z − β)k−1z

+
n∑
i=1

∑
k∈J1,i−1K,k odd

(
n

i

)(
i− 1

k

)
βi−1−k(z − β)k−1(z2 − 2βz). (7.67)

The coefficient of (z − β)k−1z in (7.67) is

n∑
i=k

(
n

i

)(
i

k

)
βi−k =

(
n

k

) n∑
i=k

(
n− k
i− k

)
βi−k =

(
n

k

)
(1 + β)n−k.

Similarly, the coefficient of (z − β)k−1(z2 − 2βz) in (7.67) is

n∑
i=k+1

(
n

i

)(
i− 1

k

)
βi−1−k =

(
n− 1

k

) n∑
i=k+1

n

i

(
n− 1− k
i− 1− k

)
βi−1−k

≥
(
n− 1

k

) n∑
i=k+1

(
n− 1− k
i− 1− k

)
βi−1−k

=

(
n− 1

k

)
(1 + β)n−1−k.

This gives (7.65) with sn,k ≥
(
n−1
k

)
.

We are now prepared to prove Gaussian upper bounds for pk.

Proof of Proposition 7.1. By Lemma 4.8 there exists β > 0 such that uk, vk : M ×M → R

satisfy

uk(x, y) :=
[
(P − βI)kp2(x, ·)

]
(y) ≥ 0, (7.68)

vk(x, y) :=
[
(P − βI)k(p3(x, .)− 2βp2(x, ·))

]
(y) ≥ 0 (7.69)

for all x, y ∈M and for all even non-negative integers k. For instance β = α/2 where α
is given by (4.11) would satisfy the above requirements.

Using Lemma 4.2(c) and (7.64) of Lemma 7.17, we have

pn+1(x, y) = [Pnp1(x, ·)] (y)

=
∑

k∈J1,nK,k odd

(
n

k

)
βn−kuk−1(x, y)

+
∑

k∈J1,n−1K,k odd

(
n− 1

k

)
βn−1−kvk−1(x, y) (7.70)
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for all n ∈ N∗ and for all x, y ∈ M . By (7.68), (7.69), Lemma 4.8 and Lemma 7.17, we
have

h2n(x, y) =
[
((I + P )/2)

2n
p2(x, ·)

]
(y)

≥ α
∑

k∈J1,2nK,k odd

(
2n

k

)(
1 + β

2

)2n−k (
1

2

)k
uk−1(x, y)

+ α
∑

1≤k≤2n−1,k odd

s2n,k

(
1 + β

2

)2n−1−k (
1

2

)k+1

vk−1(x, y) (7.71)

for all x, y ∈M . Define the ratio of coefficients in (7.70) and (7.71) as

ak,n =

(
2n
k

) (
1+β

2

)2n−k (
1
2

)k(
n
k

)
βn−k

and bl,n =

(
2n−1
l

) (
1+β

2

)2n−1−l (
1
2

)l+1(
n−1
l

)
βn−1−l

(7.72)

for each k ∈ J1, nK and for each l ∈ J1, l − 1K. If k ∈ J1, n− 1K, then

ak+1,n

ak,n
=

β

1 + β

2n− k
n− k

.

Therefore ak+1,n ≥ ak,n if and only if k ≥ n(1 − β). Thus ak,n reaches minimum for
k = dn(1− β)e. By Stirling’s approximation there exists constant C1 > 0 such that for all
r ∈ N∗,

C−1
1 rr+(1/2)e−r ≤ r! ≤ C1r

r+(1/2)e−r.

We use the Stirling’s approximation to estimate ak,n at k = n(1 − β) + ε where ε =

dn(1− β)e − n(1− β) ∈ [0, 1). There exists c1 > 0 such that

min
k∈J1,nK

ak,n ≥ adn(1−β)e,n

≥ C−4
1 (2n)2n+(1/2)e−2n(βn− ε)βn+(1/2)−εe−βn+ε (1 + β)

(1+β)n−ε

22nnn+(1/2)e−n(n(1 + β)− ε)n(1+β)+(1/2)−εe−n(1+β)+εββn−ε

≥ c1

for all n ∈ N∗ satisfying n ≥ 2/β. Therefore there exists c2 > 0 such that

ak,n ≥ c2 (7.73)

for all n ∈ N∗ and for all k ∈ J1, kK. Similarly,

bl,n =
1

2
al+1,n ≥

1

2
c2 (7.74)

for all n ∈ N∗ and for all l ∈ J1, n − 1K. Combining (7.68), (7.69), (7.70), (7.71), (7.72),
(7.73) and (7.74), there exists c3 > 0 such that

h2n(x, y) ≥ c3pn+1(x, y) (7.75)

for all n ∈ N∗, and for all x, y ∈M . Combining (7.75) along with Lemma 7.16 yields the
Gaussian upper bound (7.1).

We have shown the following equivalence

Theorem 7.18. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfying
(V D)loc. Suppose that a Markov operator P has a kernel p that is (h, h′)-compatible with
(M,d, µ) for some h > b. Then the following are equivalent:
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(i) Sobolev inequality (5.2).

(ii) Large scale volume doubling property (V D)∞ and Gaussian upper bounds (GUE).

Proof. By Corollary 5.11, (ii) implies (i).
Next, we assume the Sobolev inequality (5.2). By Proposition 5.12 we have (V D)∞.

In addition, by Proposition 7.1 we have (GUE). This proves (i) implies (ii).

8 Gaussian lower bounds

In this section, we use elliptic Harnack inequality and Gaussian upper bounds to
establish Gaussian lower bounds. The proofs in this section is adapted from [42]. In [42],
Hebisch and Saloff-Coste provide an alternate approach to prove parabolic Harnack
inequality using elliptic Harnack inequality and Gaussian upper bounds. This method
avoids relying on the full strength of Moser’s iteration method in parabolic setting.

The main result of this section is the following Gaussian lower bound.

Proposition 8.1. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfy-
ing (V D)loc, (V D)∞, diam(M) = ∞ and Poincaré inequality at scale h (P )h. Suppose
that a Markov operator P has a kernel p that is (h, h′)-compatible with respect to µ for
some h > b. Then the corresponding kernel pk satisfies Gaussian lower bounds (GLE).

Note that under the assumptions of Proposition 8.1, we have Gaussian upper bounds
(GUE). This is a direct consequence of Theorem 5.1 and Proposition 7.1.

We focus on the case diam(M) = ∞ just for simplicity. In fact, we expect these
methods to work when diam(M) < ∞. However when the space has finite diameter,
it is important to find optimal constants (or close to optimal) for various functional
inequalities. To compute these optimal constants, one has to exploit the specific structure
of the Markov chain under consideration. We plan to address the finite diameter case in
a sequel.

The first step is to obtain lower bounds on pk(x, x). It is well-known that Gaussian
upper bounds implies a matching diagonal lower bounds. The follows from [42, Proof of
(3.1)].

Lemma 8.2. Under the assumption of Proposition 8.1, there exists c0 > 0 such that

pn(x, x) ≥ c0
V (x,

√
n)

for all x ∈M and for all n ∈ N satisfying n ≥ 2.

The following lemma is a discrete time analog of [42, Lemma 3.7], where we transfer
the on-diagonal lower bound given by Lemma 8.2 to on-diagonal lower bound for the
‘Dirichlet kernel’ pBk on a ball B defined in (4.20). We omit its proof as it follows from
the same argument as in [42].

Lemma 8.3. Under the assumptions of Proposition 8.1, there exists c > 0 and A >

max(1, h′) such that

pB(x,r)
n (x, x) ≥ c

V (x,
√
n)

for all x ∈M , for all n ∈ N∗ with n ≥ 2 and for all r ≥ A
√
n

Our next result is a bound on the spectrum of PB or alternatively on the Dirichlet
Laplacian ∆PB . The following Proposition is a discrete time analog of [42, Theorem
2.5]. However unlike [42], we cannot apply the stronger Sobolev inequality (5.1).
Nevertheless, the weaker variant (5.2) is sufficient for that argument.

Proposition 8.4. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfy-
ing (V D)loc, (V D)∞ and Poincaré inequality at scale h (P )h. Suppose that a Markov
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operator P has a kernel p that is (h, h′)-compatible with respect to µ for some h > b.
Then there exists positive reals a, ε0 such that∥∥PB(x,r)

∥∥
2→2

:= sup
f∈L2(B(x,r)),‖f‖2=1

∥∥PB(x,r)f
∥∥

2
≤ 1− a

r2
(8.1)

for all x ∈M and for all r ∈ R satisfying r ≥ h′ and r ≤ ε0 diam(M).

Remark 8.5.

(a) A simple consequence of Proposition 8.4 is that there exists a, ε0 > 0 such that

Spectrum(PB) ⊆
[
−
(
1− ar−2

)
, 1− ar−2

]
, Spectrum(∆PB ) ⊆

[
ar−2, 2− ar−2

]
for all x ∈M and for all r satisfying r ≥ h′ and r ≤ ε0 diam(M).

(b) If diam(M) =∞, then for all balls B = B(x, r) with r ∈ (0,∞), we have

‖PB‖2→2 < 1.

The case r ≥ h′ is clear from Proposition 8.4. The case r < h′ follows from ‖PB‖2→2 ≤∥∥PB(x,h′)

∥∥
2→2

.

(c) Note that if diam(M) < ∞, then the conclusion Proposition 8.4 is vacuously true
as one can choose ε0 = h′/(2 diam(M)). However if h′ � diam(M) and if we have
good control of the constants in various functional inequalities, we can prove useful
estimates which in turn yields applications to estimates on mixing times. We will
extend the techniques developed here to finite diameter spaces elsewhere.

(d) Note that the condition r ≤ ε0 diam(M) is necessary. Too see this consider the case
when diam(M) < ∞ and B(x, r) = M . It is clear that (8.1) fails to be true because
PB(x,r)1 = 1.

8.1 Near diagonal lower bound

As in [42, Proposition 3.5], the following near diagonal estimate is an important step
in obtaining Gaussian lower bounds.

Proposition 8.6 (Near diagonal lower bound). Under the assumptions of Proposition 8.1,
there exists positive reals ε1, c1 such that pk satisfies the lower bound

inf
y∈B(x,ε1

√
k)
pk(x, y) ≥ c1

V (x,
√
k)

(8.2)

for all x ∈M and for all k ∈ N∗ satisfying k ≥ 2.

From the above near diagonal lower bound, we will see that the Gaussian lower
bound follows by a well-established ‘chaining argument’.

The idea behind the proof of Proposition 8.6 is to convert the elliptic Hölder-like
regularity estimate (Proposition 6.20) into a parabolic Hölder-like regularity estimate for
the function (k, y) 7→ pBk (x, y) as follows:

Lemma 8.7. Under the assumptions of Proposition 8.1, for all σ > 0 and all A ≥ 1, there
exists three positive reals Cσ,A, ε0 ≤ A and N0 ≥ 2 such that

∣∣pBk (x, y)− pBk (x, x)
∣∣ ≤ [σ + Cσ,A

(
d(x, y) ∨ 1√

k

)α]
1

V (x,
√
k)

(8.3)

for all x ∈M , k ∈ N∗ with k ≥ N0 and for all y ∈ B(x, ε0
√
k), where B = B(x,A

√
k) and

α is the exponent in (6.65).
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The proof of Lemma 8.7 is long and involves many technical estimates. We will need
some upper bounds on pBk (y, z) and its ‘time derivative’

∂kp
B(y, z) := pk+1(y, z)− pk(y, z)

for all y, z ∈ B.

Lemma 8.8. Under the assumptions of Proposition 8.1, the following estimates hold:

(i) There exists C1, D1 > 0 such that

p
B(x,A

√
k)

j (y, z) ≤ C1

V (y,
√
j)

exp

(
−d(y, z)2

D1j

)
(8.4)

for all x ∈M , for all k ∈ N∗, for all j ≥ 2, for all A ≥ 1 and for all y, z ∈ B(x,A
√
k).

(ii) There exists C2, δ > 0 such that∣∣∣∂kpB(x,A
√
k)(y, z)

∣∣∣ ≤ C2A
δ

kV (x,
√
k)

(8.5)

for all x ∈M , for all k ∈ N≥2, for all A ≥ 1 and for all y, z ∈ B(x,A
√
k).

(iii) For all A > 1 ∨ h′, there exists ε, a1 > 0, such that for all θ ∈ (0, 1), there exists Cθ
such that,

p
B(x,A

√
k)

j (y, z) ≤ CθA
δ

V (x,
√
k)

(
1− a1

A2k

)j
(8.6)

for all x ∈ M , for all k ∈ N∗, for all j ∈ N satisfying j ≥ max(2, θk) and for all
y, z ∈ B(x,A

√
k).

The above Lemma follows from the argument in [42, Proof of Lemma 3.9].

Remark 8.9. The constants C1, C1, C2, Cθ and a1 in Lemma 8.8 do not depend on A, x
and k.

Lemma 8.7 now follows from the argument in [42, Section 3.4], where the use of [42,
Lemma 3.9] is replaced with Lemma 8.8 instead. Next, we prove the near diagonal lower
bound using Lemmas 8.7 and 8.3.

Proof of Proposition 8.6. By Lemma 8.3, there exists A ≥ 1 ∨ h′ and c > 0 such that

p
B(x,A

√
k)

k (x, x) ≥ c

V (x,
√
k)

(8.7)

for all x ∈M and for all k ∈ N∗ with k ≥ 2. By Lemma 8.7, there exists C1 > 1, N1 ≥ 2,
ε ∈ (0, 1), α > 0 such that∣∣pBk (x, y)− pBk (x, x)

∣∣ ≤ [ c
3

+ C1

(
d(x, y) ∨ 1√

k

)α]
1

V (x,
√
k)

(8.8)

for all x ∈ M , for all k ∈ N∗ with k ≥ N0, for all y ∈ B(x, ε
√
k) where B = B(x,A

√
k).

Next, we choose ε1 ∈ (0, ε) and N1 ≥ N0 such that for all k ≥ N1, we have

C1

(
ε1
√
k ∨ 1√
k

)α
≤ C1 max(εα, N

−α/2
0 ) ≤ c

3
.

By the above choice of ε1, N1 along with (8.7), (8.8) and the triangle inequality, we have

inf
y∈B(x,ε1

√
k)
p
B(x,A

√
k)

k (x, y) ≥ c

3V (x,
√
k)
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for all x ∈ M and for all k ∈ N∗ with k ≥ N1. Since pBk ≤ pk, the above equation yields
the desired near diagonal lower bound (8.2) for all k ≥ N1.

If k ∈ J2, N1K, then we reduce ε if necessary so that ε ≤ h/
√
N1. Hence d(x, y) ≤ ε

√
k

and k ≤ N1 implies d(x, y) ≤ h. Therefore by (4.12) of Lemma 4.8 and (4.10), we
obtain (8.2) for all k ∈ J2, N1K.

8.2 Off-diagonal lower bounds

The near diagonal lower bound of Proposition 8.6 can be easily upgraded to full
Gaussian lower bounds (GLE) by a well-known chaining argument (See [41, Theorem
5.1], [25, Theorem 3.8]). For general quasi-geodesic spaces, we rely on the chain lemma
(Lemma 2.4). We now prove the main result of this section, i.e. Gaussian lower bound.

Proof of Proposition 8.1. By Lemma 2.4 there exists C1 > 1 such that for all b1 ≥ b and
for all x, y ∈M , there exists a b1-chain x = x0, x1, . . . , xm = y with

m ≤
⌈
C1d(x, y)

b1

⌉
. (8.9)

By Proposition 8.6, there exists ε > 0, c1 > 0 such that

inf
y∈B(x,ε

√
k)
pk(x, y) ≥ c1

V (x,
√
k)

(8.10)

for all x ∈M and for all k ≥ 2. If

s :=
C1ε

2k

C2d(x, y)
≥ b, (8.11)

then there exists a s-chain x = x0, x1, . . . , xm = y between x and y with

m :=

⌈
C2d(x, y)2

ε2k

⌉
. (8.12)

However (8.11) holds whenever d(x, y) ≤ c3k and c3 ≤ C1ε
2/C2b. If C2 ≥ 1 and d(x, y) ≥

ε
√
k, we have

m :=

⌈
C2d(x, y)2

ε2k

⌉
≤ 2C2d(x, y)2

ε2k
. (8.13)

If d(x, y) ≤ c3k and c3 ≤ ε/
√

(2C2), we have

k

m
≥ ε2k2

C2d(x, y)2
≥ ε2

C2c23
≥ 2. (8.14)

We fix c3 = min
(
ε/
√

(2C2), C1ε
2/C2b

)
, so that (8.11), (8.12) and (8.14) are satisfied. We

will fix C2 ≥ 1 later.
We will require

d(xi, xi+1) ≤ s =
C1ε

2k

C2d(x, y)
≤ ε

3

√
k

2m
≤ ε

3

√⌊
k

m

⌋
(8.15)

for all i = 0, 1, . . . ,m − 1 and for all k ≥ m. We fix C2 := 36C2
1 ≥ 1, so that by (8.13) we

deduce

s =
C1ε

2k

C2d(x, y)
≤ ε

3

(
ε2k2

4C2d(x, y)2

)1/2

≤ ε

3

√
k

2m
≤ ε

3

√⌊
k

m

⌋
(8.16)
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for all x, y ∈M and k ∈ N∗ such that d(x, y) ≥ ε
√
k and k/m ≥ 2, where s,m is as defined

in (8.11) and (8.12). Define k0, . . . , km−1 such that

ki :=

⌊
k

m

⌋
or

⌊
k

m

⌋
+ 1

satisfying
∑m−1
i=0 ki = k. Consider the s-chain x = x0, . . . , xm = y between x and y

where s,m are given by (8.11), (8.12). By (8.16) and definition of ki, for all wi ∈
B(xi, (ε/3)

√
bk/mc), for i = 0, 1, . . . ,m− 1 we have

d(wi, wi+1) ≤ ε
√
bk/mc ≤ ε

√
ki.

Therefore by (8.10), (8.14) and (2.5), there exists c4, c5 ∈ (0, 1) such that for all for
i = 0, 1, . . . ,m− 1, wi ∈ B(xi, (ε/3)

√
bk/mc), we have

pki(wi, wi+1) ≥ c1

V (wi,
√
ki)
≥ c4

V (wi,
√
bk/mc)

≥ c5

V (xi,
√
bk/mc)

(8.17)

for all x, y ∈M , k ≥ 2 satisfying d(x, y) ≥ ε
√
k and d(x, y) ≤ c3k.

Define Bi = B(xi, (ε/3)
√
bk/mc). By Chapman-Kolmogorov equation and (8.17), for

all x, y ∈M , k ≥ 2 satisfying d(x, y) ≥ ε
√
k and d(x, y) ≤ c3k, we obtain

pk(x, y)

=

ˆ
M

. . .

ˆ
M

p(x0, w1)p(w1, w2) . . . p(wm−2, wm−1)p(wm−1, y) dw1 . . . dwm−1

≥
ˆ
Bm−1

. . .

ˆ
B1

p(x0, w1)p(w1, w2) . . . p(wm−2, wm−1)p(wm−1, y) dw1 . . . dwm−1

≥ cm−1
5

V (x,
√
k)

m−1∏
i=1

V (xi, (ε/3)
√
bk/mc)

V (xi,
√
bk/mc)

(8.18)

By (2.4), (8.13), (8.14) and (8.18), there exists c6, c7 ∈ (0, 1) such that

pk(x, y) ≥ cm6

V (x,
√
k)
≥ exp

(
2C2d(x, y)2 log c6

ε2k

)
1

V (x,
√
k)

≥ 1

V (x,
√
k)

exp

(
−d(x, y)2

c7k

)
(8.19)

for all x, y ∈ M , k ≥ 2 satisfying d(x, y) ≥ ε
√
k and d(x, y) ≤ c3k. This yields (GLE) for

the case d(x, y) ≥ ε
√
k.

The case d(x, y) ≤ ε
√
k follows from (8.10). This completes the proof of (GLE).

9 Parabolic Harnack inequality

In this section, we use the two sided Gaussian estimates on the heat kernel to prove
parabolic Harnack inequality. Moreover, we show the necessity of Poincaré inequality
and large scale volume doubling using parabolic Harnack inequality.

Based on ideas of Nash [62], Fabes and Stroock [29] gave a proof of parabolic Harnack
inequality using Gaussian bounds on the heat kernel for uniformly elliptic operators on
Rn. This idea of using Gaussian estimates on the heat kernel to prove parabolic Harnack
inequality was extended in various settings [72, 66, 25, 8]. Delmotte [25] introduced a
discrete version of balayage formula to prove parabolic Harnack inequality on graphs.
We use a direct adaptation of Delmotte’s method to prove parabolic Harnack inequality.

Recall that we defined caloric function as solutions to the discrete time heat equation
∂ku + ∆uk = 0 in Definition 7.3. We introduce the parabolic Harnack inequality for
non-negative caloric functions.
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Definition 9.1. Let (M,d, µ) be a metric measure space and let P be a Markov operator
on (M,d, µ). Let 0 < ζ < 1 and 0 < θ1 < θ2 < θ3 < θ4. We that a µ-symmetric Markov
operator P (or equivalently its heat kernel pk) on (M,d, µ) satisfies the discrete-time
parabolic Harnack inequality

H(ζ, θ1, θ2, θ3, θ4)

if there exists positive reals C,R such that for all x ∈ M, r ∈ R, a ∈ N with r > R and
every non-negative P -caloric function u : N×M → R≥0 on

Q = Ja, a+ bθ4r
2cK×B(x, r),

we have
sup
Q	

u ≤ C inf
Q⊕

u,

where

Q	 := Ja+ dθ1r
2e, a+ bθ2r

2cK×B(x, ζr),

Q⊕ := Ja+ dθ3r
2e, a+ bθ4r

2cK×B(x, ζr).

Remark 9.2.

(i) The exact values of the constants ζ ∈ (0, 1) and θ1, θ2, θ2, θ4 are unimportant. For
example, for graphs and length spaces if the parabolic Harnack inequality is
satisfied for one set of constants, then it is satisfied for every other set of constants.
The argument in [8, Proposition 5.2(iv)] can be adapted for graphs and length
spaces in the above discrete-time setting.

(ii) It suffices to consider the case a = 0 in the definition above by simply by shifting
the function in the time component.

(iii) Analogous to Remark 7.4(b), if P is (h, h′)-compatible with (M,d, µ) we may only
require the function u to be defined on a smaller domain.

9.1 Gaussian estimates implies parabolic Harnack inequality

In this subsection, we prove the following parabolic Harnack inequality using two
sided Gaussian bounds.

Proposition 9.3. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfy-
ing (V D)loc. Suppose that a Markov operator P has a kernel pk that is weakly (h, h′)-
compatible with respect to µ for some h > b. Moreover, suppose that pk satisfies two
sided Gaussian estimate (GE). Then there exists η ∈ (0, 1) such that P satisfies the
parabolic Harnack inequality H(η/2, η2/2, η2, 2η2, 4η2).

First we start by verifying that Gaussian lower bound implies large scale volume
doubling property.

Lemma 9.4. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfying (V D)loc.
Suppose that a Markov operator P has a kernel pk that satisfies (GLE). Then (M,d, µ)

satisfies (V D)∞.

Proof. By (GLE) there exists c1, c2, c3 > 0 such that

pn(x, y) ≥ c1
V (x,

√
n)

exp
(
−d(x, y)2/c2n

)
for all x, y ∈M satisfying d(x, y) ≤ c3n and for all n ∈ N∗. Therefore there exists N1 ≥ 1

such that 4
√
n ≤ c3n for all n ≥ N1. By the Gaussian lower bound above

1 =

ˆ
M

pn(x, y) dy ≥
ˆ
B(x,4

√
n)

pn(x, y) dy ≥ V (x, 4
√
n)

V (x,
√
n)

c1 exp(−4/c2)
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for all x ∈M and for all n ≥ N1. Therefore there exists R := N2
1 such that for all x ∈M

and for all r ≥ R, we have

V (x, r) ≥ V (x, brc) ≥ c1 exp(−4/c2)V (x, 4brc) ≥ c1 exp(−4/c2)V (x, 2r).

We show the following near diagonal lower bounds as a consequence of two sided
Gaussian bound (GE).

Lemma 9.5. Under the assumptions of Proposition 9.3, there exists c1 > 0, η ∈ (0, 1)

and R0 > 0 such that for all x ∈ M , for all r ≥ R0, for all y, z ∈ B(x, ηr), for all k ∈ N∗

satisfying (ηr)2 ≤ k ≤ (2ηr)2, we have

p
B(x,r)
k (y, z) ≥ c1

V (x,
√
k)
. (9.1)

Proof. We abbreviate B(x, r) by B. We denote the exit time from ball B by

τ := min {n : Xn /∈ B}

where (Xn)n∈N is the Markov chain on M corresponding to the kernel pk.
By strong Markov property and µ-symmetry, the Dirichlet kernel pBk can be expressed

in terms of pk as

pBk (y, z) = pk(y, z)− Ey
[
pk−τ (z,Xτ )1J1,k−1K(τ)

]
(9.2)

for all n ≥ 2 and for all x ∈M , where Ey denotes that the Markov chain starts at X0 = y.
We choose R0 > (1− η)−1h′, so that by (4.10)

Ey
[
pk−τ (z,Xτ )1J1,k−1K(τ)

]
= Ey

[
pk−τ (z,Xτ )1J2,k−2K(τ)

]
for all y, z ∈ B(x, ηr), for all k ≥ 2, for all x ∈M and for all r ∈ R with r ≥ R0. Combining
this with (9.2) and Xτ /∈ B, we have

pBk (y, z) ≥ pk(y, z)− sup
l∈J2,kK

sup
w/∈B(x,r)

pl(z, w) (9.3)

for all y, z ∈ B(x, ηr), for all k ≥ 2, for all x ∈M and for all r ∈ R with r ≥ (1− η)−1h′.
Note that by Lemma 9.4 we have (V D)∞. Therefore by (GLE), (2.4) and k ≥ (ηr)2,

there exists c2, c3 > 0 and R1 > 0 such that

pk(y, z) ≥ c2

V (y,
√
k)

exp

(
− (2ηr)2

c2(ηr)2

)
≥ c3

V (x,
√
k)

(9.4)

for all x ∈ M , for all r ≥ R1, for all η ∈ (0, 1), for all y, z ∈ B(x, ηr) and for all k ∈ N∗

satisfying (ηr)2 ≤ k.
For the second term in (9.3) by (GUE), there exists C1 > 0 such that

pl(z, w) ≤ C1

V (z,
√
l)

exp

(
−d(z, w)2

C1l

)
≤ C1

V (z,
√
l)

exp

(
− (1− η)2r2

C1l

)
for all l ∈ N∗ with l ≥ 2, for all x ∈ M , for all r > 0, for all η ∈ (0, 1), for all z ∈
B(x, ηr) and for all w /∈ B(x, r). Combined this with (2.4) and k ≤ (2ηr)2, there exists
C2, C3, C4, δ > 0 such that for all η ∈ (0, 1/2), for all x ∈ M , for all z ∈ B(x, ηr), for all
k ∈ N∗ satisfying (ηr)2 ≤ k ≤ (2ηr)2, for all l ∈ J2, kK and for all w /∈ B(x, r), we have

pl(z, w) ≤ C2

V (z,
√
k)

(
k

l

)δ
exp

(
− (1− η)2r2

C1l

)
≤ C3η

2δ

V (x,
√
k)

(
r2

l

)δ
exp

(
− r2

4C1l

)
<

C4η
2δ

V (x,
√
k)
. (9.5)
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The second line above follows from η < 1/2 and (2.4) and the last line follows from
the fact the function t 7→ tδ exp(−t/4C1) is bounded in (0,∞). Combining (9.3), (9.4)
and (9.5), there exists c1 > 0 and R0 > 0 such that pBk satisfies (9.1).

The following lemma provides a discrete time version of Balayage decomposition for
the heat equation.

Lemma 9.6. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfying (V D)loc.
Suppose that a Markov operator P has a kernel pk that is weakly (h, h′)-compatible with
respect to µ for some h > b. Then for all x ∈ M , for all r > h′, for all r1 such that
0 < r1 < r1 + h′ < r, for all a, b ∈ N, for all non-negative function u : N ×M → R≥0

that is P -caloric in Ja, bK×B(x, r), there exists a non-negative function v : N ×M → R

(depending on u) such that supp(v) ⊆ Ja + 1, bK × (B(x, r1 + h′) \B(x, r1)) and for all
y ∈ B(x, r1) and for all k ∈ Ja, b+ 1K, we have

u(k, y) =

ˆ
B(x,r1+h′)

pBk−a(y, z)u(a, z) dz +
k−1∑
l=a+1

ˆ
B(x,r1+h′)

pBk−l(y, w)v(l, w) dw, (9.6)

where B = B(x, r).

Proof. Denote by B1 = B(x, r1 + h′) and B = B(x, r). Define

v1(k, y) = u(k, y)−
ˆ
B(x,r1+h′)

pBk−a(y, z)u(a, z) dz

for all (k, y) ∈ Ja+ 1, b+ 1K×B(x, r1 + h′). Note that

(k, y) 7→
ˆ
B1

pBk−a(y, z)u(a, z) dz

is P -caloric in Ja+ 1, bK×B(x, r1). Since u ≥ 0, by (4.10) we have v1(a+ 1, y) = 0 for all
y ∈ B(x, r1) and by maximum principle v1 ≥ 0 in Ja+ 1, b+ 1K×B(x, r1).

Next, we construct v : N×M → R iteratively. We assume that supp(v) ⊆ Ja+ 1, bK×
(B(x, r1 + h′) \B(x, r1)). Define v(a+ 1, y) = v1(a+ 1, y) for all y ∈ B(x, r1 + h′) \B(x, r).

Since v1 is a difference of two P -caloric functions, we have v1 is P -caloric in Ja +

1, bK×B(x, r1). We repeat this construction iteratively by defining

vi+1(k, y) = vi(k, y)−
ˆ
B(x,r1+h′)

pBk−a−i(y, z)vi(a+ i, z) dz (9.7)

for all (k, y) ∈ Ja+ i+ 1, b+ 1K×B(x, r1 + h′) and

v(a+ i+ 1, w) = vi+1(a+ i+ 1, w)

for all w ∈ B(x, r1 + h′) \ B(x, r1) and i = 0, 1, . . . , b − a − 1. By the same argument as
above, vi is non-negative and caloric in Ja+ i, bK× B(x, r1) for all i = 0, 1, . . . , b − a+ 1.
Further

ui(a+ i, z) = 0 (9.8)

for all z in B(x, r1) and i = 1, 2, . . . , b− a. Combining (9.7), (9.8) and gives (9.6).

We are now ready to prove the parabolic Harnack inequality.

Proof of Proposition 9.3. Let η ∈ (0, 1) be as given by Lemma 9.5. Note that for all
r > 12h′/η, we have ηr − h′ > 2ηr/3 > η/2. Moreover for all r > 12h′/η, for all
y ∈ B(x, ηr/2) and for all z ∈ B(x, ηr) \ B(x, ηr − h′) we have d(y, z) > 2h′. Let R1 :=
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1 + max(R0, 12h′/η, 10/η) where R0 is the constant from Lemma 9.5. By the above
remarks, (4.10) and Lemma 9.6, for all x ∈ M , for all r ≥ R1, for all non-negative
function u that is P -caloric in J0, b4η2r2cK × B where B = B(x, r), there exists a non-
negative function v supported in B(x, ηr) \B(x, ηr − h′) such that

u(k, y) =

ˆ
B(x,ηr)

pBk (y, z)u(a, z) dz +
k−2∑
l=1

ˆ
B(x,ηr)

pBk−l(y, w)v(l, w) dw (9.9)

for all (k, y) ∈ J1, b4η2r2c+ 1K×B(x, ηr/2).
For some fixed x ∈M and r > R1, we define

Q	 := Jdη2r2/2e, bη2r2cK×B(x, ηr/2), Q⊕ := Jd2η2r2e, b4η2r2cK×B(x, ηr/2) (9.10)

and Q := J0, b4η2r2cK×B(x, ηr).
By Lemma 9.4 we have (V D)∞. Therefore by Lemma 9.5 and (2.4) there exists

c1, c2 > 0 such that for all x ∈M , for all r ≥ R1, for all y ∈ B(x, ηr/2), for all z ∈ B(x, ηr),
we have

inf
(k,y)∈Q⊕

pBk (y, z) ≥ inf
k∈Jd2η2r2e,b4η2r2cK

c1

V (x,
√
k)
≥ c1
V (x, 2ηr)

≥ c2
V (x, ηr)

. (9.11)

Similarly by Lemma 9.5 for all x ∈ M , for all r ≥ R1, for all y ∈ B(x, ηr/2), for all
z ∈ B(x, ηr) \B(x, ηr − h′), for all l ∈ J1, bη2r2c − 2K we have

inf
(k,y)∈Q⊕

pBk−l(y, z) ≥ inf
k∈Jd2η2r2e,b4η2r2cK

c1

V (x,
√

(k − l))
≥ c2
V (x, ηr)

. (9.12)

For upper bounds in Q⊕ we simply use (GUE) as follows. By (GUE) and (2.5), there
exists C1, C2 > 0 such that for all x ∈ M , for all r ≥ R1, for all y ∈ B(x, ηr/2), for all
z ∈ B(x, ηr) we have

sup
(k,y)∈Q	

pBk (y, z) ≤ sup
(k,y)∈Q	

pk(y, z) ≤ sup
(k,y)∈Q	

C1

V (y,
√
k)
≤ C2

V (x, ηr)
. (9.13)

Similarly by (GUE) and (2.4), there exists C3, C4, C5, δ > 0 such that for all x ∈ M , for
all r ≥ R1, for all y ∈ B(x, ηr/2), for all z ∈ B(x, ηr) \B(x, ηr−h′), for all (k, y) ∈ Q	 and
for all l ∈ J1, k − 2K we have

pBk−l(y, z) ≤ pk−l(y, z) ≤ C3

V (y,
√

(k − l))
exp

(
− d(y, z)2

C3(k − l)

)

≤ C4

V (y, ηr)

(
η2r2

(k − l)

)δ/2
exp

(
− η2r2

36C3(k − l)

)
≤ C5

V (x, ηr)
. (9.14)

The last line follows from the fact that the function t 7→ tδ/2 exp(−t/(36C3)) is bounded
in (0,∞) along with (2.5).

Combining the inequalities (9.11), (9.12), (9.13) and (9.14) along with the balayage
formula (9.9) for all x ∈M , for all r ≥ R1, for all non-negative function u that is P -caloric
in J0, b4η2r2cK×B(x, r), we have

sup
(k,y)∈Q	

u(k, y) ≤ c−1
2 max(C2, C5) inf

(k,y)∈Q⊕
u(k, y)

where Q	, Q⊕ are as defined in (9.10). Note that by Remark 9.2(ii), we have the desired
Harnack inequality.
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9.2 Necessity of Poincaré inequality and large scale volume doubling

In the previous sections, we have obtain two-sided Gaussian bounds on the heat
kernel and parabolic Harnack inequality assuming large scale volume doubling and
a Poincaré inequality. Now we show that large scale volume doubling and Poincaré
inequality are necessary to have two-sided Gaussian bounds on the heat kernel and
parabolic Harnack inequality. The was first proved by Saloff-Coste in [67, Theorem 3.1]
using an argument due to Kusuoka and Stroock [52].Delmotte [25] followed the same
strategy in discrete-time setting for random walk on graphs. The following proposition
follows from the argument in [67, 25].

Proposition 9.7. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfy-
ing (V D)loc. Suppose that a Markov operator P has a kernel pk that is weakly (h, h′)-
compatible with respect to µ for some h > b and there exists η ∈ (0, 1) such that
P satisfies the parabolic Harnack inequality H(η/2, η2/2, η2, 2η2, 4η2). Then (M,d, µ)

satisfies (V D)∞ and (P )h′ .

We now have all the ingredients to prove our main result in a slightly weaker form.

Proposition 9.8. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfy-
ing (V D)loc and diam(M) = +∞. Suppose that a Markov operator P has a kernel
p that is (h, h′)-compatible with (M,d, µ) with either h = h′ > b or h′ > h ≥ 5b. Then the
following are equivalent:

(i) Parabolic Harnack inequality: there exists η ∈ (0, 1) such that P satisfies the
parabolic Harnack inequality H(η/2, η2/2, η2, 2η2, 4η2).

(ii) Gaussian bounds on the heat kernel: the heat kernel pk satisfies (GE).

(iii) The conjunction of large scale volume doubling property (V D)∞ and Poincaré
inequality (P )h.

Proof. The implication “(iii) implies (ii)” follows from Theorem 5.1, Proposition 7.1 and
Proposition 8.1. (ii) implies (i) follows from Proposition 9.3. (i) implies (iii) follows from
Proposition 9.7 and Corollary 3.17.

Next, we answer the question raised in Remark 3.6.

Proposition 9.9. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfy-
ing (V D)loc, (V D)∞, (P )h′ for some h′ > b and diam(M) = +∞. Then (M,d, µ) sat-
isfies (P )h for all h > b.

Proof. By Lemma 3.5 it suffices to consider the case b < h < h′. Consider the Markov
chain with density

p(x, y) =
1B(x,h)(y)

Q(x)Q(y)
√
V (x, h)V (y, h)

that is symmetric with respect to the measure µ′(dx) = Q(x)µ(dx), where

Q(x) =

ˆ
M

1B(x,h)(y)√
V (x, h)V (y, h)

µ(dy).

By (V D)loc, there exists C1 > 0 such that

C−1
1 ≤ Q(x) ≤ C1 (9.15)

for all x ∈ M . Therefore the space (M,d, µ′) satisfies (V D)loc, (V D)∞, (P )h′ for some
h′ > b. Moreover by (9.15), p is weakly (h, h)-compatible with (M,d, µ′). By the same
argument as Lemma 4.9, there exists l ∈ N∗ such that pl is (h′, lh) compatible with
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(M,d, µ′). Therefore by Proposition 9.8 and Lemma 4.14 the kernel pk satisfies (GE).
The Poincaré inequality (P )h for (M,d, µ′) then follows from Propositions 9.3 and 9.7. An
easy comparison argument using (9.15) gives (P )h for (M,d, µ).

The following the main result of our work.

Theorem 9.10. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfying
(V D)loc and diam(M) = +∞. Suppose that a Markov operator P has a kernel p that is
(h, h′)-compatible with (M,d, µ), where h′ ≥ h > b. Then the following are equivalent:

(i) Parabolic Harnack inequality: there exists η ∈ (0, 1) such that P satisfies the
parabolic Harnack inequality H(η/2, η2/2, η2, 2η2, 4η2).

(ii) Gaussian bounds on the heat kernel: the heat kernel pk satisfies (GE).

(iii) The conjunction of large scale volume doubling property (V D)∞ and Poincaré
inequality (P )h.

Proof. Combining Propositions 9.8 and 9.9 yields the desired result.

As announced in the introduction, we will show Theorem 1.1 and [25, Theorem 1.7]
are covered by our results. Since [25, Theorem 1.7] is a special case of Theorem 9.10, it
remains to verify Theorem 1.1.

Proof of Theorem 1.1. We need only to check the implication (c) implies (b) as the other
implications follow as in Theorem 9.10. Although p1 is only weakly (h, h′)-compatible
to (M,d, µ), by Lemma 4.9, Theorem 9.10 and Lemma 4.14, we have that pk satisfies
(GE).

10 Applications and examples

Perhaps the most important application of the characterization of parabolic Harnack
inequality and Gaussian bounds on the heat kernel is the stability under quasi-isometries.

Theorem 10.1. Let (Mi, di, µi) be a quasi-bi-geodesic metric measure spaces satisfy-
ing (V D)loc and diam(Mi) = +∞, for i = 1, 2. Moreover we assume that (M1, d1, µ1 and
(M2, d2, µ2) are quasi-isometric metric measure spaces. Suppose that a Markov operator
Pi has a kernel that is (hi, h

′
i)-compatible with (Mi, di, µi) with h′i ≥ hi > bi for i = 1, 2.

Then

(i) The kernel corresponding to P1 satisfies (GE) if and only if the kernel corresponding
to P2 satisfies (GE).

(ii) The operator P1 satisfies the Harnack inequality H(η/2, η2/2, η2, 2η2, 4η2) for some
η ∈ (0, 1) if and only if P2 satisfies H(ζ/2, ζ2/2, ζ2, 2ζ2, 4ζ2) for some ζ ∈ (0, 1).

Proof. The is a direct consequence of Theorem 9.10 along with stability of (V D)∞ given
by Proposition 2.14, stability of (P )h given by Proposition 3.16, Proposition 9.9 and
Lemma 3.5.

Recall that we proved an elliptic Hölder regularity estimate for P -harmonic functions
in Proposition 6.20 and we used the regularity in the proof of Gaussian lower bounds
(Lemma 8.7). There is an analogous parabolic Hölder regularity estimate which follows
from parabolic Harnack inequality. The proof is similar, for example the proof given
in [70, Theorem 5.4.7] can be adapted for the present setting. Such parabolic Hölder
continuity estimates were first obtained by Nash [62].
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Proposition 10.2. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfy-
ing (V D)loc and diam(M) = +∞. Suppose that a Markov operator P has a kernel p
that is weakly (h, h′)-compatible with (M,d, µ) and satisfies parabolic Harnack inequality
H(η/2, η2/2, η2, 2η2, 4η2) for some η ∈ (0, 1). Then there exists C > 0, R > 0 and α > 0

such that for all x ∈M , for all r > R and for any non-negative function u : N×M → R

that is P -caloric in J0, b4η2r2cK×B(x, r) = Q, we have the regularity estimate

sup
(k1,x1),(k2,x2)∈Jd2η2r2e,b4η2r2cK×B(x,r)

|u(k1, x1)− u(k2, x2)|
(max(1, |k1 − k2|+ d(x1, x2))

α ≤
C

rα
sup
Q
u.

Note that we do not obtain continuity, because we do not have Hólder continuity
estimate at arbitrarily small distances. Another application of elliptic Harnack inequality
is Liouville property for harmonic functions that was shown in Proposition 6.19.

Next, we turn attention to application of two sides Gaussian estimates (GE). Of
course, the estimates given by (GE) has enough information to determine whether or
not the the random walk is transient. The estimate given by [25, Proposition 4.3] can be
easily generalized to metric measure spaces in which case we obtain

Proposition 10.3. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfy-
ing (V D)loc and diam(M) = +∞. Consider a µ-symmetric Markov operator P that is
(h, h′)-compatible with (M,d, µ) for some h > b and whose kernel pk satisfies (GE). Then
the random walk corresponding to P is transient if and only if

∞∑
n=1

n

V (x, n)
< +∞ (10.1)

for some x ∈M .

It is easy to see that the convergence of the series in (10.1) does not depend on
the choice of x ∈M . Unless the space is discrete, we do not have a ‘Green’s function’
as the Green operator ∆−1 =

∑∞
i=0 P

i does not have a kernel as there is ‘delta mass’
singularity at the starting point. However, we may consider the off-diagonal part of the
Green operator given by the “Green’s function” G(x, y) =

∑∞
i=1 pi(x, y). The estimate

given by [25, Proposition 4.3] can be again generalized as follows.

Proposition 10.4. Under the assumptions of Proposition 10.3, there exists C > 0 such
that

C

∞∑
n=dd(x,y)e

n

V (x, n)
≤ G(x, y) :=

∞∑
i=1

pi(x, y) ≤ C
∞∑

n=dd(x,y)e

n

V (x, n)
(10.2)

for some x ∈M and for all y ∈M with d(x, y) > h′.

As noted in [41, Theorem 9.1], the Gaussian estimate is sufficient to prove law of
iterated logarithm in a weak form. The proof in [41] can be generalized for metric
measure spaces.

Proposition 10.5. Under the assumptions of Proposition 10.3, there exist C > 0 such
that for all starting points X0 ∈M

C−1 ≤ lim sup
d(X0, Xn)

(n log log n)
1/2
≤ C

almost surely, where (Xk)k∈N is the Markov chain corresponding to P .

We refer the reader to [41, Section 9] for other probabilistic applications in similar
spirit.

If the space has finite diameter the techniques developed here can be used to prove
upper and lower bounds on mixing times. In this case µ is a finite measure on M and can
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be normalized if necessary to be the stationary probability measure. Roughly speaking,
in this case for (h, h)-compatible Markov operator on a space with diameter D, it takes
(D/h)2 steps of the Markov chain to get close to the stationary distribution µ. The
Poincaré inequality and Gaussian upper bounds can be used to obtain upper bounds on
mixing time as outlined in [28, Lemma 2.1 and Remark 1 after Lemma 2.2]. For lower
bounds on the mixing time one would need Gaussian lower bounds. We plan to address
these questions in a sequel and obtain results complementary to those in [53]. We refer
the reader to [26, 27] for other recent works in this direction.

10.1 Harmonic functions with polynomial volume growth

In [17], Colding and Minicozzi proved that the space of harmonic functions with
polynomial volume growth with fixed rate on a manifold satisfying volume doubling
and Poincaré inequality is finite dimensional. As a corollary, they prove a conjecture of
S. T. Yau on manifolds that asserts the above property for Riemannian manifolds with
non-negative Ricci curvature. A recent surprising application of this result is an alternate
proof of Gromov’s theorem on groups of polynomial volume growth due to Kleiner [51].

Definition 10.6. For a metric measure space (M,d, µ) and a µ-symmetric Markov op-
erator P on M , we define the space of P -harmonic functions with growth rate d as the
vector space Hd(M,P ) consisting of all P -harmonic functions u such that there exists
C > 0, p ∈M (depending on u) such that |u(x)| ≤ C(1 + d(x, p)γ) for all x ∈M .

We have the following theorem that would extend the result of Colding and Minicozzi
for random walks on metric measure spaces.

Theorem 10.7. Let (M,d, µ) be a quasi-geodesic metric measure spaces satisfying
diam(M) = +∞, volume doubling hypotheses (V D)loc, (V D)∞ and Poincaré inequal-
ity (P )h. Let P be a Markov operator that is (h, h′)-compatible with (M,d, µ). Then the
space of P -harmonic functions Hd(M,P ) with a fixed growth rate d is finite dimensional
for any d ≥ 0.

The proof of Colding and Minicozzi’s theorem in [17] relies on three ingredients:
volume doubling hypotheses (V D), a Poincaré inequality and a reverse Poincaré inequal-
ity for harmonic functions. We have all the three ingredients (with some changes) as
we showed the reverse Poincaré inequality in Lemma 6.14. A caveat is that we have
to rely on weaker versions of all the three ingredients but nevertheless we will see
that Theorem 10.7 can be proved using the techniques introduced of [17]. T. Delmotte
adapted an alternate approach due to P. Li [54] to prove a similar statement for random
walks on graphs satisfying doubling and Poincaré inequality [24].

The following below is a slightly weaker version of [17, Proposition 2.5].

Proposition 10.8. Let (M,d, µ) be a quasi-geodesic metric measure spaces satisfying
diam(M) = +∞, volume doubling hypotheses (V D)loc, (V D)∞ and Poincaré inequal-
ity (P )h and let P be a Markov operator that is (h, h′)-compatible with (M,d, µ). There
exists ε ∈ (0, 1) such that for all p ∈ M , for all k ≥ 1 satisfying r ≥ k/ε and for all
functions f1, f2, . . . , fn ∈ L∞loc(M) satisfying

ˆ
B(p,r)

f2
i dµ = V (p, r) (10.3)

for all i = 1, 2, . . . , n; ∣∣∣∣∣
ˆ
B(p,r)

fifj dµ

∣∣∣∣∣ < V (p, r)

2
(10.4)

EJP 28 (2023), paper 64.
Page 76/81

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP954
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Random walks on metric measure spaces

for all 1 ≤ i < j ≤ n; andˆ
B(p,2r)

(
f2
i + (2r)2|∇P fi|2

)
dµ ≤ k2V (p, r) (10.5)

for all i = 1, 2, . . . , n, we have n ≤ N , where N depends on k but does not depend on
r ≥ k/ε or p ∈M .

Proof. The proof follows from modifying the proof of [17, Proposition 2.5] by using our
modified versions of volume doubling, Poincaré and reverse Poincaré inequalities.

The following proposition and its proof is a slight modification of a result due to
Colding and Minicozzi [17, Proposition 4.16].

Proposition 10.9. Consider a metric measure space (M,d, µ) satisfying the hypothe-
ses (V D)loc, (V D)∞ and diam(M) = +∞. Let P be a Markov operator that is (h, h′)-
compatible with (M,d, µ) for some 0 < h ≤ h′. Suppose that u1, u2, . . . , u2k ∈ Hd(M,P )

are linearly independent. There exists δ > 0, p ∈ M such that for all d > 0, Ω > 1 and
m0 > 0, there exists m ≥ m0, l ≥ k

2 Ω−4d−δ, and functions v1, . . . , vl in the linear span of
ui such that

2Ω4d+2δV (p,Ωm) = 2Ω4d+2δ

ˆ
B(p,Ωm)

v2
i dµ ≥

ˆ
B(p,Ωm+1)

v2
i dµ (10.6)

and ˆ
B(p,Ωm)

vivj dµ = δi,jV (p,Ωm). (10.7)

In Proposition 10.9, we may choose δ as the constant in Lemma 2.7. We are now
ready to prove Theorem 10.7.

Proof of Theorem 10.7. Fix Ω > max(4, 3h′), d > 0 and p ∈ M . Let A ≥ 1, CA > 0 and
CD > 0 and δ = log2 CD be as given in Lemma 2.7. Let CR be as given by Lemma 6.14
and set k2 = (8CR + 2)Ω4d+2δ. Let ε ∈ (0, 1) be given by Proposition 10.8. We choose
m0 ∈ N∗ such that Ωm0 ≥ k/ε. Let dimHd(M,P ) ≥ N0 := 4Ω4d+2δN where N is given by
Proposition 10.8 where k is as defined above.

Suppose that u1, u2, . . . , uN0
∈ Hd(M,P ) be linearly independent. Then by Proposi-

tion 10.9 and reverse Poincaré inequality (Lemma 6.14) there exists CR > 0 and m > m0

such that for all f ∈ L∞loc(M,µ), we have harmonic functions v1, v2, . . . , vl satisfying

l ≥ 1

4
N0Ω−4d−2δ = N , (10.8)

ˆ
B(p,Ωm)

vivj dµ = V (p,Ωm)δi,j , (10.9)

ˆ
B(p,Ωm+1)

v2
i dµ ≤ 2CRΩ4d+2δV (p,Ωm), (10.10)

and ˆ
B(p,2Ωm)

|∇P vi|2 dµ ≤ CRΩ−2m

ˆ
B(p,4Ωm)

v2
i dµ ≤ 2Ω4d+2δ−2mV (p,Ωm). (10.11)

Note that (10.9), (10.10), (10.11) and Ω > 4 implies that v1, v2, . . . , vl satisfy (10.3), (10.3)ˆ
B(p,2Ωm)

v2
i + (2Ωm)2|∇P vi|2 dµ ≤ (8CR + 2)Ω4d+2δV (p, r) (10.12)

for all i = 1, . . . , l. Note that (10.8), (10.9), (10.12) along with Proposition 10.8 implies
the desired contradiction. Therefore dimHd(M,P ) < N0 <∞.
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10.2 Directions for future work

We end with a direction for future work. One of the features of our work is that it
provides an unified approach to Gaussian estimates for discrete time Markov chains on
both discrete and continuous spaces. Recently, there has been considerable interest
in analysis and probability on fractals and fractal-like manifolds and graphs. For many
natural family of fractals the heat kernel satisfies sub-Gaussian estimates of the form

pt(x, y) � C1

V (x, t1/β)
exp

(
−C2

(
d(x, y)β

t

)1/(β−1)
)

for all t > 0 and for all x, y ∈M and β > 1 is a parameter (See [10, Theorem 1.5(e)] for
an early example). Here � means that both inequalities ≤ and ≥ hold with different
values of constants C1, C2. Similar to the characterizations of Gaussian estimates in
[30, 67, 74, 25, 40] there exists various characterizations for sub-Gaussian estimates
both in the setting of diffusions on local Dirichlet spaces [5] and for discrete time Markov
chains on graphs [4, 7, 35, 36]. As in the case of Gaussian estimates, it is desirable to
obtain characterizations of sub-Gaussian estimates that are stable under quasi-isometries.
This was achieved using a condition called cutoff-Sobolev inequality first introduced by
Barlow and Bass [4] (See also [5]). Our work naturally raises an analogous question for
sub-Gaussian estimates on Markov chains with more general space-time scaling.

Problem 10.10. Characterize sub-Gaussian estimates for discrete time Markov chains
on quasi-geodesic metric measure spaces using geometric conditions that are stable
with respect to quasi-isometries.

Another direction for future work is to clarify the applications to mixing times in the
finite diameter case as mentioned in Remark 8.5(b).
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