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Abstract. Although leveraged exchange-traded funds (ETFs) are popular products for retail
investors, how to hedge them poses a great challenge to financial institutions. We develop an
optimal rebalancing (hedging) model for leveraged ETFs in a comprehensive setting, including
overnightmarket closure andmarket frictions. Themodel allows for an analytical optimal reba-
lancing strategy. The result extends the principle of “aiming in front of target” introduced by
Gârleanu and Pedersen (2013) from a constant weight between current and future positions to
a time-varying weight because the rebalancing performance is monitored only at discrete time
points, but the rebalancing takes place continuously. Empirical findings and implications for
theweekend effect and the intraday trading volume are also presented.
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1. Introduction
Leveraged exchange-traded funds (LETFs) aim to
achieve a daily target return equal to a stated multiple
of the daily return of an underlying asset, where the
multiple β can be + 2, + 3 (for bull LETFs), or –1, –2, –3
(for bear LETFs), fixed for each fund. In 2006, ProShares
introduced the first 12 LETFs on four U.S. equity indices
(S&P 500, NASDAQ 100, Dow Jones Industrial Average,
and S&P MidCap 400), each with three multiples
+2, − 1, − 2. Since then, they have become popular, espe-
cially for retail investors. Indeed, LETFs provide investors
with leveraged (both long and short) opportunities with-
out directly accessing margin accounts or financial deriva-
tives. As of March 2021, there were a total number of 108
LETFs on U.S. equity indices, with a total of 52.7 billion
USD assets under management.

However, one important property of LETFs often
misunderstood by retail investors is that the stated
daily multiple cannot be translated directly to the exact
multiple over a multiday period due to the discrete
compounding effect; see, for example, Avellaneda and

Zhang (2010) and Jarrow (2010). For example, assume
the underlying asset has a constant daily return of
0.1%, and the LETF hits the target multiple β � 2 every
day. Then, over 252 days, the LETF achieves a return
of (1+ 0:001 × 2)252 − 1 � 65:45%, which is 2.285 (not 2)
times of (1+ 0:001)252 − 1 � 28:64%, the annual return
of the underlying asset.

Even daily, the actual daily returns of the fund’s net
asset value tend to deviate from the target returns, a phe-
nomenon called (daily) slippage. The LETF slippage has
been documented in the empirical literature. Taking
LETFs on the S&P 500 index as an example, Tang and Xu
(2013) find that from 2006 to 2010, the LETFs with stated
β � 2, − 1, − 2 achieved an average daily actual net asset
value return of 0.0326%, −0.0097%, and −0.0247%, as
compared with the average target return of 0.0471%,
−0.0236%, and −0.0471%, respectively.

The existing literature suggests several factors to
explain the LETF slippage. Tang and Xu (2013) and
Henderson and Buetow (2014) attribute the slippage
to the interest cost; more precisely, to achieve a target
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leveraged exposure to the underlying asset, a bull
(respectively bear) fund has to borrow (respectively
lend) at the London Interbank Offered Rate (LIBOR)
rate, which brings down (respectively pushes up) the
daily fund asset return and causes the slippage. Avel-
laneda and Dobi (2012), Wagalath (2014), and Guasoni
and Mayerhofer (2017) instead ascribe to transaction
costs incurred during the daily LETF rebalancing.

In this paper, we develop a model for the optimal
daily rebalancing of LETFs under market frictions and
overnight jump risk, which yields an explanation for
the LETF daily slippage. More precisely, (i) an LETF
fund usually rebalances near the market closing time,
when it can better estimate the position needed for the
target exposure for the next day; (ii) adjusting the
fund position rapidly during a short period may incur
a high cost due to the market price impact. Both can
cause suboptimal exposure at the market closing,
which leads to daily slippage. Additionally, in our
model most intraday rebalancing activities occur right
after market opening and before market closure, and
the slippage tends to be the largest on Mondays, thus
providing an explanation of the U-shape intraday
trading volume and the “weekend effect” of the slip-
page of LETFs.

1.1. Intuition
Financial institutions face the challenge of hedging
when issuing LETFs in the presence of market fric-
tions and overnight market closure. To illustrate this,
assume that the interest rate and transaction costs are
zero and consider the following simple example. To
reach the targeted daily return today, which is β times
the daily return of the asset, an LETF fund has to
achieve today’s targeted position that corresponds to
a leverage ratio of β at the previous market closure.
Assume β � 2, and at the previous market closure, the
underlying asset price and total asset are $100 and
$100 million, respectively, and the fund has an ideal
position of two million shares in the underlying asset.
Then, by keeping this targeted position unchanged
throughout today until market closure, the fund will
reach the targeted return today. Assume the underly-
ing asset value drops by 1% to $99 at today’s market
closure, then the fund’s total asset would drop by 2%
to $98 million and achieve the targeted return, which
is ideal. However, the preparation for tomorrow’s tar-
geted position becomes a problem. To achieve the
target, the fund would need to have tomorrow’s posi-
tion of 2 × $98 million=$99 � 1:9798 million shares at
today’s market closure by selling 0.0202 million shares
right before today’s market closure.

This selling is unrealistic and leads to daily slippage
for at least two reasons: (1) In the presence of market
frictions, selling a large number of shares right before
the market closure is costly, as a sudden portfolio

adjustment within an infinitesimal period would yield
a high cost due to price impact and other transaction
costs, leading to a suboptimal leverage ratio and
potentially large slippage. (2) The slippage caused by
a suboptimal position at market closure can be ampli-
fied by the risk of overnight jumps in prices, as such
jumps may move the fund’s opening position further
away and require larger rebalancing of positions.

In view of the two challenges, we show that the
fund should start moving its aim continuously toward
tomorrow’s target much earlier than the market clo-
sure, in anticipation of tomorrow’s target. In other
words, the fund’s aim is “in front of today’s target.”
The proposed strategy can reduce the slippage signifi-
cantly, as confirmed by our numerical results later.

1.2. Our Contribution and Literature Review
The contribution of this paper is fourfold. First, to the
best of our knowledge, we are the first to study the
daily rebalancing problem in a comprehensive setting,
including market frictions and the overnight market
closure. Empirical studies (e.g., Lockwood and Linn
1990, Stoll and Whaley 1990) show that the volatility
is much lower during market closure as compared
with trading hours, although the expected return is on
a similar level. Also, the trading strategy during trad-
ing hours needs to adjust for market closure when no
trading is allowed (cf. Dai et al. 2015). This is espe-
cially important for LETFs because if the target lever-
age ratio is not exactly met at market closing time, the
fund bears the risk that an overnight price jump may
lead to a large return deviation right at the next mar-
ket opening.1 We find that to reduce the overnight
jump risk, it is optimal to perform a larger portion of
rebalancing before market closure. Additionally,
adjusting the aim for the overnight risk can lead to a
slippage reduction of as much as 24%.

Without the risk of market closure, several research-
ers focused on modeling the slippage of LETFs under
price impact either in a pure discrete setting or a pure
continuous setting. Wagalath (2014) proposed a model
with an endogenous price impact and derived an ana-
lytic formula for the rebalancing slippage, assuming
that rebalancing happens once per day and the return
deviation is measured daily at the market closing
time. Based on an approximate continuous model,
Guasoni and Mayerhofer (2017) studied the fund’s
trade-off between the short-term and long-term devia-
tion. With proportional transaction costs, they derived
the optimal trading boundary, which has an explicit
form in terms of an asymptotic expansion. In contrast,
our model incorporates several other additional fac-
tors, including the risk of market closure due to over-
night price jump.

To help unveil the optimal intraday rebalancing
strategy, we use a delicate mixture of continuous and
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discrete-time modeling: The intraday trading strategies
and market frictions are modeled in a continuous-time
setting that allows gradual adjustment across the trading
hours, whereas the performance, that is, the return devi-
ation, is monitored daily in a discrete-time manner. This
mixture modeling is consistent with the LETFs in reality
and complements the existing literature either in pure
discrete-time or continuous-time settings. Furthermore,
whereas the two papers mentioned earlier assume a lin-
ear price impact in the trading amount (i.e., proportional
transaction costs), we consider a quadratic price impact
in the trading amount.

Second, our rebalancing strategy contributes to the
empirical study of LETF slippage. The slippage of
LETFs was studied empirically in Tang and Xu (2013)
and Henderson and Buetow (2014), both of which
found that LETFs’ realized return deviated signifi-
cantly from the target return and explained the slip-
page via the interest cost incurred due to borrowing
and lending. Several papers also linked the LETF slip-
page to the market friction costs. Using the 2008 finan-
cial crisis period, Shum and Kang (2013) observed a
significant slippage for LETFs on international indices
that tend to have lower liquidity. Avellaneda and
Dobi (2012) found that the slippage tends to be promi-
nent during volatile periods.

However, the majority of empirical literature stud-
ies the slippage by assuming the fund follows a sim-
ple suboptimal rebalancing strategy. For example,
Tang and Xu (2013) and Henderson and Buetow
(2014) assume that the fund achieves the target lever-
age ratio exactly at market closing and keeps the posi-
tion until the subsequent market closing; however,
this strategy is suboptimal if the interest rate is
positive, even in the absence of market frictions (cf.
Theorem 1). Our study complements these papers by
studying the slippage based on the optimal rebalanc-
ing strategy in a comprehensive setting, including
nonzero interest rate, market frictions, and market clo-
sure. Furthermore, to the best of our knowledge, we
are the first to find the “weekend effect” of LETF slip-
page empirically; that is, the slippage tends to be the
largest on Monday. By incorporating market closure,
our model can produce implications consistent with
the empirical finding. Our model can also suggest a
testable implication of a U-shaped intraday rebalanc-
ing volume of LETFs.

Third, we demonstrate the principle of aiming in
front of the target and moving gradually towards the
aim, proposed in Gârleanu and Pedersen (2013, 2016),
under the setting of hedging periodic cash flows. In
the mean-variance optimization setting of Gârleanu
and Pedersen (2013, 2016), one immediately moves
to the optimal Markowitz portfolio and stays on it
by continuous rebalancing in the absence of market
frictions. However, in the presence of frictions, they

showed that it is optimal to gradually adjust the port-
folio toward an aim, which is not the current Marko-
witz portfolio but rather a weighted average of the
current and future Markowitz portfolios. In our hedg-
ing setting, the optimal position also moves toward
the aim gradually in a mean-reverting manner, where
the aim stays close to the current target that minimizes
today’s return deviation in the morning hours and
moves in front of the current target, converging to
tomorrow’s target in the afternoon hours, so as to pre-
pare for the future.

Whereas the weight between current and future tar-
gets remains constant in Gârleanu and Pedersen
(2013, 2016), the weight in our paper is time varying.
This distinct feature arises from the special structure
of our model involving the end-of-day discrete moni-
toring and intraday continuous rebalancing. It pro-
vides an extra economic insight on how much the aim
should be in front of target in the presence of compet-
ing goals. Moreover, we report two benefits of apply-
ing this principle in LETFs’ daily rebalancing: (1) By
aiming in front of the current target and looking into
the future, our optimal rebalancing strategy reduces
the average daily slippage significantly compared
with the one-day strategy that only focuses on mini-
mizing today’s deviation. (2) Moving gradually
toward the target smooths out the daily rebalancing
and results in a large decrease in the end-of-day trad-
ing volume, as compared with the one-shot strategy
that only adjusts immediately before market closure.

Fourth, from a technical viewpoint, we obtain an
analytic solution for the rebalancing strategy whose
coefficients are determined by a system of periodic
ordinary differential equations (ODEs).2 This is made
possible because the quadratic structure of the model
reduces the high-dimensional problem into a system
of nonlinear ODEs, which leads to analytic tractabil-
ity.3 Specifically, one only needs to solve the system
once to determine the coefficients, which can then be
used any time in the future. Because the periodic
ODEs are nonlinear, we verify carefully that the solu-
tion exists and does not blow up and show that an
iterative algorithm solving the periodic ODEs (along
with the endogenous terminal conditions) has a
unique fixed point solution.

The goal of LETFs is to achieve a fund return that is
β times the underlying index return on a daily basis.
Thus, even if they accomplish this goal perfectly every
day, the cumulative returns are unlikely β times the
underlying index returns over multiday periods due
to the compounding effect. However, this goal of
LETFs was misunderstood by many investors, and the
compounding effect was ignored. Indeed, both the
U.S. Securities and Exchange Commission and Finan-
cial Regulatory Industry Authority warned investors
of the significance of the multiperiod compounding
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effect for a buy-and-hold strategy over an extended
period. There are analytical and approximated solu-
tions for the multiperiod compounding effect, first
proposed in Cheng and Madhavan (2009) and ex-
tended to a more general setting in Avellaneda and
Zhang (2010) and Haugh (2011). Unlike this strand of
literature, our primary focus is on the daily slippage
rather than deviation for multiday returns, and our
objective is to minimize such daily slippages over
intraday rebalancing rather than the compounding
effect. We provide a discussion in online Supplement
H for a direct link to the compounding effect in the
above literature.

The remainder of this paper is organized as follows.
Section 2 introduces the background and notations of
the problem. Section 3 presents the main result of this
paper, an optimal LETF rebalancing model with mar-
ket frictions, via numerical examples. Section 4 shows
LETF’s position under the optimal rebalancing strat-
egy. Section 5 explains the usage of the principle of aim-
ing in front of target in LETF rebalancing, as well as its
benefits. Sections 6 and 7 show the empirical results on
slippage, intraday rebalancing pattern, and compound-
ing effect. Section 8 concludes. All technical results and
related proofs are given in the online supplement.

2. Basic Setting and Notations
We consider an infinite horizon with 0 � t0 < t1 < : : :
< t2i < t2i+1 < : : : , where t2i and t2i+1 are, respectively,
the market opening and closing of day i, i � 0, 1, : : : .
Hence, the market is open during time intervals
[t2i, t2i+1], when trading is allowed; the market is
closed during time intervals (t2i+1, t2i+2), when no
trading is allowed. Denote the length of daytime (i.e.,
trading hours) for each day as T, and the length of
nighttime (i.e., market closure) as δT. Therefore, the
length of each day is (1+ δ)T, and t2i � i(1+ δ)T, t2i+1 �
T + i(1+ δ)T for i � 0, 1, : : : . Denote the total daytime
as

⋃∞
i�0[t2i, t2i+1], and the total nighttime as

⋃∞
i�0(t2i+1,

t2i+2). The underlying asset price S evolves as a geo-
metric Brownian motion with different constants dur-
ing daytime and nighttime:

dSu � μ(u)Sudu+ σ(u)SudWu, (1)

where μ(u) � μd and σ(u) � σd for daytime, μ(u) � μn
and σ(u) � σn for nighttime, and the parameters
μd, μn, σd, and σn are all positive constants.4 The fund
net asset value (NAV) is invested in θ shares of S, and
the remaining in a risk-free account with a constant
interest rate r > 0.5

Thus, the dynamics of the LETF’s total NAV, X, is
given by

dXu � θudSu + (Xu − θuSu)rdu, u ∈ [t2i−1, t2i+1), ∀i ≥ 0,

(2)

Xt2i+1 � (1 − γ)Xt2i+1−: (3)

Here, (3) corresponds to the industry practice of
deduction of management fee from the NAV at mar-
ket closing t2i+1, i ≥ 0, where γ is the daily manage-
ment fee rate (γ typically has an annualized value of
about 1%, although it varies across funds). Further-
more, we require that the position θ is adapted, and
constant during nighttime when no trading is allowed.

The LETF’s daily return on ith day is calculated
using the NAV immediately before the market closing
t2i+1 and the NAV at the market closing time t2i−1 on
the previous day6: RX

i � (Xt2i+1− −Xt2i−1)=Xt2i−1 : To
emphasize the role of a daily management fee, Xt2i+1−
and Xt2i+1 denote the before-fee NAV and the after-fee
NAV (that is, the NAV publicly announced after mar-
ket closing). Therefore, RX

i denotes the daily before-
fee NAV return. Denote the daily underlying asset
return as RS

i � (St2i+1 − St2i−1)=St2i−1 , so that the target
return is βRS

i . For the current day (i.e., i � 0), the nota-
tion Xt2i−1 in RX

0 (respectively St2i−1 in RS
0) is the NAV

(respectively underlying value) observed at the last
market closing before the current day, and it will be
denoted as x̄ (respectively s̄) throughout the paper.

Definition 1 (Slippage). The slippage on ith day is the
distance between LETF’s daily before-fee NAV return
and target return:

Di � |RX
i − βRS

i |: (4)

Note that to achieve the investment objective7 exactly,
Di should be zero on every trading day.

Trading in the market is costly; trading at an instan-
taneous speed φu incurs a temporary price impact of
C(φu,Su)du � 1

2 Λ̃S2uφ
2
udu, where Λ̃ is a nonnegative

constant, and the speed φu is such that dθu � φudu.
This type of quadratic price impact cost is also used in
Obizhaeva and Wang (2013), Rogers and Singh (2010),
Gârleanu and Pedersen (2016), and Moreau et al.
(2017), and supported empirically by Breen et al.
(2002) (see also Grossman and Miller 1988 and Green-
wood 2005 for the justification in the multiasset case).
In the classic Kyle (1985) model, the equilibrium price
set by the market maker increases linearly in the trad-
er’s amount of order; therefore, to the trader, the cost
of price impact is quadratic in the trading amount. In
our model, this price impact can be interpreted as the
liquidity cost incurred during trading, for example,
from the presence of front runners, especially immedi-
ately before the market closing when other market par-
ticipants have a good estimation of LETFs’ direction of
rebalancing.8 We also assume that C is quadratic in the
underlying price S, which can be understood as that
the price impact is higher when the underlying price
is higher. This is especially important in the current
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problem, because the influence of asset price on its
price impact is nonnegligible over an infinite horizon.
Also, the multiplicative factor S2 gives a natural scaling
of the price impact and brings a technical convenience
allowing for an analytical solution to the problem.

The fund’s objective is to minimize the difference
between the daily simple return of X and the target
return at market closing of each trading day over an
infinite horizon, with an additional penalty on the
trading speed φ. Specifically, the fund minimizes the
total cost∑∞

i�0
e−ρt2i

1
2
X2

t2i−1D
2
i + ν

∫ t2i+1

t2i

1
2
Λ̃S2uφ

2
udu

( )
: (5)

Here, 1
2X

2
t2i−1D

2
i represents the daily slippage cost,

which is larger for a larger slippage.9 The factor X2
t2i−1

provides a natural scaling for the deviation cost;
indeed, a larger fund will hold a larger position and
thus have a larger price impact, and therefore such
scaling is required to keep the relative importance
between the two types of costs. The parameter ρ > 0 is
a subjective discount rate, representing the weight in
the trade-off between optimizing short-term perform-
ance or long-term performance: the larger ρ is, the
greater is the emphasis on short-term costs as com-
pared with the long-term costs. As a special case, ρ �
+∞ means that the manager only cares about today.
The summation of the first and second terms in the
parenthesis corresponds to the daily total cost. In par-
ticular, the first term represents the daily return devia-
tion cost from the fund’s slippage, and the second
term represents the daily accumulated cost from the
market frictions incurred by the intraday fund reba-
lancing. Note that the treatment of incorporating fric-
tion cost as a separate penalty term has been used
extensively in the finance literature, for example,
Gârleanu and Pedersen (2013, 2016), or in macro-
economy literature, for example, Hansen and Sargent
(2013).10 The parameter ν ≥ 0 serves the role of priori-
tizing the goals of minimizing the deviation cost or
minimizing the market friction costs on each day. For
example, a small ν can reflect the case where, when
using the futures and swaps, only a small fraction of
price impact cost is transferred from the counterparty
to the fund. Taking ν � 0 means that the manager
ignores the market friction costs and focuses solely on
minimizing the slippage. To simplify notations, in the
following we denote Λ � νΛ̃.

3. Theoretical Results
In this section, we solve the cost and deviation mini-
mization problem introduced in Section 2, in the case
without market frictions (Λ � 0) and with market fric-
tions (Λ > 0). In either case, we derive the explicit value
function whose coefficients are the unique solution to a

system of ordinary differential equations, and the
resulting explicit optimal rebalancing strategy.

3.1. The Case Without Market Frictions
Without market frictions, that is, Λ � 0, the total cost
(5) reduces to the aggregated daily slippage. At the
current time 0 ≤ t < t1, the cost minimization problem
becomes

V(t, s,x, s̄, x̄) � inf
θ
E
[
1
2
x̄2 β

St1
s̄
− 1

( )
− Xt1−

x̄
− 1

( )( )2
+∑∞

i�1
e−ρt2i

1
2
X2

t2i−1 β
St2i+1
St2i−1

− 1
( )

− Xt2i+1−
Xt2i−1

− 1
( )( )2]

,

(6)

where St � s and Xt � x, and recall that s̄ and x̄ are the
reference values of the underlying asset and NAV
observed at the last market closing before today,
respectively.11 The first and second terms inside the
expectation are the deviation on the first day and the
aggregated deviation from the second day, respec-
tively. Note that at t � 0, this minimizes the total cost
as defined in (5).

Besides keeping track of X and S at any time, we
also need to keep track of their reference values x̄ and
s̄, in order to calculate the daily return at today’s mar-
ket closing. On each day, the current value of S and X,
together with their reference values, provide an
expectation of the daily return and are hence impor-
tant in the rebalancing decision. Note that s̄ and x̄ are
not necessarily equal to the time-t underlying value s
and NAV x, respectively, even at t � 0 due to the over-
night jump.

Theorem 1 (Minimal Cost and Optimal Rebalancing
Strategy Without Market Frictions). The minimal cost (6)
is given as V(t, s,x, s̄, x̄) � x̄2V(t, ss̄ , xx̄ , 1, 1), where V(t, s,
x, 1, 1) � a(t)x2 + b(t)xs+ c(t)s2 + d(t)x+ e(t)s+ f (t), t ∈ [0, t1),
and the vector of coefficients (a,b, c,d, e, f ) is the unique sol-
ution to a system of periodic ODEs (F.3)–(F.8) with endog-
enous terminal conditions (F.10) (see online supplement).
Furthermore, the optimal position level is

θ
fl
t �

− 1
2σ2a(t) b(t)σ2 x̄

s̄
+ (μ− r) b(t) x̄

s̄
+ d(t) x̄

St
+ 2a(t)Xt

St

( )[ ]
t ∈ [0, t1)

− M
d(0)
2a(0) + erδT
( )

+ b(0)
2a(0) (1+ erδTM)

[ ]
Xt1

St1
t ∈ [t1, t2),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(7)

where M � eμnδT−erδT
(eμnδT−erδT)2+e2μnδT(eσ2nδT−1). In particular, if r � 0,

then

θ
fl
t � βx̄

s̄
, if t ∈ [0, t1) and βXt1

St1
if t ∈ [t1, t2): (8)

Theorem 1 shows that the minimum cost is a quad-
ratic function of the normalized stock price s=s̄ and
portfolio value x=x̄. The optimal position level is
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determined by the expression of θ fl, and (2)–(3) with
θ replaced by θ fl. During the daytime (i.e., t ∈ [0, t1)),
the current optimal position level θ

fl
t is continuous

with respect to t, depending on the coefficients of the
minimal cost function, the current underlying and
fund values St � s and Xt � x, as well as the reference
values s̄ and x̄ for [0, t1). Right at the market closing
time t1, it is optimal to perform a lump-sum trade so
as to adjust the position to θ

fl
t1 . The position is then

kept at this level during nighttime. At the next market
opening, the current time t reset to 0, and the trading
continues following (7), based on updated reference
values x̄ � Xt1 and s̄ � St1 .

The special case with r � 0 gives a much simpler solu-
tion, given by (8). That is, it is optimal to perform a one-
shot rebalancing at every market closing time based on
the underlying and fund value at market closing, and
then keep the position unchanged until the next market
closing, so on and so forth. If the interest rate is zero in
the market, then this one-shot strategy leads to zero slip-
page. Indeed, this agrees with the common practice by
fund managers to adjust the portfolio near market clos-
ing on each day to keep the target leverage ratio (cf.
Avellaneda and Dobi 2012, Wagalath 2014).

It is worth noting that even without market fric-
tions, when r > 0, ignoring the interest rate and stick-
ing to this one-shot rebalancing strategy (8) may lead
to a nonzero daily slippage Di � |1− β|(erT − 1).12
Indeed, the positive interest rate means that the fund
pays the funding cost for doing leverage and receives
interest for short-selling. Actually, this is the motiva-
tion for Tang and Xu (2013) and Henderson and Bue-
tow (2014) to explain slippage in terms of interest rate:
the fund ignores the interest cost when rebalancing,
and therefore the interest cost will affect the fund’s
return and result in the slippage. In contrast, Theorem 1
considers not just the interest rate but also the market
closure. Nevertheless, because the daily interest rate is
typically small, the amount of rebalancing required
before market closing is small without market frictions,
as will be illustrated numerically in Section 4.

3.2. The Case with Market Frictions
Now we study the optimal daily rebalancing strategy
that takes market frictions into account. For example,
with a quadratic trading cost, it is no longer feasible to
do lump-sum trading, because it incurs an infinite
cost. To incorporate market frictions, we impose a
mild technical requirement that θu is absolutely con-
tinuous with trading speed φu, that is,

dθu � φudu, θt � z: (9)

Here, the adapted admissible control variable φ ∈A,
where the set of admissible strategies A consists of
control variable φ that results in a finite expected mar-
ket frictions cost and equals 0 during nighttime.13

For 0 ≤ t < t1, s̄, s ∈ R
+, x̄,x,z ∈ R, Λ > 0, the value

function is defined in a similar way as (6):

V(t, s,x,z, s̄, x̄)
� inf

φ∈A
E

[
1
2
x̄2 β · St1

s̄
− 1

( )
− Xt1−

x̄
− 1

( )( )2
+
∫ t1

t

1
2
ΛS2uφ

2
udu

+∑∞
i�1

e−ρt2i
1
2
X2

t2i−1 β · St2i+1
St2i−1

− 1
( )

− Xt2i+1−
Xt2i−1

− 1
( )( )2(

+
∫ t2i+1

t2i

1
2
ΛS2uφ

2
udu

)]
, (10)

where the expectation is computed under the initial
value St � s, Xt � x, and θt � z.

Compared with (6), the value function (10) has the addi-
tional terms for the market friction costs. Because it is now
only feasible to adjust the position θ at a finite speed φ,
the initial position z becomes relevant for the calculation of
the market friction costs and is hence required as a state
variable. To see why the initial position matters, starting
from a position that is farther away from the optimal posi-
tion, the manager needs to perform a larger rebalancing to
push the position toward the optimal one, which in turn
triggers a higher cost from themarket frictions.

The following theorem gives an explicit form of the
value function V(t, s,x,z, s̄, x̄) in the case with market
friction, as well as the optimal rebalancing strategy.

Theorem 2 (Optimal Value Function and the Optimal
Rebalancing Strategy with Market Frictions). The value
function is given as V(t, s,x, z, s̄, x̄) � x̄2V(t, ss̄ , xx̄ , s̄x̄ z, 1, 1),
where

V(t, s,x,z, 1, 1) � a(t)x2 + (b0(t) + b1(t)z)xs+ (c0(t)
+ c1(t)z+ c2(t)z2)s2 + d(t)x
+(e0(t) + e1(t)z)s+ f (t), (11)

where the coefficients are determined as the unique solution
to a system of periodic ODEs (A.9)–(A.18) subject to
endogenous terminal condition (D.1) (see online supple-
ment). Furthermore, the optimal rebalancing strategy φ∗
equals

φ∗
t � − 1

Λ
b1(t)Xt

St
+ c1(t) x̄s̄ + 2c2(t)θ∗

t + e1(t) x̄St
( )

, t ∈ [0, t1),
(12)

where the optimal position θ∗ satisfies dθ∗
t � φ∗

tdt:

The normalized value function (11) for s̄ � x̄ � 1 is a
polynomial of degree 4 with respect to (s, x, z), which
is different from the quadratic value function derived
in Gârleanu and Pedersen (2013). Specifically, the
underlying value s appears in (11), and z appears as a
multiplicative factor in front of terms involving s (i.e.,
s2, s, xs) with the highest order matching the order of
s. In contrast, z also does not appear in the value
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function in Gârleanu and Pedersen (2013) because it
does not involve the underlying value s.

The optimal rebalancing strategy φ∗ depends on the
current underlying and fund values St � s and Xt � x as
well as the reference values s̄ and x̄. In addition, φ∗
depends on the current position level, so that the optimal
position and optimal trading speed form a feedback sys-
tem. During nighttime, φ∗ � 0 because no trading is
allowed, and at the next market opening, the reference
values are updated to s̄ � St1 and x̄ � Xt1 by definition,
t reset to 0, and the optimal trading speed is again deter-
mined by (12). Because one only needs to solve the ODE
system once to determine the coefficients, this optimal
strategy can be implemented very efficiently.

From a technical point of view, the ODE system
(A.9)–(A.18) for the coefficients of (11) (and also the
system (F.3)–(F.8) for the frictionless case; see online
supplement) are nonlinear and have a periodic termi-
nal condition. Even in the one-period subproblem, the
global existence of a solution is not guaranteed by the
classic theory, because it may blow up in finite time.
In Lemma 1 of the online supplement, we verify care-
fully that the solution indeed exists in one period,
given a suitable terminal value. Also, because the peri-
odic ODEs are solved in iteration, one needs to show
that this iteration indeed has a unique fixed point to
guarantee convergence. Proposition 3 in the online sup-
plement shows that, as long as the discount rate is posi-
tive, we indeed have a fixed point. Finally, the unique-
ness of the solution is guaranteed by the verification
theorem, Proposition 4, in the online supplement. In the
remaining of the paper, we shall discuss the financial
implications of our rebalancing strategy mainly via
numerical illustration.

4. Optimal Daily Position
This section shows the position under the optimal
rebalancing strategy, where the rebalancing starts
every day before market closing and finishes after the
next day’s market opening.

Definition 2 (Strategies for Comparison).We define the
following three rebalancing strategies, all of which are
given via (12) but with different coefficients b1, c1, c2,
and e1:

Periodic-DN: The periodic day-and-night strategy is
the optimal strategy that considers an infinite horizon
and market closure, given as (12) whose coefficients are
calculated under δ � 17:5=6:5 (noting the total trading
hours is 6.5) and ρ � 0:6.

One-day: The one-day strategy is themyopic subopti-
mal strategy that only aims at minimizing today’s cost
and ignores the presence of market closure, given as
(12) whose coefficients are calculated under ρ � +∞.

Periodic-D: The periodic day-only strategy is the sub-
optimal strategy that considers an infinite horizon but

ignores market closure, given as (12) whose coefficients
are calculated under δ � 0 and ρ � 0:6.14

In the following, we use Monte Carlo simulation to
estimate the average slippage. For this purpose, we
simulate the underlying asset price S via (1) during
daytime and its jumps overnight, using the default
parameter values to be specified. Along the simulated
path of S, one can calculate the net asset value X of the
LETF for each day via (2), (3), (9), and (12), and then
calculate the daily slippage using (4). Note that the
reference values Xt2i−1 and St2i−1 in (12) are given as
model input on day i � 0 (i.e., t ∈ [0, t1)).

Because the daytime volatility σd is k times the
nighttime volatility σn, we have σd � kσ ·

��������
T+δT
k2T+δT

√
and

σn � σ ·
��������
T+δT
k2T+δT

√
, where σ is the average volatility. Here

we choose k � 3 and σ � 0:2. On the other hand, we
use the same expected return for daytime and night-
time as suggested by empirical studies such as Stoll
and Whaley (1990) and Lockwood and Linn (1990)
and take μd � μn � 0:1. The default values for other
parameters are15 δ � 17:5=6:5, ν � 1, β � 2, ρ � 0:6, and
r � γ � 0:01. All these parameter values are annual-
ized.16 Furthermore, we take Λ � νΛ̃ � 10−6 to match
the level of magnitude of price impact documented in
Robert et al. (2012).17 Finally, we consider s � x � s̄ �
x̄ � 1,z � 2 (so the position is optimal at t0, and no
overnight jump occurs before t0).

We first look at the position level under the optimal
strategy, which directly determines the performance. To
this end, we simulate a sample path of the underlying
asset value over a five-day period using the default
parameter values. Due to the overnight jumps, the
underlying value at the market closing time is not neces-
sarily equal to the value at the next market opening.
Then, via (9) and (12), we calculate the optimal position
θPDN based on the periodic-DN strategy, θO based on
the one-day strategy, and θPD based on the periodic-D
strategy, as shown in Figure 1. We also plot the friction-
less target θ fl, that is, the optimal position without mar-
ket frictions as given by (7) in Theorem 1. Finally, we
overlay the five-day trajectory of the underlying asset as
the dotted line corresponding to the right-hand side axis.

Figure 1 shows that, for all three strategies, the fund
needs to increase (respectively decrease) the position
θ by market closing if the underlying asset return is
positive (respectively negative) during that day. The
magnitude of such an increase or decrease in θ is also
proportional to the magnitude of daily asset price
return. This is consistent with the changes in the fric-
tionless target. To understand this, when the interest
rate is low and there is no friction, the fund would
ideally hold θ

fl
t2i+1 share of the risky asset at market

closing t2i+1, which provides a leverage ratio of β
approximately. If the underlying asset has a positive
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(respectively negative) daily return, the magnitude
of return of the fund value X is greater than that of
the underlying asset. If θ remains unchanged, the
fund would be under-leveraged (respectively over-
leveraged) at market closing. Thus, to keep the lever-
age ratio close to β at market closing, the fund has to
increase (respectively decrease) θ.

Figure 1 shows two advantages of the periodic-DN
strategy. First, it results in a smaller overall distance
of the position level to the frictionless target. Indeed,
for the periodic-DN and periodic-D strategies, during
daytime, the position first moves toward and then
stays close to the target after the market opening.
Then, right before market closing, it moves away from
today’s target and tries to shoot for the predicted tar-
get for the next day. Due to the presence of market
frictions, the position level does not hit tomorrow’s
target. As a result, further rebalancing is required after
the next day’s market opening. In contrast, the posi-
tion level of the one-day strategy does not change sig-
nificantly in the late trading hours and has a much
larger distance from tomorrow’s target before the
market closing time and during nighttime. As a result
of this myopic strategy, the position is significantly off
the target level right after tomorrow’s market open-
ing, and one requires a greater effort to finish the reba-
lancing in the next day.

Second, by comparing the position levels of the
periodic-DN and periodic-D strategies in Figure 1, we
can observe that accounting for overnight risk leads to
a better end-of-day position. Indeed, by accounting
for the overnight risk, the fund adjusts its position
at a faster pace late in daytime, so that the fund has
a better position at the market closing and during

nighttime. Consequently, the fund is exposed to a
smaller overnight jump risk, and a smaller rebalanc-
ing is required for the position to reach the target after
tomorrow’s market opening. The discussion in Section
6.1 confirms that this indeed leads to a smaller slip-
page as compared with the periodic-D strategy that
ignores the overnight jump risk.

Figure 1 also illustrates that the frictionless target
position remains largely constant over daytime and
jumps to the target level for the next day at the market
closing. Therefore, although continuous rebalancing is
optimal during daytime for r > 0 as suggested by
Theorem 1, the amount of rebalancing is negligible if
there is no friction.

5. Aiming in Front of Target
What is the underlying reason for the difference in the
position levels as depicted in Figure 1, especially
before the market closing time? To answer this ques-
tion, we show in this section that the optimal strategy
follows the principle of aiming in front of target and
moving gradually toward aim. To this end, we rewrite
the optimal rebalancing strategy (12) as

dθ∗
t � κ∗

t(θ̄∗
t − θ∗

t)dt, (13)

for t ∈ [0, t1), where

θ̄
∗
t � − b1(t)

2c2(t)
Xt

St
− c1(t)
2c2(t)

x̄
s̄
− e1(t)
2c2(t)

x̄
St
, κ∗

t �
2c2(t)
Λ

: (14)

Equation (13) shows that the optimal position exhibits
a mean-reverting pattern, with speed 0 ≤ κ∗ <∞, and
aim θ̄

∗
. The finite speed κ∗ is consistent with the prin-

ciple of moving gradually toward aim studied in
Gârleanu and Pedersen (2013), due to the existence of

Figure 1. (Color online) Comparison of Intraday Positions from Three Strategies
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market friction. The speed is lower for larger friction;
if there is no friction (Λ � 0), the speed κ∗ is infinite,
meaning that the position follows the aim exactly. The
distance between the current position level and the
aim θ̄

∗
, together with κ∗, decides the optimal trading

speed.
Also, from the analytic form (11) of V, the aim can

be represented as

θ̄
∗
t � arg min

z
V(t, St,Xt, z, s̄, x̄):

Thus, the aim is the position that minimizes the
expected optimal total future costs given the current
information. This interpretation is consistent with
Gârleanu and Pedersen (2016). More precisely, the
aim portfolio (given by equation (11) in Gârleanu and
Pedersen 2016) is exactly the minimizer of the value
function (given by equation (6) in their paper). Their
aim can be represented as a weighted average of the
future expected frictionless targets. However, a simi-
lar representation for θ̄

∗
t here is difficult because our

frictionless target depends on the past strategy via the
current fund value, creating a feedback loop because
the position tries to follow an aim that is itself affected
by the position. This is in stark contrast to their model,
where the frictionless Markowitz target does not
depend on the past strategy. The coefficients b1, c1, c2,
and e1 appearing in θ̄

∗
t are determined by the system

of Riccati ODEs (A.9)–(A.18) in the online supplement,
which is in general difficult to solve explicitly,
although numerical solutions are readily available.
Also, for Λ ∈ (0,∞), b1, c1, c2, and e1 can be decoupled
from other coefficients only in the special case
μ− r � σ � 0; however, this special case provides little
extra economic insight as both S and X will have a
deterministic growth at the risk-free rate.

Next, we illustrate the relationship between the aim
θ̄
∗
t for the periodic-DN strategy with the frictionless tar-

get via a special example withoutmarket closure (that is,

δ � 0). From the terminal condition (A.19) of the ODE
system in online Supplement A.2, we know that

b1(t1−) � e−ρt1(1− γ)(b1(0) + c1(0) + e1(0)),
c1(t1−) � e1(t1−) � 0, and c2(t1−) � eρt1c2(0):

As a result,

θ̄
∗
0 � π

βx̄
s̄

and θ̄
∗
t1− � π

βXt1

St1
,

where π � − b1(0) + c1(0) + e1(0)
2βc2(0) :

Numerically, we find that π is close to 1. This means
that, for each day, the aim θ̄

∗
t is near the current day’s

frictionless target at market opening, and near the next
day’s frictionless target βXt1=St1 at market closing. Fur-
thermore, the transition of aim through daytime is
continuous thanks to the continuity of the coefficients
in (14). In the following, we show via numerical illus-
trations that the previous observation also holds in the
general case with market closure.

To illustrate how the position level moves toward
the aim, Figure 2 plots the aim for the periodic-DN
strategy over the position and stock price trajectory in
Figure 1. Figure 2 shows that, consistent with (13), the

position θPDN is guided by the moving aim θ̄
PDN

and
moves toward the aim. However, due to the market
frictions, the position can only do so with a finite
speed. As a result, it does not reach the aim at market
closing (e.g., at t5), but only reaches it halfway on the
next day (between t6 and t7).

Because the position level is guided by the aim due
to (13) and illustrated in Figure 2, to explain the differ-
ences of the position levels in Figure 1 from the three
strategies, it is worth comparing their respective aims.
Again, we calculate the coefficients b1, c1, c2, and e1
based on the periodic-DN, periodic-D, and one-day
strategies. For illustration, we use the five-day stock

Figure 2. (Color online) Position and Aim
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price sample path S̃ as shown in Figure 1 (right-hand
side axis), and calculate the path of X̃ under the
periodic-DN strategy using θPDN and (2)–(3). We then
calculate the path for the aims θ̄

PDN
, θ̄

O
, and θ̄

PD
via

(14), using the coefficients from the corresponding
strategy, X̃ and S̃, as shown in Figure 3.18 We also
include the frictionless target for comparison.

We now look at θ̄
O
for the one-day strategy. Figure 3

shows its one key characteristic: it stays on the friction-
less target θfl, which is the optimal position level with-
out market frictions, every day before market closing.
As a result, θ̄

O
is updated discontinuously at the transi-

tion between today at t2i−1 and tomorrow t2i, when the
target position changes. Such behavior of the aim is
because the one-day strategy only focuses on today and
does not prepare for tomorrow. Were there no market
frictions, such a myopic aim would not be a problem,
because the position could always catch up with the
aim even if the aim jumps (by rebalancing at an infinite
speed). However, due to the presence of market frictions,
the actual position level has to move toward this aim
gradually after the market opening to catch up with the
aim, as demonstrated in Figure 1. In other words, the
myopic position level of the one-day strategy illustrated
in Figure 1 is rooted in its myopic aim. This results in a
large slippage, as we will see in Section 6.

Next, we look at the aim θ̄
PDN

for the periodic-DN
strategy. In the early trading hours of each day, it
overlaps with the frictionless target, similar to that of
the one-day strategy. This suggests that, in the early
hours, the periodic-DN strategy mainly focuses on
reaching the optimal position that minimizes today’s
slippage. However, θ̄

PDN
behaves dramatically differ-

ently from θ̄
O
in the late hours, when θ̄

PDN
moves away

from today’s frictionless target and toward tomorrow’s
target; in other words, the aim θ̄

PDN
is in front of the

today’s frictionless target. Furthermore, in stark contrast
to the one-day strategy whose aim is updated discontin-
uously, θ̄

PDN
is updated continuously and hits tomor-

row’s target exactly at market closing time. Therefore, as
the market closing draws near, the periodic-DN strategy
starts to prepare for tomorrow by looking forward into
the future and moving its aim continuously toward the
position level that optimizes tomorrow’s performance. It
should be noted, however, that although the aim θ̄

PDN

hits tomorrow’s target, the position level θPDN does not,
as illustrated in Figure 1, because the position can only
move at a finite speed due to the presence of market fric-
tions. Nevertheless, θPDN is much closer to tomorrow’s
target than θO.

Finally, the target for the periodic-D strategy θ̄
PD

behaves similarly to θ̄
PDN

: it also starts the continuous
update in the late hours and hits tomorrow’s target
exactly at market closing time. However, ignoring the
overnight jump risk, θ̄

PD
moves toward tomorrow’s

target at a slower pace as compared with θ̄
PDN

, which
is shown as the difference between the blue and yel-
low curves in the second half of daytime of each day.
Although the difference between θ̄

PD
and θ̄

PDN
does

not appear to be large and eventually vanishes at mar-
ket closing, it still results in a less optimal position at
market closing and a larger exposure of the fund to
the overnight jump risk as shown in Section 4, and a
larger slippage (see Section 6.1).

The intraday transition of aim not only holds during
the five-day sample path in Figure 3, but also in gen-
eral. To see this, we calculate ωt such that θ̄

PDN
t � (1−

ωt)θ̄O
t2i−1 +ωtθ̄

O
t2i+1 , for any t ∈ [t2i, t2i+1), i ≥ 0: In other

Figure 3. (Color online) Comparison of Aim θ̄
∗

t
0

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

Time

1.96

1.98

2

2.02

2.04

2.06

2.08

2.1

2.12

2.14
Frictionless target
One-day
Periodic-DN
Periodic-D

Note. Note that the aims are only defined for the daytime.

Dai et al.: Leveraged ETFs with Market Closure and Frictions
2526 Management Science, 2023, vol. 69, no. 4, pp. 2517–2535, © 2022 INFORMS



words, ω is the weight of the aim between the current
target and the future target; a value of ω close to 0
(respectively 1) means the aim is close to the current
(respectively future) target. Figure 4 shows that the
weight ω for both the periodic-DN and periodic-D
strategies transits from 0 to 1 continuously during day-
time, consistent with the observation in Figure 3. In
particular, the aim stays essentially on the current tar-
get during the first half of daytime, and moves toward
the future target in the second half. This is a result of
the trade-off between the performance today and in
the future. Indeed, because the current day’s perform-
ance is only measured at market closing, moving the
aim away from the current target too early would be det-
rimental to the performance, whereas moving too late
would potentially cause a large deviation from tomor-
row’s target position and trigger a high friction cost. As a
result, the transition in aim of the periodic-DN strategy
starts earlier than that of the periodic-D strategy, by con-
sidering the overnight jump risk.

The intraday variation of weight ω is a distinct
feature of our framework that was not observed in
Gârleanu and Pedersen (2013, 2016), in which the
weight of the aim remains constant. The fundamental
reason is that in the Markowitz-type problem they con-
sidered, the performance monitoring and rebalancing
occur at the same frequency: both are either at discrete

time points or at any instant in the continuous-time ver-
sion. Therefore, the current target in their model is also
continuously updated, resulting in the constant relative
importance of the current target and future target, and
hence, a constant weight. In contrast, our framework fea-
tures discrete monitoring at daily market closing with a
continuous-time rebalancing. As a result, the current tar-
get jumps at each market closing, a set of periodic and
discrete time points. This results in the time-varying rela-
tive importance of current and future targets, and subse-
quently, a time-varying weight.

6. Statistics of Daily Slippage
In this section, we first extend the empirical findings
on daily slippage in Tang and Xu (2013) by using the
updated data till 2020. Then we show the overall slip-
page of different trading strategies and discuss the
impact of market closure on slippage.

6.1. Daily Slippage
Due to the existence of market frictions, it is costly for
LETFs to achieve the target leverage ratio exactly.
Therefore, one can expect nonnegligible slippage. To
check this, we calculate the empirical statistics of slip-
page (defined as in (4)) for the same set of 12 LETFs as
in Tang and Xu (2013),19 and update the time range to
2006–2020. For comparison, we also included 2011–2020,

Figure 4. (Color online) Weight Between the Current Target and Future Target, ω, During Daytime
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Notes. We simulate 20,000 sample paths based on the default parameters, each containing a 10-year period (2,520 days including daytime and
nighttime). On each sample path, the average ω at each time point during daytime is then calculated as the 1% trimmed mean over the 10-year
period.
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which is entirely uncovered in Tang and Xu (2013).
Launched in 2006, these 12 LETFs were among the
first-ever batch of LETFs introduced to the market.
They have four underlying indices, S&P 500 (SPX),
Dow Jones Industrial Average (INDU), NASDAQ 100
(NDX), and S&P MidCap 400 (MID), and for each
index, there is one bull LETF with multiple β � +2 and
two bear LETFs with multiples β � −1, − 2. The results
are reported in panel A of Table 1, which confirms
that the slippage is significant. For instance, during
2006–2020, the (−1x) fund on SPX has a mean slippage
of 1.6917 bps (basis points). In comparison, the abso-
lute values of daily target return (i.e., two times daily
S&P 500) have an average of 69.72 bps. This suggests
that the slippage accounts for 1.94% of the daily target
return, which cannot be ignored.

To quantify the slippage under the periodic-DN,
periodic-D, and one-day strategies, we estimate the
average daily slippage Di via simulation. Consistent
with panel A, the (−2x) funds tend to have a much
higher simulated slippage than the (2x) and (−1x)
funds. Furthermore, the magnitude of slippage gener-
ated from the simulation result is in a similar range as
that from historical data.

The periodic-DN strategy results in the lowest
slippage among three models for all four values of Λ
and β, followed by the periodic-D strategy, and the

one-day strategy has the highest slippage. For
instance, for Λ � 10−6 and (−2x) fund, the periodic-
DN strategy has an average slippage about 24%
smaller than that of the periodic-D strategy, and less
than half of that of the one-day strategy. This indicates
that aiming in front of target and accounting for the
overnight risk indeed leads to a smaller slippage. In
particular, the one-day strategy’s slippage is even
higher compared with the periodic-DN and periodic-
D strategy when Λ is larger. As discussed in Section 5,
this can be attributed to the fact that the one-day strat-
egy has a myopic aim, so that it does not perform
rebalancing in the latter half of daytime and leads to
an inferior position at the next market opening. How-
ever, the amount of rebalancing after the next market
opening is restricted by the presence of market fric-
tions, especially for large Λ, causing a large slippage.
Note that the difference between the slippage of the
periodic-D and periodic-DN strategy diminishes as Λ
becomes larger. Indeed, as will be shown in Section
7.2, when Λ is large (e.g., Λ � 10−3), the U-shape for
the intraday trading volume of periodic-DN strategy
becomes flatter and less asymmetric as observed in
Table 5. As a result, the fund puts less emphasis on
the preparation for the overnight risk, and therefore
the periodic-DN and periodic-D strategy have more
similar rebalancing and slippage.

Table 1. Statistics for Slippage

Panel A: Historical data

2006–2020 2011–2020

Index Statistics (2x) (−1x) (−2x) (2x) (−1x) (−2x)
SPX Mean 1.5624 1.6917 2.6820 1.4414 1.3503 2.3599

Standard deviation 1.6581 1.6953 2.9280 1.6073 1.1008 2.5737
INDU Mean 1.6429 1.7418 2.8077 1.5141 1.4084 2.4833

Standard deviation 1.9110 1.8095 3.0932 1.7301 1.1693 2.4129
NDX Mean 1.5846 1.7046 2.6196 1.4336 1.3381 2.1260

Standard deviation 1.8105 1.6862 2.8148 1.7238 1.1794 2.3432
MID Mean 1.7790 2.0298 2.7072 1.6594 1.8346 2.3208

Standard deviation 2.3143 1.8698 3.3925 2.3639 1.5600 3.2562

Panel B: Simulation results

Periodic-DN Periodic-D One-day

Λ Statistics (2x) (−1x) (−2x) (2x) (−1x) (−2x) (2x) (−1x) (−2x)
10−6 Mean 0.5590 0.8332 1.5702 0.6943 0.9512 2.0698 1.1037 1.3094 3.3194

Standard deviation 0.2505 0.5818 1.6114 0.4634 0.6524 2.2348 0.9917 1.0394 3.1840
10−5 Mean 0.7628 0.9568 2.1332 0.8194 1.0321 2.3934 1.2960 1.4195 3.7130

Standard deviation 0.7171 0.6776 1.6809 0.9415 1.1309 2.4016 1.2503 1.7798 5.9288
10−4 Mean 1.1308 1.2068 3.0859 1.1541 1.2460 3.2017 4.4654 2.1652 6.1326

Standard deviation 1.1404 1.3398 3.7767 1.3626 1.3839 5.1612 2.8479 2.7922 7.2067
10−3 Mean 1.9925 2.0507 5.8098 2.0027 2.0655 5.8542 5.6674 6.0283 18.8835

Standard deviation 3.5890 3.6416 11.4236 1.7818 2.5431 8.7676 31.5373 28.1014 62.4603

Notes. Historical LETF NAV returns are adjusted for dividends and the daily management fees. The statistics for simulation results are
calculated over the daily slippage for 2,520 × 20,000 day (20,000 sample paths, 2,520 days per sample path), and the estimator is constructed as
the 1% trimmedmean of the daily slippages.
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Table 1 demonstrates the advantage of the periodic-
DN strategy over the periodic-D and one-day strategies
using simulated underlying sample paths generated
from the geometric Brownian motion model (1). How-
ever, does this advantage still exist in a real-world test?
To this end, we repeat the slippage test in panel B of
Table 1 on the real intraday values of the four indices
SPX, INDU, NDX, and MID. Specifically, for each
index, we obtain the minutely values from September
17, 2020, to March 30, 2021. As a result, there are 132
trading days (excluding two days on which the market
closed earlier than usual), and 391 data points per day.
On every trading day, we apply the three strategies on
the intraday data and rebalance on a minutely basis.
Note that because the closing index value on one day
can differ from the opening value on the next day, the

overnight price jump still exists, therefore we still
expect that the periodic-DN strategy outperforms the
periodic-D strategy. As shown in Table 2, the testing
results show that the pattern in panel B of Table 1 still
holds. That is, for all four indices, the periodic-DN strat-
egy generally leads to the lowest slippage, whereas the
one-day strategy leads to the highest slippage. This sug-
gests that the benefit of aiming in front of target is still
relevant in a real-world setting.20

6.2. Impact of Market Closure
Although the periodic-DN strategy provides the
optimal rebalancing strategy to better prepare for the
market closure and overnight jump risk, the market
closure can still be a contributing factor to the slippage
under this strategy. To find out such cost, we compare

Table 2. Statistics for Slippage: Real Index Data

Periodic-DN Periodic-D One-Day

Λ Statistics (2x) (−1x) (−2x) (2x) (−1x) (−2x) (2x) (−1x) (−2x)
SPX

10−6 Mean 0.3654 0.4124 1.0875 0.5034 0.5651 1.5506 0.9019 0.9580 2.7706
Standard deviation 0.5260 0.4937 1.5211 0.6947 0.6629 2.0798 1.3043 1.3097 4.0467

10−5 Mean 0.5498 0.5877 1.6329 0.6170 0.6745 1.8680 1.0383 1.0890 3.1715
Standard deviation 0.8124 0.7868 2.4232 0.9078 0.8809 2.7414 1.5392 1.5601 4.7982

10−4 Mean 0.8123 0.8322 2.3872 0.8432 0.8676 2.4920 1.4321 1.5058 4.4594
Standard deviation 1.1891 1.1958 3.6399 1.2260 1.2344 3.7661 2.1041 2.1318 6.5470

10−3 Mean 1.3015 1.3226 3.8783 1.3113 1.3334 3.9100 3.0570 3.5243 11.0877
Standard deviation 1.7822 1.8208 5.5189 1.7982 1.8375 5.5707 2.8732 3.3166 10.4958

INDU

10−6 Mean 0.3687 0.4180 1.0888 0.5078 0.5387 1.4881 0.8972 0.9294 2.7095
Standard deviation 0.6739 0.6247 1.9273 0.7097 0.6674 2.0845 1.2380 1.2169 3.7311

10−5 Mean 0.5309 0.5673 1.5764 0.6091 0.6526 1.8419 0.9932 1.0533 3.0659
Standard deviation 0.9372 0.8832 2.7302 0.9479 0.8970 2.7841 1.4831 1.4535 4.4740

10−4 Mean 0.7494 0.7683 2.2060 0.7859 0.8084 2.3211 1.4303 1.4995 4.4730
Standard deviation 1.2143 1.1889 3.6508 1.2367 1.2133 3.7345 2.2295 2.2588 6.9943

10−3 Mean 1.2636 1.2642 3.7371 1.2744 1.2789 3.7804 3.1115 3.5568 11.1608
Standard deviation 1.9035 1.9468 5.9640 1.9249 1.9669 6.0256 3.2244 3.4703 10.8910

NDX

10−6 Mean 0.6222 0.6833 1.9211 1.0449 1.0982 3.1821 1.9342 1.9776 5.8650
Standard deviation 0.7968 0.8129 2.4495 1.5753 1.5951 4.8827 3.1340 3.1926 9.7768

10−5 Mean 1.0538 1.0808 3.1362 1.2625 1.3023 3.7948 2.1339 2.1646 6.4374
Standard deviation 1.4725 1.4858 4.4605 1.8680 1.8768 5.6847 3.3612 3.4246 10.4463

10−4 Mean 1.5887 1.5865 4.6747 1.6471 1.6537 4.8735 2.7380 2.7687 8.2967
Standard deviation 2.3181 2.3420 7.0119 2.4270 2.4506 7.3597 3.9347 3.9343 11.9107

10−3 Mean 2.4024 2.3680 7.0371 2.4223 2.3927 7.1111 5.8675 6.5957 20.8493
Standard deviation 3.5684 3.5462 10.5408 3.5969 3.5706 10.6150 7.4308 7.3282 22.7155

MID

10−6 Mean 0.4520 0.5105 1.4177 0.7708 0.7996 2.3238 1.5054 1.5233 4.5534
Standard deviation 0.5555 0.5517 1.6456 0.8161 0.8064 2.4738 1.6891 1.6791 5.1004

10−5 Mean 0.7412 0.7819 2.2658 0.9174 0.9464 2.7838 1.6482 1.6942 5.0633
Standard deviation 0.9359 0.9290 2.8262 1.0295 1.0322 3.1520 1.8669 1.8723 5.7261

10−4 Mean 1.2253 1.2223 3.6347 1.2965 1.2970 3.8609 2.5156 2.6480 8.0552
Standard deviation 1.3860 1.4192 4.2927 1.4119 1.4448 4.3810 2.6038 2.7070 8.3896

10−3 Mean 2.2765 2.2557 6.7799 2.2934 2.2761 6.8430 7.1193 9.6291 33.0852
Standard deviation 2.4441 2.4877 7.5572 2.4615 2.5059 7.6145 5.9431 8.2481 28.6164

Notes. The mean and standard deviation are calculated from the 132 daily values from September 17, 2020, to March 30, 2021. The three
strategies are applied on the minutely data of the underlying index over these 132 days.
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the slippage presented in panel B of Table 1 with a 17.5
hours market closure by following the periodic-DN
strategy, against the slippage in an otherwise identical
market that opens for 24 hours a day (with the volatility
σ � 0:2) by following the periodic-D strategy (which is
the same as the optimal periodic-DN strategy in this
market as there is no market closure).

The result of this comparison is shown in Table 3.
As expected, without market closure, the average slip-
page becomes lower across all Λ and β, suggesting
that the presence of market closure is indeed costly to
the fund and increases the slippage. Such reduction is
most significant when Λ is small. For instance, with
Λ � 10−6, for the (2x) fund, the mean slippage reduces
by 22% from 0.5590 bps to 0.4361 bps. However, for

larger Λ, the reduction becomes less significant. This is
because the larger frictions limit the fund’s ability to reba-
lance during daytime, which makes the inability to reba-
lance during nighttime less constraining in comparison.

7. Empirical Findings and Implications
In this section, we discuss empirical findings and
implications using our rebalancing model, including
the weekend effect, intraday trading volume pattern,
and compounding effect.

7.1. Weekend Effect
The long market closure before Monday, as it includes
the weekend, can have a particular impact on the

Table 3. Cost of Market Closure

Long market closure Normal market closure No market closure

Λ Statistics (2x) (−1x) (−2x) (2x) (−1x) (−2x) (2x) (−1x) (−2x)
10−6 Mean 0.6178 0.8623 1.7074 0.5590 0.8332 1.5702 0.4361 0.7963 1.2853

Standard deviation 0.5414 0.6648 1.7117 0.2505 0.5818 1.6114 0.1929 0.3271 0.4671
10−5 Mean 0.8863 1.0366 2.4351 0.7628 0.9568 2.1332 0.5492 0.8352 1.5714

Standard deviation 1.0452 1.0209 2.6054 0.7171 0.6776 1.6809 0.4302 0.4636 1.4761
10−4 Mean 1.4290 1.5069 4.0712 1.1308 1.2068 3.0859 0.7972 0.9674 2.1760

Standard deviation 1.6663 1.9474 4.5514 1.1404 1.3398 3.7767 0.5489 0.8965 2.9398
10−3 Mean 2.6988 2.7629 8.0162 1.9925 2.0507 5.8098 1.3686 1.4333 3.8467

Standard deviation 2.5767 4.0329 28.8919 3.5890 3.6416 11.4236 1.9423 1.6857 4.0751

Notes. The statistics for simulation results are calculated over the daily slippage for 2,520 × 20,000 day (20,000 sample paths, 2,520 days per
sample path), and the estimator is constructed as the 1% trimmedmean of the daily slippages. Nomarket closuremeans 24-hour trading, normal
market closure means 6.5-hour trading, and 17.5-hour market closure, and long market closure means 2.17-hour trading and 21.83-hour market
closure. The daily average σ � 0:2 in all three cases.

Table 4. Statistics for Historical Slippage Grouped by the Days of the Week

Index Multiple Statistics Monday Tuesday Wednesday Thursday Friday

SPX (2x) Mean 1.8883 1.4806 1.3794 1.5509 1.5385
Standard deviation 2.0741 1.6002 1.2943 1.5441 1.6803

(−1x) Mean 2.0368 1.5724 1.6107 1.6464 1.6175
Standard deviation 2.3450 1.8130 1.4712 1.3370 1.2954

(−2x) Mean 3.2053 2.4861 2.5589 2.5508 2.6483
Standard deviation 4.0658 2.9198 2.3393 2.2615 2.7407

INDU (2x) Mean 2.0597 1.5171 1.5227 1.6463 1.4989
Standard deviation 2.2424 2.0524 1.6306 1.8397 1.6954

(−1x) Mean 2.1050 1.6379 1.6238 1.7639 1.6051
Standard deviation 2.5846 1.7282 1.5834 1.6663 1.2247

(−2x) Mean 3.3248 2.6025 2.6729 2.8084 2.6684
Standard deviation 4.0078 3.3140 2.5565 2.8942 2.4565

NDX (2x) Mean 1.8772 1.4737 1.4868 1.5926 1.5151
Standard deviation 1.9163 1.9057 1.6145 1.7266 1.8549

(−1x) Mean 2.0534 1.5774 1.5997 1.6557 1.6631
Standard deviation 2.3910 1.6385 1.4576 1.4291 1.3093

(−2x) Mean 3.2119 2.4287 2.4812 2.6331 2.3857
Standard deviation 3.8823 2.7625 2.4076 2.4484 2.2843

MID (2x) Mean 2.1454 1.6006 1.7329 1.6869 1.7567
Standard deviation 2.5895 1.7788 2.6767 2.0334 2.3592

(−1x) Mean 2.4490 1.9455 1.9124 1.9372 1.9351
Standard deviation 2.4577 1.8259 1.6758 1.5145 1.7314

(−2x) Mean 3.3692 2.5688 2.3804 2.6562 2.6123
Standard deviation 4.3976 3.4666 2.7779 2.6760 3.3758
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rebalancing.21 Intuitively, our model suggests that the
slippage will be largest on Monday, as the long mar-
ket closure during the weekend increases the over-
night jump risk. We call this the weekend effect.

We first perform a simulation test to estimate the
model slippage with a long market closure, for which
we assume that a daily trading hour of 2.17 hours and
market closure hours of 21.83 hours. This ratio
matches the scenario from Friday market opening to
Monday market opening, where there is a 6.5-hour
trading period followed by a (17.5 + 48)-hour mar-
ket closure.22 By comparing the slippages in the
long market closure columns and the normal market
closure columns in Table 3, our model predicts that
the slippage should also be more prominent on
Monday, as the fund will not be able to rebalance
during the large proportion of market closure.

Next, we test the weekend effect empirically. To
this end, we redo the slippage calculation in panel A
of Table 1 for 2006–2020 by grouping them on the day
of the week. The results are shown in Table 4. For all
12 LETFs, the mean slippage on Monday is always the
highest among all days of the week. Furthermore, the
slippage on Monday is 23%–33% higher than the aver-
age of remaining days for all LETFs. Therefore, the
empirical results support the implication of the week-
end effect from our model.

7.2. Intraday Trading Volume
To investigate the intraday trading pattern, we com-
pare strategies with three overnight risk profiles: high
overnight risk (the benchmark case with δ � 17:5=6:5,
k � 3), low overnight risk (with δ � 17:5=6:5,k � 5) and
no overnight risk (δ � 0). By taking a larger value of k,
the underlying nighttime volatility is smaller com-
pared with daytime, which leads to smaller overnight
jumps on average.

Figure 5 shows under all three profiles, the intraday
absolute trading speed exhibits the well-known
U-shaped curve (see, for instance, Admati and Pflei-
derer 1988, Dai et al. 2015). When there is no over-
night risk, the curve is symmetric, that is, the absolute
trading speed after the market opening is about the
same as that before market closing. In the benchmark
case with high overnight risk, the trading speed is
much higher before market closing, and this bias is
less significant for the low overnight risk case. In other
words, a larger portion of rebalancing occurs right
before market closing when the overnight risk is
greater. This is consistent with the observation based
on one sample path in Section 4, reflecting the effort
of accounting for overnight jump risk.

This implies that the fund’s intraday trading activ-
ity is at a high level before market closing, a medium
level after market opening, and a low level in the

Figure 5. (Color online) Intraday Absolute Trading Speed Distribution
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Notes. The distribution is estimated viaMonte Carlo simulation. We simulate 20,000 sample paths based on the default parameters, each contain-
ing a 10-year period (2,520 days including daytime and nighttime). We calculate the absolute trading speed over daytime of each day, and then
calculate the average across all days on all sample paths.
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middle of daytime. This conjecture may be tested in
future empirical studies using high-frequency intra-
day data on LETF rebalancing activity, although the
data set does not seem to be available now.

Next, we compare the intraday trading volume of
the periodic-DN, periodic-D, and one-day strategies.
We split the daytime on each trading day from market
opening time, 9:30, to market closing time, 16:00, into
13 subintervals, each with 30 minutes. Then we calcu-
late the total expected trading volume for each subin-
terval, the trading volume during the last five
minutes, as well as total trading volume via simula-
tion, as reported in Table 5. As a comparison, we also
include the one-shot strategy that only performs a sin-
gle lump-sum trade at the market closing each day.

For each Λ, the intraday trading volume exhibits
the same U-shaped characteristics as in Figure 5. For
each strategy, a larger Λ results in a smaller daily total
trading volume, because larger market friction dis-
courages rebalancing. On the other hand, a larger Λ
also results in a flatter U-shape; in particular, for Λ �
10−3 the intraday volume is almost constant, ranging
from 0.0009 to 0.0010. Indeed, given a daily total trad-
ing volume, spreading the rebalancing more evenly
across daytime leads to a smaller (quadratic) friction
cost.

Compared with the one-shot trading strategy (the
strategy ignoring market frictions and assuming r � 0
given in Theorem 1), the periodic-DN strategy has a sig-
nificantly smaller trading volume near market closing.
For instance, the periodic-DN strategy for Λ � 10−6 has

a trading volume 0.0031 during the last five minutes (as
opposed to 0.0246 for the one-shot strategy), implying a
much smaller market friction cost right before market
closing. On the other hand, the periodic-DN strategy
has a higher volume right before market closing com-
pared with the periodic-D and one-day strategies, due
to accounting for overnight risk and aiming in front of
target as discussed earlier.

On a daily level, the total trading volume and the
market friction costs from the periodic-DN and
periodic-D strategies are on the same level; however,
both are greater than those from the one-day strategy,
especially when Λ is large. This suggests that the one-
day strategy does not rebalance sufficiently. Indeed,
following the myopic aim, the one-day strategy barely
does any rebalancing in the second half of daytime.
Therefore, at the beginning of the next day, the posi-
tion is way off target, and the fund cannot do enough
rebalancing in a limited amount of time due to the
market frictions. As a result, under the myopic one-
day strategy, the fund ends up with insufficient reba-
lancing and large slippage, as discussed in Section 6.1.
This is especially the case for large Λ, because the
amount of rebalancing after the market opening needs
to be cut down even further to keep a reasonable level
of cost.

8. Conclusion
We study how to rebalance leveraged ETFs in a com-
prehensive setting, including overnight market closure
and market frictions, and obtain analytical solutions

Table 5. Intraday Trading Volume

From 9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 15:55 Whole Market
To 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:00 day frictions

Periodic-DN strategy

Λ � 10−6 0.0032 0.0014 0.0006 0.0002 0.0001 0.0001 0.0001 0.0001 0.0003 0.0008 0.0020 0.0049 0.0122 0.0031 0.0260 0.0005
Λ � 10−5 0.0024 0.0018 0.0014 0.0011 0.0009 0.0008 0.0009 0.0011 0.0014 0.0018 0.0025 0.0034 0.0046 0.0009 0.0242 0.0014
Λ � 10−4 0.0014 0.0013 0.0013 0.0012 0.0012 0.0012 0.0012 0.0012 0.0013 0.0014 0.0015 0.0016 0.0017 0.0003 0.0175 0.0060
Λ � 10−3 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0009 0.0009 0.0001 0.0108 0.0205

Periodic-D strategy

Λ � 10−6 0.0080 0.0030 0.0011 0.0004 0.0002 0.0001 0.0000 0.0001 0.0001 0.0004 0.0011 0.0029 0.0078 0.0019 0.0252 0.0004
Λ � 10−5 0.0036 0.0027 0.0020 0.0015 0.0011 0.0009 0.0008 0.0008 0.0010 0.0013 0.0019 0.0026 0.0035 0.0007 0.0236 0.0014
Λ � 10−4 0.0016 0.0015 0.0014 0.0013 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0013 0.0014 0.0016 0.0003 0.0172 0.0059
Λ � 10−3 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0001 0.0107 0.0190

One-day strategy

Λ � 10−6 0.0142 0.0060 0.0026 0.0011 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0248 0.0007
Λ � 10−5 0.0058 0.0045 0.0034 0.0026 0.0020 0.0015 0.0011 0.0008 0.0006 0.0004 0.0003 0.0002 0.0001 0.0000 0.0233 0.0019
Λ � 10−4 0.0020 0.0018 0.0016 0.0014 0.0012 0.0011 0.0009 0.0008 0.0006 0.0005 0.0003 0.0002 0.0001 0.0000 0.0124 0.0036
Λ � 10−3 0.0006 0.0006 0.0005 0.0005 0.0004 0.0004 0.0003 0.0003 0.0002 0.0002 0.0001 0.0001 0.0000 0.0000 0.0042 0.0044

One-shot strategy

0 0 0 0 0 0 0 0 0 0 0 0 0.0246 0.0246 0.0246 +∞
Notes. The unit of the trading volume is the number of shares. The market friction is daily average, with unit 10−4 squared dollars. The statistics
are calculated using the trading volume during each of the 13 half-hour periods for 2,520 × 20,000 days (20,000 sample paths, 2,520 days per
sample path). Initial values: s � x � 1, z � 2.
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in terms of a system of periodic ordinary differential
equations. Interestingly, the optimal rebalancing (hedg-
ing) strategy confirms the principle of aiming in front of
target in Gârleanu and Pedersen (2013), introduced in
the setting of asset allocation, although the focus here is
on hedging. Our optimal strategy yields a lower slip-
page and smoother trading pattern compared with
existing strategies. The framework in this paper may be
extended, in principle, to study more general hedging
problems with market frictions and market closure. The
challenge is to get analytical solutions for specific hedg-
ing problems, although we expect that numerical proce-
dures suggested in the current framework may still
work.

We present empirical findings and implications for
the weekend effect and return deviations during mul-
tiday periods. The discussion about the intraday trad-
ing volume leads to the following conjecture from the
optimal strategy of our model: LETFs’ daily rebalanc-
ing activity will be at a high level before market clos-
ing, at a medium level after market opening, and at a
low level in the middle of daytime. This conjecture
may be tested in future empirical studies using high-
frequency intraday data on LETF rebalancing activity,
although the data set does not seem available now.
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Endnotes
1 A fund may continue rebalancing via trading derivatives such as
futures after the normal trading hours of the stock market. How-
ever, during this period, the trading volume of futures is typically
extremely low, making any large rebalancing impractical due to the
potentially high price impact. Therefore, it is still optimal for the
fund to finish the major, if not all, rebalancing before stock market
closing time. Indeed, many researchers, such as Cheng and Madha-
van (2009), Bai et al. (2011), and Tuzun (2014), pointed out that the
LETFs carry out their rebalancing during the final hour before mar-
ket closing.
2 In a system of standard ordinary differential equations, the termi-
nal or initial conditions are specified exogenously. However, in a
system of periodic ordinary differential equations, the terminal or
initial conditions are determined endogenously using periodicity
requirements.
3 The LETF rebalancing problem in this paper can be linked to the
optimal execution problem, which aims to achieve a prespecified
position level within a fixed amount of time (e.g., from market
opening to market closing) under frictions (see Bertsimas and Lo
1998, Almgren and Chriss 2001, Frei and Westray 2015). However,
whereas the LETF rebalancing problem also aims at achieving a
position level at the market closure subject to market friction costs,
there are some key differences: (i) For our LETF rebalancing prob-
lem, the position target at market closure is unknown right after
market opening and only fully revealed at market closure, as it
depends on the realized fund value X and underlying price S at
market closure. As a result, one has to learn the future target as
time goes on and watch for the impact of the past strategy from the
market opening on the fund value X. In contrast, in the optimal

execution literature, the target position at the end of the period is
deterministic and known right at the beginning of trade. (ii) The
measurement of the deviation from the benchmark in our problem
is different from that in the optimal execution literature with per-
formance benchmarks (e.g., the volume-weighted average price in
Frei and Westray 2015), which leads to significant technical differ-
ences. In optimal execution, the deviation is measured as the aggre-
gated instantaneous distance between stock position (number of
shares) and an exogenous target position over a finite horizon.
However, in our problem, the deviation is measured as the aggre-
gated distance between simple returns at an infinite set of discrete
time points (i.e., daily market closure). This, together with the
continuous-time rebalancing, creates a periodic structure in our
problem, which is not covered by the optimal execution literature.
Such a formulation combining continuous control and discrete
monitoring is also used in Keppo et al. (2021) in the different con-
text of optimal dividend policy.
4 As the fund rebalancing is assumed to cause a temporary price impact,
the fundamental price Shere is not changed by the rebalancing.
5 In practice, the LETFs also use (total return) swaps and futures to
achieve their daily target exposure. For example, as of April 1, 2021,
Ultra S&P 500 from ProShares (a bull LETF on S&P 500 with a mul-
tiple of + 2) has a total exposure (notional plus profit and loss) to
swaps and futures of $4.01 billion, in addition to the $2.93 billion
exposure to stocks. By using the total return swaps, the tracking
problem is effectively transferred to the swap counterparty. How-
ever, the impact on the index is still present, albeit caused by the
tracking effort of the swap counterparty. Also, the slippage cost to
the fund manager is still present, because the counterparty can pass
on the hedging cost to the fund (e.g., in forms of the LIBOR spread).
By using futures, the impact is passed on similarly to the underly-
ing asset via arbitrageurs; see Avellaneda and Dobi (2012), Waga-
lath (2014), and Cheng and Madhavan (2009) for more details. Such
slippage cost can be passed on to the fund or to both the fund and
the counterparty, depending on variables such as the fund’s bar-
gaining power compared with the counterparty. For example,
when the fund has a very high bargaining power overall, only a
tiny fraction of the costs will be passed on to the fund.
6 This agrees with the definition of LETFs’ daily return in practice.
For instance, ProShare Trust (2022) states in its prospectus (p. 306)
that “[a] single day is measured from the time the Fund calculates
its NAV to the time of the Fund’s next NAV calculation,” and
(p. 671) “the NAV of each Fund . . . is generally determined each
business day as of the close of regular trading on the Exchange on
which it is listed.”
7 As stated in the prospectus of ProShares Trust (2022) fund
(p. 306), “The fund seeks daily investment results, before fees and
expenses, that correspond to two times (2x) the daily performance
of the index. The fund does not seek to achieve its stated investment
objective over a period of time greater than a single day.” Here, two
times refers to the multiple β and is changed accordingly for other
funds with different multiples.
8 There is a strand of empirical literature on the impact of LETF
rebalancing on the underlying index. Tuzun (2014) finds that daily
LETF rebalancing leaves an imprint on various U.S. equity catego-
ries, triggering price reactions and increased volatility, especially on
volatile days. Bai et al. (2011) show similar impacts for LETFs on
real estate indices. More recently, Charupat and Miu (2016) give
partial support that LETF rebalancing contributes to the index
movement before market closing, especially for indices with less
liquidity, such as Russell 2000. One may refer to Acharya and Ped-
ersen (2005) and Brunnermeier and Pedersen (2005) for the impact
of liquidity risk on asset pricing or trading, and also Cont et al.
(2014) and Cartea et al. (2015) about the micro-foundations behind
it at the limit order book level.
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9 Note that this cost is not actually paid by the fund in practice;
instead, one can regard this as a cost from reputational damage.
Large return deviations are costly to LETFs in the sense that they
make the fund less attractive and drive away investors.
10 An alternative formation is to pay the cost out of X. However, this
alternative formulation has one major drawback: if X achieved a return
higher than the target return right before market closing, the fundman-
ager can reduce the deviation by deliberately incurring cost from mar-
ket frictions and pulling down X. This strategy seems unethical,
because it throws away fund’s value via triggering market friction cost
intentionally. Also, this alternative formulation brings difficulty to the
modeling because the optimal strategy may not be well defined.
11 We keep the terms x̄2 and X2

t2i−1 due to tractability and compari-
son with the general cases with market friction.
12 Specifically, RX

i � θ∗
t2i−1 ·

St2i+1−St2i−1
Xt2i−1

+ Xt2i−1−θ∗
t2i−1 St2i−1

Xt2i−1
(erT − 1) � βXt2i−1

St2i−1St2i+1−St2i−1
Xt2i−1

+ (1− β)(erT − 1) � β ·RS
i + (1− β)(erT − 1).

13 More precisely, we define A �
{
φ : φu � 0 for u ∈⋃∞

i�0(t2i+1,
t2i+2) and E

[∑∞
i�0e

−ρt2i
∫ t2i+1

t2i
φ2
uS

2
udu

]
<∞

}
:

14 For ρ � +∞, the value function (10) simplifies to

V(t, s,x,z, s̄, x̄) � inf
θ∈A

E
1
2
x̄2 β

St1
s̄
− 1

( )
− Xt1−

x̄
− 1

( )( )2
+
∫ t1

t

1
2
ΛS2uφ

2
udu

[ ]
:

The corresponding coefficients can be calculated using (A.9)–(A.18)
and plugging ρ � +∞ into (A.19) (see the online supplement).
15 The parameter ρ is a subjective discount rate that represents the
relative importance between short-term slippage (e.g., today and
the next few days) and long-term slippage. Note that ρ is not the
rate for discounting cash flow. If ρ � 0:6, then the daily slippage one
year later only accounts for about half the importance of the same slip-
page today. The value for ρ should not be very small (i.e., not on the
level of interest rate), because if the current slippage is large, then it can
already cause damage to the fund’s reputation. In terms of aiming in
front of target, a larger ρ means the aim is less in front of target, so as
to achieve a better performance today while sacrificing future perform-
ance. In the extreme case where ρ � +∞, the fund only cares about
today’s slippage and does not care about the future slippage at all.
16 Specifically, by normalizing T � 1 in the following calculations,
the corresponding effective values are μd � μn � 0:1

252(1+δ) , σ � 0:2�����������������
252 × (1+ δ)√

, and ρ � 0:6
252×(1+δ) , r � 0:01

252×(1+δ) per trading session (6.5
hours), and γ � 0:01

252 per day.
17 Specifically, Robert et al. (2012) reported a cost level CT that is
0.1009% of the dollar transaction amount for all the stock tran-
sactions in their sample. In our case, denote Δθ as the daily tran-
saction amount in number of shares, Λ̃

2 S
2(Δθ)2 � C2

T , meaning

Λ̃ � 2 × CT
SΔθ

( )2 � 2 × (0:1009%)2 � 2 × 10−6.
18 Note that the paths of θ̄

O
and θ̄

PD
illustrated in Figure 3 are

based on the same sample path of S̃, as well as the path of X̃ under
the periodic-DN strategy, which are different from θ̄

O
and θ̄

PD
cal-

culated based on the path of X by following the one-day and
periodic-D strategies, respectively. The purpose of doing so is to get
a fair comparison: under the periodic-DN strategy, we want to
examine what the aim would be at any time, if we were standing in
one-day and periodic-D strategies’ shoes. Note that θ̄

O
and θ̄

PD
are

completely determined given the current underlying and fund
value, as well as the reference values.
19 Tang and Xu (2013) reported daily slippage using daily return
calculated from LETFs’ market price, whereas here we do so using
daily return from NAV. Indeed, the fund only has direct control
over its NAV rather than its market price, and minimizing the slip-
page in terms of NAV is the goal of LETFs. However, as pointed

out by Tang and Xu (2013), LETFs’ total return deviation can be
mainly attributed to NAV return deviation.
20 It should be noted that although Table 2 uses real index data
instead of model-based simulated data (in panel B of Table 1), it is
still based on the market friction model in Section 2. As a result, the
results may still be biased toward our model.
21 In a different context, Adrian et al. (2020) found that the market mak-
ers tend to speed up their inventory liquidation before the end of Friday.
22 In our model framework, the fund performance is monitored on
a daily basis, and the slippage is measured via the daily fund NAV
and the underlying returns from one market closing time to the
next. Because the slippage during a weekend is measured via the
fund NAV and the underlying return from the Friday market clos-
ing time to the Monday market closing time, it is natural to rescale
the weekend into a day to be consistent with our model. Ideally the
weekend should be treated differently from the remaining days
without scaling; however, this ideal treatment would bring extra
complexity to the model framework.
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