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ABSTRACT: Olefin metathesis catalyzed by iron complexes has garnered substantial interest due to iron’s abundance and
nontoxicity relative to ruthenium, yet its full potential remains untapped, largely because of the propensity of iron carbenes to
undergo cyclopropanation instead of cycloreversion from a metallacycle intermediate. In this report, we elucidate the reactions of
[{PC(sp*)P}Fe(L)(N,)], ([PC(sp*)P] = bis[2-(diisopropylphosphino)phenylJmethylene) with strained olefins, unveiling their
capability to yield metathesis-related products. Our investigations led to the isolation of a structurally characterized
metallacyclobutane during the reaction with norbornadiene derivatives, ultimately leading to a ring-opened iron alkylidene.
These findings provide compelling evidence that iron complexes adhere to the Chauvin olefin metathesis mechanism.

ron presents an enticing prospect for olefin metathesis

because of its unparalleled abundance, cost effectiveness,
and low toxicity in comparison to ruthenium, the conventional
choice for this reaction. Nevertheless, the development of iron-
based catalysts has faced challenges, primarily due to the
proclivity of iron carbenes to engage in carbene transfer
events.'”°

Multiple theoretical studies offered several avenues to
explore iron-based metathesis catalysts.”® These strategies
include augmenting the strength of the iron—carbene bond by
incorporation of neutral o-donating ligands®’ as well as
stabilizing the singlet state of both the alkylidene and
metallacycle by employing strong-field anionic ligands within
high-valent complexes.” Despite a focus on high-valent Fe(IV)
complexes as targets for metathesis catalysts, certain theoretical
investigations have shown the feasibility of low-valent iron-
catalyzed olefin metathesis.”'’ Additionally, studies suggest
that the application of rigid chelating ligands may effectively
govern the spatial arrangement of both the alkylidene and
metallacycle species, favoring the singlet state for both
entities.””""

On the experimental end, iron-catalyzed cycloadditions have
been reported,'”"* and recent studies by Bukhryakov'* and
Milstein and Takebayashi'> offered glimpses of the potential of
iron complexes in the ring-opening polymerization of
norbornene (Figure 1). Notably, several iron carbenes'®™>!
address some theoretical strategies, including the tridentate
pincer iron carbene complexes reported by Chirik,**
Wolczanski,”*** and Milsmann.>® However, these compounds
exhibited no reactivity with olefins. Building upon this
foundation of experimental and theoretical strategies, we
have harnessed a pincer system to synthesize a PC(sp®)P*°
iron carbene, denoted as [{PC(sp®)P}Fe(PMe;)(N,)] (1-
PMe,), which has previously exhibited intriguing 27 + 27
cycloadditions with alkynes, resulting in a novel 7°-vinyl iron
carbene, a crucial step in iron enyne metathesis.”” Further-
more, this 77°-vinyl carbene can undergo a second 27 + 27
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cycloaddition to yield a new iron carbene, thus serving as a
model system for iron-based alkyne polymerizations.
Motivated by these promising alkyne reactions, we
embarked on exploring the reactivity of PC(sp*)P iron carbene
with various strained cyclic olefins. In this study, we present
unprecedented 27 + 27 cycloadditions of olefins to iron
carbenes, resulting in the formation of metallacyclobutanes.
Norbornadiene (NBDE) derivatives led to the isolation of a
structurally characterized metallacyclobutane that subsequently
undergoes cycloreversion, producing a ring-opened alkylidene.
These findings offer compelling evidence that these iron
complexes follow the Chauvin olefin metathesis mechanism.
Having established that 1-PMe; and 2-N, react stoichio-
metrically with diphenylacetylene’” to produce the vinyl
carbenes 2-N, and 3, respectively (Figure 1D), we sought to
react 1-PMe; with olefins to explore its viability in olefin
metathesis. We hypothesized that by using a ring-strained
olefin, we might avoid unproductive metathesis pathways.
Unfortunately, under no conditions did 1-PMe; and NBDE, or
more strained NBDE derivatives, react. We initially assumed
that the strong Fe—PMe; bond likely prevents dissociation of
trimethylphosphine and access to an active species capable of
the desired reactivity. Consequentially, the reaction of
[{PC(sp*)P}Fe(NCBu)(N,)] (l-NCtBu),27 which contains
the more labile pivalonitrile, with NBDE and its derivatives led
to the isolation of metallacyclobutane complexes 4-L, 5-L, and
6-L (Figure 2). Specifically, when 1,4-dihydro-1,4-methano-
naphthalene (benzonorbornadiene, BZNBDE) was used, a
mixture of diamagnetic 5-N, and 5-NC'Bu and paramagnetic 8
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Figure 1. Iron complexes and olefin metathesis. (A) Recently
reported iron catalysts for the ring-opening metathesis polymerization
(ROMP) of norbornene. (B) ROMP of norbornadiene. (C) Accepted
mechanism for olefin metathesis. (D) Iron carbenes undergo [2 + 2]
cycloadditions with alkynes to yield 7°-vinyl carbenes. (E) [2 + 2]
cycloaddition of a strained cyclic olefin to yield an isolable
metallacyclobutane, which can be further converted to a ring-opened
carbene.

was obtained. Similarly, when 2,3-diphenylnorbornadiene
(DPNBDE) was used, a mixture of diamagnetic 6-N, and 6-
NCBu was obtained. We found early on that the crude
mixture of 5-N,, 5-NC'Bu, and 8 could be coalesced to a single
diamagnetic product by the addition of 1 equiv of 2,6-
dimethylbenzonitrile, assigned as 5-NCAr by NMR spectros-
copy. The high solubility of 5-N,, 5-NC'Bu, or the derivative
S-NCAr in aliphatic solvents prevented us from obtaining
single crystals. Spectroscopic characterization of 5-NCAr is
consistent with the presence of a metallacyclobutane ring (see
below). However, unlike 5-NCAr, the analogous 6-NCAr,
[{PC(sp*) (—=C(sp®)#"**H~C(sp*) #*"*H~)P}Fe(NCAr)],
was insoluble in aliphatic solvents and only sparingly soluble in
diethyl ether, and its solid-state molecular structure showed a
five-coordinate distorted trigonal-bipyramidal Fe(II) center
with a singular 2,6-dimethylbenzonitrile ligand (Figure 2B).
The Fe—C(1) and Fe—C(3) distances of 2.046(2) and
2.050(2) A are consistent with those of other iron—carbon
single bonds, and the C(1)—C(2) and C(2)—C(3) distances of
1.560(3) and 1.550(2) A are slightly elongated from idealized
C—C single bonds; these parameters are consistent with those
of other isolated metallacyclobutanes of first-row transition
metals.”* ™" The exo isomer of 6-NCAr is the only species
observed in both the solid state and NMR spectroscopy, with a
consequence being the observation of an agostic interaction
between the iron center and the hydrogen atoms on the bridge
of the norbornadiene moiety. This agostic interaction could be
characterized by '"H NMR spectroscopy: one of the bridged
hydrogens resonates at —9.0 ppm as a doublet of doublets by

coupling through the inequivalent phosphines (Figure S22).
Formally, this agostic interaction occupies the sixth coordina-
tion site of a pseudo-octahedral complex.

The identities of compounds 4—6 were assigned based on
the diagnostic signal in 'H NMR at ca. —9 ppm due to the
agostic interaction with the bridgehead methylene group. This
signal was observed in each spectrum, and in the case of the
mixtures of 4-N,/NC’Bu, 5-N,/NC'Bu, and 6-N,/NC'Bu, two
signals were noted at this upfield position, while 5-NCAr and
6-NCAr exhibit only one (Table S1 and Figure S2). In
addition, several studies have highlighted the correlation
between the 'H and '3C NMR resonances of the a and f
groups of metallacyclobutanes and metathesis activity,”"** and
thus, we analyzed whether the isolated 6-NCAr as well as the
observed species 4, 5, and 6 followed this trend. In all cases,
the H, proton was located between 4.2 and 4.7 ppm, while Hy
was located between 3.0 and 3.7 ppm (Table S1), which falls in
the wide range (—2.2 to 3.2 ppm) for other reported
metathesis-active metallacyclobutanes.’”** Analysis of the '*C
NMR spectra of 5-NCAr and 6-NCAr identified the C,
resonances between 45 and 60 ppm and the Cg resonances
between 13 and 24 ppm, all of which are consistent with
metathesis-active metallacyclobutanes (Table S2).

Once 5-N,, 5-NC'Bu, and 6-NCAr were characterized, we
turned our attention to 8, which was isolated by handling the
reaction between 1-NC'Bu and benzonorbornadiene under an
argon atmosphere. Single crystals of 8 revealed a four-
coordinate ring-opened iron alkylidene, [{PC(=CH-CoH,—
C(sp*)H)P}Fe] (Figure 3A). The Fe—C(3) distance of
1.847(1) A is consistent with an Fe=C interaction, notably
shorter than in the parent iron carbene 1-NC'Bu (1.898(2) A)
but elongated compared to iron vinyl carbenes obtained from
reactions of 1-PMe; and alkynes (1.818—1.820 A).””*> The
ring opening of the olefin is evident, with a C(2)—C(3)
distance of 2.905(2) A, coinciding with the formation of a new
C=C bond of 1.435(2) A between the carbene carbon, C(1),
and one of the olefin carbons, C(2), consistent with an alkene
that is coordinated to the iron center (Figure 3A). 8 is in a
distorted tetrahedral geometry and as such is paramagnetic
with an effective magnetic moment corresponding to S = 1,
suggesting a high-spin Fe(0) or intermediate-spin Fe(Il)
center, adding 8 to the limited library of paramagnetic iron
carbene complexes.'”*>*>%¢

Structurally, 8 is consistent with the proposed intermediate
in the polymerization of norbornene using [(Ph;P)CLRu(=
C(H)—CH=C(Ph),)].”” The coordination of the newly
formed alkene in 8 results in a tethered alkylidene that is
structurally similar to an intermediate progosed in the ring-
expansion polymerization of norbornene.”® The character-
ization of 8 provides crucial insight into the potential of iron-
based ring-opening metathesis polymerizations, particularly as
the ring-opening process appears to be reversible in the
presence of an external ligand.

When 1 equiv of trimethylphosphine is added to 8 under a
dinitrogen atmosphere, a retro-2z + 27 cycloaddition followed
by cycloreversion of the resulting metallacyclobutane results in
nearly quantitative conversion to 1-PMe; and benzonorborna-
diene, as evidenced by 'H and *'P NMR spectroscopy (Figure
3B). In general, the ring-opening metathesis reaction is driven
forward by relief of ring strain, and therefore, the ring closin
of the newly opened ring is thermodynamically unfavorable.’
Furthermore, ring-closing metathesis typically generates cyclic
olefins of low strain,”**” and in cases where bicyclic olefins are
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Figure 2. Iron carbenes for ring opening of norbornadiene derivatives. (A) Synthetic scheme for the [2 + 2] cycloaddition between 1-NC'Bu and
norbornadiene derivatives to form 4—6, which undergo subseguent ring opening upon removal of an ancillary ligand to yield 7—9. (B) Solid-state
molecular structure of [{PC(sp®)(—C(sp*)#"**H—C(sp®)#"***H—)P}Fe(NCAr)] (6-NCAr) with thermal ellipsoids at the 50% probability level;
most hydrogen atoms have been omitted for clarity. (C) Solid-state molecular structure of [{PC(=CH—C,H ,—C(sp*)H)P}Fe] (8) with thermal
ellipsoids at the 50% probability level; most hydrogen atoms have been omitted for clarity.

formed through ring closing, they typically contain heter-
oatoms that reduce the strain considerably.”*' The ring-
closing reaction is also entropically driven by release of
ethylene,”* which cannot be the case in the ring closure
observed for the reaction of 8 with PMe,. It is important to
note that in both 8 and 6-NCAr the dihedral angles between
the two phenyl rings of the pincer ligand are 68.42° and
52.56°, respectively, compared to 39.22° in 1-PMe;. This
deviation from coplanarity creates a strain that might
contribute to the favorable ring-closing reaction observed for
this particular system.

Reversible ring-opening metathesis is a known process for
monomers of low ring strain, namelzr cyclohexene, where the
monomer is favored at equilibrium® and requires specialized
catalysts to undergo ring-opening metathesis polymeriza-
tion.**~* Norbornadiene and derivatives, in contrast, exhibit
a significant ring strain (~35 kcal/mol for norbornadiene)*’
and are typically excellent monomers for ring-opening
reactions, as the equilibrium heavily favors the polymer.*

8 1-PMes The reversibility of this ring-opening/ring-closing process

explains the observed lack of reactivity of 1-PMe; toward

Figure 3. (A) Comparison of the relevant parameters in the solid- norbornadiene derivatives. Notably, this process does not
state molecular structures of 6-NCAr and 8. (B) Ring closing of the occur with all external ligands; only trimethylphosphine

ring-opened alkylidene 8 by addition of trimethylphosphine under a

initiates the extrusion of benzonorbornadiene from 8, whereas
N, atmosphere to form 1-PMe;.

nitriles and dinitrogen induce the formation of the metal-
lacyclobutanes 4—6 from the corresponding carbenes 7—9.
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Weakly coordinating ligands such as THF, pyridine, and 4-
(dimethylamino)pyridine do not coordinate to 8, suggesting
that the ligand strength dictates this reversible process.
Therefore, the addition of norbornadiene derivatives to 1-
NC'Bu results in a 27 + 27 cycloaddition leading to the
formation of a metallacyclobutane, which undergoes a
cycloreversion upon loss of a ligand to yield a new iron
carbene, 8. These results provide direct evidence for iron
carbene complexes behaving according to the Chauvin
mechanism. Although well-characterized examples of meta-
thesis-active metallacyclobutanes are known for titanium,
molybdenum, and tungsten metallacyclobutanes,”**™>° to
the best of our knowledge, only in situ evidence for this
mechanism has been observed with ruthenium carbenes.*

In conclusion, this study sheds light on the reactivity of iron
carbenes and their potential as alternatives to the traditional,
well-established ruthenium catalysts. The formation of ring-
opened product 8 showcases the ability of iron complexes to
engage in olefin metathesis. Furthermore, the isolation and
cycloreversion of a metallacyclobutane during the reaction with
norbornadiene derivatives offer evidence that iron complexes
adhere to the Chauvin olefin metathesis mechanism. These
findings open new avenues for the development of iron-based
catalysts in olefin metathesis reactions and provide a deeper
understanding of their reactivity and mechanisms.
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