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The power and pitfalls of AlphaFold2  
for structure prediction beyond rigid 
globular proteins

Vinayak Agarwal    1,2   & Andrew C. McShan    1 

Artificial intelligence-driven advances in protein structure prediction in 
recent years have raised the question: has the protein structure-prediction 
problem been solved? Here, with a focus on nonglobular proteins, we 
highlight the many strengths and potential weaknesses of DeepMind’s 
AlphaFold2 in the context of its biological and therapeutic applications. 
We summarize the subtleties associated with evaluation of AlphaFold2 
model quality and reliability using the predicted local distance difference 
test (pLDDT) and predicted aligned error (PAE) values. We highlight various 
classes of proteins that AlphaFold2 can be applied to and the caveats 
involved. Concrete examples of how AlphaFold2 models can be integrated 
with experimental data in the form of small-angle X-ray scattering (SAXS), 
solution NMR, cryo-electron microscopy (cryo-EM) and X-ray diffraction 
are discussed. Finally, we highlight the need to move beyond structure 
prediction of rigid, static structural snapshots toward conformational 
ensembles and alternate biologically relevant states. The overarching 
theme is that careful consideration is due when using AlphaFold2-generated 
models to generate testable hypotheses and structural models, rather than 
treating predicted models as de facto ground truth structures.

DeepMind’s AlphaFold2 (AF2) has revolutionized structural biology 
with its deep learning algorithm that enables accurate prediction 
of three-dimensional (3D) protein structures from only the target 
amino acid sequence, potentially solving the half-a-century-old pro-
tein structure-prediction problem: how to predict 3D structures from 
only sequence information1–4. AF2 has opened the door to understand-
ing protein folds, structures, interactions and function at organis-
mal levels through modeling of 98.5% of the human proteome5. One 
common critique of AF2 is that it requires substantial computational 
resources to run the software locally (up to 3 TB of disk space and a 
modern NVIDIA graphics processing unit with gigabytes of memory). 
Several efforts have alleviated these limitations, including the Alpha-
Fold Protein Structure Database6,7, which houses over 200 million 
pre-run AF2 predictions, as well as ColabFold8 and OpenFold9, which 

allow users to run a modified AF2 protocol on open-access servers 
in minutes. These platforms have allowed the public, industry and 
academics without computational resources to model and analyze 
structures of their favorite target using AF2 with just a few clicks of a 
button. Another critique of AF2 concerns whether it has truly solved 
the protein structure-prediction problem. Several groups have pro-
posed that AF2 has only learned how to estimate 3D structures using 
patterns extracted from known folds in the Protein Data Bank (PDB) 
and coevolutionary information between residues rather than the 
underlying physical and chemical basis of protein folding3,10–12. This is 
strictly true because current versions of AF2 do not use energy func-
tions that seek to identify native-like protein conformations, unlike its 
competitor Rosetta13. Others suggest that AF2’s algorithm may have 
indirectly learned a similar function14. Finally, some critics question 
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confidence for the relative position and orientation of two parts of the 
protein in the model. Users should be especially careful to not assign 
biological or structural relevance to regions with low pLDDT (<70) or 
high PAE (>5 Å) values5,23. However, as discussed below, high pLDDT or 
low PAE metrics, indicating high confidence in the prediction, do not 
promise agreement with native protein conformations but instead 
estimate a likelihood for local and global coordinate positions and/
or orientations.

An example AF2 model of oxysterol-binding protein 1 (OSBP1), 
a lipid transfer protein, obtained from the AlphaFold Protein Struc-
ture Database is shown in Fig. 1b. The pLDDT values plotted onto the 
model highlight that the pleckstrin homology (PH), coiled-coil (CC) 
and OSBP-related ligand-binding (ORD) domain structure are assigned 
very high to high predicted confidence, while the phenylalanines in 
an acidic tract motif (FFAT) domain are predicted with very low confi-
dence. The PAE graph reveals that the model has low confidence with 
respect to the relative placement of PH, CC, FFAT and ORD domains 
with respect to each other.

A critical evaluation of AF2’s applications
There are several open areas of research concerning AF2 in the context 
of its biological and therapeutic applications: first, accuracy evalua-
tions of AF2 models relative to different types of protein folds present 
in the PDB, especially for new structures as they are released; second, 
expanding the types of systems that AF2 can be applied to, either 
through benchmarking the default AF2 pipeline on new types of tar-
gets or through modifications in the AF2 protocol. A recent structural 
biology community assessment reports that, on average, AF2 gener-
ates models with quality near that of experimental structures across 
diverse target folds and applications17. These types of studies with good 
reason affirm AF2’s utility but may give the impression that AF2 is with-
out limitations. Below, we summarize several potential applications 
of AF2 and provide examples in which the predicted model deviates 
from the experimental structure. Cases in which AF2’s performance is 
compromised are especially important to help us understand its limita-
tions and provide opportunities to refine its deep learning-based algo-
rithm in future iterations. These deviations can be broadly categorized 
into cases with (1) inaccurate secondary, tertiary and/or quaternary 

the accuracy of the standard implementation of AF2 against different 
types of nonglobular molecular targets, which could limit its potential 
applications15,16. Overwhelming evidence suggests that machine learn-
ing software like AF2, RoseTTAFold, ESMFold, and related approaches 
are the best and most accurate answer to the structure-prediction 
problem to date1,17–19.

AF2’s artificial intelligence-driven revolution
The basic workflow of AF2 is outlined in Fig. 1a. Users input the pri-
mary amino acid sequence of the target protein as one-letter code 
in FASTA format. When more than one input sequence is provided, 
AlphaFold-Multimer or AF2Complex is used20,21. Lower and upper limits 
for input sequence lengths are defined by difficulties in generating 
reliable multiple-sequence alignments (MSAs) for short (less than 
ten amino acids) sequences and graphic processing and/or memory 
issues for long (>3,000 amino acids) sequences, respectively. Protein 
sequences can be obtained from annotated public databases, such as 
UniProt. The full details of the AF2 workflow have been discussed previ-
ously1 but are briefly outlined below. Using the input sequence(s), AF2 
first queries several databases to construct a pair representation and an 
MSA representation of the target. The pair representation is a matrix of 
pairwise interactions between amino acids that are likely to be spatially 
related (that is, close to each other in space). The MSA representation 
is a collection of sequences that are evolutionarily related to the target 
sequence and provides mutational covariance information used by 
AF2. The pair and MSA representations are then passed through the 
Evoformer, a neural network block that exchanges information within 
the MSA and pair representations to establish spatial and evolutionary 
relationships. Next, the structural module parses information from the 
Evoformer to convert the representations into a 3D protein structure. 
The entire process undergoes several rounds of iterative recycling 
to produce the final refined models. For each output, AF2 generates 
a per-residue confidence score stored in the B-factor column of the 
model coordinate file (.pdb, .mmCIF or related formats), the pLDDT 
score, which ranges from 0 to 100, with higher values assigned higher 
confidence in the model1,22 (Fig. 1b). AF2 also generates a PAE matrix, 
which evaluates the relative orientation and position of different parts 
(that is, domains) of the model6. Higher PAE values correspond to lower 
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Fig. 1 | Overview of AF2. a, The general workflow for an AF2 prediction is shown 
(derived from Jumper et al.1). The input is the primary amino acid sequence. The 
AF2 model of ganglioside GM2 activator protein (https://alphafold.ebi.ac.uk/
entry/P17900) is shown. The model is colored based on pLDDT values. b, Left, 
AF2 prediction for OSBP1 (https://alphafold.ebi.ac.uk/entry/P22059) is shown. 

The AF2 model is colored based on pLDDT values. The domains of the protein 
are noted: PH, FFAT, ORD and CC. Term, terminus. Right, AF2 PAE metrics show 
the predicted relative position error for each residue in the sequence, with low-
confidence values in white and high-confidence values in green. The domains of 
OSBP1 have been manually annotated on the PAE graph.
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structure in regions where AF2 predicts low to moderate confidence, 
(2) inaccurate structure in regions where AF2 predicts high model con-
fidence, (3) correct backbone structure but incorrect fine details (that 
is, side chain rotamer placements), and (4) correct backbone structure 
for individual domains but inaccurate placement of domains relative 
to each other (Fig. 2a–l). For cases (1) and (4), low confidence in pLDDT 
scores and PAE graphs alerts users to interpret structures with caution, 
which is not immediately clear in cases (2) and (3).

The success of AF2 in predicting protein structures begs the ques-
tion as to whether it can also accurately predict peptide structures 
(or, in some cases, lack of a well-defined structure). Peptide structure 
prediction poses additional challenges given that the benchmark set 
used to train AF2 excluded peptides, the difficulty in generating robust 
MSAs for short sequences and observations that many peptides exist 
in solution as conformational ensembles rather than a single static 
conformation1,24,25. McDonald et al.25 performed a benchmark of 588 
peptides, revealing that AF2 predicts many α-helical and β-hairpin pep-
tide structures with surprising accuracy. However, AF2 was challenged 
by mixed secondary structure membrane and soluble peptides, such as 
the prion protein PRNP25 (Fig. 2a). It was also shown that the best-ranked 
AF2 models (selected on the basis of high pLDDT score) often did 
not exhibit the lowest Cα root mean square deviation relative to the 
experimental structure, suggesting that the pLDDT metric used by 

AF2 to assess protein models is not optimal for classification of peptide 
conformations25. In a separate study, Tsaban et al.24 showed that AF2 
can be adapted to accurately model peptide–protein complexes irre-
spective of peptide length, although the results seemed biased toward 
helical structures and peptides that do not undergo large structural 
rearrangements upon binding. New methods are fine-tuning AF2-based 
pipelines for specific types of peptide–protein complexes (that is, 
peptide–major histocompatibility complex)26. These studies provide 
compelling evidence that AF2 can be applied across peptides, pro-
teins and peptide–protein complexes, albeit with several limitations 
and caveats. Refinement of AF2-derived models with NMR-derived 
restraints, such as chemical shift values, torsion angles, residual dipolar 
couplings (RDCs) and nuclear Overhauser effect (NOE) data, could help 
improve accuracy of peptide modeling15.

To date, the most common types of protein folds benchmarked 
in AF2 assessments are globular and extended or repeat proteins1,5,17. 
NMR structural ensembles offer a unique validation metric to assess the 
accuracy of predicted AF2 models, as AF2 was trained on a subset of the 
PDB that excluded NMR data1,27–30. While AF2 performs exceptionally 
well on these types of folds on average, Fowler et al.28 revealed that NMR 
ensembles can be more accurate than static AF2 models for dynamic 
proteins. As an example, the AF2 model of insulin deviates substantially 
from its experimental NMR structure (Fig. 2b), potentially due to the 
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Fig. 2 | Example applications of AF2 predictions that deviate from the 
experimental structure. Superpositions of the AF2 model and experimental 
structure for several classes of peptides and proteins are shown. AF2 models are 
colored according to pLDDT values, with overlaid experimental structures colored 
in pink. The Protein Data Bank (PDB) IDs of the experimental structures used for 
comparison are noted. a–l, AF2 models were fetched from the AlphaFold Protein 
Structure Database or derived from the literature: PRNP (https://alphafold.ebi.
ac.uk/entry/P23907) (a), insulin (https://alphafold.ebi.ac.uk/entry/P01308)  
(b), polycystin 2 (https://alphafold.ebi.ac.uk/entry/Q13563) (c), PqqL  

(https://alphafold.ebi.ac.uk/entry/P31828) (d), complement component C6 
(https://alphafold.ebi.ac.uk/entry/P13671) (e), ChRmine (f), AT2G23090 (https://
alphafold.ebi.ac.uk/entry/O64818) (g), SecA (https://alphafold.ebi.ac.uk/entry/
P28366) (h), lipocalin-type PGDS (L-PGDS)K59A/C65A (i), NT-9 (j), A12 nanobody–HIV 
C186 gp120 complex (k), and β-endorphin amyloid fibril (l). Black arrows denote 
areas where the AF2 model deviates from the experimental structure. It is important 
to note that predicted structures, gleaned from literature or the AlphaFold 
structure database, have been generated using different versions of AF2 software 
and/or with different input parameters and thus cannot be directly compared.
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inability of AF2 to orient cysteine pairs for disulfide bond formation31. 
Another consideration is that AF2 models of many globular proteins, 
especially enzymes and metalloproteins, lack functionally relevant 
cofactors, prosthetic groups or ligands. The authors of AF2 note that, 
because it is trained on both apo and holo structures from the PDB, 
models may still be consistent with the expected structure in the pres-
ence of ligands or cofactors despite their absence in the AF2 workflow1,5. 
However, whether the modeled structure resembles the apo or holo 
form of the protein is not immediately clear from analysis of pLDDT 
scores or PAE graphs32. Furthermore, deviations of AF2 models from 
experimental structures also occur when cofactors, prosthetic groups 
or ligands induce structural changes, either locally or allosterically. For 
example, the NMR structure of Ca2+-bound polycystin 2 deviates from 
the AF2 model, potentially due to conformational changes upon Ca2+ 
binding (Fig. 2c). Likewise, the AF2 model of the zinc protease PqqL 
deviates from the open, highly extended conformation determined by 
X-ray crystallography (Fig. 2d). New algorithms, such as AlphaFill, are 
actively being developed that could improve AF2 structure prediction 
and refinement for cofactor-, prosthetic group- or ligand-bound pro-
teins33. These modifications will enable AF2 to identify new therapeutic 
candidates34. AF2 may also exhibit difficulties in structure prediction 
for extended proteins or proteins with repeat elements35. In the case 
of the extended complement C6 protein, AF2 predicts the structure 
of individual domains well but deviates in the placement of domains 
relative to each other (Fig. 2e). For large macromolecules, users may 
be able to estimate the likelihood that AF2 correctly placed domains 
relative to each other by visualization of confidence scores in the PAE 
graph. However, it is important to remember that the PAE values are 
only confidence estimates. Furthermore, the accuracy of PAE graphs 
for interdomain prediction has not been as extensively benchmarked 
as for intradomain contacts36.

Evaluation of membrane protein structure is another important 
application of AF2 (ref. 5,37). Benchmarking AF2 against membrane 
proteins represents a challenge, as the membrane environment, which 
includes lipids and other proteins, is not directly considered by current 
versions of AlphaFold38. Furthermore, membrane proteins represent 
less than 3% of total structures in the PDB15, meaning that the training 
set used by AF2 was highly biased toward soluble proteins39. Hegedűs 
et al.38 benchmarked several membrane proteins not included in the 
original AF2 training set and concluded that, on average, AF2 pre-
dicts transmembrane proteins as well as soluble proteins. However, 
the authors note two important limitations. First, AF2 models with 
transmembrane region lengths corresponding to nonphysiological 
membrane thickness values can exhibit very high pLDDT scores (high 
model confidence), suggesting that pLDDT scores alone are not suf-
ficient to select native membrane protein conformations. Second, AF2 
performs poorly for targets embedded in membrane thickness outside 
the range of 15–35 Å as well as targets with novel features not commonly 
present in the PDB. In agreement with these findings, Azzaz et al.40 have 
shown the difficulty of AF2 in modeling membrane proteins owing to 
‘epigenetic’ factors (that is, lipid environment, co-receptor-induced 
structural changes, post-translational modifications) that control pro-
tein structure beyond the amino acid sequence. As an example, while 
the AF2 model of the channelrhodopsin ChRmine captures its overall 
fold, the modeled N-terminal region and extracellular loops deviate 
from its experimental high-resolution cryo-EM structure (Fig. 2f), 
likely due to ChRmine’s unique covalent Schiff base feature41. It will 
be imperative to evaluate AF2 against membrane protein structures 
as they become more readily available as the result of high-resolution 
cryo-EM and advances in NMR spectroscopy.

Another unknown is how AF2 performs on intrinsically disordered 
proteins (IDPs) and proteins with intrinsically disordered regions 
(IDRs)27,42. IDPs represent a challenge for AF2 because it is difficult to 
identify evolutionary constraints from MSAs of IDPs and IDRs due to 
sequence hypervariability. In addition, like peptides, IDPs and IDRs are 

best thought of as sampling diverse conformational ensembles rather 
than a single static conformation42. Preliminary studies suggest that 
the majority of targets with very low confidence score (pLDDT < 50) 
assigned by AF2 are likely to be IDPs or IDRs rather than well-folded 
structures that AF2 fails to predict42–44. However, for many targets, 
AF2 models with predicted disorder may not be relevant for struc-
ture and function analysis other than for assigning the likelihood for 
conformational heterogeneity27. As an example, the NMR structure 
of IDR-containing protein AT2G23090 deviates from the AF2 model 
despite the confident pLDDT score (Fig. 2g). A study by Ruff et al.42 
showed that the radius of gyration values of IDPs or IDR-containing 
proteins calculated using static AF2 models substantially deviates from 
those experimentally obtained by SAXS. Future benchmarks should 
continue to evaluate AF2 against panels of IDPs and IDR-containing 
proteins using novel critical assessment of protein intrinsic disorder 
targets44. Efforts are also underway to establish whether AF2 can be 
used to predict alternative conformations or conformational ensem-
bles of folded proteins (discussed in detail below). Several groups 
have suggested that the default AF2 pipeline has difficulty in modeling 
alternative conformations45. For example, AF2 fails to predict the ‘open’ 
activated conformation of the ATPase SecA (Fig. 2h). Interestingly, 
several groups have shown that modifications of AF2 have the potential 
to generate models that substantially deviate from each other, allow-
ing for sampling of conformational landscapes. A study by del Alamo 
et al.46 modified the AF2 pipeline by reducing the number of recycles 
and restricting the depth of randomly subsampled MSAs to sample 
functionally relevant alternative conformations of transporters and 
G-protein-coupled receptors. Similarly, Wayment-Steele et al.47 found 
that clustering MSAs by sequence similarity enables AF2 to sample 
known alternative states of KaiB, RfaH and mitotic arrest deficient 2 
(MAD2). Further benchmarking of modified AF2 protocols against 
IDPs, IDR-containing proteins and alternative conformation is required 
to establish protein prediction strengths and limitations for those of 
systems43,48.

There are several other challenging structural modeling problems 
in biology and therapeutics that AF2 is tasked with. One of the most 
sought-after applications of AF2 is predicting the effect of mutations on 
protein structure and/or stability17. The AF2 authors note that “Alpha-
Fold has not been trained or validated for predicting the effect of muta-
tions”. In support of this, studies have reported an inability of AF2 to 
predict the effects of mutations on protein structure and stability14,49,50, 
which may be due to a training bias on stable structures or an inability 
to extract signal from small mutations through MSAs. As an example, 
structural perturbations induced by the K59A/C65A double mutation 
in prostaglandin D synthase (PGDS) are not accurately captured by 
AF2 (Fig. 2i). A recent adaption of AlphaFold, AlphaMissense, does not 
explicitly determine the structural effects of a mutation on a protein 
but provides the probability of a missense variant being pathogenic51. 
Other groups have suggested that developing AF2 workflows that are 
less dependent on MSAs could be beneficial14.

Another challenge is modeling of novel 3D folds that are either 
completely absent or not commonly represented in the PDB, such 
as de novo designed proteins. In these cases, AF2 has not been fully 
trained on novel topologies, which are not commonly found in the 
PDB. Furthermore, extraction of coevolutionary information from 
MSAs using de novo designed targets may be difficult, as the amino 
acid sequences of de novo designed proteins deviate from naturally 
observed sequences. For some, this is the ultimate test of whether 
AlphaFold may have solved the protein structure-prediction problem. 
Interestingly, Moffat et al.52 showed that AF2 performs well on the 
de novo designed proteins Top7, Peak6, Foldit1 and Ferredog-Diesel. 
Slight deviations in tertiary structure are noted, such as for the nuclear 
transport factor 2-derived de novo designed protein NT-9, but the 
overall structure is well described (Fig. 2j). For targets without known 
homologs, such as computationally designed proteins, increasing the 
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number of recycling iterations can improve the quality of the predic-
tion8. An inverted version of AlphaFold, called AlphaDesign, has been 
used for de novo protein design with some success53.

Evaluation of protein–protein interactions, including oligomeri-
zation, is another major potential application of AF2 that continues 
to be explored17. Yin et al.55,54 benchmarked 152 heterodimeric pro-
tein complexes, revealing that AF2 and AlphaFold2-Multimer had a 
51% success rate. The authors note that AF2 had difficulty modeling 
antibody–protein complexes, such as the A12 nanobody–human 
immunodeficiency virus (HIV) gp120 complex (Fig. 2k). A separate 
study by Bryant et al.56 reported a 63% success rate for heterodimeric 
complexes. Both studies suggest that a robust MSA coevolutionary 
signal is required for accurate complex modeling. Preliminary reports 
also suggest that AF2 may also be able to predict oligomeric states of 
proteins and amyloids17,57. However, care must be taken when inter-
preting predictions, as highlighted by the incorrect AF2 model of the 
β-endorphin amyloid fiber relative to its experimental solid-state NMR 
structure58 (Fig. 2l).

Evaluation metrics and model reliability
As stated above, AlphaFold provides error categorizations in the form 
of pLDDT scores and PAE values to estimate the confidence of its pre-
dictions and to evaluate overall model quality and reliability. For the 
majority of globular proteins, AF2 provides accurate, reliable models 
with high pLDDT (>70) or low PAE (<5 Å) values highlighting confidence 
in the prediction of the position of the atomic coordinates, which match 
experimentally determined native structures5,17,23,59. In other cases, if the 
‘best’ AF2 model exhibits many residues with low pLDDT (<70) or high 
PAE (>5 Å) values, the likelihood that the backbone structure matches 
the native conformation is very low and the model cannot be reliably 
interpreted. Previous analysis suggests that AF2 predicts on average 
~50% of residues across all proteins with high confidence17,59. Users can 
attempt to increase model quality (better pLDDT and PAE values) by 
generating a series of predictions with different parameters (number 
of recycles, number of random seeds, number of ensembles)1 or by 
integration with experimental data60. However, cases in which the AF2 
evaluation metrics are good but the model does not match experimen-
tal structure (Fig. 2a,d,e,k) suggest that care must be taken in blind 
faith in pLDDT and PAE metrics. The most dramatic case is when AF2 
provides excellent evaluation metrics despite complete disagreement 
of the model’s backbone structure with an experimental structure. 
Terwilliger et al.61 estimate that ~10% of residues predicted by AF2 with 
high confidence deviate from the backbone by more than 2 Å from 
native conformations observed in experimental structures. There are 
also cases in which AF2 generates models with high confidence where 
the backbone structure is correct but fine details, such as side chain 
rotamer placement, are lacking. Jumper et al.1 note that a rotamer is 
generally classified as correct if the predicted torsion angle is within 
40° of the experimental torsion angle, which is correlated with pLDDT 
scores >90. However, as noted by several groups, high pLDDT at a spe-
cific residue does not always indicate that the correct rotameter has 
been modeled23. Cases can also exist in which AF2 predicts the correct 
backbone structure for individual domains but misplaces domains 
relative to each other, which should be recognizable in the output PAE 
matrices. Several groups have reported cases of AF2 models with low 
PAE values (<5 Å) that deviated from experimental data62,63. While no 
precise mechanism exists to identify these cases, some groups have 
used molecular dynamics simulations to further evaluate the stability 
and quality of AF2 models64,65. Some groups have used MD simulations 
to suggest that pLDDT and PAE metrics provide information on dynam-
ics and disorder42,65. However, other reports have compared pLDDT 
scores with crystallographic B factors to suggest that AF2 confidence 
metrics are unable to provide direct information on local flexibility66. 
The determinants driving cases in which AF2 models are associated with 
high confidence but deviate from experimental structure are currently 

unknown and should be thoroughly evaluated in future studies, espe-
cially in the context of nonglobular proteins, toward quantitatively 
defining limits of AlphaFold’s evaluation and error-categorization 
metrics. Updated and refined approaches for error categorization 
may provide better methods for model quality assessment relative to 
pLDDT and PAE metrics14,67.

Integration of AF2 models with experimental 
data
In cases where no experimental data are available (that is, in vitro 
recombinant protein production or in situ characterization is not 
possible), insights into the structure and function of proteins may be 
primarily guided by AF2 predictions supplemented with molecular 
dynamics simulations to further evaluate model stability64,65. In cases 
where recombinant protein can be prepared in the milligram quan-
tities required for biophysical characterization, AF2 models can be 
integrated with experimental data, typically in the form of SAXS, NMR, 
X-ray crystallography and cryo-EM (Fig. 3a–d). Here, experimental 
results are directly compared and contrasted against a series of AF2 
models to evaluate which prediction, if any, adequately fits the data. 
AF2 models are increasingly used as initial templates to fit experimental 
data. The models subsequently undergo further refinement in an itera-
tive fashion to match data toward generation of data-driven structural 
models. Another possibility is the use of implicit experimental data 
to guide and restrain AF2 predictions (that is, AF2 models are refined 
to best fit experimental data)60. The integration of AF2 models with 
experiments is especially useful for cases in which template structures 
or homologous models are lacking. The use of AlphaFold models in 
structure-determination protocols has been shown to reduce the time 
and effort required relative to ab initio model building68–70.

As one example, theoretical SAXS profiles for a series of AF2 mod-
els can be predicted from the 3D coordinates and directly compared 
with experimental SAXS data in the form of P(r) versus r or log (Iq) versus 
q plots, where χ2 values provide a goodness-of-fit measure for AF2 mod-
els relative to the solution-state structure, which is time and ensemble 
averaged in SAXS71–73. The best-matching AF2 model is fitted into the 
experimental SAXS-derived envelope using a variety of software for 
further refinement73 (Fig. 3a). Preliminary comparison of SAXS-derived 
versus AlphaFold calculated P(r) curves revealed that, for many cases, 
a static AF2 model does not adequately describe solution-state struc-
tures42,72. Recent methods have shown that fitting of SAXS data substan-
tially improves when an ensemble of AlphaFold-predicted structures 
is used rather than a static AlphaFold model71, highlighting the impor-
tance of integrating AlphaFold models with experimental data. An 
important caveat is that one must be wary of overfitting AF2 models 
to SAXS envelopes, especially for lower-resolution data74. Typically, 
χ2 values of less than one are indicative of overfitting, and additional 
strategies such as the combination of Vc, Qr, X2free and Rsas metrics have 
been proposed as more robust evaluation metrics75.

AF2 models have also been increasingly used during molecu-
lar replacement and phasing of X-ray diffraction data obtained from 
protein crystals76–79 (Fig. 3b). Standard molecular replacement strate-
gies require 3D coordinates of a template or homologous structure 
and work best when the template is <2 Å Cα root mean square devia-
tion from the target structure80. Recently, an AF2-integrated iterative 
procedure for molecular replacement has been developed in which 
AlphaFold models are used during the initial structure-solution cycle, 
followed by data-guided cycles of AlphaFold structure prediction and 
model rebuilding60,69. This iterative procedure works extremely well 
as demonstrated in a benchmark in which 187 of 215 structures were 
solved by AlphaFold-guided molecular replacement; the success was 
shown to be dependent on high confidence scores associated with 
the AlphaFold prediction69. The use of AlphaFold models in molecular 
replacement can be further enhanced by downweighting or removing 
low-confidence regions23.
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Another burgeoning area where AlphaFold models are integrated 
with experimental data is solution-state NMR15,27,28,30,81–85. A series of AF2 
models can be compared with experimental NMR data in the form of 
distance- and conformation-sensitive structural restraints obtained 
from NOEs81, RDCs29,86, paramagnetic relaxation enhancements87,88 
and/or pseudocontact shifts89 (Fig. 3c). If NMR-derived restraints 
match the AF2 model, the structure can be refined. Otherwise, the 
NMR-derived restraints can be used to recalculate the structure using 
the AF2 model as a template28. Moreover, in the absence of NMR reso-
nance assignments, AF2 models can be used as structural templates 
toward automated assignment90. This is especially helpful for large 
biological assemblies where methyl side chain labeling affords an 
increase in signal and resolution91,92. Here, NMR assignments for methyl 

side chain groups can be obtained using only methyl–methyl NOEs 
obtained from 3D NMR experiments and the atomic coordinates of a 
structure (or AF2-predicted structure) as input with software such as 
MAUS, MAGIC and methylFLYA91,93,94.

AlphaFold models have also been used extensively together with 
single-particle cryo-EM data60,76,95,96 (Fig. 3d). Two-dimensional class 
averages generated from tens of thousands of particle images are 
used as the input for 3D classification and reconstruction. A series of 
AF2 models are fitted into the 3D cryo-EM density maps, and each is 
evaluated for goodness of fit96 and can be refined to generate a final 
structure97. Similar to X-ray diffraction studies, implicit incorporation 
of AF2 models, which are iteratively rebuilt on the basis of cryo-EM data, 
enables swift and robust structure modeling relative to ab initio model 
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Fig. 3 | Integration of AlphaFold models with experimental data. a, Schematic 
of using AF2 models together with either SAXS or small-angle neutron scattering 
(SANS) data. In this example, AF2 models are compared against SAXS data in the 
form of the pair distribution function P(r) and log (Iq) versus q graphs. The SAXS 
envelope is fit together with AF2 models in an iterative fashion and refined to 
generate the final structure. AF, AlphaFold. b, Schematic of using AF2 models 
together with X-ray diffraction data. In the absence of an experimental template 
structure, AF2 models are iteratively used during the molecular replacement 
and/or phasing stages to process and fit the diffraction data in an iterative 
fashion. When the proper solution is found, the model is refined to generate 
the final structure. c, Schematic of using AF2 models together with solution 
NMR data. In one pathway, AF2 models are used together with experimental 
distance restraints (in the form of either NOEs, RDCs, paramagnetic relaxation 

enhancements (PREs), and/or pseudocontact shifts (PCSs) toward automated 
NMR resonance assignment via the predicted structure (in this case, a two-
dimensional 1H-13C[methyl] heteronuclear multiple quantum coherence spectra). 
In another pathway, predicted distances in the AF2 models are compared to those 
obtained experimentally. If the restraints match, the AF2 model is validated and 
refined. If the experimental restraints do not match, the AF2 model can be refined 
or recalculated using those restraints. d, Schematic of using AF2 models together 
with cryo-EM data. Two-dimensional (2D) class averages obtained from cryo-EM 
experiments are reconstructed into 3D density maps. AF2 models are iteratively 
fitted into the cryo-EM density map and refined to generate the final structure. 
For a–d, all graphs or maps shown are conceptual (that is, not real data). For all 
theoretical examples shown, the human glycolipid transfer protein  
(PDB ID 1SWX) was used.
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building60,98. Here, the resolution of the cryo-EM data is essential for 
accurate model building. Reports suggest that AF2 models should not 
be fit into cryo-EM maps with resolution greater than 6 Å98,99.

Beyond static snapshots: ensembles and 
conformational landscapes
Native conformations of proteins are often described as time-averaged 
ensembles of conformations with Boltzmann-type distributions, espe-
cially IDPs and proteins with IDRs100,101. Apart from IDPs, well-folded 
globular proteins, such as G-protein-coupled receptors and kinases, 
also sample a wide range of conformations to carry out their biological 
function102,103. The standard implementation of AlphaFold performs 
well only in detecting a single structural snapshot (the ‘ground state’ 
structure), likely due to the lack of a large set of redundant protein 
conformers in the training set16,32. Thus, several groups have worked to 
extend AlphaFold to include predictions of structural ensembles and 
excited state structures102,104. Initial efforts to enhance sampling of dif-
ferent conformations have involved altering the number of sequences 
used to generate shallower MSA representations, masking coevolution-
ary information provided by MSAs and splitting conflicting coevolu-
tionary signals by clustering MSAs46,47,105. Another approach is to enable 
dropout layers in the neural network, which are usually commonly 
used only during neural network training8,106,107. These approaches 
have shown great promise in increasing the ability of AF2 to predict 
alternative conformations, although benchmarking has been limited 
by the small number of structures in the PDB solved with multiple con-
formations. The use of experimental data, especially SAXS, NMR and 
cryo-EM, has also been described to guide modeling of ensembles and 
alternative conformations71,82,108.

Conclusions and outlook
AlphaFold and other machine learning-based structure-prediction 
software represents a giant leap forward in our understanding of 
protein function and structures. However, they are not yet ‘one size 
fits all’ solutions to the protein structure-prediction problem. Cur-
rent implementations of AF2 can provide highly accurate working 
models for most rigid, well-folded globular proteins but may have 
issues predicting other classes of proteins. However, as suggested 
by recent work, we expect incredible progress in other classes of 
proteins in the coming years33,37,47,51. Machine learning approaches 
are also expected to be applied toward structure prediction of bio-
molecules, including nucleic acids109, carbohydrates110 and lipids. 
The case studies highlighted here reveal why caution must be taken 
in naive interpretation of AF2 models, even for cases with reasonable 
pLDDT and PAE confidence metrics (Fig. 2a–l). We expect that future 
studies will enable further refinement of error categorizations by 
teasing out fine details of cases with good evaluation metrics that 
do not match experimental results. We also expect to see increased 
integration of experimental data with AF2 predictions. Several of the 
studies mentioned here also show that simple modifications in the AF2 
workflow can further extend its accuracy and applications into new 
horizons. On average, >10,000 protein structures are released in the 
PDB per year (https://www.rcsb.org/stats/growth/growth-protein). 
AF2 will continue to be evaluated against new experimental struc-
tures to further identify areas for improvement. Even in the face of an 
impressive display of accuracy, AF2 is still best used to complement 
and extend interpretation of experimental data at both structural 
and functional levels.

Data availability
PyMOL sessions containing comparisons of AlphaFold models 
(extracted from the literature or the AlphaFold database) compared 
with experimental structures together with python script used to color 
code structures based on pLDDT values are freely available at https://
github.com/mcshanlab/AlphaFold_Models_Agarwal_McShan.
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