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Artificial intelligence-driven advances in protein structure predictionin
recent years have raised the question: has the protein structure-prediction
problembeen solved? Here, with afocus on nonglobular proteins, we

highlight the many strengths and potential weaknesses of DeepMind’s
AlphaFold2in the context of its biological and therapeutic applications.

We summarize the subtleties associated with evaluation of AlphaFold2
model quality and reliability using the predicted local distance difference
test (pLDDT) and predicted aligned error (PAE) values. We highlight various
classes of proteins that AlphaFold2 can be applied to and the caveats
involved. Concrete examples of how AlphaFold2 models can be integrated
with experimental data in the form of small-angle X-ray scattering (SAXS),
solution NMR, cryo-electron microscopy (cryo-EM) and X-ray diffraction
are discussed. Finally, we highlight the need to move beyond structure
prediction of rigid, static structural snapshots toward conformational
ensembles and alternate biologically relevant states. The overarching
theme s that careful consideration is due when using AlphaFold2-generated
models to generate testable hypotheses and structural models, rather than
treating predicted models as de facto ground truth structures.

DeepMind'’s AlphaFold2 (AF2) has revolutionized structural biology
with its deep learning algorithm that enables accurate prediction
of three-dimensional (3D) protein structures from only the target
amino acid sequence, potentially solving the half-a-century-old pro-
tein structure-prediction problem: how to predict 3D structures from
only sequence information'™. AF2 has opened the door to understand-
ing protein folds, structures, interactions and function at organis-
mal levels through modeling of 98.5% of the human proteome’. One
common critique of AF2 is that it requires substantial computational
resources to run the software locally (up to 3 TB of disk space and a
modern NVIDIA graphics processing unit with gigabytes of memory).
Several efforts have alleviated these limitations, including the Alpha-
Fold Protein Structure Database®’, which houses over 200 million
pre-run AF2 predictions, as well as ColabFold® and OpenFold’, which

allow users to run a modified AF2 protocol on open-access servers
in minutes. These platforms have allowed the public, industry and
academics without computational resources to model and analyze
structures of their favorite target using AF2 with just a few clicks of a
button. Another critique of AF2 concerns whether it has truly solved
the protein structure-prediction problem. Several groups have pro-
posed that AF2 has only learned how to estimate 3D structures using
patterns extracted from known folds in the Protein Data Bank (PDB)
and coevolutionary information between residues rather than the
underlying physical and chemical basis of protein folding®'° "2, This is
strictly true because current versions of AF2 do not use energy func-
tions that seek toidentify native-like protein conformations, unlike its
competitor Rosetta®. Others suggest that AF2’s algorithm may have
indirectly learned a similar function™. Finally, some critics question

'School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA. 2School of Biological Sciences, Georgia Institute of

Technology, Atlanta, GA, USA.

e-mail: vagarwal@gatech.edu; andrew.mcshan@chemistry.gatech.edu

Nature Chemical Biology


http://www.nature.com/naturechemicalbiology
https://doi.org/10.1038/s41589-024-01638-w
http://orcid.org/0000-0002-2517-589X
http://orcid.org/0000-0002-3212-9867
http://crossmark.crossref.org/dialog/?doi=10.1038/s41589-024-01638-w&domain=pdf
mailto:vagarwal@gatech.edu
mailto:andrew.mcshan@chemistry.gatech.edu

Perspective

https://doi.org/10.1038/s41589-024-01638-w

a Input: amino acid sequence b
MAATELRGVVGPGPAALI... Model confidence
l Structure s l W Very 4high (pLDDT > 90)
database M Confident (90 > pLDDT > 70)
Pair MSA Low (70 > pLDDT > 50)

representation representation Very low (pLDDT < 50)

| |

Transformer 'Evoformer’
Recycle/

refinement i

Structure module

Voo

Predicted

structure

Fig.1|Overview of AF2. a, The general workflow for an AF2 predictionis shown
(derived fromJumper etal.!). The input is the primary amino acid sequence. The
AF2 model of ganglioside GM2 activator protein (https://alphafold.ebi.ac.uk/
entry/P17900) is shown. The modelis colored based on pLDDT values. b, Left,
AF2 prediction for OSBP1 (https://alphafold.ebi.ac.uk/entry/P22059) is shown.

OSBP1 PAE
(structure predicted by
AF2
) PH CC FFAT ORD
— -
(0]
100
200
]
T 300 Relative
3 domain
< 400 . — packing
2 error
2 500 estimates
cterm < 600
700
800
0 100 200 300 400 500 600 700 800
. Scored residue
High Low
confidence 5 5 4 15 20 25 30 confidence

Expected position error (A)

The AF2 modelis colored based on pLDDT values. The domains of the protein
are noted: PH, FFAT, ORD and CC. Term, terminus. Right, AF2 PAE metrics show
the predicted relative position error for each residue in the sequence, with low-
confidence values in white and high-confidence values in green. The domains of
OSBP1have been manually annotated on the PAE graph.

theaccuracy of the standard implementation of AF2 against different
types of nonglobular molecular targets, which could limitits potential
applications'®, Overwhelming evidence suggests that machine learn-
ing software like AF2, RoseTTAFold, ESMFold, and related approaches
are the best and most accurate answer to the structure-prediction
problem to date™" ",

AF2’s artificial intelligence-driven revolution

The basic workflow of AF2 is outlined in Fig. 1a. Users input the pri-
mary amino acid sequence of the target protein as one-letter code
in FASTA format. When more than one input sequence is provided,
AlphaFold-Multimer or AF2Complex is used®>*. Lower and upper limits
for input sequence lengths are defined by difficulties in generating
reliable multiple-sequence alignments (MSAs) for short (less than
ten amino acids) sequences and graphic processing and/or memory
issues for long (>3,000 amino acids) sequences, respectively. Protein
sequences can be obtained from annotated public databases, such as
UniProt. The full details of the AF2 workflow have been discussed previ-
ously'butarebriefly outlined below. Using the input sequence(s), AF2
first queries several databases to construct apair representationand an
MSA representation of the target. The pair representation isamatrix of
pairwise interactions between amino acids that are likely to be spatially
related (thatis, close to each other in space). The MSA representation
isacollection of sequences that areevolutionarily related to the target
sequence and provides mutational covariance information used by
AF2. The pair and MSA representations are then passed through the
Evoformer, aneural network block that exchanges information within
the MSA and pair representations to establish spatial and evolutionary
relationships. Next, the structural module parses information fromthe
Evoformer to convert the representationsintoa3D protein structure.
The entire process undergoes several rounds of iterative recycling
to produce the final refined models. For each output, AF2 generates
aper-residue confidence score stored in the B-factor column of the
model coordinate file (.pdb, .mmCIF or related formats), the pLDDT
score, whichranges from 0 to 100, with higher values assigned higher
confidence in the model'* (Fig. 1b). AF2 also generates a PAE matrix,
which evaluates the relative orientation and position of different parts
(thatis, domains) of the model®. Higher PAE values correspond to lower

confidence for therelative position and orientation of two parts of the
protein in the model. Users should be especially careful to not assign
biological or structural relevance to regions with low pLDDT (<70) or
high PAE (>5 A) values®?>. However, as discussed below, high pLDDT or
low PAE metrics, indicating high confidence in the prediction, do not
promise agreement with native protein conformations but instead
estimate a likelihood for local and global coordinate positions and/
or orientations.

An example AF2 model of oxysterol-binding protein 1 (OSBP1),
alipid transfer protein, obtained from the AlphaFold Protein Struc-
ture Database is shown in Fig. 1b. The pLDDT values plotted onto the
model highlight that the pleckstrin homology (PH), coiled-coil (CC)
and OSBP-related ligand-binding (ORD) domain structure are assigned
very high to high predicted confidence, while the phenylalanines in
anacidic tract motif (FFAT) domain are predicted with very low confi-
dence. The PAE graph reveals that the model has low confidence with
respect to the relative placement of PH, CC, FFAT and ORD domains
with respect to each other.

A critical evaluation of AF2’s applications

There are several open areas of research concerning AF2in the context
of its biological and therapeutic applications: first, accuracy evalua-
tions of AF2 models relative to different types of protein folds present
inthe PDB, especially for new structures as they are released; second,
expanding the types of systems that AF2 can be applied to, either
through benchmarking the default AF2 pipeline on new types of tar-
gets or through modificationsinthe AF2 protocol. Arecent structural
biology community assessment reports that, on average, AF2 gener-
ates models with quality near that of experimental structures across
diverse target folds and applications”. These types of studies with good
reason affirm AF2’s utility but may give theimpression that AF2 is with-
out limitations. Below, we summarize several potential applications
of AF2 and provide examples in which the predicted model deviates
fromthe experimental structure. Cases inwhich AF2’s performanceis
compromised are especiallyimportant to help usunderstand its limita-
tionsand provide opportunities torefine its deep learning-based algo-
rithmin futureiterations. These deviations canbe broadly categorized
into cases with (1) inaccurate secondary, tertiary and/or quaternary
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Fig. 2| Example applications of AF2 predictions that deviate from the
experimental structure. Superpositions of the AF2 model and experimental
structure for several classes of peptides and proteins are shown. AF2 models are
colored according to pLDDT values, with overlaid experimental structures colored
in pink. The Protein Data Bank (PDB) IDs of the experimental structures used for
comparison are noted. a-1, AF2 models were fetched from the AlphaFold Protein
Structure Database or derived from the literature: PRNP (https://alphafold.ebi.
ac.uk/entry/P23907) (a), insulin (https://alphafold.ebi.ac.uk/entry/P01308)

(b), polycystin 2 (https://alphafold.ebi.ac.uk/entry/Q13563) (c), PqqL
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(https://alphafold.ebi.ac.uk/entry/P31828) (d), complement component C6
(https://alphafold.ebi.ac.uk/entry/P13671) (e), ChRmine (f), AT2G23090 (https://
alphafold.ebi.ac.uk/entry/064818) (g), SecA (https://alphafold.ebi.ac.uk/entry/
P28366) (h), lipocalin-type PGDS (L-PGDS)**#/€65A (i), NT-9 (j), A12 nanobody-HIV
C186 gp120 complex (k), and B-endorphin amyloid fibril (). Black arrows denote
areas where the AF2 model deviates from the experimental structure. It is important
tonote that predicted structures, gleaned from literature or the AlphaFold
structure database, have been generated using different versions of AF2 software
and/or with differentinput parameters and thus cannot be directly compared.

structure in regions where AF2 predicts low to moderate confidence,
(2) inaccurate structure in regions where AF2 predicts high model con-
fidence, (3) correct backbone structure butincorrect fine details (that
is, side chainrotamer placements), and (4) correct backbone structure
for individual domains but inaccurate placement of domains relative
to eachother (Fig.2a-I). For cases (1) and (4), low confidence in pLDDT
scoresand PAE graphsalerts userstointerpret structures with caution,
whichis notimmediately clear in cases (2) and (3).

Thesuccess of AF2in predicting proteinstructures begs the ques-
tion as to whether it can also accurately predict peptide structures
(or,insome cases, lack of a well-defined structure). Peptide structure
prediction poses additional challenges given that the benchmark set
used totrain AF2 excluded peptides, the difficulty in generating robust
MSAs for short sequences and observations that many peptides exist
in solution as conformational ensembles rather than a single static
conformation***, McDonald et al.”* performed a benchmark of 588
peptides, revealing that AF2 predicts many a-helical and B-hairpin pep-
tide structures with surprising accuracy. However, AF2 was challenged
by mixed secondary structure membrane and soluble peptides, such as
the prion protein PRNP* (Fig. 2a). It was also shown that the best-ranked
AF2 models (selected on the basis of high pLDDT score) often did
not exhibit the lowest C, root mean square deviation relative to the
experimental structure, suggesting that the pLDDT metric used by

AF2to assess protein modelsis not optimal for classification of peptide
conformations®. In a separate study, Tsaban et al.* showed that AF2
canbe adapted to accurately model peptide-protein complexes irre-
spective of peptide length, although the results seemed biased toward
helical structures and peptides that do not undergo large structural
rearrangements upon binding. New methods are fine-tuning AF2-based
pipelines for specific types of peptide-protein complexes (that is,
peptide-major histocompatibility complex)*. These studies provide
compelling evidence that AF2 can be applied across peptides, pro-
teins and peptide-protein complexes, albeit with several limitations
and caveats. Refinement of AF2-derived models with NMR-derived
restraints, such as chemical shift values, torsion angles, residual dipolar
couplings (RDCs) and nuclear Overhauser effect (NOE) data, could help
improve accuracy of peptide modeling®.

To date, the most common types of protein folds benchmarked
in AF2 assessments are globular and extended or repeat proteins*".
NMR structural ensembles offer aunique validation metric to assess the
accuracy of predicted AF2 models, as AF2 was trained on asubset of the
PDB that excluded NMR data"?’*°, While AF2 performs exceptionally
wellonthese types of folds on average, Fowler et al.* revealed that NMR
ensembles can be more accurate than static AF2 models for dynamic
proteins. Asan example, the AF2 model of insulin deviates substantially
fromits experimental NMR structure (Fig. 2b), potentially due to the
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inability of AF2 to orient cysteine pairs for disulfide bond formation®.
Another consideration is that AF2 models of many globular proteins,
especially enzymes and metalloproteins, lack functionally relevant
cofactors, prosthetic groups or ligands. The authors of AF2 note that,
because it is trained on both apo and holo structures from the PDB,
models maystill be consistent with the expected structurein the pres-
ence of ligands or cofactors despite their absence in the AF2 workflow'”.
However, whether the modeled structure resembles the apo or holo
form of the protein is not immediately clear from analysis of pLDDT
scores or PAE graphs®. Furthermore, deviations of AF2 models from
experimental structures also occur when cofactors, prosthetic groups
orligandsinducestructural changes, either locally or allosterically. For
example, the NMR structure of Ca®*-bound polycystin 2 deviates from
the AF2 model, potentially due to conformational changes upon Ca*
binding (Fig. 2¢). Likewise, the AF2 model of the zinc protease PqqL
deviates from the open, highly extended conformation determined by
X-ray crystallography (Fig. 2d). New algorithms, such as AlphaFill, are
actively being developed that could improve AF2 structure prediction
and refinement for cofactor-, prosthetic group- or ligand-bound pro-
teins®. These modifications will enable AF2 to identify new therapeutic
candidates®*. AF2 may also exhibit difficulties in structure prediction
for extended proteins or proteins with repeat elements®. In the case
of the extended complement Cé6 protein, AF2 predicts the structure
of individual domains well but deviates in the placement of domains
relative to each other (Fig. 2e). For large macromolecules, users may
be able to estimate the likelihood that AF2 correctly placed domains
relative to each other by visualization of confidence scores in the PAE
graph. However, it is important to remember that the PAE values are
only confidence estimates. Furthermore, the accuracy of PAE graphs
forinterdomain prediction has not been as extensively benchmarked
as for intradomain contacts™.

Evaluation of membrane protein structure is another important
application of AF2 (ref. 5,37). Benchmarking AF2 against membrane
proteinsrepresents a challenge, as the membrane environment, which
includeslipids and other proteins, is not directly considered by current
versions of AlphaFold*. Furthermore, membrane proteins represent
less than 3% of total structures in the PDB", meaning that the training
set used by AF2 was highly biased toward soluble proteins®. Hegedis
et al.*® benchmarked several membrane proteins not included in the
original AF2 training set and concluded that, on average, AF2 pre-
dicts transmembrane proteins as well as soluble proteins. However,
the authors note two important limitations. First, AF2 models with
transmembrane region lengths corresponding to nonphysiological
membrane thickness values can exhibit very high pLDDT scores (high
model confidence), suggesting that pLDDT scores alone are not suf-
ficient to select native membrane protein conformations. Second, AF2
performs poorly for targets embedded in membrane thickness outside
the range of 15-35 A as well as targets with novel features not commonly
presentinthe PDB.Inagreement with these findings, Azzaz etal.*’ have
shown the difficulty of AF2 in modeling membrane proteins owing to
‘epigenetic’ factors (that is, lipid environment, co-receptor-induced
structural changes, post-translational modifications) that control pro-
tein structure beyond the amino acid sequence. As an example, while
the AF2 model of the channelrhodopsin ChRmine captures its overall
fold, the modeled N-terminal region and extracellular loops deviate
from its experimental high-resolution cryo-EM structure (Fig. 2f),
likely due to ChRmine’s unique covalent Schiff base feature*’. It will
be imperative to evaluate AF2 against membrane protein structures
astheybecome more readily available as the result of high-resolution
cryo-EM and advances in NMR spectroscopy.

Another unknownis how AF2 performs onintrinsically disordered
proteins (IDPs) and proteins with intrinsically disordered regions
(IDRs)”*2, IDPs represent a challenge for AF2 because it is difficult to
identify evolutionary constraints from MSAs of IDPs and IDRs due to
sequence hypervariability. Inaddition, like peptides, IDPsand IDRs are

best thought of as sampling diverse conformational ensembles rather
than a single static conformation*. Preliminary studies suggest that
the majority of targets with very low confidence score (pLDDT < 50)
assigned by AF2 are likely to be IDPs or IDRs rather than well-folded
structures that AF2 fails to predict****. However, for many targets,
AF2 models with predicted disorder may not be relevant for struc-
ture and function analysis other than for assigning the likelihood for
conformational heterogeneity”. As an example, the NMR structure
of IDR-containing protein AT2G23090 deviates from the AF2 model
despite the confident pLDDT score (Fig. 2g). A study by Ruff et al.*?
showed that the radius of gyration values of IDPs or IDR-containing
proteins calculated using static AF2 models substantially deviates from
those experimentally obtained by SAXS. Future benchmarks should
continue to evaluate AF2 against panels of IDPs and IDR-containing
proteins using novel critical assessment of protein intrinsic disorder
targets*. Efforts are also underway to establish whether AF2 can be
used to predict alternative conformations or conformational ensem-
bles of folded proteins (discussed in detail below). Several groups
have suggested that the default AF2 pipeline has difficulty in modeling
alternative conformations®. For example, AF2 fails to predict the ‘open’
activated conformation of the ATPase SecA (Fig. 2h). Interestingly,
several groups have shown that modifications of AF2 have the potential
to generate models that substantially deviate from each other, allow-
ing for sampling of conformational landscapes. A study by del Alamo
et al.** modified the AF2 pipeline by reducing the number of recycles
and restricting the depth of randomly subsampled MSAs to sample
functionally relevant alternative conformations of transporters and
G-protein-coupled receptors. Similarly, Wayment-Steele et al.*” found
that clustering MSAs by sequence similarity enables AF2 to sample
known alternative states of KaiB, RfaH and mitotic arrest deficient 2
(MAD?2). Further benchmarking of modified AF2 protocols against
IDPs, IDR-containing proteins and alternative conformationis required
to establish protein prediction strengths and limitations for those of
systems**5,

Thereare several other challenging structural modeling problems
in biology and therapeutics that AF2 is tasked with. One of the most
sought-after applications of AF2is predicting the effect of mutations on
proteinstructure and/or stability”. The AF2 authors note that “Alpha-
Fold hasnotbeen trained or validated for predicting the effect of muta-
tions”. In support of this, studies have reported an inability of AF2 to
predict the effects of mutations on protein structure and stability'**>*°,
which maybe due toatraining bias onstable structures or an inability
to extract signal from small mutations through MSAs. As an example,
structural perturbationsinduced by the K59A/C65A double mutation
in prostaglandin D synthase (PGDS) are not accurately captured by
AF2 (Fig. 2i). Arecent adaption of AlphaFold, AlphaMissense, does not
explicitly determine the structural effects of a mutation on a protein
but provides the probability of a missense variant being pathogenic®.
Other groups have suggested that developing AF2 workflows that are
less dependent on MSAs could be beneficial™.

Another challenge is modeling of novel 3D folds that are either
completely absent or not commonly represented in the PDB, such
as de novo designed proteins. In these cases, AF2 has not been fully
trained on novel topologies, which are not commonly found in the
PDB. Furthermore, extraction of coevolutionary information from
MSAs using de novo designed targets may be difficult, as the amino
acid sequences of de novo designed proteins deviate from naturally
observed sequences. For some, this is the ultimate test of whether
AlphaFold may have solved the protein structure-prediction problem.
Interestingly, Moffat et al.”” showed that AF2 performs well on the
de novo designed proteins Top7, Peaké, Folditl and Ferredog-Diesel.
Slight deviationsintertiary structure are noted, such as for the nuclear
transport factor 2-derived de novo designed protein NT-9, but the
overall structure is well described (Fig. 2j). For targets without known
homologs, such as computationally designed proteins, increasing the
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number of recycling iterations can improve the quality of the predic-
tion®. Aninverted version of AlphaFold, called AlphaDesign, has been
used for de novo protein design with some success®.

Evaluation of protein-proteininteractions, including oligomeri-
zation, is another major potential application of AF2 that continues
to be explored”. Yin et al.*>** benchmarked 152 heterodimeric pro-
tein complexes, revealing that AF2 and AlphaFold2-Multimer had a
51% success rate. The authors note that AF2 had difficulty modeling
antibody-protein complexes, such as the A12 nanobody-human
immunodeficiency virus (HIV) gp120 complex (Fig. 2k). A separate
study by Bryant et al.’® reported a 63% success rate for heterodimeric
complexes. Both studies suggest that a robust MSA coevolutionary
signalisrequired for accurate complex modeling. Preliminary reports
also suggest that AF2 may also be able to predict oligomeric states of
proteins and amyloids'””". However, care must be taken when inter-
preting predictions, as highlighted by the incorrect AF2 model of the
B-endorphin amyloid fiber relative toits experimental solid-state NMR
structure® (Fig. 2I).

Evaluation metrics and model reliability

Asstated above, AlphaFold provides error categorizationsin the form
of pLDDT scores and PAE values to estimate the confidence of its pre-
dictions and to evaluate overall model quality and reliability. For the
majority of globular proteins, AF2 provides accurate, reliable models
with high pLDDT (>70) or low PAE (<5 A) values highlighting confidence
inthe prediction of the position of the atomic coordinates, which match
experimentally determined native structures™”**°,In other cases, if the
‘best’ AF2 model exhibits many residues with low pLDDT (<70) or high
PAE (>5 A) values, the likelihood that the backbone structure matches
the native conformation is very low and the model cannot be reliably
interpreted. Previous analysis suggests that AF2 predicts on average
~50% of residues across all proteins with high confidence'”**. Users can
attempt to increase model quality (better pLDDT and PAE values) by
generating a series of predictions with different parameters (number
of recycles, number of random seeds, number of ensembles)’ or by
integration with experimental data®®. However, casesin which the AF2
evaluation metrics are good but the model does not match experimen-
tal structure (Fig. 2a,d,e k) suggest that care must be taken in blind
faith in pLDDT and PAE metrics. The most dramatic case is when AF2
provides excellent evaluation metrics despite complete disagreement
of the model’s backbone structure with an experimental structure.
Terwilliger etal.” estimate that ~10% of residues predicted by AF2 with
high confidence deviate from the backbone by more than 2 A from
native conformations observed in experimental structures. There are
also cases in which AF2 generates models with high confidence where
the backbone structure is correct but fine details, such as side chain
rotamer placement, are lacking. Jumper et al.! note that a rotamer is
generally classified as correct if the predicted torsion angle is within
40° of the experimental torsion angle, whichis correlated with pLDDT
scores >90. However, as noted by several groups, high pLDDT at aspe-
cific residue does not always indicate that the correct rotameter has
been modeled®. Cases can also existin which AF2 predicts the correct
backbone structure for individual domains but misplaces domains
relative to each other, which should be recognizable in the output PAE
matrices. Several groups have reported cases of AF2 models with low
PAE values (<5 A) that deviated from experimental data®>*’. While no
precise mechanism exists to identify these cases, some groups have
used molecular dynamics simulations to further evaluate the stability
and quality of AF2 models®***. Some groups have used MD simulations
tosuggest that pLDDT and PAE metrics provide information on dynam-
ics and disorder*>*, However, other reports have compared pLDDT
scores with crystallographic B factors to suggest that AF2 confidence
metrics are unable to provide direct information on local flexibility®°.
The determinants driving cases in which AF2 models are associated with
high confidence but deviate from experimental structure are currently

unknown and should be thoroughly evaluated in future studies, espe-
cially in the context of nonglobular proteins, toward quantitatively
defining limits of AlphaFold’s evaluation and error-categorization
metrics. Updated and refined approaches for error categorization
may provide better methods for model quality assessment relative to
pLDDT and PAE metrics'’.

Integration of AF2 models with experimental
data

In cases where no experimental data are available (that is, in vitro
recombinant protein production or in situ characterization is not
possible), insights into the structure and function of proteins may be
primarily guided by AF2 predictions supplemented with molecular
dynamics simulations to further evaluate model stability®**. In cases
where recombinant protein can be prepared in the milligram quan-
tities required for biophysical characterization, AF2 models can be
integrated with experimental data, typically in the form of SAXS, NMR,
X-ray crystallography and cryo-EM (Fig. 3a-d). Here, experimental
results are directly compared and contrasted against a series of AF2
models to evaluate which prediction, if any, adequately fits the data.
AF2models areincreasingly used as initial templates to fit experimental
data. The models subsequently undergo further refinementinanitera-
tive fashion to match data toward generation of data-driven structural
models. Another possibility is the use of implicit experimental data
to guide and restrain AF2 predictions (that is, AF2 models are refined
to best fit experimental data)’. The integration of AF2 models with
experimentsis especially useful for cases in which template structures
or homologous models are lacking. The use of AlphaFold models in
structure-determination protocols has been shown toreduce thetime
and effort required relative to ab initio model building®® .

Asoneexample, theoretical SAXS profiles for aseries of AF2 mod-
els can be predicted from the 3D coordinates and directly compared
with experimental SAXS datain the form of P(r) versus rorlog (/,) versus
gplots, where y*values provide a goodness-of-fit measure for AF2 mod-
elsrelative to the solution-state structure, whichis time and ensemble
averaged in SAXS” . The best-matching AF2 model is fitted into the
experimental SAXS-derived envelope using a variety of software for
further refinement” (Fig. 3a). Preliminary comparison of SAXS-derived
versus AlphaFold calculated P(r) curves revealed that, for many cases,
astatic AF2 model does not adequately describe solution-state struc-
tures**”2, Recent methods have shown that fitting of SAXS data substan-
tiallyimproves when an ensemble of AlphaFold-predicted structures
isused rather thanastatic AlphaFold model™, highlighting the impor-
tance of integrating AlphaFold models with experimental data. An
important caveat is that one must be wary of overfitting AF2 models
to SAXS envelopes, especially for lower-resolution data™. Typically,
X’ values of less than one are indicative of overfitting, and additional
strategies such as the combination of V,, Qr, X2;,.. and R, metrics have
been proposed as more robust evaluation metrics™.

AF2 models have also been increasingly used during molecu-
lar replacement and phasing of X-ray diffraction data obtained from
protein crystals’ "’ (Fig. 3b). Standard molecular replacement strate-
gies require 3D coordinates of a template or homologous structure
and work best when the template is <2 A C, root mean square devia-
tion from the target structure®. Recently, an AF2-integrated iterative
procedure for molecular replacement has been developed in which
AlphaFold models are used during the initial structure-solution cycle,
followed by data-guided cycles of AlphaFold structure prediction and
model rebuilding®®®’. This iterative procedure works extremely well
as demonstrated in a benchmark in which 187 of 215 structures were
solved by AlphaFold-guided molecular replacement; the success was
shown to be dependent on high confidence scores associated with
the AlphaFold prediction®. The use of AlphaFold models in molecular
replacement can be further enhanced by downweighting or removing
low-confidence regions®.
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Fig.3|Integration of AlphaFold models with experimental data. a, Schematic
of using AF2 models together with either SAXS or small-angle neutron scattering
(SANS) data. In this example, AF2 models are compared against SAXS datain the
form of the pair distribution function P(r) and log (/,) versus g graphs. The SAXS
envelopeis fit together with AF2 modelsin aniterative fashion and refined to
generate the final structure. AF, AlphaFold. b, Schematic of using AF2 models
together with X-ray diffraction data. In the absence of an experimental template
structure, AF2 models are iteratively used during the molecular replacement
and/or phasing stages to process and fit the diffraction datain aniterative
fashion. When the proper solution is found, the model is refined to generate

the final structure. ¢, Schematic of using AF2 models together with solution
NMR data. In one pathway, AF2 models are used together with experimental
distance restraints (in the form of either NOEs, RDCs, paramagnetic relaxation
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enhancements (PREs), and/or pseudocontact shifts (PCSs) toward automated
NMR resonance assignment via the predicted structure (in this case, a two-
dimensional 'H-®*C[methyl] heteronuclear multiple quantum coherence spectra).
Inanother pathway, predicted distances in the AF2 models are compared to those
obtained experimentally. If the restraints match, the AF2 model is validated and
refined. If the experimental restraints do not match, the AF2 model can be refined
orrecalculated using those restraints. d, Schematic of using AF2 models together
with cryo-EM data. Two-dimensional (2D) class averages obtained from cryo-EM
experiments are reconstructed into 3D density maps. AF2 models are iteratively
fitted into the cryo-EM density map and refined to generate the final structure.
Fora-d, all graphs or maps shown are conceptual (thatis, not real data). For all
theoretical examples shown, the human glycolipid transfer protein

(PDBID 1SWX) was used.

Another burgeoning area where AlphaFold models areintegrated
with experimental data is solution-state NMR'>*"283081-85 A serjes of AF2
models can be compared with experimental NMR data in the form of
distance- and conformation-sensitive structural restraints obtained
from NOEs®', RDCs*#¢, paramagnetic relaxation enhancements®
and/or pseudocontact shifts® (Fig. 3c). If NMR-derived restraints
match the AF2 model, the structure can be refined. Otherwise, the
NMR-derived restraints can be used to recalculate the structure using
the AF2 model as a template. Moreover, in the absence of NMR reso-
nance assignments, AF2 models can be used as structural templates
toward automated assignment®. This is especially helpful for large
biological assemblies where methyl side chain labeling affords an
increaseinsignaland resolution”*?, Here, NMR assignments for methyl

side chain groups can be obtained using only methyl-methyl NOEs
obtained from 3D NMR experiments and the atomic coordinates of a
structure (or AF2-predicted structure) as input with software such as
MAUS, MAGIC and methyIFLYA?%>%¢,

AlphaFold models have also been used extensively together with
single-particle cryo-EM data®®’*%¢ (Fig. 3d). Two-dimensional class
averages generated from tens of thousands of particle images are
used as the input for 3D classification and reconstruction. A series of
AF2 models are fitted into the 3D cryo-EM density maps, and each is
evaluated for goodness of fit” and can be refined to generate a final
structure”. Similar to X-ray diffraction studies, implicitincorporation
of AF2models, which areiteratively rebuilt onthe basis of cryo-EM data,
enables swift and robust structure modeling relative to ab initio model
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building®®®®. Here, the resolution of the cryo-EM data is essential for
accurate model building. Reports suggest that AF2 models should not
be fitinto cryo-EM maps with resolution greater than 6 A”%,

Beyond static snapshots: ensembles and
conformational landscapes

Native conformations of proteins are often described as time-averaged
ensembles of conformations with Boltzmann-type distributions, espe-
cially IDPs and proteins with IDRs'°*'%", Apart from IDPs, well-folded
globular proteins, such as G-protein-coupled receptors and kinases,
alsosample awiderange of conformations to carry out their biological
function'®*'%, The standard implementation of AlphaFold performs
well only in detecting a single structural snapshot (the ‘ground state’
structure), likely due to the lack of a large set of redundant protein
conformers in the training set'**%. Thus, several groups have worked to
extend AlphaFold to include predictions of structural ensembles and
excited state structures'*>'**, Initial efforts to enhance sampling of dif-
ferent conformations have involved altering the number of sequences
used to generate shallower MSA representations, masking coevolution-
ary information provided by MSAs and splitting conflicting coevolu-
tionary signals by clustering MSAs***"'%, Another approachis to enable
dropout layers in the neural network, which are usually commonly
used only during neural network training®'°>'°’, These approaches
have shown great promise in increasing the ability of AF2 to predict
alternative conformations, although benchmarking has been limited
by the small number of structures in the PDB solved with multiple con-
formations. The use of experimental data, especially SAXS, NMR and
cryo-EM, has also been described to guide modeling of ensembles and
alternative conformations’ 1%,

Conclusions and outlook

AlphaFold and other machine learning-based structure-prediction
software represents a giant leap forward in our understanding of
protein function and structures. However, they are not yet ‘one size
fits all’ solutions to the protein structure-prediction problem. Cur-
rent implementations of AF2 can provide highly accurate working
models for most rigid, well-folded globular proteins but may have
issues predicting other classes of proteins. However, as suggested
by recent work, we expect incredible progress in other classes of
proteins in the coming years***”**!, Machine learning approaches
are also expected to be applied toward structure prediction of bio-
molecules, including nucleic acids'®’, carbohydrates' and lipids.
The case studies highlighted here reveal why caution must be taken
innaive interpretation of AF2 models, even for cases with reasonable
pLDDT and PAE confidence metrics (Fig. 2a-1). We expect that future
studies will enable further refinement of error categorizations by
teasing out fine details of cases with good evaluation metrics that
do not match experimental results. We also expect to see increased
integration of experimental data with AF2 predictions. Several of the
studies mentioned here also show that simple modificationsinthe AF2
workflow can further extend its accuracy and applications into new
horizons. Onaverage, >10,000 protein structures are released in the
PDB per year (https://www.rcsb.org/stats/growth/growth-protein).
AF2 will continue to be evaluated against new experimental struc-
turesto furtheridentify areas forimprovement. Evenin the face of an
impressive display of accuracy, AF2is still best used to complement
and extend interpretation of experimental data at both structural
and functional levels.

Data availability

PyMOL sessions containing comparisons of AlphaFold models
(extracted from the literature or the AlphaFold database) compared
with experimental structures together with python script used to color
code structures based on pLDDT values are freely available at https://
github.com/mcshanlab/AlphaFold_Models_Agarwal_McShan.
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