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Abstract: Laser Doppler vibrometry and wavefield analysis have recently shown great

potential for nondestructive evaluation, structural health monitoring, and studying wave
physics. However, there are limited studies on these approaches for viscoelastic soft materials,
especially, very few studies on the laser Doppler vibrometer (LDV)-based acquisition of time-
space wavefields of dispersive shear waves in viscoelastic materials and the analysis of these
wavefields for characterizing shear wave dispersion and evaluating local viscoelastic property
distributions. Therefore, this research focuses on developing a piezo stack-LDV system and
shear wave time-space wavefield analysis methods for enabling the functions of characterizing
the shear wave dispersion and the distributions of local viscoelastic material properties. Our
system leverages a piezo stack to generate shear waves in viscoelastic materials and an LDV
to acquire time-space wavefields. We introduced space-frequency-wavenumber analysis and
least square regression-based dispersion comparison to analyze shear wave time-space
wavefields and offer functions including extracting shear wave dispersion relations from
wavefields and characterizing the spatial distributions of local wavenumbers and viscoelastic
properties (e.g., shear elasticity and viscosity). Proof-of-concept experiments were performed
using a synthetic gelatin phantom. The results show that our system can successfully generate
shear waves and acquire time-space wavefields. They also prove that our wavefield analysis
methods can reveal the shear wave dispersion relation and show the spatial distributions of
local wavenumbers and viscoelastic properties. We expect this research to benefit engineering
and biomedical research communities and inspire researchers interested in developing shear

wave-based technologies for characterizing viscoelastic materials.

Keywords: Laser Doppler vibrometer, Wavefield analysis, Frequency-wavenumber analysis,
Shear wave, Piezoelectric stack, Material property characterization.
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1. Introduction

The usage of lasers for noncontact generation and acquisition of elastic waves has been
attracting increasing attention in recent years for engineering and biomedical applications such
as nondestructive evaluation (NDE) [1-3], structural health monitoring [4—6], and biomedical
imaging [7-10]. Based on the thermal elastic effect, a pulsed laser can generate different modes
of elastic waves such as pressure waves in bulk solids and symmetric and anti-symmetric Lamb
modes in plate-like structures [11-13]. On the other hand, based on the Doppler effect, a laser
Doppler vibrometer (LDV) can acquire displacement waveforms u(f) of generated elastic
waves at the laser location on the test structure’s surface [2,5,11]. By further using high-
resolution galvo mirrors to redirect a laser beam or linear motion stages to move the laser source
location, the laser spot on the test structure can be gradually moved to perform point-by-point
wave sensing and obtain a series of waveforms at predefined scanning points, such as points
along a straight line, points on a flat surface, and points on a curved surface [5,14,15]. The
fusion of these acquired waveforms can further provide time-space wavefields such as u(¢, x)
for a line scan, u(t, x, y) for a flat-surface scan, u(z, x, y, z) for a curved-surface scan, and these
can be used to visually reveal the propagation of elastic waves and the wave interactions with
different material damages such as voids, cracks, corrosion, and delamination [1,15-17]. In
addition, compared to piezoelectric transducer-based elastic wave generation and sensing, the
laser-based methods offer multiple advantages such as high spatial sensing resolution, high
flexibility in moving the excitation and sensing locations, and the ability to generate and receive

elastic waves from far distances, for example, > 1 m [18-20].

With the aforementioned wavefield sensing capability and other unique features, more
studies are leveraging laser technologies for both fundamental studies on elastic wave
propagation and wave-damage interaction in complex structures, as well as application studies

on detecting various types of damages such as cracks, delamination, and corrosion for the
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safety of aerospace, civil, and nuclear structures[1,3,12,17,21-27]. Ambrozinski et al.
demonstrated that the scanning points of an LDV could be used to efficiently construct phased
arrays with various configurations for detecting defects in plate-like structures [23]. Sampath
and Sohn developed a noncontact microcrack detection technique based on laser line
arrays [12]. Kudela et al. developed a hybrid system that integrated a piezoelectric transducer
and a scanning LDV for acquiring wavefields and detecting delamination damage in
composites [17]. Hudson et al. fuse the merits of an air-coupled transducer and a scanning LDV
to develop a fully non-contact system for inspecting local voids in composites [1]. Yu and Tian
used a scanning LDV to acquire Lamb waves’ time-space wavefields that could be processed
by the short-space two-dimensional Fourier transform to analyze wavenumber changes and
detect cracks [3]. With a hybrid system including a piezoelectric transducer to generate and a
scanning LDV to acquire Lamb waves, Moll et al. constructed a high density circular array for
detecting cracks with different orientations in an aluminum plate [21]. Jeon et al. proposed a
compressive sensing-based high-speed full-field laser scanning approach that could effectively
reduce the number of required laser scanning points in the structural inspection area [22].
Radzienski et al. showed the promise of hybrid systems that integrated piezoelectric
transducers and a scanning LDV for identifying damages in different types of composite plates
[24]. Ullah et al. recognized the limitations of piezoelectric transducer-LDV approaches in full
wavefield acquisition and proposed a deep learning-based super-resolution method to enhance
the efficiency of scanning LDV-based wavefield acquisition [25]. Despite these recent studies
on laser technologies for generating and/or sensing elastic waves for various applications, there
are very few studies on laser technologies for acquiring time-space wavefields of shear waves
in viscoelastic materials, characterizing viscoelastic shear wave dispersion, and measuring the

spatial distributions of viscoelastic properties such as shear elasticity ¢1 and shear viscosity .

Shear wave-based imaging is critical for both nondestructive evaluation and biomedical
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applications, for example, the diagnosis of breast cancer [28], skin disease [29], hepatic
fibrosis [30], and various pathologic and traumatic conditions of musculoskeletal soft tissues
such as muscles, tendons, and ligaments [31,32]. Traditional shear wave-based imaging
methods consider shear waves as a non-dispersive mode and use the measured shear wave
speed at one frequency to evaluate the shear elasticity [33,34]. However, for viscoelastic
materials such as soft tissues and biomimetic gelatin phantoms, previous studies found that
shear waves should be considered as a dispersive mode whose wave speed changes with
frequency [35-37]. This dispersive feature is in fact related to the material’s shear viscosity
that is usually neglected in traditional shear wave-based imaging methods [38—41]. In recent
years, to measure the shear wave dispersion relation, most studies performed time-consuming
measurements of wave traveling times at multiple frequencies and then calculate the shear
wave velocities corresponding to those frequencies [37,42]. Few studies leverage methods
based on time-space wavefield acquisition and analysis, which have the potential to quickly
characterize the shear wave dispersion relation. Actually, time-space wavefields of waves can
provide more information beyond the dispersion relation, such as revealing the propagation of
dispersive modes and the wave interactions with material boundaries and internal damages
[15]. In recent years, various wavefield analysis methods based on wavefield energy, multi-
dimensional Fourier transform, wavefield correlation, and local wavenumber characterization
have been developed [2,15,43]. Most studies focus on developing wavefield analysis methods
to evaluate material damages such as cracks, corrosion, and delamination [11,12,17]. There are
limited studies on developing methods to analyze time-space wavefields of shear waves in
viscoelastic materials and characterize the spatial distributions of viscoelastic material

properties.

To perform shear wave-based characterization of viscoelastic materials, the successful

generation of shear waves is critical. The acoustic radiation force (ARF)-based methods, which
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use the ARFs of high-energy ultrasonic beams generated by focused ultrasonic transducers or
ultrasonic phased array transducers [35,44,45], are commonly used. These methods typically
need large contact areas with test samples to generate strong shear waves, thus limiting their
applications to small samples [39]. Moreover, their transducers usually have high costs, and
the systems to drive and control the transducers are more costly. Another category of
commonly used methods is based on shakers [46,47], which are bulky, difficult to use for
portable applications, difficult to precisely control the output displacement, and difficult to
integrate with shear wave sensors. We believe that new shear wave generation methods, which
address the aforementioned limitations and have low-cost, compact, and low-power features,
will greatly benefit the biomedical research community and accelerate the development of

future shear wave-based imaging and viscoelastic material characterization techniques.

This study presents a piezo stack-LDV sensing approach, which leverages a low-cost,
compact, low-power piezo stack to generate shear waves in viscoelastic materials, as well as
an LDV integrated on a linear motion stage to acquire shear wave time-space wavefields. This
study also presents wavefield analysis methods for analyzing the shear wave time-space
wavefield, extracting the shear wave dispersion relation from the wavefield, obtaining local
wavenumber distributions, and characterizing the spatial distributions of viscoelastic properties
such as shear elasticity u1 and shear viscosity u2. To assist the wavefield analysis method
development, a transfer function-based analytical model is formulated to simulate the
propagation of dispersive shear waves, and the simulated time-space wavefields for different
viscoelastic properties are used as the inputs to test wavefield analysis methods. To
demonstrate the piezo stack-LDV system and wavefield analysis methods, proof-of-concept
experiments were performed using a synthetic gelatin phantom. The results show that our piezo
stack-LDV system can successfully generate shear waves and acquire time-space wavefields.

Moreover, the wavefield analysis methods can analyze the acquired wavefields to reveal the
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shear wave dispersion relation, show the spatial distributions of local wavenumbers, and
characterize the spatial distributions of local viscoelastic properties such as shear elasticity w1
and shear viscosity 2. The remainder of this paper is organized as follows. Section 2 presents
the design and mechanism of the piezo stack - LDV shear wave generation and sensing system.
Section 3 presents the methods to analyze shear wave time-space wavefields and characterize
shear wave dispersion, local wavenumber distributions, and local viscoelastic material property
distributions. Section 4 presents a transfer function-based analytical model that can quickly
simulate shear wave propagation in viscoelastic materials. Section 5 presents experimental
studies to demonstrate our piezo stack - LDV system and wavefield processing methods by
generating, acquiring, and analyzing shear waves in a synthetic gelation phantom. Section 6
concludes our study with key findings, discussion, and future work.

2. Piezo stack - LDV shear wave sensing system for acquiring

shear wave time-space wavefields

Figure 1a shows a schematic of the piezo stack-LDV shear wave sensing system, which is
composed of two key modules: a piezo stack-based shear wave generation module and a time-
space wavefield acquisition module based on an LDV installed on a linear motion stage. The
piezo stack is installed on a customized 3D fixture that can adjust the piezo stack’s position
and push the piezo stack against the test sample (e.g., a viscoelastic gelatin phantom). In order
to achieve better contact between the piezo stack and the test sample, a customized
hemispherical head is attached to the end of the piezo stack. For shear wave generation, an
excitation signal (e.g., wideband chirp signal) is generated from an arbitrary function generator,
amplified by a voltage amplifier, and then sent to the piezo stack actuator to output vertical
displacement pulses from the tip of the piezo stack. The vertical displacement pulses can further
excite shear waves propagating in the viscoelastic test sample. For shear wave acquisition, our

system leverages an LDV installed on a linear motion stage, and the laser beam is set to an
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orientation that is normal to the surface of the test sample to acquire the out-of-plane
displacements of waves propagating in the sample based on the Doppler effect. The reason for
using a normal-direction laser is that the shear waves generated by the piezo stack excitation
method are mainly the shear vertical mode whose wave displacements are in the thickness

direction.

To acquire time-space wavefields of shear waves, the aforementioned shear wave
excitation and acquisition modules are synchronized and controlled by customized MATLAB
codes. Through pitch-catch sensing with our piezo stack-LDV system, a waveform can be
acquired, for example, u(z, x1) acquired with the laser spot set at a position xi. After changing
the laser spot position to x» and x,, waveforms denoted as u(¢, x1) and u(¢, x,) can be acquired,
as illustrated in Figure 1b. Therefore, through point-by-point measurements at a series of
equally-spaced points along a user-defined scanning line (Figure 1a), the piezo stack - LDV
system can acquire a series of waveforms. The combination of these waveforms results in a
time-space wavefield u(¢, x), which can be considered as a wave displacement field function
with respect to time ¢ and position x, as illustrated in Figure 1c. In order to correctly obtain key
features (such as frequency and wavenumber) of shear waves, the Shannon sampling theorem
should be followed to set the temporal and spatial sample rates. The sampling frequency should
be at least twice the maximum wave frequency, and the spatial sampling resolution should be

smaller than half of the minimum wavelength.

3. Methods for analyzing shear wave time-space wavefields

The time-space wavefield contains a wealth of information for both analyzing the propagation
of dispersive waves and characterizing material properties. This section presents three methods
for analyzing the time-space wavefields of shear waves in viscoelastic materials. First, a
frequency-wavenumber analysis method based on the multi-dimensional Fourier transform is
presented to characterize the dispersion relation of shear waves. Second, a frequency-
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wavenumber dispersion analysis method is presented for the characterization of viscoelastic
material properties including shear elasticity w1 and shear viscosity w». Third, a space-
frequency-wavenumber method is presented for obtaining the spatial distribution of local
wavenumbers, as well as characterizing the spatial distributions of local viscoelastic material
properties. In addition, these analysis methods are tested using both simulation data in

Section 4 and experimental data in Section 5.

3.1. Frequency-wavenumber analysis of shear wave time-space wavefields
To obtain wave signatures such as frequency and wavenumber information, the shear wave
time-space wavefield can be transformed to a representation in the frequency-wavenumber

domain by using a multi-dimensional Fourier transform expressed as [48]

UFLR) = [0 [0 u(t,x)e i@ tkXgedyx, (1)
where x = (x, y, z) is a position vector and k = (kx, &, k-) is a wavenumber vector. U(f, k) is the
resulting frequency-wavenumber representation (or spectrum) that is a function of wave
frequency f and wavenumber vector k. For a time-space wavefield acquired through point-by-
point LDV measurements along a straight line (illustrated in Figure la), the frequency-
wavenumber spectrum U(f, K) in Eq. (1) should be reduced to U(f, k = k) and accordingly the

transformation equation should be

U, k) = [ 7 u(t,x)e @i gedx. )
As illustrated in Figure 2b, the spectrum U(f, k) obtained through the multi-dimensional Fourier
transform can reveal the frequency-wavenumber components that are contained in the time-
space wavefield u(¢, x). In this manner, we are able to analyze the shear wave time-space
wavefield acquired by the piezo stack-LDV system and obtain the frequency-wavenumber

dispersion relation of shear waves.
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3.2. Wave dispersion analysis for characterizing viscoelastic properties

When considering the shear viscosity effect, the shear wave becomes dispersive, and its
frequency-wavenumber dispersion relation depends on both the shear elasticity and shear
viscosity. The theoretical dispersion relation can be obtained by solving the shear wave
characteristic equation. For the completeness of this paper, the key steps to formulate the shear
wave characteristic equation based on the Kelvin-Voigt viscoelastic model are presented here.
As illustrated by the inset in Figure 3a, the Kelvin-Voigt viscoelastic model has a spring and a
dashpot in parallel, for considering the effects of shear elasticity s and shear viscosity /o,
respectively. This model’s stress-strain relation can be expressed as T = (u; — u, d/0t)e,
where 7T is shear stress and ¢ is shear strain that equals to the vertical displacement’s partial
derivative Odu./0x [49]. By introducing this stress-strain relation for the Kelvin-Voigt
viscoelastic model to the equation of motion, the wave equation for shear waves in a

viscoelastic material can be derived as

0%uy, 03uy, 0%u,
Ml axz MZ axzat - p atz 3 (3)

where p is density. By substituting the general wave displacement relation u, =
U,(w)e'@t=k%) where w is the angular frequency into Eq. (3), we can obtain

(—#1k? + iwpk? + pw?)U,(w) = 0. (4)
Because U,(w) isanonzero term, the expression in the parathesis should be zero. By solving

the characteristic equation, we can obtain the following frequency-wavenumber relation,

k= |—22 = Re(k) — i Im(k) (5)
T\ mtiops ’
. pw2< /u§+w2u§+u1> pwz( /u%+w2u%—u1>
Wlth Re(k) = 2(”%+w2”%) and Im(k) = 2(”%4_0)2#%) 5

where Re(k) and Im(k) are the real and imaginary parts of the wavenumber £, respectively.

With the solved wavenumber, we can further derive the shear wave velocity Cr= w/Re(k) and
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attenuation ar = Im(k). Based on the frequency-wavenumber relation in Eq. (5), MATLAB
codes are developed to plot a series of frequency-wavenumber dispersion curves for different
viscoelastic properties (e.g., different combinations of x1 and u2), in order to investigate the
effects of materials properties on dispersion curves. As shown in Figure 3, the wavenumbers
at low frequencies are more sensitive to the change of shear elasticity 1, while high-frequency
wavenumbers are more sensitive to the change of shear viscosity . Moreover, with the
decrease of shear viscosity w2, the curved dispersion relation gradually changes to a straight
line. Furthermore, as shown in Figure 3b, a 2D representation showing the wavenumber versus
1 and po at a selected frequency of 400 Hz, the wavenumber becomes larger with the decrease

of either u or wo.

With the theoretical shear wave frequency-wavenumber dispersion curves corresponding
to different material properties, we can compare these curves to the experimentally acquired
frequency-wavenumber spectrum. Through comparison, the theoretical shear wave dispersion
curve that best matches the spectrum data can be found, as illustrated in Figure 2¢. The material
properties used for calculating the best-match theoretical dispersion curve are considered as
the measured viscoelastic properties of the test sample. To perform dispersion curve
comparison for material property characterization, first, a database denoted as {k(f| 11, ;2)} is
established by combining a collection of theoretical dispersion curves k(f) for different
combinations of x1 and 2. Second, from the experimental frequency-wavenumber spectrum,
the wavenumbers kexp(f;) that have maximum spectrum amplitudes for different frequencies f;
(i=1,2,3... N) are identified, as illustrated by ‘+’ markers in Figure 2b. Third, a least square
method is used to search the database {k(f| 1, 1)}, in order to find the theoretical dispersion
curve k°P'(f) that best matches the experimental data kexp(f7), as well as the shear elasticity

and shear viscosity 5™ corresponding to the best-match theoretical dispersion curve. The

dispersion curve comparison process can be expressed as
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p, i =arg min [k () =k o) | ©

oty 45
Therefore, by analyzing the shear wave’s dispersion relation using the aforementioned method,
we can characterize a viscoelastic material’s shear elasticity and shear viscosity. Note that the
properties obtained by the aforementioned method are averaged values for the region where
the time-space wavefield u(z, x) is acquired.

3.3. Space-frequency-wavenumber characterization of spatial distributions of

local viscoelastic material properties
The frequency-wavenumber analysis in Section 3.1. transforms a time-space wavefield to a
frequency-wavenumber spectrum; however, the obtained frequency-wavenumber spectrum
doesn’t clearly provide spatial information. The dispersion analysis in Section 3.2 provides an
approach to characterize viscoelastic material properties; however, this method doesn’t carry
the spatial information to characterize the spatial distributions of material properties. To
overcome these limitations, we performed space-frequency-wavenumber analysis based on
short-space Fourier transform, as illustrated in Figure 4. This analysis can retain the spatial
information for characterizing the frequency-wavenumber relations at different positions (see
Figure 4b) and the spatial distributions of material properties (see Figure 4d). In this method,
the short-space Fourier transform [15] is applied to the acquired time-space wavefield u(¢, x)

to obtain a space-frequency-wavenumber representation S(x, f,k) as:

SE £ =] [ ule, )W (x=x)e O drd, (7)

where W (x—X) is a short-space window centered at X . In this study, the short-space

window is formulated based on a Hanning function expressed as:

1 =% )| . _
_ |=|I*cos| 27— || if |x—X|<D,/2
W(x—Xx)=12 D , (8)

X

0 otherwise
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where Dy is the window size that determines the spatial and wavenumber resolutions of the
short-space Fourier transform. A larger window size Dy leads to a higher wavenumber
resolution while a lower spatial resolution. For this study, the window size D, is greater than

two times of the wavelength of the used shear waves, to have a good wavenumber resolution.

The short-space Fourier transform method can be better explained through Figure 4a and

4b. As shown in Figure 4a, by multiplying a short-space window W(x—X,) centered at X ,
a windowed time-space wavefield u(#,x)W(x—X,) canbe obtained. By gradually moving the
short-space window, the original time-space wavefield u(#,x) can be discretized into a series
of short-space time-space wavefields {u(¢, x)W (x—X,) } » with center positions at {X,}y where

n=1,2,3,---, N. By further applying multi-dimensional Fourier transform to all the discretized
short-space time-space wavefields, a series of frequency-wavenumber spectra {Ux(f, k)} v (see
Figure 4b) corresponding to windowed wavefields with different center positions {x,}y can be
obtained. The collection of all the resulting frequency-wavenumber spectra can be represented

using a space-frequency-wavenumber function S(x, f,k) in Eq. (7).

The obtained space-frequency-wavenumber representation S(x, f,k) can be used to
analyze the changes of wave features and material properties with respect to position x . As
illustrated in Figure 4c, the space-wavenumber spectrum S(X,k) at a selected frequency of

fm can show the changes of wavenumber components with respect to position x . Moreover,
by applying the material property characterization method in Section 3.2 to all the frequency-
wavenumber spectra {U,(f, k)}n (illustrated in Figure 4b) corresponding to different positions

{X,} N, we can obtain the spatial distributions of local viscoelastic properties such as the shear

elasticity distribution {£4(X,)}, (also denoted as (X)) and the shear viscosity distribution

{1,(x,)}, (also denoted as £4(X)), as illustrated in Figure 4d.
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For shear waves in a small region, for example [X,—D./2, X,+Dx/2], the wave dispersion
curve (e.g., frequency-wavenumber curve) is an inherent wave property depending on the
material properties in that small region and doesn’t change with the incoming waves, such as
waves already transmitted through other regions. In our method, we experimentally evaluate
the frequency-wavenumber spectrum in that small section. Then, we obtain the theoretical
frequency-wavenumber curve that best matches the experimental frequency-wavenumber
spectrum. By using this approach, the obtained p,(X.) and pu,(x,) are averaged material
properties for the small, windowed region [X,—D./2, X,+Dy/2] where the experimental
frequency-wavenumber spectrum is obtained.

4. Analytical modeling for simulating the time-space wavefields of dispersive
shear waves in viscoelastic materials

In this Section, an analytical model is formulated by leveraging the shear wave dispersion

relation, the transfer function method [50,51], and the Fourier transform. This method enables

efficient simulations of dispersive shear waves that are generated by arbitrary time-domain

displacement excitation. Based on the analytical model, time-space wavefields of shear waves

in viscoelastic materials with different properties are simulated, and subsequently used as input

wavefields to test the wavefield analysis methods presented in Section 3.

4.1. Analytical model of dispersive shear waves

To simulate the propagation of dispersive shear waves in viscoelastic materials, numerical
methods such as finite element and finite difference methods typically need long computation
times and large computer memories [36,41,52]. To quickly simulate the propagation of
dispersive shear waves generated by an arbitrary time-domain excitation signal, an analytical
model is presented. The diagram in Figure 5 shows the key steps to establish the analytical
model. First, an arbitrary time-domain excitation u.(f) is changed to a frequency-domain

spectrum Ug(w) through the Fourier transform. Second, the shear wave dispersion relation k(w)
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is used to construct a transfer function G(w, x)=e *®*

. The transfer function here is for plane
waves and the energy spreading effect that depends on the distance to the source is not
considered [50,51]. Third, by multiplying the transfer function with the excitation spectrum
U«w), we can obtain a frequency-space function U(w, x) that can be changed to a time-space

wavefield u(¢, x) through inverse Fourier transform. Mathematically, the simulation model can

be formulated as

u(t,x) = F ' [G(w,x)-U,(@)] = F ' [ e Flu (0] ], 9)

where F[-] and F'[-] represent Fourier and inverse Fourier transforms that change data

between time and frequency domains. Note that Eq. (9) for plane waves is sufficient to
capture the wave dispersion effect, as it considers the frequency-dependent wavenumber

|-O.5

k(w). For cylindrical and spherical waves, distance-dependent terms [x[*> and |x|! can be

introduced to Eq. (9), respectively, for considering the energy spreading effects.

4.2. Simulation and analysis of shear wave time-space wavefields

The analytical model in Eq.(9) is used to simulate shear waves generated by a chirp excitation
modulated by a Tukey window that ensures smooth transitions at the beginning (or leading
edge) and end (or trailing edge) of the chirp signal. As shown in Figure 6a, the input signal has
a leading edge with gradually increasing amplitudes, a wide center part with an amplitude of
I, and a trailing edge with gradually decreasing amplitudes. The input signal’s frequency
spectrum is given in Figure 6b showing a wide frequency band from 0.3 to 1.8 kHz and a nearly
flat top from 0.6 to 1.6 kHz. By using the analytical simulation method, we simulated dispersive
shear waves in viscoelastic materials with different properties. By using the analytical
simulation method, we simulated dispersive shear waves in viscoelastic materials with different
properties, and the imaginary wavenumber Im(k) related wave attenuation is not considered in
these simulations. Figure 6¢ to 6e show the simulated time-space wavefields for three cases
with (1 = 25 kPa, u» = 5 Pa-s), (u1 = 50 kPa, o = 5 Pa-s), and (u1 = 50 kPa, o = 10 Pa-s),
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respectively, while the same density p = 850 kg/m? is used. In the simulation results, as the
waves propagate away from the source, the wave packet becomes more and more compact in
the time domain. This is because of the wave dispersion effect with high-frequency waves
propagating faster. Moreover, for different material properties, the wavefront slopes in the
time-space wavefields are different, as different material properties lead to different shear wave

speeds.

To test the wavefield analysis methods presented in Section 3, the simulated time-space
wavefields are transformed to the frequency-wavenumber domain through the multi-
dimensional Fourier transform. Figure 6f to 6h give the frequency-wavenumber spectra
corresponding to the time-space wavefields in Figure 6¢ to 6e, respectively, and these spectra
reveal the frequency-wavenumber dispersion relations contained in the shear wave time-space
wavefields. In addition, we applied the dispersion analysis method established in Section 3.2
to the frequency-wavenumber spectra. The ‘+’ markers in Figure 6f to 6h are identified
wavenumber points with maximum spectrum amplitudes for different frequencies. The solid
curves are the best-match frequency-wavenumber dispersion curves £°P'(f) that are obtained
through the least square-based dispersion curve identification method in Section 3.2. In

t

addition, the viscoelastic material properties ™ and g™, which are identified using

Eq.(6), agree with the material properties used for analytical simulations. The results in
Figure 6fto 6h prove the feasibility of our wavefield analysis methods for analyzing dispersive

shear waves in viscoelastic materials with different properties.

5. Proof-of-concept experiments

Proof-of-concept experiments were performed to demonstrate a fully functional piezo stack-
LDV system, as well as the wavefield analysis methods. Experiments were performed to
demonstrate the piezo stack-based generation of shear waves in a viscoelastic material and the

LDV-based acquisition of shear wave time-space wavefields. The acquired shear wave time-
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space wavefields were analyzed to demonstrate the functions of wavefield analysis methods
presented in Section 3, such as characterizing the shear wave dispersion relation using
experimental data, characterizing viscoelastic material properties, and characterizing the
spatial distributions of local properties such as wavenumber, shear elasticity, and shear

viscosity.

5.1. Experimental setup and procedures

Figure 7a shows a photo of the piezo stack-LDV experimental setup for generating shear waves
in a viscoelastic phantom (180x120x30 mm) made of synthetic gelatin and acquiring time-
space wavefields of the generated shear waves. As shown in Figure 7b, the shear wave actuator
is composed of a 3x3x10 mm piezo stack (STEMINC, USA ) and a 3D-printed hemispherical
head (radius 5 mm) attached to the tip of the piezo stack. The excitation signal for the piezo
stack is generated from an arbitrary waveform function generator (Tektronix AFG3052C) and
then amplified by a voltage amplifier (Krohn-Hite 7500). For this study, a 5-cycle sine wave
modulated by a Hanning window is used as the excitation to generate narrow-band shear waves,
and a chirp signal is used to generate wideband shear waves. Details of these excitation signals

are given in Section 5.2 and 5.3.

To generate shear waves in a viscoelastic phantom, the piezo stack actuator is installed on
a customized height-adjustable fixture and makes contact with the top surface of the
viscoelastic phantom, as shown Figure 7b. Using this setup, the output thickness-direction
displacement oscillation from the actuator can excite shear waves in the viscoelastic phantom.
To acquire the generated shear waves, an LDV (Polytec OFV-505) installed on a customized
3D linear motion stage is used. The laser beam is normal to the phantom’s top surface to
measure the out-of-plane displacement waveforms of shear waves. The 3D linear motion stage
is controlled by a motion controller and a customized MATLAB program to move the laser

head to different locations for signal acquisition. Through point-by-point acquisition using a
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piezo stack-LDV system illustrated in Figure 1a, we can acquire the generated shear waves at
multiple points along a straight line and provide the time-space wavefield that can show the
propagation of shear waves. For our experiments, the coordinate origin is at the piezo stack’s
center, and the scanning line is along the x axis, as illustrated by the sensing layout in Figure 7c.

The spatial sampling resolution is set to 0.2 mm, and the sampling frequency is set to 65 kHz.

5.2. LDV scanning results and shear wave velocity measurement

We used a narrow-band excitation signal with a center frequency of 400 Hz, to generate 400
Hz shear waves. Figure 8a and 8b show the waveform and frequency spectrum of the excitation
signal. Figure 8¢ shows the acquired time-space wavefield of shear waves in the gelatin
phantom. This wavefield can be considered as a collection of waveforms acquired at different
locations. By using the distance to the wave source and the traveling time, the shear wave
velocity can be measured. First, we used MATLAB codes to automatically identify valley
positions from the time-space wavefield, and these valley positions were divided into four
groups as illustrated in Figure 8c. Second, for each group of valley points, we can calculate the
time difference At,.; using waveforms measured at /%' and n™ sampling points, as illustrated in
Figure 8d. Third, using the time difference At,.; and the distance Ax,.; between two points, the
shear wave velocity can be calculated by Cr = Ax,.;/At,.;. Fourth, this process is repeated for
all the identified valley points in Figure 8c. Last, we perform a statistical analysis of the wave
velocities calculated using all the valley points. The analysis result is given in Figure 8e. The
obtained mean velocities for groups 1 to 4 are 7.653 m/s, 7.626 m/s, 7.675 m/s, and 7.636 m/s,
respectively. The averaged velocity and standard deviation considering all the data groups are
7.648 m/s and 0.106 m/s. The obtained shear wave velocity falls in the velocity range (1 m/s
to 15 m/s) found in literature [35,36,53,54]. From the statistical result in Figure 8e, it can also
be seen that the extreme data points (indicated by the whiskers above and below the blue boxes)

only have small deviations from the mean velocity.
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5.3. Wavefield analysis results

To generate shear waves in a wide frequency band, a Tukey window-modulated chip signal is
generated by a function generator (Tektronix AFG3052C) and then amplified by a voltage
amplifier (Krohn-Hite 7500). Figure 9a and 9b show a waveform and a spectrum of the
measured excitation signal applied to the piezo stack actuator. It can be seen that the applied
chirp excitation signal has amplitudes around 80 Vpp and covers frequencies from 0.3 to
1.8 kHz. Note that the gradual amplitude decrease from 5 to 20 ms is induced by the frequency-
dependent amplification performance of the amplifier. The acquired time-space wavefield in
Figure 9c is analyzed by using the wavefield field analysis methods presented in Section 3.
Figure 9d shows a 2D spectrum obtained by using the frequency-wavenumber analysis method
in Section 3.1, and this spectrum shows the frequency-wavenumber components of the
generated shear waves. Because of the usage of a wideband chirp excitation, the frequency-

wavenumber components in a wide frequency range are generated.

The wave dispersion analysis method established in Section 3.2 is applied to the
frequency-wavenumber spectrum. First, for different frequencies, wavenumbers with the
highest spectrum amplitudes are identified from the frequency-wavenumber spectrum. Second,
by comparing these frequency-wavenumber points (marked with ‘x’ in Figure 9d) with a
database of theoretical frequency-wavenumber dispersion curves, the dispersion curve (solid
curve in Figure 9d) that best matches the experimental data is obtained. The viscoelastic
material properties corresponding to the best-match dispersion curve are shear elasticity ui of
41 kPa and shear viscosity u2 of 6 Pa-s. These values fall in the ranges 0.5-100 kPa and 0.75-
9 Pa-s found in the literature [35,53—58]. For comparison, rheometers (HR20 and RSA-G2, TA
Instruments) were used to perform rheological harmonic shear tests on three samples at 25 °C.
The average shear elasticity is 39.2 kPa. With the rheometry viscosity data and the power-law

model for viscous materials [59,60], we obtained the average shear viscosity of 6.6 Pa's for the
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frequency range 0.3 to 1.8 kHz. Compared to the rheometry data, properties measured by our
wave dispersion analysis approach have discrepancies of 4.6% for shear elasticity and 9.1%

for shear viscosity.

The space-frequency-wavenumber analysis method presented in Section 3.3 is applied to
the acquired time-space wavefield. Figure 10a shows the resulting space-wavenumber
spectrum at a frequency of 400 Hz, and this result shows the wavenumber distribution versus
location. By applying the dispersion analysis method in Eq.(6) to frequency-wavenumber
spectra {Ux(f, k)}n corresponding to different positions {X,}, the spatial distributions of local
viscoelastic properties such as the shear elasticity distribution and the shear viscosity
distribution are obtained, as shown in Figure 10b. For the used uniform viscoelastic phantom,
the results including wavenumber, shear elasticity, and shear viscosity almost have no changes.
In our future study, we will further test the space-frequency-wavenumber method by using a

nonuniform phantom with material property changes.

6. Conclusion and discussion

We have developed and demonstrated a piezo stack-LDV shear wave sensing system, which
can generate narrow-band and wideband shear waves in viscoelastic materials by using a small
piezo stack and can acquire time-space wavefields of the generated shear waves in a contactless
and high-resolution manner based on an LDV integrated with a linear motion stage. The
acquired time-space wavefields contain abundant information to obtain shear wave features
such as velocity, frequency-wavenumber components, and wave dispersion. To analyze the
wavefields of dispersive shear waves, this study presents multiple analysis methods including
multi-dimensional Fourier transform-based frequency-wavenumber analysis, dispersion
analysis-based material property characterization, and space-frequency-wavenumber analysis.
These methods offer useful functions such as analysis of the frequency-wavenumber contents
of the generated shear waves, characterization of the shear wave dispersion, extraction of

Page 19



viscoelastic material properties (shear elasticity i and shear viscosity p2), and characterization

of the spatial distributions of local wavenumbers and viscoelastic properties.

In addition to developing the piezo stack-LDV shear wave sensing method, we formulated
an analytical model based on the dispersion curve solved from the wave characteristic equation
that considers the Kelvin—Voigt viscoelastic model. Based on the analytical model, we
simulated and compared time-space wavetields of wideband shear waves in viscoelastic
materials with different properties. Our results show that the wave packet of wideband shear
waves becomes more and more compact in the time domain. This is because of the frequency-
dependent shear wave velocity, i.e., the wave dispersion effect. Our parametric study shows
that shear waves at high frequencies are more sensitive to the shear viscosity change and the
low-frequency shear waves are more sensitive to the shear elasticity change. Using the
simulated time-space wavefields as inputs, we also successfully tested our wavefield analysis

methods.

For the proof-of-concept, a fully functional piezo stack-LDV sensing system was
demonstrated by generating shear waves in a synthetic gelatin phantom and acquiring time-
space wavefields in a noncontact and high-resolution manner. The measurement results prove
that our piezo stack-LDV system can acquire the wavefields of narrow-band shear waves
generated with a 5-count sine wave excitation and wideband shear waves generated with a
chirp excitation. With the narrow-band time-space wavefield, we were able to obtain the shear
wave velocity using the propagation distance and time. Moreover, by applying the frequency-
wavenumber analysis and wave dispersion analysis methods to the wideband time-space
wavefield, we were able to analyze the frequency-wavenumber components, characterize the
shear wave dispersion relation, as well as characterize the viscoelastic material properties of
our fabricated synthetic gelatin phantom. Moreover, by applying the space-frequency-

wavenumber analysis method to the wideband time-space wavefield, we were able to
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characterize the spatial distributions of local wavenumbers and local viscoelastic properties.

The experimental results prove the feasibility of our piezo stack-LDV sensing system and
the presented methods for analyzing time-space wavefields, viscosity-induced wave
dispersion, and frequency-wavenumber spectra of dispersive shear waves. This study
contributes to laser ultrasonic technologies, by establishing a laser-based approach and
showing its functions of acquiring time-space wavefields of shear waves in viscoelastic
materials, characterizing the viscosity-induced shear wave dispersion, and characterizing the
spatial distributions of viscoelastic properties. This study also contributes to shear wave
analysis methods, by introducing multiple wavefield-based methods and showing their
functions of characterizing both shear wave properties and viscoelastic material properties. In
addition, this study provides a novel piezo stack-based method for generating shear waves in
viscoelastic materials. Compared to commonly used methods, including the bulky shaker-
based methods and the ARF-based methods that require expensive focused ultrasonic systems
or high-power ultrasonic phased array systems, the piezo stack-based method has low-cost,
compact, and low-power features, its output displacements can be easily controlled, and it can
be used as a portable shear wave generation device. We expect that this research can greatly
benefit the NDE and biomedical research communities and accelerate the development of

future shear wave-based technologies for characterizing viscoelastic materials.

We will continue to work on this piezo stack-LDV technology to address its limitations.
First, our proof-of-concept experiment still needs to use a bulky function generator and an
amplifier. To develop a fully functional portable shear wave excitation device, we will replace
these modules with a portable excitation signal generation device that leverages Arduino-based
excitation signal generation and customized electronic board (e.g., L298N driver board) -based
low-frequency signal amplification. Second, this work is limited to acquiring and analyzing

shear waves propagating along a line. Later, we will perform LDV -based wavefield acquisition
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on a 2D flat surface and a 3D curved surface and then extend the shear wave analysis methods
to those cases. Third, this work uses a uniform phantom with no spatial changes of material
properties. Later, we will test our method using phantoms with spatial changes of material
properties and real tissues (such as skin, muscle, and liver) through collaboration with

biomedical researchers.
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Figure 1. Illustration of the piezo stack - LDV shear wave sensing approach: (a) Schematic of the
piezo stack - LDV sensing system that uses a piezo stack to generate shear waves and an
LDV to acquire shear wave signals. (b) Example waveforms u(¢, x,) acquired at different
locations x, along a scanning line. (¢) Example shear wave time-space wavefield u(z, x) that

can be acquired by our piezo stack - LDV sensing approach.
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Figure 2. Illustration of the wavefield analysis method for determining the viscoelastic material
properties. (a to b) A time-space wavefield u(z, x) acquired by the piezo stack - LDV sensing
system is transformed to a frequency-wavenumber spectrum U(f, k), by using 2D Fourier
transform. (b to ¢) The theoretical dispersion curve £°P'(f) that best matches the experimental
frequency-wavenumber spectrum U(f, k) is selected, by using a process that compares the
experimental spectrum with a database of theoretical dispersion curves that are precalculated
for different viscoelastic material properties. The ‘+’ markers in (b) indicate wavenumber
points with maximum spectrum amplitudes for different frequencies. The shear elasticity

and shear viscosity that are used to calculate the best matching theoretical dispersion curve

k°P'(f) are denoted as ,u(l’pt and ,u;pt.
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Figure 3. Theoretical shear wave dispersion relations derived based on the Kelvin—Voigt model. (a) A
group of theoretical frequency-wavenumber dispersion curves for viscoelastic materials
with different shear elasticities and shear viscosities. (b) Wavenumber variation versus shear

elasticity 1 and shear viscosity 1 when the shear wave frequency is 400 Hz.
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short-space window’s center position, the original time-space wavefield can be discretized
into a series of short-space time-space wavefields whose center positions are at {X,}y where
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a space-wavenumber spectrum S(X, k) that can be obtained from the short-space Fourier
transform result at a frequency of /.. (d) Material property distributions u, (%) and w, (%)

can be determined, by applying dispersion curve analysis to all the frequency-wavenumber

relations of the short-space Fourier transform result in (b).
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Figure 5. A diagram showing key steps for the analytical simulation of the shear wave time-space

wavefield u(z, x)
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Figure 6. Analytical simulation results for cases with different material properties. (a) Time-domain
waveform of a window chirp signal that is used as the excitation. (b) Frequency spectrum
of the excitation waveform. (c-e) Simulated time-space wavefields for three cases with (x4
=25kPa, u» =5 Pa-s), (u1 =50 kPa, u» = 5 Pa-s), and (11 = 50 kPa, u» = 10 Pa-s), respectively.
(f-h) Frequency wavenumber spectra corresponding to the time-space wavefields in (c) to

(e), respectively.
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Figure 7. Experimental setup for characterizing the viscoelastic properties of a synthetic gelatin
phantom. (a) Photo of the piezo stack - LDV shear wave sensing setup. (b) Close view of
the test setup showing a small piezo stack with a customized hemispherical actuator tip, a
laser spot, and a synthetic gelatin phantom. (¢) A schematic showing the experimental

sensing layout.
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Figure 8. Experimental results acquired by the piezo stack - LDV shear wave sensing approach.
(a) and (b) Waveform and frequency spectrum of the excitation signal (5-count 400 Hz sine
wave modulated by a Hanning window) applied to the piezo stack. (¢) An acquired time-
space wavefield of shear waves. The red markers ‘x’ indicate the wave valley positions.
(d) Schematic showing the approach used to measure traveling times of shear waves. Using
the traveling time and propagation distance, we can further determine the shear wave
velocity. (e) Experimentally measured shear wave velocities for four groups that correspond
to the valleys marked in figure (c). The red line within each blue box indicates the median,
the bottom and top edges of each box indicate the 25" and 75" percentiles, the whiskers

extend to the extreme data points.
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Figure 9. Frequency-wavenumber analysis results for wideband shear waves. (a) and (b) Waveform
and frequency spectrum of a chirp excitation signal applied to the piezo stack.
(c) An acquired time-space wavefield of shear waves generated by the piezo stack with a
chirp excitation. (d) A frequency-wavenumber spectrum with obtained best-match
dispersion curve. The markers ‘x’ indicates experimental data that are extracted from the
frequency-wavenumber spectrum by finding the local spectrum maxima at different
frequencies. The solid line represents the dispersion curve that best matches the
experimental frequency-wavenumber data. The material properties used for calculating the

best matching theoretical dispersion curve are u; of 41 kPa and u» of 6.0 Pa-s.
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Figure 10. Short-space wavefield analysis results. (a) 2D image showing the obtained space-
wavenumber spectrum at = 400Hz. (b) Scatter plots showing the distributions of measured

shear elasticity u; and shear viscosity u, versus location x.
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