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Abstract: Laser Doppler vibrometry and wavefield analysis have recently shown great 

potential for nondestructive evaluation, structural health monitoring, and studying wave 

physics. However, there are limited studies on these approaches for viscoelastic soft materials, 

especially, very few studies on the laser Doppler vibrometer (LDV)-based acquisition of time-

space wavefields of dispersive shear waves in viscoelastic materials and the analysis of these 

wavefields for characterizing shear wave dispersion and evaluating local viscoelastic property 

distributions. Therefore, this research focuses on developing a piezo stack-LDV system and 

shear wave time-space wavefield analysis methods for enabling the functions of characterizing 

the shear wave dispersion and the distributions of local viscoelastic material properties. Our 

system leverages a piezo stack to generate shear waves in viscoelastic materials and an LDV 

to acquire time-space wavefields. We introduced space-frequency-wavenumber analysis and 

least square regression-based dispersion comparison to analyze shear wave time-space 

wavefields and offer functions including extracting shear wave dispersion relations from 

wavefields and characterizing the spatial distributions of local wavenumbers and viscoelastic 

properties (e.g., shear elasticity and viscosity). Proof-of-concept experiments were performed 

using a synthetic gelatin phantom. The results show that our system can successfully generate 

shear waves and acquire time-space wavefields. They also prove that our wavefield analysis 

methods can reveal the shear wave dispersion relation and show the spatial distributions of 

local wavenumbers and viscoelastic properties. We expect this research to benefit engineering 

and biomedical research communities and inspire researchers interested in developing shear 

wave-based technologies for characterizing viscoelastic materials. 

Keywords: Laser Doppler vibrometer, Wavefield analysis, Frequency-wavenumber analysis, 

Shear wave, Piezoelectric stack, Material property characterization. 
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1. Introduction 

The usage of lasers for noncontact generation and acquisition of elastic waves has been 

attracting increasing attention in recent years for engineering and biomedical applications such 

as nondestructive evaluation (NDE) [1–3], structural health monitoring [4–6], and biomedical 

imaging [7–10]. Based on the thermal elastic effect, a pulsed laser can generate different modes 

of elastic waves such as pressure waves in bulk solids and symmetric and anti-symmetric Lamb 

modes in plate-like structures [11–13]. On the other hand, based on the Doppler effect, a laser 

Doppler vibrometer (LDV) can acquire displacement waveforms u(t) of generated elastic 

waves at the laser location on the test structure’s surface [2,5,11]. By further using high-

resolution galvo mirrors to redirect a laser beam or linear motion stages to move the laser source 

location, the laser spot on the test structure can be gradually moved to perform point-by-point 

wave sensing and obtain a series of waveforms at predefined scanning points, such as points 

along a straight line, points on a flat surface, and points on a curved surface [5,14,15]. The 

fusion of these acquired waveforms can further provide time-space wavefields such as u(t, x) 

for a line scan, u(t, x, y) for a flat-surface scan, u(t, x, y, z) for a curved-surface scan, and these 

can be used to visually reveal the propagation of elastic waves and the wave interactions with 

different material damages such as voids, cracks, corrosion, and delamination [1,15–17]. In 

addition, compared to piezoelectric transducer-based elastic wave generation and sensing, the 

laser-based methods offer multiple advantages such as high spatial sensing resolution, high 

flexibility in moving the excitation and sensing locations, and the ability to generate and receive 

elastic waves from far distances, for example, > 1 m [18–20]. 

 With the aforementioned wavefield sensing capability and other unique features, more 

studies are leveraging laser technologies for both fundamental studies on elastic wave 

propagation and wave-damage interaction in complex structures, as well as application studies 

on detecting various types of damages such as cracks, delamination, and corrosion for the 
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safety of aerospace, civil, and nuclear structures[1,3,12,17,21–27]. Ambroziński et al. 

demonstrated that the scanning points of an LDV could be used to efficiently construct phased 

arrays with various configurations for detecting defects in plate-like structures [23]. Sampath 

and Sohn developed a noncontact microcrack detection technique based on laser line 

arrays [12]. Kudela et al. developed a hybrid system that integrated a piezoelectric transducer 

and a scanning LDV for acquiring wavefields and detecting delamination damage in 

composites [17]. Hudson et al. fuse the merits of an air-coupled transducer and a scanning LDV 

to develop a fully non-contact system for inspecting local voids in composites [1]. Yu and Tian 

used a scanning LDV to acquire Lamb waves’ time-space wavefields that could be processed 

by the short-space two-dimensional Fourier transform to analyze wavenumber changes and 

detect cracks [3]. With a hybrid system including a piezoelectric transducer to generate and a 

scanning LDV to acquire Lamb waves, Moll et al. constructed a high density circular array for 

detecting cracks with different orientations in an aluminum plate [21]. Jeon et al. proposed a 

compressive sensing-based high-speed full-field laser scanning approach that could effectively 

reduce the number of required laser scanning points in the structural inspection area [22]. 

Radzieński et al. showed the promise of hybrid systems that integrated piezoelectric 

transducers and a scanning LDV for identifying damages in different types of composite plates 

[24]. Ullah et al. recognized the limitations of piezoelectric transducer-LDV approaches in full 

wavefield acquisition and proposed a deep learning-based super-resolution method to enhance 

the efficiency of scanning LDV-based wavefield acquisition [25]. Despite these recent studies 

on laser technologies for generating and/or sensing elastic waves for various applications, there 

are very few studies on laser technologies for acquiring time-space wavefields of shear waves 

in viscoelastic materials, characterizing viscoelastic shear wave dispersion, and measuring the 

spatial distributions of viscoelastic properties such as shear elasticity μ1 and shear viscosity μ2. 

 Shear wave-based imaging is critical for both nondestructive evaluation and biomedical 
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applications, for example, the diagnosis of breast cancer [28], skin disease [29], hepatic 

fibrosis [30], and various pathologic and traumatic conditions of musculoskeletal soft tissues 

such as muscles, tendons, and ligaments [31,32]. Traditional shear wave-based imaging 

methods consider shear waves as a non-dispersive mode and use the measured shear wave 

speed at one frequency to evaluate the shear elasticity [33,34]. However, for viscoelastic 

materials such as soft tissues and biomimetic gelatin phantoms, previous studies found that 

shear waves should be considered as a dispersive mode whose wave speed changes with 

frequency [35–37]. This dispersive feature is in fact related to the material’s shear viscosity 

that is usually neglected in traditional shear wave-based imaging methods [38–41]. In recent 

years, to measure the shear wave dispersion relation, most studies performed time-consuming 

measurements of wave traveling times at multiple frequencies and then calculate the shear 

wave velocities corresponding to those frequencies [37,42]. Few studies leverage methods 

based on time-space wavefield acquisition and analysis, which have the potential to quickly 

characterize the shear wave dispersion relation. Actually, time-space wavefields of waves can 

provide more information beyond the dispersion relation, such as revealing the propagation of 

dispersive modes and the wave interactions with material boundaries and internal damages 

[15]. In recent years, various wavefield analysis methods based on wavefield energy, multi-

dimensional Fourier transform, wavefield correlation, and local wavenumber characterization 

have been developed [2,15,43]. Most studies focus on developing wavefield analysis methods 

to evaluate material damages such as cracks, corrosion, and delamination [11,12,17]. There are 

limited studies on developing methods to analyze time-space wavefields of shear waves in 

viscoelastic materials and characterize the spatial distributions of viscoelastic material 

properties. 

 To perform shear wave-based characterization of viscoelastic materials, the successful 

generation of shear waves is critical. The acoustic radiation force (ARF)-based methods, which 
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use the ARFs of high-energy ultrasonic beams generated by focused ultrasonic transducers or 

ultrasonic phased array transducers [35,44,45], are commonly used. These methods typically 

need large contact areas with test samples to generate strong shear waves, thus limiting their 

applications to small samples [39]. Moreover, their transducers usually have high costs, and 

the systems to drive and control the transducers are more costly. Another category of 

commonly used methods is based on shakers [46,47], which are bulky, difficult to use for 

portable applications, difficult to precisely control the output displacement, and difficult to 

integrate with shear wave sensors. We believe that new shear wave generation methods, which 

address the aforementioned limitations and have low-cost, compact, and low-power features, 

will greatly benefit the biomedical research community and accelerate the development of 

future shear wave-based imaging and viscoelastic material characterization techniques. 

 This study presents a piezo stack-LDV sensing approach, which leverages a low-cost, 

compact, low-power piezo stack to generate shear waves in viscoelastic materials, as well as 

an LDV integrated on a linear motion stage to acquire shear wave time-space wavefields. This 

study also presents wavefield analysis methods for analyzing the shear wave time-space 

wavefield, extracting the shear wave dispersion relation from the wavefield, obtaining local 

wavenumber distributions, and characterizing the spatial distributions of viscoelastic properties 

such as shear elasticity μ1 and shear viscosity μ2. To assist the wavefield analysis method 

development, a transfer function-based analytical model is formulated to simulate the 

propagation of dispersive shear waves, and the simulated time-space wavefields for different 

viscoelastic properties are used as the inputs to test wavefield analysis methods. To 

demonstrate the piezo stack-LDV system and wavefield analysis methods, proof-of-concept 

experiments were performed using a synthetic gelatin phantom. The results show that our piezo 

stack-LDV system can successfully generate shear waves and acquire time-space wavefields. 

Moreover, the wavefield analysis methods can analyze the acquired wavefields to reveal the 
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shear wave dispersion relation, show the spatial distributions of local wavenumbers, and 

characterize the spatial distributions of local viscoelastic properties such as shear elasticity μ1 

and shear viscosity μ2. The remainder of this paper is organized as follows. Section 2 presents 

the design and mechanism of the piezo stack - LDV shear wave generation and sensing system. 

Section 3 presents the methods to analyze shear wave time-space wavefields and characterize 

shear wave dispersion, local wavenumber distributions, and local viscoelastic material property 

distributions. Section 4 presents a transfer function-based analytical model that can quickly 

simulate shear wave propagation in viscoelastic materials. Section 5 presents experimental 

studies to demonstrate our piezo stack - LDV system and wavefield processing methods by 

generating, acquiring, and analyzing shear waves in a synthetic gelation phantom. Section 6 

concludes our study with key findings, discussion, and future work. 

2. Piezo stack - LDV shear wave sensing system for acquiring  

shear wave time-space wavefields 

Figure 1a shows a schematic of the piezo stack-LDV shear wave sensing system, which is 

composed of two key modules: a piezo stack-based shear wave generation module and a time-

space wavefield acquisition module based on an LDV installed on a linear motion stage. The 

piezo stack is installed on a customized 3D fixture that can adjust the piezo stack’s position 

and push the piezo stack against the test sample (e.g., a viscoelastic gelatin phantom). In order 

to achieve better contact between the piezo stack and the test sample, a customized 

hemispherical head is attached to the end of the piezo stack. For shear wave generation, an 

excitation signal (e.g., wideband chirp signal) is generated from an arbitrary function generator, 

amplified by a voltage amplifier, and then sent to the piezo stack actuator to output vertical 

displacement pulses from the tip of the piezo stack. The vertical displacement pulses can further 

excite shear waves propagating in the viscoelastic test sample. For shear wave acquisition, our 

system leverages an LDV installed on a linear motion stage, and the laser beam is set to an 
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orientation that is normal to the surface of the test sample to acquire the out-of-plane 

displacements of waves propagating in the sample based on the Doppler effect. The reason for 

using a normal-direction laser is that the shear waves generated by the piezo stack excitation 

method are mainly the shear vertical mode whose wave displacements are in the thickness 

direction. 

 To acquire time-space wavefields of shear waves, the aforementioned shear wave 

excitation and acquisition modules are synchronized and controlled by customized MATLAB 

codes. Through pitch-catch sensing with our piezo stack-LDV system, a waveform can be 

acquired, for example, u(t, x1) acquired with the laser spot set at a position x1. After changing 

the laser spot position to x2 and xn, waveforms denoted as u(t, x1) and u(t, xn) can be acquired, 

as illustrated in Figure 1b. Therefore, through point-by-point measurements at a series of 

equally-spaced points along a user-defined scanning line (Figure 1a), the piezo stack - LDV 

system can acquire a series of waveforms. The combination of these waveforms results in a 

time-space wavefield u(t, x), which can be considered as a wave displacement field function 

with respect to time t and position x, as illustrated in Figure 1c. In order to correctly obtain key 

features (such as frequency and wavenumber) of shear waves, the Shannon sampling theorem 

should be followed to set the temporal and spatial sample rates. The sampling frequency should 

be at least twice the maximum wave frequency, and the spatial sampling resolution should be 

smaller than half of the minimum wavelength. 

3. Methods for analyzing shear wave time-space wavefields 

The time-space wavefield contains a wealth of information for both analyzing the propagation 

of dispersive waves and characterizing material properties. This section presents three methods 

for analyzing the time-space wavefields of shear waves in viscoelastic materials. First, a 

frequency-wavenumber analysis method based on the multi-dimensional Fourier transform is 

presented to characterize the dispersion relation of shear waves. Second, a frequency-
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wavenumber dispersion analysis method is presented for the characterization of viscoelastic 

material properties including shear elasticity μ1 and shear viscosity μ2. Third, a space-

frequency-wavenumber method is presented for obtaining the spatial distribution of local 

wavenumbers, as well as characterizing the spatial distributions of local viscoelastic material 

properties. In addition, these analysis methods are tested using both simulation data in 

Section 4 and experimental data in Section 5. 

3.1. Frequency-wavenumber analysis of shear wave time-space wavefields 

To obtain wave signatures such as frequency and wavenumber information, the shear wave 

time-space wavefield can be transformed to a representation in the frequency-wavenumber 

domain by using a multi-dimensional Fourier transform expressed as [48] 

 𝑈(𝑓, 𝐤) = ∫  
∞

−∞
∫  

∞

−∞
𝑢(𝑡, 𝐱)𝑒−𝑖(2𝜋𝑓𝑡−𝐤⋅𝐱)𝑑𝑡𝑑𝐱, (1) 

where x = (x, y, z) is a position vector and k = (kx, ky, kz) is a wavenumber vector. U(f, k) is the 

resulting frequency-wavenumber representation (or spectrum) that is a function of wave 

frequency f and wavenumber vector k. For a time-space wavefield acquired through point-by-

point LDV measurements along a straight line (illustrated in Figure 1a), the frequency-

wavenumber spectrum U(f, k) in Eq. (1) should be reduced to U(f, k = kx) and accordingly the 

transformation equation should be 

 𝑈(𝑓, 𝑘) = ∫  
∞

−∞
∫  

∞

−∞
𝑢(𝑡, 𝑥)𝑒−𝑖(2𝜋𝑓𝑡−𝑘𝑥)𝑑𝑡𝑑𝑥. (2) 

As illustrated in Figure 2b, the spectrum U(f, k) obtained through the multi-dimensional Fourier 

transform can reveal the frequency-wavenumber components that are contained in the time-

space wavefield u(t, x). In this manner, we are able to analyze the shear wave time-space 

wavefield acquired by the piezo stack-LDV system and obtain the frequency-wavenumber 

dispersion relation of shear waves. 
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3.2. Wave dispersion analysis for characterizing viscoelastic properties 

When considering the shear viscosity effect, the shear wave becomes dispersive, and its 

frequency-wavenumber dispersion relation depends on both the shear elasticity and shear 

viscosity. The theoretical dispersion relation can be obtained by solving the shear wave 

characteristic equation. For the completeness of this paper, the key steps to formulate the shear 

wave characteristic equation based on the Kelvin-Voigt viscoelastic model are presented here. 

As illustrated by the inset in Figure 3a, the Kelvin-Voigt viscoelastic model has a spring and a 

dashpot in parallel, for considering the effects of shear elasticity μ1 and shear viscosity μ2, 

respectively. This model’s stress-strain relation can be expressed as 𝜏 = (𝜇1 − 𝜇2 𝜕 𝜕𝑡⁄ )𝜀, 

where 𝜏 is shear stress and ε is shear strain that equals to the vertical displacement’s partial 

derivative 𝜕uz/𝜕x [49]. By introducing this stress-strain relation for the Kelvin-Voigt 

viscoelastic model to the equation of motion, the wave equation for shear waves in a 

viscoelastic material can be derived as 

 𝜇1
𝜕2𝑢𝑧

𝜕𝑥2 − 𝜇2
𝜕3𝑢𝑧

𝜕𝑥2𝜕𝑡
= 𝜌

𝜕2𝑢𝑧

𝜕𝑡2 , (3) 

where ρ is density. By substituting the general wave displacement relation 𝑢𝑧 =

𝑈𝑧(𝜔)𝑒𝑖(𝜔𝑡−𝑘𝑥) where ω is the angular frequency into Eq. (3), we can obtain 

 (−𝜇1𝑘2 + 𝑖𝜔𝜇2𝑘2 + 𝜌𝜔2)𝑈𝑧(𝜔) = 0. (4) 

Because 𝑈𝑧(𝜔) is a nonzero term, the expression in the parathesis should be zero. By solving 

the characteristic equation, we can obtain the following frequency-wavenumber relation,  

 𝑘 = √
𝜌𝜔2

𝜇1+𝑖𝜔𝜇2
= Re(𝑘) − 𝑖 Im(𝑘), (5) 

with Re(𝑘) = √
𝜌𝜔2(√𝜇1

2+𝜔2𝜇2
2+𝜇1)

2(𝜇1
2+𝜔2𝜇2

2)
 and Im(𝑘) = √

𝜌𝜔2(√𝜇1
2+𝜔2𝜇2

2−𝜇1)

2(𝜇1
2+𝜔2𝜇2

2)
, 

where Re(k) and Im(k) are the real and imaginary parts of the wavenumber k, respectively. 

With the solved wavenumber, we can further derive the shear wave velocity CT = ω/Re(k) and 
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attenuation αT = Im(k). Based on the frequency-wavenumber relation in Eq. (5), MATLAB 

codes are developed to plot a series of frequency-wavenumber dispersion curves for different 

viscoelastic properties (e.g., different combinations of μ1 and μ2), in order to investigate the 

effects of materials properties on dispersion curves. As shown in Figure 3, the wavenumbers 

at low frequencies are more sensitive to the change of shear elasticity μ1, while high-frequency 

wavenumbers are more sensitive to the change of shear viscosity μ2. Moreover, with the 

decrease of shear viscosity μ2, the curved dispersion relation gradually changes to a straight 

line. Furthermore, as shown in Figure 3b, a 2D representation showing the wavenumber versus 

μ1 and μ2 at a selected frequency of 400 Hz, the wavenumber becomes larger with the decrease 

of either μ1 or μ2. 

 With the theoretical shear wave frequency-wavenumber dispersion curves corresponding 

to different material properties, we can compare these curves to the experimentally acquired 

frequency-wavenumber spectrum. Through comparison, the theoretical shear wave dispersion 

curve that best matches the spectrum data can be found, as illustrated in Figure 2c. The material 

properties used for calculating the best-match theoretical dispersion curve are considered as 

the measured viscoelastic properties of the test sample. To perform dispersion curve 

comparison for material property characterization, first, a database denoted as {k(f | μ1, μ2)} is 

established by combining a collection of theoretical dispersion curves k(f) for different 

combinations of μ1 and μ2. Second, from the experimental frequency-wavenumber spectrum, 

the wavenumbers kexp(fi) that have maximum spectrum amplitudes for different frequencies fi 

(i = 1, 2, 3… N) are identified, as illustrated by ‘+’ markers in Figure 2b. Third, a least square 

method is used to search the database {k(f | μ1, μ2)}, in order to find the theoretical dispersion 

curve kopt(f) that best matches the experimental data kexp(fi), as well as the shear elasticity opt

1  

and shear viscosity opt

2  corresponding to the best-match theoretical dispersion curve. The 

dispersion curve comparison process can be expressed as 
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1 2

2
opt opt

1 2 exp 1 2
,

1

, arg min ( , )|) (i

N

i

ik kf f
 

   
=

 = −  . (6) 

Therefore, by analyzing the shear wave’s dispersion relation using the aforementioned method, 

we can characterize a viscoelastic material’s shear elasticity and shear viscosity. Note that the 

properties obtained by the aforementioned method are averaged values for the region where 

the time-space wavefield u(t, x) is acquired. 

3.3. Space-frequency-wavenumber characterization of spatial distributions of 

local viscoelastic material properties 

The frequency-wavenumber analysis in Section 3.1. transforms a time-space wavefield to a 

frequency-wavenumber spectrum; however, the obtained frequency-wavenumber spectrum 

doesn’t clearly provide spatial information. The dispersion analysis in Section 3.2 provides an 

approach to characterize viscoelastic material properties; however, this method doesn’t carry 

the spatial information to characterize the spatial distributions of material properties. To 

overcome these limitations, we performed space-frequency-wavenumber analysis based on 

short-space Fourier transform, as illustrated in Figure 4. This analysis can retain the spatial 

information for characterizing the frequency-wavenumber relations at different positions (see 

Figure 4b) and the spatial distributions of material properties (see Figure 4d). In this method, 

the short-space Fourier transform [15] is applied to the acquired time-space wavefield u(t, x) 

to obtain a space-frequency-wavenumber representation ( , , )S x f k  as:  

 
(2 )( , , ) ( , ) ( ) i ft kxS x f k u t x W x x e dtdx

 
− −

− −
= −  , (7) 

where ( )W x x−  is a short-space window centered at x . In this study, the short-space 

window is formulated based on a Hanning function expressed as: 

 

1
1+cos 2 if 2

( ) 2

0 otherwise

x

x x
x x D

W x x D


   − 
−    

− =     



x
, (8) 
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where Dx is the window size that determines the spatial and wavenumber resolutions of the 

short-space Fourier transform. A larger window size Dx leads to a higher wavenumber 

resolution while a lower spatial resolution. For this study, the window size Dx is greater than 

two times of the wavelength of the used shear waves, to have a good wavenumber resolution. 

 The short-space Fourier transform method can be better explained through Figure 4a and 

4b. As shown in Figure 4a, by multiplying a short-space window ( )nW x x−  centered at nx , 

a windowed time-space wavefield ( , ) ( )nu t x W x x−  can be obtained. By gradually moving the 

short-space window, the original time-space wavefield ( , )u t x  can be discretized into a series 

of short-space time-space wavefields { ( , ) ( )nu t x W x x− }N with center positions at {𝑥̅n}N where 

n = 1, 2, 3, ∙ ∙ ∙, N. By further applying multi-dimensional Fourier transform to all the discretized 

short-space time-space wavefields, a series of frequency-wavenumber spectra {Un(f, k)}N (see 

Figure 4b) corresponding to windowed wavefields with different center positions {𝑥̅n}N can be 

obtained. The collection of all the resulting frequency-wavenumber spectra can be represented 

using a space-frequency-wavenumber function ( , , )S x f k  in Eq. (7). 

 The obtained space-frequency-wavenumber representation ( , , )S x f k  can be used to 

analyze the changes of wave features and material properties with respect to position x . As 

illustrated in Figure 4c, the space-wavenumber spectrum ( , )S x k  at a selected frequency of 

fm can show the changes of wavenumber components with respect to position x . Moreover, 

by applying the material property characterization method in Section 3.2 to all the frequency-

wavenumber spectra {Un(f, k)}N (illustrated in Figure 4b) corresponding to different positions 

{𝑥̅n}N, we can obtain the spatial distributions of local viscoelastic properties such as the shear 

elasticity distribution 1{ ( )}n Nx  (also denoted as 1( )x ) and the shear viscosity distribution 

2{ ( )}n Nx  (also denoted as 1( )x ) , as illustrated in Figure 4d. 
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 For shear waves in a small region, for example [𝑥̅n−Dx/2, 𝑥̅n+Dx/2], the wave dispersion 

curve (e.g., frequency-wavenumber curve) is an inherent wave property depending on the 

material properties in that small region and doesn’t change with the incoming waves, such as 

waves already transmitted through other regions. In our method, we experimentally evaluate 

the frequency-wavenumber spectrum in that small section. Then, we obtain the theoretical 

frequency-wavenumber curve that best matches the experimental frequency-wavenumber 

spectrum. By using this approach, the obtained 𝜇1(𝑥̅n) and 𝜇2(𝑥̅n) are averaged material 

properties for the small, windowed region [ 𝑥̅ n−Dx/2, 𝑥̅ n+Dx/2] where the experimental 

frequency-wavenumber spectrum is obtained. 

4. Analytical modeling for simulating the time-space wavefields of dispersive 

shear waves in viscoelastic materials 

In this Section, an analytical model is formulated by leveraging the shear wave dispersion 

relation, the transfer function method [50,51], and the Fourier transform. This method enables 

efficient simulations of dispersive shear waves that are generated by arbitrary time-domain 

displacement excitation. Based on the analytical model, time-space wavefields of shear waves 

in viscoelastic materials with different properties are simulated, and subsequently used as input 

wavefields to test the wavefield analysis methods presented in Section 3. 

4.1. Analytical model of dispersive shear waves 

To simulate the propagation of dispersive shear waves in viscoelastic materials, numerical 

methods such as finite element and finite difference methods typically need long computation 

times and large computer memories [36,41,52]. To quickly simulate the propagation of 

dispersive shear waves generated by an arbitrary time-domain excitation signal, an analytical 

model is presented. The diagram in Figure 5 shows the key steps to establish the analytical 

model. First, an arbitrary time-domain excitation ue(t) is changed to a frequency-domain 

spectrum Ue(ω) through the Fourier transform. Second, the shear wave dispersion relation k(𝜔) 
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is used to construct a transfer function G(ω, x)=e-ik(ω)x. The transfer function here is for plane 

waves and the energy spreading effect that depends on the distance to the source is not 

considered [50,51]. Third, by multiplying the transfer function with the excitation spectrum 

Ue(ω), we can obtain a frequency-space function U(ω, x) that can be changed to a time-space 

wavefield u(t, x) through inverse Fourier transform. Mathematically, the simulation model can 

be formulated as 

  1 1 ( )( , ) ( , ) ( ) [ ( )]ik x

e eu t x G x U e u t − − − =  =   , (9) 

where [ ]  and 
1[ ]−   represent Fourier and inverse Fourier transforms that change data 

between time and frequency domains. Note that Eq. (9) for plane waves is sufficient to 

capture the wave dispersion effect, as it considers the frequency-dependent wavenumber 

k(ω). For cylindrical and spherical waves, distance-dependent terms |x|-0.5 and |x|-1 can be 

introduced to Eq. (9), respectively, for considering the energy spreading effects. 

4.2. Simulation and analysis of shear wave time-space wavefields 

The analytical model in Eq.(9) is used to simulate shear waves generated by a chirp excitation 

modulated by a Tukey window that ensures smooth transitions at the beginning (or leading 

edge) and end (or trailing edge) of the chirp signal. As shown in Figure 6a, the input signal has 

a leading edge with gradually increasing amplitudes, a wide center part with an amplitude of 

1, and a trailing edge with gradually decreasing amplitudes. The input signal’s frequency 

spectrum is given in Figure 6b showing a wide frequency band from 0.3 to 1.8 kHz and a nearly 

flat top from 0.6 to 1.6 kHz. By using the analytical simulation method, we simulated dispersive 

shear waves in viscoelastic materials with different properties. By using the analytical 

simulation method, we simulated dispersive shear waves in viscoelastic materials with different 

properties, and the imaginary wavenumber Im(k) related wave attenuation is not considered in 

these simulations. Figure 6c to 6e show the simulated time-space wavefields for three cases 

with (μ1 = 25 kPa, μ2 = 5 Pa∙s), (μ1 = 50 kPa, μ2 = 5 Pa∙s), and (μ1 = 50 kPa, μ2 = 10 Pa∙s), 
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respectively, while the same density ρ = 850 kg/m3 is used. In the simulation results, as the 

waves propagate away from the source, the wave packet becomes more and more compact in 

the time domain. This is because of the wave dispersion effect with high-frequency waves 

propagating faster. Moreover, for different material properties, the wavefront slopes in the 

time-space wavefields are different, as different material properties lead to different shear wave 

speeds.  

 To test the wavefield analysis methods presented in Section 3, the simulated time-space 

wavefields are transformed to the frequency-wavenumber domain through the multi-

dimensional Fourier transform. Figure 6f to 6h give the frequency-wavenumber spectra 

corresponding to the time-space wavefields in Figure 6c to 6e, respectively, and these spectra 

reveal the frequency-wavenumber dispersion relations contained in the shear wave time-space 

wavefields. In addition, we applied the dispersion analysis method established in Section 3.2 

to the frequency-wavenumber spectra. The ‘+’ markers in Figure 6f to 6h are identified 

wavenumber points with maximum spectrum amplitudes for different frequencies. The solid 

curves are the best-match frequency-wavenumber dispersion curves kopt(f) that are obtained 

through the least square-based dispersion curve identification method in Section 3.2. In 

addition, the viscoelastic material properties opt

1  and opt

2 , which are identified using 

Eq.(6), agree with the material properties used for analytical simulations. The results in 

Figure 6f to 6h prove the feasibility of our wavefield analysis methods for analyzing dispersive 

shear waves in viscoelastic materials with different properties. 

5. Proof-of-concept experiments 

Proof-of-concept experiments were performed to demonstrate a fully functional piezo stack-

LDV system, as well as the wavefield analysis methods. Experiments were performed to 

demonstrate the piezo stack-based generation of shear waves in a viscoelastic material and the 

LDV-based acquisition of shear wave time-space wavefields. The acquired shear wave time-
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space wavefields were analyzed to demonstrate the functions of wavefield analysis methods 

presented in Section 3, such as characterizing the shear wave dispersion relation using 

experimental data, characterizing viscoelastic material properties, and characterizing the 

spatial distributions of local properties such as wavenumber, shear elasticity, and shear 

viscosity. 

5.1. Experimental setup and procedures 

Figure 7a shows a photo of the piezo stack-LDV experimental setup for generating shear waves 

in a viscoelastic phantom (180×120×30 mm) made of synthetic gelatin and acquiring time-

space wavefields of the generated shear waves. As shown in Figure 7b, the shear wave actuator 

is composed of a 3×3×10 mm piezo stack (STEMINC, USA ) and a 3D-printed hemispherical 

head (radius 5 mm) attached to the tip of the piezo stack. The excitation signal for the piezo 

stack is generated from an arbitrary waveform function generator (Tektronix AFG3052C) and 

then amplified by a voltage amplifier (Krohn-Hite 7500). For this study, a 5-cycle sine wave 

modulated by a Hanning window is used as the excitation to generate narrow-band shear waves, 

and a chirp signal is used to generate wideband shear waves. Details of these excitation signals 

are given in Section 5.2 and 5.3. 

 To generate shear waves in a viscoelastic phantom, the piezo stack actuator is installed on 

a customized height-adjustable fixture and makes contact with the top surface of the 

viscoelastic phantom, as shown Figure 7b. Using this setup, the output thickness-direction 

displacement oscillation from the actuator can excite shear waves in the viscoelastic phantom. 

To acquire the generated shear waves, an LDV (Polytec OFV-505) installed on a customized 

3D linear motion stage is used. The laser beam is normal to the phantom’s top surface to 

measure the out-of-plane displacement waveforms of shear waves. The 3D linear motion stage 

is controlled by a motion controller and a customized MATLAB program to move the laser 

head to different locations for signal acquisition. Through point-by-point acquisition using a 
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piezo stack-LDV system illustrated in Figure 1a, we can acquire the generated shear waves at 

multiple points along a straight line and provide the time-space wavefield that can show the 

propagation of shear waves. For our experiments, the coordinate origin is at the piezo stack’s 

center, and the scanning line is along the x axis, as illustrated by the sensing layout in Figure 7c. 

The spatial sampling resolution is set to 0.2 mm, and the sampling frequency is set to 65 kHz. 

5.2. LDV scanning results and shear wave velocity measurement 

We used a narrow-band excitation signal with a center frequency of 400 Hz, to generate 400 

Hz shear waves. Figure 8a and 8b show the waveform and frequency spectrum of the excitation 

signal. Figure 8c shows the acquired time-space wavefield of shear waves in the gelatin 

phantom. This wavefield can be considered as a collection of waveforms acquired at different 

locations. By using the distance to the wave source and the traveling time, the shear wave 

velocity can be measured. First, we used MATLAB codes to automatically identify valley 

positions from the time-space wavefield, and these valley positions were divided into four 

groups as illustrated in Figure 8c. Second, for each group of valley points, we can calculate the 

time difference Δtn-1 using waveforms measured at 1st and nth sampling points, as illustrated in 

Figure 8d. Third, using the time difference Δtn-1 and the distance Δxn-1 between two points, the 

shear wave velocity can be calculated by CT = Δxn-1 /Δtn-1. Fourth, this process is repeated for 

all the identified valley points in Figure 8c. Last, we perform a statistical analysis of the wave 

velocities calculated using all the valley points. The analysis result is given in Figure 8e. The 

obtained mean velocities for groups 1 to 4 are 7.653 m/s, 7.626 m/s, 7.675 m/s, and 7.636 m/s, 

respectively. The averaged velocity and standard deviation considering all the data groups are 

7.648 m/s and 0.106 m/s. The obtained shear wave velocity falls in the velocity range (1 m/s 

to 15 m/s) found in literature [35,36,53,54]. From the statistical result in Figure 8e, it can also 

be seen that the extreme data points (indicated by the whiskers above and below the blue boxes) 

only have small deviations from the mean velocity. 
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5.3. Wavefield analysis results 

To generate shear waves in a wide frequency band, a Tukey window-modulated chip signal is 

generated by a function generator (Tektronix AFG3052C) and then amplified by a voltage 

amplifier (Krohn-Hite 7500). Figure 9a and 9b show a waveform and a spectrum of the 

measured excitation signal applied to the piezo stack actuator. It can be seen that the applied 

chirp excitation signal has amplitudes around 80 Vpp and covers frequencies from 0.3 to 

1.8 kHz. Note that the gradual amplitude decrease from 5 to 20 ms is induced by the frequency-

dependent amplification performance of the amplifier. The acquired time-space wavefield in 

Figure 9c is analyzed by using the wavefield field analysis methods presented in Section 3. 

Figure 9d shows a 2D spectrum obtained by using the frequency-wavenumber analysis method 

in Section 3.1, and this spectrum shows the frequency-wavenumber components of the 

generated shear waves. Because of the usage of a wideband chirp excitation, the frequency-

wavenumber components in a wide frequency range are generated. 

 The wave dispersion analysis method established in Section 3.2 is applied to the 

frequency-wavenumber spectrum. First, for different frequencies, wavenumbers with the 

highest spectrum amplitudes are identified from the frequency-wavenumber spectrum. Second, 

by comparing these frequency-wavenumber points (marked with ‘x’ in Figure 9d) with a 

database of theoretical frequency-wavenumber dispersion curves, the dispersion curve (solid 

curve in Figure 9d) that best matches the experimental data is obtained. The viscoelastic 

material properties corresponding to the best-match dispersion curve are shear elasticity μ1 of 

41 kPa and shear viscosity μ2 of 6 Pa·s. These values fall in the ranges 0.5-100 kPa and 0.75-

9 Pa·s found in the literature [35,53–58]. For comparison, rheometers (HR20 and RSA-G2, TA 

Instruments) were used to perform rheological harmonic shear tests on three samples at 25 ℃. 

The average shear elasticity is 39.2 kPa. With the rheometry viscosity data and the power-law 

model for viscous materials [59,60], we obtained the average shear viscosity of 6.6 Pa·s for the 
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frequency range 0.3 to 1.8 kHz. Compared to the rheometry data, properties measured by our 

wave dispersion analysis approach have discrepancies of 4.6% for shear elasticity and 9.1% 

for shear viscosity. 

 The space-frequency-wavenumber analysis method presented in Section 3.3 is applied to 

the acquired time-space wavefield. Figure 10a shows the resulting space-wavenumber 

spectrum at a frequency of 400 Hz, and this result shows the wavenumber distribution versus 

location. By applying the dispersion analysis method in Eq.(6) to frequency-wavenumber 

spectra {Un(f, k)}N corresponding to different positions {𝑥̅n}N, the spatial distributions of local 

viscoelastic properties such as the shear elasticity distribution and the shear viscosity 

distribution are obtained, as shown in Figure 10b. For the used uniform viscoelastic phantom, 

the results including wavenumber, shear elasticity, and shear viscosity almost have no changes. 

In our future study, we will further test the space-frequency-wavenumber method by using a 

nonuniform phantom with material property changes. 

6. Conclusion and discussion 

We have developed and demonstrated a piezo stack-LDV shear wave sensing system, which 

can generate narrow-band and wideband shear waves in viscoelastic materials by using a small 

piezo stack and can acquire time-space wavefields of the generated shear waves in a contactless 

and high-resolution manner based on an LDV integrated with a linear motion stage. The 

acquired time-space wavefields contain abundant information to obtain shear wave features 

such as velocity, frequency-wavenumber components, and wave dispersion. To analyze the 

wavefields of dispersive shear waves, this study presents multiple analysis methods including 

multi-dimensional Fourier transform-based frequency-wavenumber analysis, dispersion 

analysis-based material property characterization, and space-frequency-wavenumber analysis. 

These methods offer useful functions such as analysis of the frequency-wavenumber contents 

of the generated shear waves, characterization of the shear wave dispersion, extraction of 
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viscoelastic material properties (shear elasticity μ1 and shear viscosity μ2), and characterization 

of the spatial distributions of local wavenumbers and viscoelastic properties. 

 In addition to developing the piezo stack-LDV shear wave sensing method, we formulated 

an analytical model based on the dispersion curve solved from the wave characteristic equation 

that considers the Kelvin–Voigt viscoelastic model. Based on the analytical model, we 

simulated and compared time-space wavefields of wideband shear waves in viscoelastic 

materials with different properties. Our results show that the wave packet of wideband shear 

waves becomes more and more compact in the time domain. This is because of the frequency-

dependent shear wave velocity, i.e., the wave dispersion effect. Our parametric study shows 

that shear waves at high frequencies are more sensitive to the shear viscosity change and the 

low-frequency shear waves are more sensitive to the shear elasticity change. Using the 

simulated time-space wavefields as inputs, we also successfully tested our wavefield analysis 

methods. 

 For the proof-of-concept, a fully functional piezo stack-LDV sensing system was 

demonstrated by generating shear waves in a synthetic gelatin phantom and acquiring time-

space wavefields in a noncontact and high-resolution manner. The measurement results prove 

that our piezo stack-LDV system can acquire the wavefields of narrow-band shear waves 

generated with a 5-count sine wave excitation and wideband shear waves generated with a 

chirp excitation. With the narrow-band time-space wavefield, we were able to obtain the shear 

wave velocity using the propagation distance and time. Moreover, by applying the frequency-

wavenumber analysis and wave dispersion analysis methods to the wideband time-space 

wavefield, we were able to analyze the frequency-wavenumber components, characterize the 

shear wave dispersion relation, as well as characterize the viscoelastic material properties of 

our fabricated synthetic gelatin phantom. Moreover, by applying the space-frequency-

wavenumber analysis method to the wideband time-space wavefield, we were able to 
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characterize the spatial distributions of local wavenumbers and local viscoelastic properties. 

 The experimental results prove the feasibility of our piezo stack-LDV sensing system and 

the presented methods for analyzing time-space wavefields, viscosity-induced wave 

dispersion, and frequency-wavenumber spectra of dispersive shear waves. This study 

contributes to laser ultrasonic technologies, by establishing a laser-based approach and 

showing its functions of acquiring time-space wavefields of shear waves in viscoelastic 

materials, characterizing the viscosity-induced shear wave dispersion, and characterizing the 

spatial distributions of viscoelastic properties. This study also contributes to shear wave 

analysis methods, by introducing multiple wavefield-based methods and showing their 

functions of characterizing both shear wave properties and viscoelastic material properties. In 

addition, this study provides a novel piezo stack-based method for generating shear waves in 

viscoelastic materials. Compared to commonly used methods, including the bulky shaker-

based methods and the ARF-based methods that require expensive focused ultrasonic systems 

or high-power ultrasonic phased array systems, the piezo stack-based method has low-cost, 

compact, and low-power features, its output displacements can be easily controlled, and it can 

be used as a portable shear wave generation device. We expect that this research can greatly 

benefit the NDE and biomedical research communities and accelerate the development of 

future shear wave-based technologies for characterizing viscoelastic materials. 

 We will continue to work on this piezo stack-LDV technology to address its limitations. 

First, our proof-of-concept experiment still needs to use a bulky function generator and an 

amplifier. To develop a fully functional portable shear wave excitation device, we will replace 

these modules with a portable excitation signal generation device that leverages Arduino-based 

excitation signal generation and customized electronic board (e.g., L298N driver board) -based 

low-frequency signal amplification. Second, this work is limited to acquiring and analyzing 

shear waves propagating along a line. Later, we will perform LDV-based wavefield acquisition 
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on a 2D flat surface and a 3D curved surface and then extend the shear wave analysis methods 

to those cases. Third, this work uses a uniform phantom with no spatial changes of material 

properties. Later, we will test our method using phantoms with spatial changes of material 

properties and real tissues (such as skin, muscle, and liver) through collaboration with 

biomedical researchers. 
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Figures 

 

Figure 1. Illustration of the piezo stack - LDV shear wave sensing approach: (a) Schematic of the 

piezo stack - LDV sensing system that uses a piezo stack to generate shear waves and an 

LDV to acquire shear wave signals. (b) Example waveforms u(t, xn) acquired at different 

locations xn along a scanning line. (c) Example shear wave time-space wavefield u(t, x) that 

can be acquired by our piezo stack - LDV sensing approach. 
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Figure 2. Illustration of the wavefield analysis method for determining the viscoelastic material 

properties. (a to b) A time-space wavefield u(t, x) acquired by the piezo stack - LDV sensing 

system is transformed to a frequency-wavenumber spectrum U(f, k), by using 2D Fourier 

transform. (b to c) The theoretical dispersion curve kopt(f) that best matches the experimental 

frequency-wavenumber spectrum U(f, k) is selected, by using a process that compares the 

experimental spectrum with a database of theoretical dispersion curves that are precalculated 

for different viscoelastic material properties. The ‘+’ markers in (b) indicate wavenumber 

points with maximum spectrum amplitudes for different frequencies. The shear elasticity 

and shear viscosity that are used to calculate the best matching theoretical dispersion curve 

kopt(f) are denoted as μ
1

opt
 and μ

2

opt
. 
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Figure 3. Theoretical shear wave dispersion relations derived based on the Kelvin–Voigt model. (a) A 

group of theoretical frequency-wavenumber dispersion curves for viscoelastic materials 

with different shear elasticities and shear viscosities. (b) Wavenumber variation versus shear 

elasticity μ1 and shear viscosity μ2 when the shear wave frequency is 400 Hz. 
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Figure 4. Illustrations of the short-space Fourier transform method and its application for 

characterizing material property distributions. (a) Schematic to illustrate the process of using 

a short-space window to isolate a windowed time-space wavefield. By gradually moving the 

short-space window’s center position, the original time-space wavefield can be discretized 

into a series of short-space time-space wavefields whose center positions are at {𝑥̅n}N where 

n = 1, 2, 3, ∙ ∙ ∙, N. (b) By applying 2D Fourier transform to all the discretized short-space 

time-space wavefields, a series of frequency-wavenumber spectra that correspond to 

windowed wavefields with different center positions {𝑥̅n}N can be obtained. (c) Example of 

a space-wavenumber spectrum S(𝑥̅, k) that can be obtained from the short-space Fourier 

transform result at a frequency of fm. (d) Material property distributions μ1(𝑥̅) and μ2(𝑥̅) 

can be determined, by applying dispersion curve analysis to all the frequency-wavenumber 

relations of the short-space Fourier transform result in (b). 
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Figure 5. A diagram showing key steps for the analytical simulation of the shear wave time-space 

wavefield u(t, x) 
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Figure 6. Analytical simulation results for cases with different material properties. (a) Time-domain 

waveform of a window chirp signal that is used as the excitation. (b) Frequency spectrum 

of the excitation waveform. (c-e) Simulated time-space wavefields for three cases with (μ1 

= 25 kPa, μ2 = 5 Pa∙s), (μ1 = 50 kPa, μ2 = 5 Pa∙s), and (μ1 = 50 kPa, μ2 = 10 Pa∙s), respectively. 

(f-h) Frequency wavenumber spectra corresponding to the time-space wavefields in (c) to 

(e), respectively. 
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Figure 7. Experimental setup for characterizing the viscoelastic properties of a synthetic gelatin 

phantom. (a) Photo of the piezo stack - LDV shear wave sensing setup. (b) Close view of 

the test setup showing a small piezo stack with a customized hemispherical actuator tip, a 

laser spot, and a synthetic gelatin phantom. (c) A schematic showing the experimental 

sensing layout. 
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Figure 8. Experimental results acquired by the piezo stack - LDV shear wave sensing approach. 

(a) and (b) Waveform and frequency spectrum of the excitation signal (5-count 400 Hz sine 

wave modulated by a Hanning window) applied to the piezo stack. (c) An acquired time-

space wavefield of shear waves. The red markers ‘x’ indicate the wave valley positions. 

(d) Schematic showing the approach used to measure traveling times of shear waves. Using 

the traveling time and propagation distance, we can further determine the shear wave 

velocity. (e) Experimentally measured shear wave velocities for four groups that correspond 

to the valleys marked in figure (c). The red line within each blue box indicates the median, 

the bottom and top edges of each box indicate the 25th and 75th percentiles, the whiskers 

extend to the extreme data points. 
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Figure 9. Frequency-wavenumber analysis results for wideband shear waves. (a) and (b) Waveform 

and frequency spectrum of a chirp excitation signal applied to the piezo stack. 

(c) An acquired time-space wavefield of shear waves generated by the piezo stack with a 

chirp excitation. (d) A frequency-wavenumber spectrum with obtained best-match 

dispersion curve. The markers ‘x’ indicates experimental data that are extracted from the 

frequency-wavenumber spectrum by finding the local spectrum maxima at different 

frequencies. The solid line represents the dispersion curve that best matches the 

experimental frequency-wavenumber data. The material properties used for calculating the 

best matching theoretical dispersion curve are μ1 of 41 kPa and μ2 of 6.0 Pa∙s. 
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Figure 10. Short-space wavefield analysis results. (a) 2D image showing the obtained space-

wavenumber spectrum at f = 400Hz. (b) Scatter plots showing the distributions of measured 

shear elasticity μ1 and shear viscosity μ2 versus location x. 


