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Abstract
We study the time regularity of local weak solutions of the heat equation in the context of
local regular symmetric Dirichlet spaces. Under two basic and rather minimal assumptions,
namely, the existence of certain cut-off functions and a very weak 2 Gaussian type upper
bound for the heat semigroup, we prove that the time derivatives of a local weak solution
of the heat equation are themselves local weak solutions. This applies, for instance, to local
weak solutions of parabolic equations with uniformly elliptic symmetric divergence form
second order operators with measurable coefficients. We describe some applications to the
structure of ancient local weak solutions of such equations which generalize recent results
of Colding and Minicozzi (Duke Math. J., 170(18), 4171–4182 2021) and Zhang (Proc.
Amer. Math. Soc., 148(4), 1665–1670 2020).
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1 Introduction

When is the infinitesimal generator of a self-adjoint strongly continuous semigroup of
operators acting on a Hilbert space H, spectral theory implies the time regularity
of any (global) solution 0 of the equation 0 with initial data 0 H.
When H 2 for some nice measure space and is associated with a
bilinear form so that for enough functions , it is often very
useful to consider the concept of local weak solution of the equation 0 in some
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open time-space cylinder , in some appropriate sense. Such definition goes
roughly as follows. A local weak solution is a function defined on which must
belong (locally) to a certain function space (in the most classical case, is related to the
Sobolev space) and satisfies

0 (1.1)

for all “test functions” compactly supported in . The precise nature of the space
and of the space of test functions to be used here are an important part of such definition.
When dealing with such a definition, the time regularity of a local weak solution is not
automatic. Formally, one expects the time derivative of a local weak solution to be a local
weak solution of (1.1), but the problem lies with the a priori requirement that
belongs locally to the space .

Consider the classical case when is a symmetric locally uniformly elliptic second order
operator with measurable coefficients 1 so that for any ,

1

.

The basic assumption, local uniform ellipticity, means that for any compact subset there
are 0 and such that

max sup and
1

2
2 1.

For any open subset and open interval , , a local
weak solution of 0 in is a function that locally belongs to

2 1 2 , such that

1

0

for all functions with compact support in . Here, locally
in 2 1 2 means that multiplied with any smooth function with compact
support in , is in 2 1 2 . It is clear from this definition that
locally in 2 1 2 and locally in 2 1 2

0 are equivalent.
One consequence of the general results proved in this paper is that the iterated time

derivatives of any local weak solution of the equation above are
themselves locally in 2 1 2 and are local weak solutions of the same
equation in . This follows from the following more general theorem. In this
statement we assume that is a locally compact separable metric measure space where

is a positive Radon measure with full support. In the following theorem, local weak
solutions are in the sense of Definition 1.

Theorem 1 Assume is a symmetric strongly local regular Dirichlet form on
2 whose intrinsic pseudo-metric is a continuous metric which induces the topology

of . For any local weak solution of the associated heat equation in , where
and is an open set, the iterated time derivatives are

themselves local weak solutions of the same heat equation in .
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Theorem 1 is an immediate consequence of our main results, Theorem 5 and Corol-
lary 1. Theorem 5 is more general in several ways. First, it treats local Dirichlet forms,
not just strongly local ones. Second, it replaces the existence of a continuous intrinsic
pseudo-metric with weaker assumptions we now explain. One weakness of Theorem 1 is
that it excludes fractal sets such as the Sierpinski gasket and the Sierpinski carpet (on such
examples, the intrinsic pseudo-distance is identically equal to 0) as well as some infinite
dimensional examples (e.g., on the infinite dimensional torus there are cases where the
intrinsic pseudo-distance is infinite almost surely). These cases are in fact covered by The-
orem 5 and Corollary 1. Indeed, Theorem 5 depends on the following two related types of
assumptions which allow for spaces of the type just mentioned:

– the existence of good cut-off functions (in a sense that is somewhat weaker than most
conditions of this type that exist in the literature);

– a very weak 2 Gaussian bound, namely, the fact that for any 0 and any integer
0 1 2 , for any disjoint compact sets 1 2,

sup
1 2

2 1 0 as 0

where the sup is taken over all functions 1, 2 supported respectively in 1 2 and
with 2-norm at most 1.

As an application of our results, we extend two recent structure theorems regarding
ancient weak solutions, [9, 29, 38]. The first result of this type describes very general con-
ditions under which any ancient (local) weak solution of 0 with “polynomial
growth” must be of the form 1 where all ’s are of polynomial
growth, is a harmonic function, and other ’s satisfy 1 1 in a weak
sense. The integer is related to the given growth degree of . The second result describes
very general conditions under which any ancient (local) weak solution of “exponential
growth” is real analytic in time.

The general approach we take is to utilize the heat semigroup to study the time regu-
larity properties of local weak solutions of the heat equation. The basic idea of deriving
hypoelliticity type results from properties of the heat semigroup goes back to Kusuoka and
Stroock’s paper [24] which is written in the context of the heat equation associated with
Hörmander sums of squares of vector fields in Euclidean spaces. It was also implemented
in [7] to study distributional solutions of the Laplace equation on the infinite dimensional
torus and other infinite dimensional compact groups.

This approach differs from the classical hypoellipticity viewpoint in the primary role
it gives to the fundamental solution of the heat equation (here, in the very minimal form
of the heat semigroup itself). On the contrary, traditional studies of hypoellipticity treat
all solutions equally and are then used to deduce the basic regularity of the fundamental
solution. In this paper we generalize the heat semigroup approach on hypoelliticity to the
general setting of Dirichlet spaces on metric measure spaces. One natural goal is to cover
rougher structures that make smoothness more elusive. Here, we treat a purely 2-theory. In
the companion paper [20], we further utilize this method to study the local boundedness and
continuity properties of local weak solutions of the heat equation (the -type properties)
under additional assumptions.

This work is organized as follows. Section 2 introduces the general Dirichlet space setup
for this paper and defines the related notion of local weak solutions. Section 3 describes
the two main hypotheses, the existence of certain cut-off functions and the notion of a very
weak 2 Gaussian bound. Section 4 states the main theorems proved in this paper, Theorem
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5 and Corollary 1, and gives a sketch of the main idea of the proof while avoiding many long
necessary computations and technical details. Section 5 gives a complete proof of Theorem
5 and Corollary 1. Section 6 is devoted to the results concerning the structure of ancient
(local weak) solutions. Section 7 discusses briefly several typical examples that illustrate the
results of this paper in a variety of different contexts. Lastly Section 8 verifies that the very
weak 2 Gaussian bound is satisfied under rather weak assumptions involving the existence
of cut-off functions, and provides proofs of some lemmas regarding cut-off functions.

We remark that, in this paper, the Dirichlet forms we treat are symmetric, and are not time
dependent. The independence on time is a crucial assumption for us, as we take advantage
of the smoothness of the heat semigroup in time. The symmetry assumption can proba-
bly be replaced by some form of the sector condition but we leave this to a further study.
For related but different results (under stronger assumptions) for nonsymmetric or time
dependent Dirichlet spaces, we refer to [34, 35] and [26–28].

2 Dirichlet Spaces and Local Weak Solutions

2.1 Dirichlet Spaces

We briefly review some concepts and properties related to Dirichlet forms. A classical ref-
erence for (symmetric) Dirichlet forms is [16]. Let be a metric measure space
where is locally compact separable, is a Radon measure on with full support, and
is some metric on that we omit writing in the rest of the paper because we do not use it
explicitly. For 1 , we use or to denote the -space on .
Recall that the -space is equipped with norm

1

for 1 , and

ess sup

where the essential supremum is with respect to the measure . We use 2 to denote
the standard inner product on 2 , i.e.,

2 .

Let be a symmetric regular local Dirichlet form on 2 , denotes the
domain of . By definition, a (symmetric) Dirichlet form is a closed symmetric form that
further satisfies the Markov property. Here the term symmetric form refers to any symmet-
ric, nonnegative definite, densely defined bilinear form. The domain equipped with the

1 norm

1
2

1 2

is a Hilbert space.
Let be the space of continuous functions in with compact support. A Dirichlet

form is called regular, if is dense in in the sup norm and dense in
in the 1 norm. Any subset that is dense in these two senses is called a core
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of . Any in the domain of a regular Dirichlet form admits a quasi-continuous modifi-
cation [16, Section 2.1]. In the following we do not specify quasi-continuous modifications
of functions.

A Dirichlet form is called local, if 0 for whenever supp
and supp are disjoint and compact. Here supp for any -measurable function
denotes its (essential) support, i.e., the smallest closed subset of such that 0 -a.e.
outside .

Regular Dirichlet forms satisfy the Beurling-Deny decomposition formula [16, Section
3.2]; as a corollary, any regular local Dirichlet form can be written in the form

.

This formula extends natually to all via quasi-continuous modification. Here is
a positive Radon measure, called the killing measure, and stands for the energy measure,
which is a (Radon) measure-valued bilinear form first defined for any in by

1

2
2

for any , then extended by polarization for arbitrary pairs of
. For , the energy measure of is the limit of the energy measures associated

with the truncation functions as .
As a generalization of the classical energy integral in , that is, intu-

itively as a measure given by gradient square, the energy measure satisfies the following
properties. As mentioned earlier, we do not specify quasi-continuous modifications of
functions.

– (Leibniz rule [16, Lemma 3.2.5]) For any with (e.g.
),

.

– (Chain rule [16, Theorem 3.2.2]) For any , any 1 with bounded
derivative and satisfies 0 0, then , and

.

– (Cauchy-Schwartz inequality [16, Lemma 5.6.1]) For any
(more generally, for any , 2 , and 2 ),

2
1 2

2
1 2

2
2 1

2
2 . (2.1)

The last inequality holds for any 0. The corresponding measure version is

2
2 1

2
2 .

– (Strong locality [16, Corollary 3.2.1]) For any , if on some precompact open
set , for some constant , then

1 0.

Here the symbol refers to precompact inclusion, i.e., means that the closure
of is a compact subset of .
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Any Dirichlet form is associated with a corresponding Markov semigroup
0, an (infinitesimal) generator with dense domain , and a Markov resol-

vent 0 (in the sense of [16, Section 1.3]). The semigroup and resolvent have
domain 2 ; the domain of is dense in with respect to the 1 norm.
These are self-adjoint operators. By spectral theory, has a spectral resolution 0
such that, for any 0,

0
.

As a consequence, for any where 0 1 2 ,

2 2 2 2
.

For any function 0
2 , 0 is smooth in 0, and solves

in the strong sense. That is,

lim
0

in 2 .
Given the notations above, our main goal in this section is to define local weak solutions

of the heat equation (with appropriate right-hand side )

.

2.2 Function Spaces Associated with (E ,F )

To properly discuss candidate functions for local weak solutions, and later their properties,
we first introduce some function spaces associated with . In choosing notations for
these function spaces, we mostly follow [34], with a few exceptions that we will remark
on later. Among these function spaces there are two prevalent types, one type consisting
of functions that have compact support (all denoted with subscript “ ”); the other type of
functions that locally satisfy the required properties (all with subscript “loc”).

Recall that 2 and the inclusion is dense. Equating 2 with its dual with
respect to the 2 inner product, we get the Hilbert triple

2

in which the inclusions are dense and continuous. Intuitively, the “ ” spaces are on the
“ ” end, and the “ loc” spaces are on the “ ” (dual space) end. We consider the dual
spaces of “ ” spaces too.

We now give precise definitions of these spaces, organized in pairs, starting with the
following two pairs:

– has compact (essential) support ;
– loc

2
loc

compact s.t. -a.e. on .

For any open subset , define

– has compact (essential) support in
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– loc
2
loc

compact s.t. -a.e. on .

Remark 1 When , by definition, there is an injection , and
clearly loc loc by restriction to . Note, however, that loc is not a
subspace of loc .

Fix an arbitrary open interval , . Consider the
following function spaces involving time and space. In defining these spaces, we switch
freely between two viewpoints where elements in these spaces are viewed (1) as functions of
time and space; (2) as functions on the time interval with values in some (spatial) function
space. The rigorous setup for the latter viewpoint is the theory of Bochner integrals, for
which we refer to [37, Section 24].

In the sequel, when there is no ambiguity, we use the notation as an abbreviation
for . That is, for any fixed , consider as a function of , denoted by . Note
that this is not any power of or time derivative of ; the time derivative is denoted by .

First, we fix the notation for the “base space”

– 2 , the 2 space of functions on with values in .

Remark 2 The space 2 is the completion of the space of bounded continuous
functions from to , , under the norm

2
2

1

1 2

.

The space of smooth compactly supported functions from to is also dense
in 2 with respect to the 2 norm. We use the notation to
clarify the use of notations and loc for function spaces defined below.
See also Remark 4.

Based on the “base space” , for any open subset , define

– is compactly supported in ;
– loc

2
loc open interval open subset

s.t. on a.e. .

Here a.e. refers to -a.e.. The first two spaces and are subspaces
of 2 and 2 , respectively. We identify the 2-spaces with their own duals
(under the 2 inner product), and denote the dual spaces of , by

, .

Remark 3 2 2 .

Remark 4 Here our notations are slightly different from the ones used in other places (e.g.
[17, 34]). In the definition of , we do not require the functions to further be in

1 2 , the space of functions in 2 with distributional time deriva-
tives that belong to 2 . The reason we consider the function spaces defined
above instead of the ones obtained by taking the intersection with 1 2 , is to put
minimum assumptions in the definition of local weak solutions. Under our definition and

85



Q. Hou, L. Saloff-Coste

hypotheses, such local weak solutions automatically satisfy better properties. In particular,
we explain at the end of this section that under a very natural assumption on existence of
cut-off functions, and when we require the right-hand side to be locally in 2 ,
our choice of definition of local weak solutions agrees with the definition used in other
papers. This is verified by adapting the proof of Lemma 1 in [15].

To include more time derivatives we introduce the following notations for function
spaces. For 1 2 , define

– 2 , the index- Sobolev space from to ;
– is compactly supported in ;
– loc

2
loc open interval open subset

s.t. on . . .

Here a.e. refers to -a.e.. When 1, these are the -spaces defined above. More
details on the general theory of Sobolev spaces of functions with values in a Hilbert space
can be found in for example [37, Section 25].

Remark 5 In general, we say that a function is locally in some function space S, if for
any compact subset of the underlying space with measure , there exists a function in S

such that -a.e. on the compact set.

2.3 Notion of Local Weak Solutions

For any symmetric local regular Dirichlet form on 2 , we define the follow-
ing notion of local weak solutions of the associated heat equation (below and 0
are the corresponding generator and semigroup as before).

Definition 1 (local weak solution) Let be an open subset and be an open
interval. Let be a function locally in 2 . We say is a local weak solution
of the heat equation on , if loc , and for any

,

. (2.2)

Here in the integral is understood as (relative to the support of ) as in the definition
for loc . We take this convention throughout this paper. Note that is well-
defined (independent of the choice of ) by the local property of . The symbol
stands for the pairing between elements in and .

We remark that we can define local weak solutions for more general right-hand side ,
e.g., . But in the propositions and theorems in this paper we always put
more restrictions on than locally in 2 ; moreover, the results are interesting
even for the case 0, so here in the definition we do not aim to consider the most
general right-hand side. With this choice, Definition 1 will be shown to be equivalent to the
following variant, under a natural assumption on the existence of certain cut-off functions.
As mentioned in Remark 4, the following definition is often adopted in the literature.

Definition 2 (local weak solution, variant) Let be as in Definition 1. Let be a
function locally in 2 1 2 . is called a local weak solution of the
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heat equation , if for any in 2 1 2 with compact
support in , for any subinterval ,

.

Note that in general,

loc

roughly because is not an algebra. Here

loc loc .

What we want to assume is that there is a subset of that contains
enough functions, each of which brings functions in loc to by mul-
tiplication (these can be thought of as cut-off functions with some nice properties). Here

is the space of continuous functions in . We denote this subset of cut-off
functions by C . Observe that we just need the existence of an analogous subset
C , and then to construct C , take products of functions in C

with standard cut-off functions in . The following assumption makes
precise what we require from the set C .

Assumption 2 There exists a subset C such that

(i) for any pair of open sets , there exists a function C such that
1 on , supp ;

(ii) for any C , any loc , the product .

Remark 6 The requirement (i) in Assumption 2 is standard and easily fulfilled when the
Dirichlet form is regular. The requirement (ii) is nontrivial. In general, only the products of
functions in are guaranteed to belong to .

We now state the equivalence of the two definitions for local weak solutions.

Lemma 1 (equivalence of definitions of local weak solutions) Under Assumption 2,
Definition 1 is equivalent to Definition 2.

Proof The proof follows essentially that of [15, Lemma 1].

3 Main Hypotheses

As summarized in the Introduction, two related types of assumptions play a key role in
our analysis. We now introduce and elaborate on these assumptions. Let be a
symmetric local regular Dirichlet form as before, with the associated semigroup 0.

3.1 Assumption on Existence of Cut-off Functions

For a pair of open sets , by a cut-off function for the pair we mean a
function in between 0 and 1 such that 1 on and supp . Such cut-
off functions always exist for any pair of precompact open sets in a regular Dirichlet
space, see [16, page 6 and Exercise 1.4.1]. For results in this paper we need the existence
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of cut-off functions that further have controlled energy, we explain what this means in the
following assumption.

Assumption 3 (existence of nice cut-off functions) There exists some topological basis
of such that for any pair of open sets , , for any 0 1 1, there
exist some constant 2 1 0 and some cut-off function for the pair ,
such that for any ,

2
1

2
2

supp

2 . (3.1)

We call such functions nice cut-off functions corresponding to 1 2.

Remark 7 Later we show that in Assumption 3, the condition for some topo-
logical basis is “redundant”, in the sense that Assumption 3 implies automatically that
nice cut-off functions in the sense of (3.1) exist for any pair of open sets . See
Lemma 3. We also remark that Assumption 3 has a straightforward equivalent form that for
any pair of precompact open sets with disjoint closures, i.e., , for any 1 in
0 1 , there exists a cut-off function such that 1 on , 0 on , and there exists

some constant 2 1 0, such that for any ,

2
1

2
2 1

supp

2 . (3.2)

Let be a nice cut-off function and (0 1) be a smooth function on
with compact support, then the product is a function in . We call such
product functions nice product cut-off functions, and we denote such functions by adding
an overline, i.e., .

Remark 8 If a cut-off function for some pair satisfies that its corresponding energy
measure is absolutely continuous with respect to , and is bounded, i.e.,

(3.3)

for some , then is a nice cut-off function and satisfies (3.1) with 1 0 (hence
any 0 1 1), 2 . Here, 2 is independent of 1. We say in this special case that
the cut-off function has bounded gradient.

Conversely, if for some nice cut-off function , (3.1) can be extended to hold true for
1 0 and 2 0 , then has bounded gradient.

In particular, when the intrinsic pseudo-distance of the Dirichlet space,

sup loc (3.4)

is a continuous metric that induces the same topology of , the Dirichlet space satisfies
Assumption 3 with existence of cut-off functions with bounded gradient, and the cut-off
functions can be explicitly constructed using the intrinsic distance. See Section 7.1 for more
details.

Remark 9 Typical examples of Dirichlet spaces that satisfy Assumption 3 but do not possess
cut-off functions with bounded gradient are some fractal spaces, including for example the
Sierpinski gasket and the Sierpinski carpet. For fractal spaces, usually the existence of nice
cut-off functions is guaranteed as a consequence of other properties like sub-Gaussian upper
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bounds satisfied by the Dirichlet space (heat kernel). In general, in such cases, there are no
simple explicit constructions of cut-off functions satisfying (3.1). For references we mention
[1] and [3].

Let be a symmetric regular local Dirichlet space as before. We first verify
that the cut-off functions in Assumption 3 indeed satisfy the conditions in Assumption 2.

Lemma 2 Any nice cut-off function in the sense of (3.1) satisfies (ii) in Assumption 2.
Namely, let be some open set such that supp , then for any loc , the
product .

Proof The support of the product function is clearly contained in . To show ,
recall that loc means that is in 2

loc , and satisfies for any , there exists
some in such that -a.e. on . Pick some open set such that supp

, fix some that agrees with -a.e. on . Then

2

1

2 2

2 2 2 2 2 .

The first two terms are clearly finite, the third term is bounded above by 2 2, and
the last term is finite due to (3.1). Hence

1
, and .

So far the examples we have described satisfy Assumption 3 for all pairs of open sets
. The reason in Assumption 3 we only require nice cut-off functions to exist for pairs

of open sets in some topological basis is to make the assumption easy to check for some
infinite dimensional examples, like the infinite dimensional torus or the infinite product of
Sierpinski gaskets.

In the next lemma we state the automatic extension of existence of nice cut-off functions
for general pairs of open sets, given Assumption 3. We postpone the proof to Section 8.

Lemma 3 Suppose Assumption 3 holds. Then for any open sets with , for
any constant 0 1 1, there exist some 2 2 1 0 and some nice
cut-off function in the sense of (3.1) corresponding to 1 2. In particular, are not
necessarily in .

Given any nice cut-off function and any function in the domain , by Lemma 2, their
product belongs to . The energy of the product function satisfies the following estimate,
which we later refer to as the gradient inequality.

Lemma 4 (gradient inequality) Let be a nice cut-off function associated with 1 2 in
the sense of (3.1), where 0 1 1 4, let . Then

1 2 1

1 4 1

2 2

1 4 1 supp

2 . (3.5)

The point of the lemma is to bound the energy of the product function on the left-
hand side by 2 integrals on the right-hand side, when . Indeed, the first integral
then equals 2 (when is strongly local).
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It is easy to check the validity of this lemma in the special case when the cut-off function
has bounded gradient. In this case, by expanding by the product rule and
utilizing the upper bound , we get

2

supp

2

which is exactly (3.5) with 1 0 and 2 . In the general case, when the cut-off
function does not have bounded gradient (thus 1 in (3.1) must be taken as positive), (3.5)
is less obvious, and we give the proof below.

Proof of Lemma 4 By the Cauchy-Schwartz inequality (2.1), and the assumption that is a
nice cut-off function associated with constants 1 2,

2 2 2

2 2 1

2
2 2 2

1

2
2 2

1

2
2

1
2

2
supp

2

1

2
1

2
2

supp

2 .

Hence as 1 1 4 1 2,

2 1
1
2 1

2
1
2 1 supp

2 . (3.6)

On the other hand,

2 2

2
1

2
2

supp

2 .

Substituting the upper bound in (3.6) for 2 here, we get

2
2

supp

2

1
1

1
2 1

2
1
2 1 supp

2 .

As 1 1 4, this implies

1 2 1

1 4 1

2 2

1 4 1 supp

2 .
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In applications, we do not care about the exact constants. So in the following we consider
1 1 8, and (3.5) implies

2 2 2 2
supp

2 . (3.7)

Adding the positive terms 2 2 to the left-hand side and 2 2 2 to the right-
hand side of (3.7), we get

2 2 2 2
supp

2 . (3.8)

3.2 L2 Gaussian Type Upper Bound

In our treatment of the 2 time regularity of local weak solutions, we rely much on the heat
semigroup, which is smooth in time. Roughly speaking, we use the heat semigroup to con-
struct an approximate sequence to a local weak solution , and show that this approximate
sequence (1) converges to in some weak sense; (2) forms a Cauchy sequence in the space

2 for some integer 1 . These two statements together
then imply that is (locally) in . To show the approximate sequence is Cauchy,
we use the following (very weak) 2 Gaussian type upper bound for the heat semigroup.

Assumption 4 ( 2 Gaussian type upper bound) For any two open sets 1 2 with
1 2 , let

1 2 1 2 supp 2 1 1 2 .

For any 0, any , the semigroup satisfies that

lim
0

sup
1 2 1 2

1
1 2 2 0.

To simplify notation we write

1 2 max
0

sup
1

1 2 2 1 2 1 2 .

In this notation, the condition above is

lim
0

1 2 0

for any 0, . When this condition holds, we say that satisfies the 2 Gaussian
type upper bound.

Remark 10 The 2 Gaussian type bound above is a very weak upper bound. For example,
from this bound itself we cannot tell if the heat semigroup admits a density, and even if we
assume there is a density, neither can we say anything about the pointwise estimate of the
density function. On the other hand, when there is some (global or local) pointwise Gaussian
or sub-Gaussian upper bound, then the 2 Gaussian bound is a very weak consequence. So
we still name it “ 2 Gaussian type upper bound” after the name of the classical pointwise
Gaussian or sub-Gaussian upper bound.

Typical examples where the 2 Gaussian type upper bound for the heat semigroup holds
are when there are enough cut-off functions with bounded gradient (see (3.3)), or when
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Assumption 3 holds with 2 1 1 for some 0 and 0.
More precisely, under Assumption 3 with cut-off functions with bounded gradient, one can
define the distance between sets as follows (cf. [2, 19]). For any two precompact Borel sets

,

sup
loc

ess inf ess sup (3.9)

where ess sup and ess inf are with respect to the measure . The following more concrete
2 Gaussian bound is a classical result, often referred to as the Takeda formula (cf. [36,

Lemma 4.1]). See [12, Theorem 2] for a more related statement and proof. Let 1 2 be
two precompact measurable subsets of with 1 2 . Then 0 1 2 . For
any pair 1 2 1 2 , any 0,

1 2 2 exp 1 2
2

4
. (3.10)

Proofs for various kinds of Gaussian upper bounds usually use the so-called Davies’ method,

cf. e.g. [11]. To generalize the upper bound for terms like 1 2 2 , one can use

for example the complex analysis method from [10], or the method in [13].
However, when the existence of nice cut-off functions with bounded gradient is not

guaranteed, there could be disjoint closed measurable sets with distance
0 (because roughly speaking, the only functions with bounded gradient are constant
functions). Then this distance notion is not helpful in getting a Gaussian type upper bound.

Under Assumption 3 with cut-off functions satisfying the general inequality (3.1), or
(3.2) as in the equivalent form of Assumption 3 (see Remark 7), when furthermore 2
depends on 1 in the specific form 2 1 1 for some 0,

0, by a modification of Davies’ method, we can show that for any 0,

1 2 2 exp
1

4 1
1 2

1
1 2

. (3.11)

Here again 1 2 are two precompact Borel sets in with 1 2 , 1 2

1 2 . A relevant but different 2 upper bound is given in [1, Proposition 2.3], under a
different assumption concerning existence of cut-off functions.

Both bounds (3.10) and (3.11) imply that the semigroup satisfies the 2 Gaussian
type upper bound in Assumption 4. Note that (formally) if we take 0 and 1 2

1 2
2 in (3.11), then we recover (3.10). In Section 8 we give a proof of (3.11), as well

as how this implies a similar bound for 1 2 2 .

4 Statement of theMain Results and Overview of the Proof

4.1 Statement of theMain Results

In this section we state our results on the time regularity property of local weak solutions
of the heat equation . Our main result is that the regularity in time of
is as good as that of the right-hand side . Note that as a local weak solution on some
time-space cylinder , satisfies the prerequisite loc , so
any of its “ representative” automatically has distributional time derivatives
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of any order. The challenge hence lies in showing that these time derivatives belong to
2 . Our main theorem is the following.

Theorem 5 Let be a metric measure space and be a symmetric regular local
Dirichlet form satisfying Assumption 3 (existence of nice cut-off functions). Assume that
the associated heat semigroup 0 satisfies Assumption 4 (the 2 Gaussian type upper
bound). Let , , be an open interval, be an open set,
and be a function locally in 2 2 for some . Let be a local weak
solution of on . Then is in loc .

In short, Theorem 5 claims that if the right-hand side of the heat equation locally has 2

time derivatives up to order , then so does the local weak solution , and its time derivatives
up to order locally belong to 2 . An important implication of Theorem 5 is that
the time derivatives of (up to order ) are local weak solutions of the corresponding heat
equations.

Corollary 1 Under the hypotheses in Theorem 5, if is locally in the space 2

2 , then for any 1 , is a local weak solution of

. (4.1)

In particular, if is a local weak solution of 0 on , then all time derivatives
of are local weak solutions of the same heat equation on .

Remark 11 It will be evident after we present the proofs, that Theorem 5 and Corollary 1
are of a local nature. In fact, to obtain the conclusions of these results, we may ignore the
Dirichlet form and use instead the restricted Dirichlet form 0 on , the domain
of which is the completion of with respect to the 1 norm. The subscript 0 refers
to Dirichlet boundary condition. It is enough to have the hypotheses in Theorem 5 hold
for 0 and its corresponding semigroup 0, to conclude that local weak solutions

loc . See Sections 4.2 and 4.3 in the companion paper [20] for more details and
for more examples illustrating this point.

4.2 Sketch of Proof for a Special Case of Theorem 5

In the next two sections we prove Theorem 5 and Corollary 1. In this subsection, we give
an outline of proof for a simplified case to demonstrate some main ideas while avoiding
certain technicalities. The sketched proof below is only for illustration and is not part of the
rigorous proof in the next two sections. The simplified setting we consider here (Proposition
1 below) concerns a compact space and local weak solutions of the heat equation on

. There, Assumption 3 and Assumption 4 are not needed. To treat the general context
of Theorem 5, we need these further assumptions to conduct localization, which brings in
more complications.

Recall the following convention: for any function , we write . In
the special case where is compact and is a local weak solution on the “full” time-space
cylinder , since loc , we know that itself is in the domain of the
Dirichlet form, and in particular, in 2 . The spaces , , loc are
different due to the inclusion of the open time interval . We do need to multiply

with some smooth cut-off function in time, but in the outline proof below we ignore that
technicality and pretend that the functions are globally good in time.
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Proposition 1 (special case of Theorem 5) Let be a compact metric measure space
and be a symmetric regular local Dirichlet form. Given and a
function that is locally in 1 2 2 , let be a local weak solution of
on . Then is locally in 1 .

Outline of Proof Let 1 2 be some smooth nonnegative cut-off function on
with 1. For any 0, define

1
.

Then supp 2 , and 0 is an approximation to identity in . Note that
, where

2
.

Define an approximate sequence 0 as follows. For any 0, let

.

Observe that because of the term, the integrand is nonzero only when
2 . In particular, so that is well-defined, and the integral makes sense as
a Bochner integral. Note that when there is the notion of convolution and when admits
a density function (heat kernel), the approximate sequence above is exactly the convolution
in time and space of and the heat kernel (with a cut-off function in time).

Because is smooth in time, it is easy to show that is smooth in time. More precisely,
for any 0, . It is routine to verify that converges to in 2

as tends to 0. So to prove the proposition, it suffices to show that 0 is Cauchy in
1 2 1 . Here by 0 is Cauchy, we mean that for any subsequence
that converges to 0 as tends to infinity, the sequence is Cauchy.
To this end, we show that 1 2 is integrable in near 0, then for any 0

, by Minkowski’s (integral) inequality,

1 2
1 2

0
1 2 0 as 0

thus 0 is Cauchy in 1 2 . We first estimate 2 . By duality,

2 sup
2 1

2

2 .
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Here 2 denotes the standard inner product on 2 . Using
to express , we have

2

sup
2 1

2

2

sup
2 1

2

.

From the second line to the third line we used the Fubini theorem and the self-adjointness of
to move from the “ ” side to the “ ” side, then used the product rule

to redistribute . Because and is a local weak solution of
on , the above two terms in the curly brackets together, modulo a cut-off function in
time that we omit in this proof (i.e., think of the function
as a test function), equals

.

By rewriting as and using integration by parts, we get

2

sup
2 1

2

.

Here we did not consider the boundary term, but that is not a problem once we add in the
cut-off function in time in the rigorous proof in the next section. For the same reason, we
think of 1 2 2 as being finite, when more rigorously it should be multiplied
with some cut-off function in time. We now show that the above integral has an upper bound
in terms of 1 2 2 , which in particular is independent of . First, by Hölder’s
inequality,

2

2 1 2

2
1 2 .
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To estimate , first note that for any (i.e., ),

1

0
2

0
2 (4.2)

where in the last line we made a change of variable , and used the fact that
is supported in 1 2 . Let , then 0 2. When 0, by
Jensen’s inequality we have

2

2 1 2

2 .

The inequality holds for 0 too. So the term satisfies that

2 2

2 sup 2

where in the second inequality, we used the fact that the semigroup is a contraction semi-
group, 2 2 . We can similarly check that sup 2.
Hence

sup
0 1

2

sup
0 1

sup
2 1

2

2
1 2 2 1 2 2 .

To estimate 2 , note that for any 0, , belongs to .
Thus

1 2
1 2

2
1 2

2 .

It is shown above that sup0 1 2 , so it suffices to show that for
0 1,

2

for some constant that depends only on . Running the estimates above with
replaced by , we can get the desired estimate. See the rigorous proof in the next
section for more details.
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5 Proof of theMain Results

5.1 Proof of Theorem 5 - General Strategy

In this section we prove Theorem 5. To verify loc , we show that for any
, there exists some function in that equals a.e. over .

Here is some nice product cut-off function such that 1 on some
where ; supp for some .

Our notational choice is that are proper subsets of , and subscripts mark which
function these sets are “affiliated with”.

More precisely, we first define an approximate sequence (now, with proper nice cut-off
functions inserted) to the local weak solution and show that the approximate sequence is
Cauchy in . Next, we show that the sequence converges to in the 2 sense
(this step does not make use of the fact that is a local weak solution). The limit of the
approximate sequence then serves as the function in that agrees with a.e. on

.
The approximate sequence is defined as follows. Let be as in the last section, that

is, 1 2 is some nonnegative smooth function satisfying 1, and
is defined by 1 ( 0). Note that supp 2 . Recall

that , where 2 . Let be another
nice product cut-off function which is 1 over some neighborhood of the support of . More
precisely, 1 on some where ; supp
for some . Consider the sequence 0 defined by

.

Like in the definition of in Section 4.2, the integrand is nonzero only when
2 . This guarantees the integral is well-defined.

As mentioned above, we claim that (1) the family 0 is Cauchy in
and hence has a limit in the same function space, here Cauchy means that any subsequence

with 0 is a Cauchy sequence in ; (2) in
2 as 0. So the two limit functions must equal a.e.; in particular, the “ 2-limit”

in fact belongs to . Because a.e. on , and is arbitrarily
taken, the statement in Theorem 5 follows.

To prove 0 is Cauchy in 2 , we first show that for
each 0, . It then suffices to prove the following two propositions.

Proposition 2 Under the hypotheses in Theorem 5, for any nice product cut-off function
supported in ,

max
0

sup
0 1

2
.

Proposition 3 Under the hypotheses in Theorem 5, for any nice product cut-off function
supported in , for any 0 1,

max
0

1 2 1
.
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Here means that the left-hand side is less than some finite positive constant times
the right-hand side, where is independent of . These two propositions together imply
that for any 0 1,

2
2

0
2

0

1
2

which tends to 0 as tends to 0. Here, the first inequality is by Minkowski’s inequality and
enlarging the domain of integration to 0 . It thus follows that the family 0 is
Cauchy in 2 .

We now verify that for every 0. Recall that the norm
is the sum of norms of the function and its derivatives up to order . Note that for any
fixed 0 and ,

2

1
supp 1 2

2

which is a finite upper bound and independent of . Here supp is the one-
dimensional Lebesgue measure of supp . It follows that all , , are well-defined
as Bochner integrals and are in . Hence . More precisely,
we have

sup 1
1 2

sup
2 2

2

2

1 2

.

The estimate above implies that the right-hand side here is finite. The conclusion that
then follows from applying the gradient inequality (3.8).

In the next two subsections we prove Proposition 2. We present the proof in two steps. In
the first step we express and split 2 into three parts; in the second step
we estimate each part and show that they are all bounded above independent of 0 1
and 0 .

5.2 Proof of Proposition 2 - Step 1

We first compute . For any 0, ,

.

Recall that here

2
.

Let

2 1 2 .
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Recall that . We have

2
sup

2

where

2

.

The last line is by the Fubini Theorem (changing the integration order from
to ) and by the self-adjointness of . Using the prod-

uct rule for to rewrite in the square bracket as
, altogether we get that

2

sup

.

In the last line, since , the second term equals

second term

.

To simplify notation, let

. (5.1)

When are fixed, we write . It is clear that for any fixed 0

and , . Moreover, 2 2 . Using , we can rewrite
the previous equality as

2

sup

. (5.2)

Recall that is a local weak solution on . If in (5.2), is not grouped with but
appears on the same side with , then (5.2) is exactly

sup 2 .
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This observation inspires us to write (5.2) as this term plus the difference, and then estimate
them each separately. More precisely, using (5.2), we have

2

sup sup sup

where

2 .

5.3 Proof of Proposition 2 - Step 2

Next we estimate , , and individually. We will see that the
upper bounds we find for involve some 2 or 1 norms of the local weak
solution on some precompact subsets of (hence the norms are well-defined). To
conveniently express these norms of , we introduce a nice (product) cut-off function that
lives in (i.e., has compact support in) and is flat 1 on some open set that covers the
supports of all other cut-off functions in the whole proof. We denote this cut-off function
by . It can be determined after all other cut-off functions in the proof
of Theorem 5 are introduced.

For , note that is only nonzero for (i.e., away from where
1), while because of . Hence for small , more precisely, for

min 2 1 2 0,

0.

So 0 for 0 0. For 0, first note that for any ,

2

3 max
0

sup
2

2

max
0

sup
2

2 2 2 .

Here 2 2 2 2 since
2 . Direct computation shows that for any 0 ,

2 1
1

2
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which is bounded above by 2 1 . So there exists some 0,
such that

2 2 1 2 .

It follows that

2 2

2 1 2 2

2 2 .

Here the constant 1 2 1 2 2 1
0

depends only on the two cut-off functions , , the function , and the sum of the trino-
mial coefficients that is bounded by 3 . Note that 0 is determined by the cut-off functions

since 0 min 2 1 2 . The function is equal to 1 on the support of as

introduced at the beginning of this subsection. So

max
0

.

Recall that we take supremum over functions with 2 1. Hence

max
0

sup
0 1

sup 2 . (5.3)

For , because and 1 on , by the strong locality of the
energy measure , the two terms in satisfy that

1 1 .

In other words,

(5.4)

for any “bowl-shaped” that equals 0 inside and becomes 1 before it reaches the bound-
ary of , provided that the products of the functions are still in the domain . To later
utilize the 2 Gaussian type upper bound to estimate, we take to be a nice cut-off func-
tion “disjointly supported” from . More precisely, recall that . Let

be two open sets that sit in the middle of this chain, and let be two open sets
at the right end of the chain, i.e.,

.

Let and . Then , and there exists a nice cut-off
function that is 1 on and supported in . We fix such a function and denote it by .
The existence of is guaranteed by Lemma 3, or we can take the difference of two nice cut-
off functions (for pairs and ) and show that the difference still satisfies
(3.1). The nice cut-off function has the desired “bowl-shape”, satisfies equation (5.4),

101



Q. Hou, L. Saloff-Coste

and has disjoint support from . In summary,

where by the Cauchy-Schwartz inequality for the strongly local part of and Hölder’s
inequality applied to the integrals on , we have

1 2 1 2

1 2 1 2

and similarly (recall that equals 1 on the supports of all other nice cut-off functions),

1 2 1 2

.

Hence
1 2

2 2 (5.5)

1 2 1 2

.

It remains to estimate the two integrals in the square bracket. The estimates for
the two terms are almost identical, so here we only do it for the second term,

1 2
. Recall that 2 2 , we first want

to move both to one side in , in order to rewrite the -integral as an 2-integral
of something times . To this end we apply the gradient inequality. Using (3.8) applied
to the nice cut-off function , we get that

2 2

2 2
supp

2 .

Here 2 is associated with . The first integral is (plugging in (5.1))

2 2

2 2 .
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Up to derivatives of which are bounded by some multiple of 1 1,
this integral is bounded above by a sum of integrals of the form

2
2

for 1 1. Note that the functions 2 and have disjoint supports
because and do. The second integral above equals

2 2 1supp

which is essentially the sum of

1
2

for 0 (up to derivatives of ). Here, for simplicity, we write 1
1supp . Again, by construction, and have disjoint supports, so the functions 1

and have disjoint supports. We can then use the 2 Gaussian type upper bound to
estimate each such term. Note also that as 2 , for any 0 ,

2

2
1

2 1 2
1

.

In summary, we have

2 1 2 3 2 1 2 max
1 1
0 1

1

2
2

1
2

2 23 1 2 2 sup
2

1 1

2
2

1
2 2 .

The last inequality is obtained by letting and applying the 2 Gaussian type upper
bound. Here 1 1 1 1 as defined in Assumption 4.
So there exists some 2 0, such that

2 sup
2

1 1

2
2

1 2 2 .
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Next we estimate 1 2 (and 2
2 ). Note that

1 2
2 1 2

1

sup
2

1 1 2 2
1 2

for some 0. The left-hand side 1 2
2 and the right-hand side

of the inequality have a common factor 1 2 that cancel each other. The

same argument works for 2
2 (as 0 1). So

2
2

1 2

2 sup
2

1 2
1 2 .

Combining the two estimates above gives

2

2 2 sup
2

1 1 2 2
2 . (5.6)

By Assumption 4, sup0 2 1 1 .
Recall that 2 here is the constant associated with . To include the upper bound

for the other term in (5.5), , in the next few lines we write

2 and 2 for the 2 constants associated with the nice cut-off functions and
, respectively. Let

max
0

2
1 2

2
1 2

2 1 2 1 2 sup
0 2

1 1
1 2

.

Then is finite, and we obtain the estimate for from (5.5) and (5.6)

max
0

sup
0 1

sup

2 2 . (5.7)

Last, we estimate the term . The idea is to first use the product rule for
differentiation in time ( ) to expand and rewrite

0

0

1
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then move all the on , 0 , to , using integration by parts. More
precisely,

0

2

2 max
0

.

For any 0 , note that by Hölder’s inequality and Minkowski’s inequality,

2
2

2 2 .

To further estimate, we apply Hölder’s inequality to the integral in . First,

max
0

2
2

1 2

2 2 .

Second, by Jensen’s inequality and the fact that is a contraction semigroup on 2 ,

2

2 1 2

2
2

1 2

2 sup 2
2

1 2

2 2

where 2. See (4.2) and the paragraph below it for more detailed
computations. Altogether we get that

2 max
0

2 1
2 2 2 .

Hence

max
0

sup
0 1

sup 2 2 (5.8)

where 2 1 2 1 .
In the above estimates for , we kept terms like 2 2 and

2 , since are only assumed to be locally in those function spaces. If we take
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any proper representative , we can bound those norms by the corresponding norms of
and .
Combining the estimates (5.3), (5.7), and (5.8) for , , and , we

complete the proof of Proposition 2. To finish with the proof of 0 being Cauchy in
2 , we still need to prove Proposition 3.

5.4 Proof of Proposition 3

Our aim is to show that for 0 , for any 0 1,

1
. (5.9)

By the gradient inequality (3.8),

2 2

2 2
supp

2 . (5.10)

Here 2 is associated with , we write it as 2 sometimes to specify its dependence.
The proof of Proposition 2 implies that the second term is bounded, i.e.,

max
0

sup
0 1

2
supp

2

sup
0 1

2
2

2 2 1

for some constant 1. More precisely, we may fix some nice cut-off function p in between
and , i.e., p 1 on p, supp p p, where p p . Then

supp

2 p2 2 .

Take the product p p to replace and run the estimates in the proof
of Proposition 2, we get that the right-hand side (taking supremum in 0 1 and
0 ) is bounded from above by some 1 1 p . So the

1 above can be taken as 1 2 1.
Next we estimate the first term in (5.10). Because ,

2

2

2 2
.

The first 2 norm is exactly the quantity treated in Proposition 2, it is bounded above
uniformly in 0 1. Thus, (5.9) follows after we show that the second 2 norm,

2

1
.
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Replace by in the proof of Proposition 2. By the same arguments,
2 breaks into three parts , , , and the esti-

mates for and look almost identical to that for and . We write about the estimate
for here. The only difference is that instead of using 2 2 1
as in the estimate for , here we use 2 2 1 1 for

2 .

.

As in the estimate for , the estimate for comes down to estimate

max
0

2 2 2 2
2

1 2

2 2 sup 2
1 2 1

2
2

2

1 2

2
2 2 2 .

Hence indeed for any 0 , 0 1,

2
sup
2 1

2

2

sup sup sup 2

where 2 2 .

5.5 Convergence of the Approximate Sequence in L2 Sense

Proposition 2 and Proposition 3 together imply that the approximate sequence 0 is
Cauchy in 2 (recall that by this we mean any subsequence with

0 is a Cauchy sequence). As we explained at the beginning of this section, to finish
with the proof of Theorem 5, it remains to show that the approximate sequence converges
to in some weak sense. We prove a slightly more general result (Proposition 4). In this
proposition we treat the class of strongly continuous semigroups on 2 , as roughly the
same proof works. This is a larger class of semigroups as the semigroups not necessarily
satisfy the Markov property or correspond to a Dirichlet form.

Let 0 be a strongly continuous semigroup of bounded linear operators on 2 .
Then there exist some 1, 0, so that for any 0,

2 2 .

Let be an open interval, . For any function in 2 ,
for any , 0 1, define

. (5.11)
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As before, the integrand is nonzero only when 2 because of the term,
and the integral is well-defined. To be more rigorous, is first defined on 2 ,
then extended to the whole 2 under the fact that for any 2 ,

sup
0 1

2 2

for some . This operator norm bound can be verified using a combination of
Minkowski’s inequality and Jensen’s inequality as we did in the estimates of .
When is not small enough, is the zero function on . Similar to checking that

for any 0, we can show that for any 0, .

Proposition 4 Let 0 be a strongly continuous semigroup of bounded linear operators
on 2 . Then for any in 2 , defined as in (5.11) converges to in

2 , as tends to 0.

Proof We first show that for any in 2 , converges to in 2 .
Because 2 is dense in 2 and

sup
0 1

2 2

the statement holds for all in 2 . For 2 ,

2
2

1
2

.

When , or and 2 , runs over the full 1 2 as runs
over , so 1 1 1 0. So 1 can only be nonzero
when and 2 , which is an interval of length 2 . Because is in

2 , we conclude that the second term

1
2

0 as 0.

Next we estimate the first term. In the following, let be a bounded open interval such
that supp . Then for small enough, 0 for all and 0 2 .
That is, the interval where is supported on is at distance larger than 2 from . The first
term is the 2 norm of

.

The 2 norm of the first part, 2 , is bounded from
above by (let and apply Minkowski’s inequality)

2

2

2

2 2

2

2 2
sup

2

2
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which tends to 0 as 0. The constant can be taken as 2 1 2. By the same
reasoning, the 2 norm of the second part satisfies

2
sup

2

2 .

The right-hand side tends to 0 as 0 essentially because 0
2 is equicontinuous in . The details are as follows. First note that for any fixed 0,

any ,

2

2 2 2

2 2 2 .

For any 0, any , there is some 0 0 such that

(1) for any 0 , 2 (since in 2 );
(2) 2 , for any 0 (since 2 ).

Let 0 0 0 , . Because is compact and 0
covers , there exists some finite subcover 0 1. Hence there exists some
fixed 0 ( 0 min1 0 ) such that

(1) for any 0, any , 1 , 2 ;
(2) for any , there exists some such that 0 . So 2

.

Therefore,

sup

2

2 0 as 0.

This completes the proof of Proposition 4.

Note that for any local weak solution in Theorem 5, the function is exactly .
So Proposition 4 applies to , and it follows that in 2 as 0. This
completes the proof of Theorem 5.

5.6 Proof of Corollary 1

In this subsection we prove Corollary 1, which says essentially that time derivatives of local
weak solutions of the heat equation are still local weak solutions.

Proof of Corollary 1 By Theorem 5, belongs to loc . For any test function in
, for any 1 is also a test function. By definition of

local weak solutions on , satisfies

1 . (5.12)

To show is a local weak solution of the heat equation (4.1), intuitively it suffices to do
integration by parts times to move to the and sides of the integrals. We now justify
this procedure.

109



Q. Hou, L. Saloff-Coste

For the justification of integration by parts for the first and third integrals in (5.12), we
only describe the first step and the remaining is clear by induction. By the Fubini-Tonelli
theorem, suppose supp , since

1
2 1 2 2

we can switch the order of integration and get

1 1

where the second equality is by integration by parts and that is compactly supported in
time. The same argument works for the integral

1 .

For the second term in (5.12), let

1

1

then in . By the Cauchy-Schwartz inequality for ,

1 2 1 2 0

as . Here is understood as where 1 1 2

and agrees with a.e. on a neighborhood of supp . For large enough,

where 1 1 . More rigorously, should be defined
in terms of the above. Then in 2 as . Passing
to the limit then shows that

.

In summary, after times of integration by parts, 1 , (5.12) becomes

1 1 1 1

thus is a local weak solution of (4.1) on . The statement in Corollary 1 for 0
then follows.

6 Application to Ancient Solutions

Ancient solutions of a heat equation, also called ancient caloric functions, are the heat
operator/equation version of “global harmonic functions”. It is therefore interesting from a
variety of points of view to study the structure of various linear spaces of such functions,
especially spaces defined by particular growth conditions. In this section, we generalize the
results in [9, 38] on the structures of ancient caloric functions with certain growth types.
The results of [9, 38] are set in the setting of smooth Riemannian manifolds where solutions
are smooth and time derivatives of solutions are automatically solutions themselves, and
this fact is a key ingredient in the proof. Therefore, the extension to the setting of ancient
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local weak solutions in Dirichlet spaces (with appropriate properties) presented here pro-
vides a good illustration of the usefulness of the property that time derivatives of local weak
solutions are local weak solutions themselves (Corollary 1). For instance, in , Corollary
1 allows us to show that polynomial growth ancient local weak solutions of the heat equa-
tion associated with divergence form uniformly elliptic operators with bounded measurable
coefficients, admit structural properties similar to those proved in [9] for classical ancient
caloric functions.

6.1 Statement of Results

As before we assume that is a symmetric regular local Dirichlet form. We call a local
weak solution of 0 on for some 0 an ancient local weak
solution, or ancient solution for short. We assume satisfies the assumption on
existence of nice cut-off functions (Assumption 3), and the following further assumption.
Recall that 1 2 3 .

Assumption 6 For any precompact open set , any 1 0, any , there exist

(1) an exhaustion of , , with each set covering . That is,
is a sequence of increasing open sets, satisfying

1 1
1

.

(2) a sequence of cut-off functions , satisfying that each is a cut-off
function for the pair 1, i.e., and is in between 0 and 1,

1 on , supp 1; further satisfies that for any ,

2
1

2 1

supp

2 . (6.1)

When is compact and 1 belongs to , Assumption 6 trivially holds because we can
take all to be the whole space , and take all to be the constant function 1. For

noncompact spaces, in the most classical setting with the Dirichlet form of the -
dimensional Brownian motion, if 0 where 0 stands for the ball of radius

centered at the origin, we can take 0 1 2 for some 1. It is standard
to construct nice cut-off functions for each pair 1 such that

2
2

which implies (6.1) with 1 0. See also the end of Sections 6.1 and 7.1.
In the following theorems we consider two types of ancient solutions, one with polyno-

mial 2 growth bound, and the other with exponential 2 growth bound. We first remark
that for any ancient local weak solution , by Theorem 5, is locally in 2

. As generalizations of results in [9, 38], we state the following
two theorems on the structure of ancient solutions in the Dirichlet space setting.

Theorem 7 Let be a metric measure space and be a symmetric regular local
Dirichlet form on . Assume that the Dirichlet space satisfies Assumptions 3
and 4, and when is not compact, further satisfies Assumption 6. Let 0 and be
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the corresponding semigroup and generator. Let be a local weak solution of 0
on for some 0, i.e., is an ancient solution of the heat equation. Suppose
satisfies the 2 polynomial growth condition, namely, for any open subset , any

, there exist positive constants 0 ( are independent of ),
such that for any 1, ,

0

2
1 2

max . (6.2)

Then there exists some 0 such that for any ,

0.

More precisely, is a polynomial in time, with

0 0 2 0
1

2
2 0

1
.

Here 1
2 , the largest integer not exceeding 1 2.

For ancient solutions of the exponential growth type, we only need one sequence of
exhaustion to get sufficient estimates, so we fix 1 and some precompact open set 0,
and consider the sequence 1

0
only.

Theorem 8 Let be a metric measure space and be a symmetric regular local
Dirichlet form on . Assume that the Dirichlet space satisfies Assumptions 3
and 4, and when is not compact, further satisfies Assumption 6. Let 0 and be
the corresponding semigroup and generator. Let be a local weak solution of 0
on for some 0, i.e., is an ancient solution of the heat equation. Suppose
satisfies the 2 exponential growth condition, namely, there exists some 0, such that

for any 1, any ,

0

2 . (6.3)

Then is analytic in 0 , in the sense that for any precompact open set ,

0

0

2
0 as (6.4)

and the convergence is uniform in 0 for any 0.

We first make some remarks about the two theorems.

Remark 12 In Theorem 7, if we denote 0 and let 1 2 ,
then 0 satisfies

1 1 for 0 1

0

both in the sense that for any ,

1 1
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for any 1 ( 1 0). In other words, is a local weak solutions of
1 1 on . In addition, by [9, Corollary 0.5], each is a linear combination of
, 0 1 , where 1 0 1 0 are arbitrarily fixed numbers.

It follows that all ’s satisfy the 2 growth bound that for any precompact open set ,
any , there exists some constant 0, such that

2
1 2

.

Remark 13 In Theorem 8, if we write 0 where the two sides equal
in the above 2 sense, then the functions are 0 . A Caccioppoli type
estimate for local weak solutions can be derived from the proof of Proposition 6, namely,
for any ancient local weak solution of the heat equation 0, for any 0,
there exists some 0 such that

sup
0

2

1 0 1

2

where and is defined as in Theorem 8. For any , by taking 1 and
which by Corollary 1 is a local weak solution, and by using the inequality in

Proposition 5 given in the next section, we get that satisfies the 2 upper bound that
for some constant 0,

2 5 3 .

Remark 14 The conclusion in Theorem 8 is in the 2 sense. By Proposition 6, for any
ancient (local weak) solution , it is also true that the partial sum 0 0 tends
to in the energy integral over any precompact set as tends to infinity, uniformly in time
on any finite interval. If the (essential) supremum of over each time-space cylinder can be
controlled by the 2 integral of over some cylinder, then we can make the conclusion in
Theorem 8 an ( -a.e.) pointwise conclusion. For example, some ultracontractivity property
of the heat semigroup is sufficient for this purpose. See the companion paper [20].

As a corollary of Theorem 7, we recover in the current setting the dimension result in
[9, Corollary 0.5] under an additional condition on the polynomial volume growth of the
sets, . Here is an arbitrarily fixed open set. We first define the appropriate
function spaces. For each , let denote the vector space of all ancient
(local weak) solutions of 0 satisfying that for any , there exists some
constant 0, such that

ess sup
0

max . (6.5)

Let denote the vector space of all local weak solutions of 0 on with poly-
nomial growth bound with exponent , that is, for any , there exists some constant

0, such that

ess sup .
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Corollary 2 Under the hypotheses of Theorem 7, and the additional assumption that for
some precompact open set , for any , the sets satisfy some polynomial
volume growth bound

(6.6)

where 0 are constants. Then

dim 1 dim .

Proof Take any . Note that (6.5) and (6.6) together imply the 2 growth con-
dition (6.2) for some (e.g., 2 2 1, 2 2 ). Hence by Theorem 7,
is a polynomial in time with 0 for large enough. The growth condition (6.5) then
implies that 0 for . As in Remark 12, let 0 . As shown in the
proof of [9, Corollary 0.5], for any fixed 0 1 1 0 that are distinct, there exist
numbers such that for any 0 ,

0

.

Because all 1, and , for any ,

ess sup 1 max
0

.

This implies that . By the same arguments as those in equation 1.21 through
equation 1.23 in the proof of [9, Corollary 0.5], it follows that

dim 1 dim .

We make some final remarks about the two assumptions on existence of cut-off
functions, Assumption 3 and Assumption 6.

First, Assumption 3 focuses on for any fixed pair of open sets , in particular they
could be very close to each other, for any small 1 0, the existence of a cut-off function
for the pair that satisfies (3.1). There 2 depends on 1 and is usually a large
number when 1 is small and are close. Intuitively, the cut-off function is steep. In
contrast, in Assumption 6, the focus is on for any fixed initial set and fixed 1, for
small 2 ( 2 1 for large ), the existence of an exhaustion and cut-off functions for
each pair of adjacent open sets therein. Intuitively, for large , the sets in the exhaustion are
far apart, and the cut-off functions have flat shapes.

Regarding the validity of Assumption 6, we remark that in general Dirichlet spaces which
have some notion of distance that interacts well with the energy measure, this assumption
is satisfied. Roughly speaking, for large , to find ’s and ’s, we just require
and the complement of 1 to be separated by a large enough distance. For example,
consider a Dirichlet space that admits “nice metric cut-off functions”, namely,
there exists some distance that defines the same topology of , such that for any pair of
open sets , any 0 1 1, there exists some nice cut-off function satisfying that
for any ,

2
1

2
1

supp

2
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where 0 and 1 is some positive function of 1. Assume that 0 where
the radius is with respect to the distance . Then we can take 0

1 ,

for any satisfying 1 . For example,

(1) when the Dirichlet space admits a nice intrinsic distance, it is a special case of the
discussion above with 2;

(2) when the Dirichlet space is the standard Dirichlet form on the Sierpinski gasket and
is the Euclidean metric, the discussion above applies with log 5 log 2, which

is the walk dimension of the Sierpinski gasket.

6.2 Proofs of Theorem 7 and Theorem 8

6.2.1 Overview and a Key Estimate

There are two difficulties in generalizing the structure results for ancient caloric functions to
the current Dirichlet space setting. The first difficulty is in formulating proper assumptions
on the existence of cut-off functions in order to adapt estimates of the form

2
1 2

2 2
1 2

to estimates in terms of energy measures, especially when the energy measure is singular
with respect to the measure in the metric measure space . The second diffi-
culty concerns whether time derivatives of an ancient (local weak) solution are still ancient
solutions. This is answered positively by Corollary 1, which thus plays an essential role.

In this subsection we state the key estimate and use it to prove Theorem 7 and Theorem
8. The estimate is about bounding the 2 integral of time derivatives of an ancient solution
over some time-space cylinder by the 2 integral of over some larger time-space cylinder,
where the spatial sets are ones in an exhaustion of . Let 1 0 be two fixed constants.
Let be an exhaustion of , let be a sequence of cut-off functions where
each is a cut-off function for the pair 1, and satisfies that for any ,

2
1

2

supp

2 .

We call such a pair an exhaustion of corresponding to 1 . The
key estimate is as follows.

Proposition 5 Let be a metric measure space and be a symmetric reg-
ular local Dirichlet form on . Assume that the Dirichlet space satisfies
Assumptions 3 and 4, and when is not compact, further satisfies Assumption 6. Let

0 and be the corresponding semigroup and generator. Let be an ancient (local
weak) solution of 0. Let 0 where 0 is an arbitrar-
ily fixed number, let 0 . Take 1 1 16 and fix an arbitrary 0. Let

be an exhaustion of corresponding to 1 , the existence of which
is guaranteed by Assumption 6. Then for any ,

2
1200

1 2

2 3

2 .
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In Lemma 5 below it can be seen that 1 can take any value less than 1 9, we take
1 1 16 for convenience.

We now use Proposition 5 to prove Theorem 7 and Theorem 8. The proof of the proposi-
tion is given in Section 6.3. Note that the inequality in Proposition 5 remains true if we take

as a closed interval 0 . We use 0 in the statement of the proposition for
convenience in describing the cut-off function in time in its proof.

6.2.2 Proof of Theorem 7

To show 0 for large enough, we follow the idea in [9] and show that the 2 integral
of such over any time-space cylinder is zero. Consider an arbitrary cylinder 0
where 0 and is a precompact open subset. For any , Assumption 6

guarantees the existence of an exhaustion of corresponding to

1 1 16, 1 . In particular, 0 0 1, for any . Taking
0 , , 1 in Proposition 5 gives

1

2 5000
2

2 1 3

2 .

Then by the growth condition of , we have

0 1

2 5000 1 3 max 2
2

2
.

Because for any fixed with 2 2 , the right-hand side tends to 0 as tends to
infinity, by the discussion above, we conclude that for ,

0.

Hence is a polynomial in . Applying the growth bound (6.2) to in the explicit
polynomial form

0

0
1

we have for any , for any 0,

0

2

2 1
2 1

2
2

2 1
2 1

1

max
2

where

2 1
1

2 1

1
0

2

.

Let tend to infinity, it follows that 2 1 2 . We conclude that 0 for
1 2.
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6.2.3 Proof of Theorem 8

This proof follows the idea in [38]. By the Taylor expansion formula (expansion in ), for
any 0,

0

0

0

1

as 2 functions in . So to prove the statement in Theorem 8, we prove that for any
precompact open set , for any 0,

sup
0 0

1
2

0 (6.7)

as . We first bound the integral by Jensen’s inequality,

0

1
2

2

0
1

2

2 1

2

0
1

2
. (6.8)

Recall the notation introduced in the statement of Theorem 8, i.e., 1
0

for some
fixed 0 . Intuitively, by fixing 1 (or any fixed integer), we are looking at open
sets whose sizes grow linearly. Because and is an exhaustion of , there
exists some 0 such that for all 0, . By Proposition 5, for any 0,

0

0

1
2

1200 1
1 2 1 0

2 1 0 3 1

2 .

By the exponential growth assumption (6.3) on , we conclude that (take for example 1)
for any 0 ,

0

0

1
2

5000 1 0 5 1 .

Substituting this bound back to (6.8), noting that 0 , we get

0

1
2

2 1

2
5000 1 0 5 1 0 .

This completes the proof of Theorem 8.
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6.3 Proof of the Key Estimate

In this subsection we give the proof of Proposition 5, which is an iteration of the following
proposition.

Proposition 6 Under the same hypotheses as Proposition 5, for 1 1 16 and for any
0, let be an exhaustion of corresponding to 1 . Then for

any 0, there exist constants 1 2 (dependent on and ) such that for any ,

2
1

2 2

2

2
2 3

2 .

Here

1 200
1

2 1200
1 2

.

6.3.1 Proof of Proposition 6

We present the proof in three steps.

Step 1. We first prove two Caccioppoli type inequalities, one of which gives the second
inequality in the proposition. Recall that 0 for some 0, and 0 for
any 0. Let be a smooth cut-off function in time (on 0 ) that equals 1 on 0 ,
has compact support in 0 , and satisfies 0 1, sup 0
2 . It can be easily extended into a function in , in the following we only use its
part on 0 . By construction, each is a nice cut-off function for the pair 1,
and satisfies that for any ,

2
1

2

supp

2 . (6.9)

The product is then a nice product cut-off function for the pair
1. First we have

1

2 2 2

1

2 2 2

1

2 2 2

1

2 2 2

0
0.

On the other hand, since is an ancient local weak solution of the heat equation
0, is supported in 1, the first term above is

1

2 2 2 2 2 2

2 2

1

2 4 2

1

2 2 2 2

.
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By the Cauchy-Schwartz inequality (2.1), the middle term

4 2

1

4
1

4
2

1

2 1 2

1

2

where by (6.9), the part 2
1

2 is further bounded by

2

1

2

1
2

1

2 2

1

2 .

So is bounded by

2 2

1

2 4 2

1

2

1

2 4 2

1

2

1 4 1
2

1

2 4 2

1

2 .

Combining the estimates so far and apply 2 2 4 , we get

1 4 1
2

1

2 2 2 2 2

4
4

1

2

which then implies

2

1 4 1
1 4

4

1

2 . (6.10)

This proves the second inequality in Proposition 6. It is a Caccioppoli type inequality that
we will use later in the proof. We also need a version of the inequality with 2 2 instead of

2 on the right-hand side of (6.10). To get that we repeat the above computations, replacing
with 2, with 2. First,

1

2 4 4

1

2 4 4 2 4 4

2 4

1

4 8 4

1

3

2 4 2 4
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where

2 4

1

4 8 4

1

3

4

1

4 16 4

1

2 2 .

Instead of applying (6.9) as before, we now use Lemma 5 below to get that the term

4

1

2 2
0

2

1

2 2 .

Here 0 0 1 is independent of . Combining the estimates as before (note that
4 4 3 8 2), we thus have

4

1

4 4 2 4

4 4 0
2 2

1

2 2 . (6.11)

Here both sides of the inequality are integrals over the same set 1.

Step 2. Next we estimate the 2 norm of , which by Corollary 1 is also an ancient
solution. In this step we do some preparatory work. Because is a local weak solution of

0 on for some 0, we have

1

2 2 2

2

1

2 2

1

2

2 2 . (6.12)

To estimate the right-hand side, we first show that

1

2 1

2 1

2

to replace the first term in (6.12). By Theorem 5, locally belongs to the space
. Fix any 0 , let

1

1
.

Then locally in . In particular,

lim
1

0.
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By definition,

1

2

lim 1

2 1 1
1

2

1

lim
1

2 1
1

1 1

2
1

1

lim
1

2 1

1

2 .

More accurately, should be some that agrees with on some
time-space cylinder covering 1, and is given using in its definition. Then
using the Cauchy-Schwartz inequality (2.1) and noting that 1 locally in ;

locally in , we can check that the limit above is

2
1

2 .

For example,

1

2 1

1

2

1

2 1

1

2

1

2 1 1
1 2

1

2
1 2

1

2
1 2

1

2
1 2

where each summand is a product of one term uniformly bounded in , and one term that
tends to 0 as tends to infinity. Here to show the uniform boundedness it is useful to use
the estimate

1 2 1 2 1 2

where is any nonnegative bounded Borel function, and (cf. Chapter
3 in [16]). So we conclude that

1

2 1

2

1

2 .
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Step 3. We are now ready to estimate (6.12). The first term is

2

1

2 1

2
2

1

2

1

2
2

1

2 1

2
2

1

2

1

2
2

1

2 . (6.13)

The second term in (6.12) satisfies

2

1

2

2

1

2 1

1

4 2 2 1 2
1

for any 0. Here 1 is the nice cut-off function for the pair 1 2. In particular,
1 1 on supp . By Lemma 5,

1

4 2 2
0

1

2 2 2

where 0 3 1 . Thus

2

1

2

0
1

2 1 2
1 . (6.14)

The last term in (6.12) satisfies by the Cauchy-Schwartz inequality

2 2
1

2 2

1

2
2

1
2

2
4 2 4 (6.15)

for any 0. Now we plug in 1 1 16 and take 2 0
1, then by (6.11), (6.12),

(6.13), (6.14), and (6.15),

1

2

1

2
2

1

2 1

2 1

2

2 0
2

1
1

2
2

1
2

8 0
4 2 2 2 .
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Letting 4 1 8 0 4 1 1
and combining coefficients for the term on the left-hand

side, we get

1

2

2 2

1

2 8 0
2

1

8 8 0
4 2 2

1

8 8 0
4

2 2

2 . (6.16)

Take and 2 on the left in (6.10) with 1 1 16, combine (6.10) and (6.16), and
recall that 0 3 1 , we obtain that

2

200
1

2 2

2

1200
1 2

2 3

2 .

Let 1 200 1 and 2 1200 1 2. This completes the
proof of Proposition 6. Note that by taking small and large enough, we can make the
coefficients 1 and 2 as small as needed.

Straightforward iterations lead to Proposition 5.

6.3.2 A Technical Lemma

Last we state and prove the technical lemma used in the proof of Proposition 6.

Lemma 5 Let be a metric measure space and be a symmetric regular local
Dirichlet form on . Assume that the Dirichlet space satisfies Assumption 3.
Let 0 and be the corresponding semigroup and generator. Let be two inter-
vals where or , , . Let be a local weak solution
of the heat equation 0 on . Let be a nice product cut-
off function, where corresponds to coefficients 1 2 with 1 1 9, and is a
smooth cut-off function on . Then there exists some 0 that depends on , or equivalently,
on 1 2 , such that

2 2
0

2 2 .

The last inequality says when the same cut-off function with bounded energy is both
in the integrand and in the energy measure, the net effect is the same as having a cut-off
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function with bounded gradient in the energy measure. Observe that for 2 , it
is easy to check that

2 1 1
1

2
supp

2 .

In the lemma we generalize this observation to bound 2 2 , for local weak
solutions .

Proof Because is a nice product cut-off function associated with 1 2,

2 2
1

2
2

2 2 2 .

To estimate 2 , we make the following two observations

(i) 2 2 2 2 2 ;
(ii) 2 2

4 2 2 2 2 2 .

The middle term in (the right-hand side of) (ii) satisfies (by (2.1))

2 2

2 1 2 2

for any 0. To estimate the first term in (ii), note that being a local weak solution
implies that (using Definition 2)

4 4 4 2

1

2
4 2 4 4 2 4 2 3 2 4 .

Combining (i)(ii) and the estimates above, we get that

2 2 3 4 2

2 1
3 2 2

2 3 4 2
1

1
3 2

1
3 2

2 2 2 .

When 1 1 9, we can pick small so that 1
1 3 1. Let 1

1
1 3 0, the above estimate is equivalent to

2

1
2 3 4 2 1

3 2
2 2 2 .
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Letting 1 2 1 3 2 and noting that 2 1, 2 1, we get

2 2 2 .

Combining this with the very first inequality, we get

2 2
1

2 2
2

2 2 .

Letting 0 1 2 gives the inequality in the lemma. To apply this lemma to the proof
of Proposition 6, let 1 1 16 and 2 , plug in 2 (here 0 ),
and take for example 5 16, we get that 1 4, 0 3 1 .

7 Examples

In this section we list some examples to which our theorems apply. We group them accord-
ing to the types of nice cut-off functions they admit. Note that the properties we require
on the nice cut-off functions involve only the energy measure associated with the Dirich-
let form, so in the following we describe examples of strongly local Dirichlet forms; our
theorems apply to local Dirichlet forms whose strongly local parts belong to the following
examples as well.

7.1 Dirichlet Spaces with Good Intrinsic Distance

In [34], Sturm showed that for a symmetric strongly local regular Dirichlet space, when the
topology induced by the intrinsic distance (3.4), that is,

sup loc

is equivalent to the original topology on , one can use the intrinsic distance to construct
nice cut-off functions with bounded gradient. More precisely, for , define

1
2

1
2

.

Here denotes the positive part. Clearly 1 on and supp . Further, is in
loc , and

2
2

. (7.1)

See [34, Lemma 1.9]. It clearly follows that such Dirichlet spaces satisfy Assumption 3 and
Assumption 6 (pick the exhaustion to be balls with radii ’s that increase fast

enough). By Lemma 6, these Dirichlet spaces satisfy the 2 Gaussian type upper bound.
Thus all results in this paper apply to this type of examples which includes:

(1) Weighted Riemannian manifolds with Dirichlet forms associated with any locally
uniformly elliptic second order divergence form operator with locally bounded mea-
surable coefficients. See, for example, [33]. This includes the example we described
in the Introduction.

(2) Riemannian polyhedra under minimal local assumptions (cf. [14, 32] and [8]).
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(3) Alexandrov spaces and their Dirichlet space structures as considered for instance in
[25, 31].

7.2 Fractal Type Dirichlet Spaces

For fractal spaces, Assumption 3 is a nontrivial hypothesis to check. It is well known that
in many fractal spaces the only functions in loc with bounded gradient are
constant functions (cf. e.g. [18]). More generally, in a recent paper [23], it was shown that
for a very general class of Dirichlet spaces, two-sided off-diagonal heat kernel estimate with
walk-dimension strictly larger than two implies the singularity of the energy measure with
respect to the symmetric measure.

On the other hand, many fractal spaces admit cut-off functions satisfying the inequality
(3.1) in Assumption 3. We remark that the existence of cut-off functions satisfying (3.1)
on such examples is highly nontrivial, and although their existence is known, there is in
general no direct geometric construction of such cut-off functions. Some first examples
satisfying Assumption 3 include the Sierpinsket gasket and its non-compact extension as
in the following pictures. (The picture on left ( ) is from Wikipedia, the picture on right
( ) is created by shifting copies of .)

One example of obtaining the validity of Assumption 3 in an indirect way is [1, Theo-
rem 1.12]. In [1], Andres and Barlow showed that certain Dirichlet spaces satisfying some
pointwise heat kernel upper bound (called HKU( ) in [1]), must satisfy a condition called
CSA( ). The CSA( ) condition guarantees that the Dirichlet space admits cut-off func-
tions that satisfy some more specific version of the inequality (3.1). CSA( ) also implies
Assumption 6. Therefore, under the HKU( ) condition, all our results apply.

Consider the following refined version of Assumption 3: there is some distance that
defines the same topology of , such that Assumption 3 holds with 2 in (3.1) satisfying

2 1 for some constants 0. While this condition by itself
does not imply any pointwise heat kernel upper bound like HKU( ), it does imply the

2 Gaussian type upper bound by Lemma 6. It is obvious that this condition also implies
Assumption 6 (taking balls given by , see the final remark before Section 6.2 for more
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details). So this refined version of Assumption 3 is a sufficient condition for all our results.
In [3], Barlow and Murugan proved that this condition is quite typical.

7.3 Infinite Products of Dirichlet Spaces of the First Two Types

The first examples of this type are the infinite dimensional torus and the infinite product
of Sierpinski gaskets , the first one being a special case of the class of compact (more
generally, locally compact) connected metrizable (infinite dimensional) groups, cf. [5], and
the second one the simplest of the infinite product of compact fractal spaces. To have some
noncompact examples, consider , or the Iwasawa’s example (cf. [5, 22]), or replace
one piece of Sierpinski gasket in the product with the infinite Sierpinski gasket .
This type of examples does not satisfy a property often satisfied in the previous two types
of examples, namely, for these infinite dimensional spaces, the volume doubling property
(local or global) cannot hold.

A general treatment of the elliptic diffusion on infinite product spaces like is given
in [4], and their results apply more generally to anomalous diffusion on infinite products of
fractal spaces too. On a locally compact connected metrizable group that is unimodular,
one usually starts with a heat (convolution) semigroup, or a (left-invariant) Laplacian of the
form 1 , where 1 is symmetric positive definite and
is a projective basis of the left-invariant vector fields on (i.e., a basis of the projective Lie
algebra of ), and then consider the associated (left-invariant) Dirichlet form. Depending on
the coefficients, the Dirichlet form may or may not have non-degenerate intrinsic distance.
See [5].

For general product spaces that have rougher differential structures, like , it is
easier and more convenient to consider only the “diagonal Dirichlet form”, namely, for any
diagonal matrix 1 with all 0, consider

1

. (7.2)

Here stands for the standard Dirichlet form on the -th factor of , stands for the
normalized Hausdorff measure on the -th factor of , and are proper functions.

Some infinite product examples do possess non-degenerate intrinsic distances that define
the same topology (e.g. when the coefficient matrix for the Laplacian on is diagonal
and satisfies 1

1 ), in which case Assumption 3 and Assumption 6 follow.
More generally, one can show that the cut-off function assumptions (Assumption 3 and
Assumption 6) are satisfied using the fact that each factor in the infinite product possesses
nice cut-off functions in the senses required.

More precisely, since the product topology is generated by cylindric sets (sets that are
direct products of open sets of the first few factors, and the whole space for all remaining
factors), for pairs of cylindric sets it is easy to construct a nice cut-off function being a
product of nice cut-off functions for pairs of open sets on the first few factors, namely,

x
1

(7.3)

for some . We verify this for the simpler case when the Dirichlet form is defined as
in (7.2) (for the group case this is when the coefficient matrix is diagonal).
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Suppose is a nice cut-off function on the -th factor of the infinite product
space 1 , satisfying that for any ,

2
1

2
2

supp

2 . (7.4)

Here represents the energy measure on , and 1 2 are the same for all factors .
Then for any , for the function defined as in (7.3),

2

1

2

1

2

1

1
2

1

2

2
supp

2 .

In the last line we bounded the product of ’s by 1. Then since

2

1

2

we conclude that

2
1

2

1

2
supp

2 .

Thus these infinite product spaces satisfy Assumption 3. Using cylindric open sets to build
an exhaustion of , we can also easily check that these infinite product spaces satisfy
Assumption 6. By Lemma 6, these spaces satisfy the 2 Gaussian type upper bound, given
that each factor satisfies the hypotheses of the lemma. We remark that here we do not
have additional requirements on the coefficient matrix 1 except that all 0.

Remark 15 On infinite dimensional compact groups, when the Laplacian is bi-invariant,
one can define more function spaces associated with that capture the smoothness of func-
tions and define corresponding distributional solutions of the heat equation 0.
These are broader classes of solutions than the local weak solutions we consider in this
paper. In the new settings one can consider the time regularity and other spatial regularity
properties of the distributional solutions of the heat equation, under more assumptions on
the associated heat (convolution) semigroup, cf. [6, 7]. In [21], the authors show that for
these bi-invariant Laplacians and other left-invariant Laplacians that have compara-
ble Dirichlet forms with , the distributional solutions are smooth, with repeated time and
spatial derivatives belonging to the function spaces associated with and . These results
provide generalizations of the results in [7] and describe hypoellipticiy type properties of

.
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8 TheWeak Gaussian Bound and other Lemmas

8.1 The L2 Type Gaussian Bound

In this subsection we prove an 2 Gaussian type upper bound assuming the existence of
cut-off functions satisfying (3.2) with 2 1 1 for some 0 and

0. Our proof is a modification of the classical proof of 2 Gaussian bound
when there are enough cut-off functions with bounded gradient. For references that discuss
about stronger (sub)-Gaussian estimates under stronger assumptions, we mention [11] and
[30]. The last part in this subsection about transitioning to estimates on derivatives of the
heat semigroup is a straightforward modification of the methods in [10].

The following is the main lemma for 2 Gaussian type upper bound. Its proof is close to
for example the beginning part of the proof in [30].

Lemma 6 Let be a metric measure space and be a symmetric regular local
Dirichlet form on . Assume that the Dirichlet space satisfies Assumption 3 and that for
any precompact open sets with disjoint closures, 2 in (3.2) is of the form 2

1 for some 0 and 0. Then for any such open sets , for any
2 with supp , supp , for any 0,

2 exp
1

2

1

2

1
1 2

2 2 . (8.1)

When there exist enough nice cut-off functions with bounded gradient, Lemma 6 is a
classical result obtained from the so-called Davies’ Method. We adapt it to include the
case when there only exist nice cut-off functions with bounded energy (as specified in the
statement above). In the proof below we refer to the cut-off functions (that equal to 1 on
and 0 on ) corresponding to some 1 2 with 2 1 in short as nice cut-off
functions.

Proof For any fixed 0, any nice cut-off function , define the perturbed semigroup

0
by

.

For any 2 with supp , supp , first observe that

2
2 . (8.2)

On the other hand,

2 2
2 .
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We estimate
2

by looking at its (square’s) time derivative first.

2

2
2

2 2

2 2 2
2

. (8.3)

Because is a nice cut-off function associated with 1 2, we have
2

1
2

2
supp

2

1 2
supp

2
.

Substituting this bound back to (8.3) gives

2

2
2 2 2

2

2 2 2
1 2 2

2
supp

2
.

When 2 2 2
1 0 ( 1 1 2), we can drop the first term and get

2

2
2 2

2
2

2
.

Observe that at 0,
2

2

2
2 , so Gronwall’s inequality gives

2

2

2
2 exp 2 2

2 .

Combining this with (8.2), we have

2
2

2 2 2 exp 2
2 .

Take corresponding to 1 1 2 and let

1

2

1
1 2

.

As 2 1 , we have 2 2
2 , and

2 2 2 exp
1

2

1

2

1
1 2

.

Remark 16 When 2 satisfies the more explicit dependence 2 1

1 for some 0 and some distance on that defines the same
topology, substituting in the above 2 Gaussian type bound gives
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the 2 version of the sub-Gaussian upper bound. For example, for fractals with walk dimen-
sion , 2

1 2
1 up to a multiplicative constant (see, for example,

[30, Lemma 2.1]), then in our expression, 2 1, , and the exponen-

tial term in the upper bound for 2 is exp
1 1

for some

constant 0.

Next we estimate 2 where . The estimate essentially fol-

lows from a straightforward adaptation of Proposition 2.2 in [10]. For another approach
on obtaining estimates on time derivatives of 2 , see [13]. We first record a
lemma. In the following, denotes the right half plane Re 0 ;

0 .

Lemma 7 Suppose that is an analytic function on . Assume that, for given numbers
0,

and for some 0 1,

.

Then

exp Re . (8.4)

When 1, this is exactly Proposition 2.2 in [10]. The proof of Lemma 7 is close to that
of the proposition in [10] (essentially, replace with in that proof), and we omit it here.

Lemma 8 Under the hypotheses in Lemma 6, for any 2 with supp ,
supp , where are precompact open sets with disjoint closures, for any ,

0,

2

2
2 2 exp

1

4

1

3

1
1 2

. (8.5)

Proof For 0, set 2 . By spectral calculus, for any with
Re 0,

0

is well-defined for all 2 , hence can be analytically extended to .
Moreover,

2
2

0

2 Re
2

2
2
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so satisfies 2 2 . By Lemma 6, for 0,

exp
1

2

1

2

1
1 2

2 2 .

So by Lemma 7,

2 2 exp Re

1
1 2

(8.6)

where 41 1.
Recall that we have by Cauchy’s integral formula the expression of the -th derivative of

using the integral over some circle with radius around ,

2 1 2

2

0
. (8.7)

Consider . Take for example 2. Then (8.6) gives the bound

2
2 2 exp Re

2

1
1 2

2 2 exp
1

2

2

3

1
1 2

.

Indeed, suppose

1

1 1
2

1 1
2

1 1
4 cos

.

Then 6 and 5
4 cos 1 2 3. Then

Re
1

1 1
2

1
1 2

1
1 2 cos

1 2

1
1 2 cos

1

2

2

3

1
1 2

.

Substituting the above bound of 2 in (8.7), we get

2

2
2 2 exp

1

2

2

3

1
1 2

.

Plugging in the expression of gives (8.5).

In the proofs in previous sections, the exact form of the upper bounds is not important,
we only need the property that the upper bound, divided by any positive power of , tends
to 0 as tends to 0. So we use Assumption 4.

8.2 Other Lemmas

In this subsection we prove Lemma 3 on existence of nice cut-off functions for general pairs
of open sets. Starting with the existence of nice cut-off functions for pairs in a topological
basis in the sense of Assumption 3, we now construct nice cut-off functions for any pair
of open sets (Lemma 3).

132



Time Regularity for Local Weak Solutions of the Heat Equation on Local..

In the next two lemmas we first discuss properties of the sum and product of two nice
cut-off functions. By taking maximum if necessary, we assume that all cut-off functions
correspond to the same 1 2.

Lemma 9 (sum of nice cut-off functions) Let 1 2 be two nice cut-off functions for some
1 1, 2 2, respectively, where 1 1 2 2 are open subsets of . Suppose
1 2 both correspond to 1 2. Then their sum 1 2 satisfies that for any ,

2
1 2 1 2

2 1 1 2
2 4 2

supp 1 2

2 .

Proof The energy measure 1 2 1 2 equals

1 2 1 2 1 1 2 1 2 2 2 .

By applying the Cauchy-Schwartz inequality (2.1), we get that for any ,

2
1 2 1 2 2 2

1 1 2 2
2 2

2 1 1 2
2 4 2

supp 1 2

2 .

The last line follows from that 1 2 are nice cut-off functions corresponding to 1 2;
1 2 0; supp 1 supp 2 supp 1 2 .

In general, by induction, given nice cut-off functions 1 corresponding to
1 2, their sum satisfies that for any ,

2
1 1

1 1
2 2

2
supp 1

2 . (8.8)

We can then normalize the sum by dividing by to get a nice cut-off function for the pair

1 1 .

Lemma 10 (product of nice cut-off functions) Let 1 2 be two nice cut-off functions for
some 1 1, 2 2, respectively, where 1 1 2 2 are open subsets of . Suppose

1 2 both correspond to 1 2, and 0 1 1 4. Then the product function 1 2
is still a nice cut-off function satisfying

2
1 2 1 2

16 1 1 2
2 8 2

supp 1 2

2 . (8.9)

Proof By the product rule for the energy measure,

1 2 1 2
2
1 2 2 2 1 2 1 2

2
2 1 1 .
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Then by the Cauchy-Schwartz inequality (2.1), for any ,

2
1 2 1 2 2 2 2

1 2 2 2 2 2
2 1 1 . (8.10)

Because 1, 2 are associated with 1 2, for any 0,

2 2
1 2 2

2 2
2 1 1

1
2
2 1 1

2
1 2 2 2 2

supp 1 2

2

1 2 1 2
1

2
2 1

1 2
1

2
2 2

1
1 2

2
2

1 1 2 2
supp 1 2

2 .

The second inequality is obtained by expanding 1 1 and 2 2 using the
product rule, then applying the Cauchy-Schwartz inequality (2.1). So

1 1 1
1 2 2

1 2 2
2 2

2 1 1

2 1 1 2
1

2
2 2 2

supp 1 2

2 .

For 1 1 4, we can take 1, then

2 1 1

1 1 1 1

4 1

1 2 1
8 1

and the above inequality becomes

2 2
1 2 2

2 2
2 1 1

8 1
2
1

2
2 4 2

supp 1 2

2 . (8.11)

Combining (8.10) and (8.11), we get (8.9).

To extend Assumption 3, we use a construction similar to the standard construction of
partitions of unity to obtain cut-off functions for general pairs of open sets and then check
that the so-obtained functions satisfy (3.1). We first state the following lemma on using open
sets in the basis to cover any compact set.

Lemma 11 For any compact set and any open neighborhood of (
), there exist two finite open covers 1 1 2 and 2 1 2 ,

such that all , are elements in ; 1 1 ; 2 is subordinate
to 1, i.e., for any 2, there exists some 1 such that .

Proof For any point , there exists an open neighborhood such that
since is a topology basis and is regular (to ensure there is some that is

precompact in ). Then is an open cover of , which has a finite sub-cover
1 1 2 . We rename as .
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Now we construct 2 from 1. For any point , there exists some , 1 2 ... ,
such that . Then there exists some smaller open neighborhood such that

, is an open cover of . Let 1 2 be a finite
sub-cover, then this gives the 2 open cover we wanted, after renaming as .

Next we proceed to prove the lemma on the automatic extension of the applicability of
Assumption 3 from pairs of open sets in a topological basis to all open sets.

Proof of Lemma 3 For any pair of open sets , for any 0 1 1, we want to
construct a nice cut-off function for the pair corresponding to 1 in (3.1). Pick
another open set such that . Applying Lemma 11 to the compact
set with open neighborhood , we get two finite open covers 1 1
and 2 1 such that 2 is subordinate to 1, and that both cover and are
contained in . Applying Lemma 11 to the compact set with open neighborhood

, we get two more finite open covers 1 1 and 2 1 ,
such that 2 is subordinate to 1, both 1 2 cover , and are contained in .

For any 0 1, apply Assumption 3 to each pair and . Because
all 1 2 1 2 are finite covers, there are finitely many nice cut-off functions 1
and 1 for pairs and , respectively, where all cut-off functions
correspond to 1 in (3.1). Let

1

1 1

.

Then 1 on , and on , since all ’s vanish on . Hence is well-
defined on and becomes 0 before it reaches the boundary of since is supported in .
By extending the quotient by 0 outside , we obtain a function satisfying

0

1

between 0 and 1

0 .

Hence it remains to show that satisfies (3.1). By the lemmas on the sum and product of
nice cut-off functions (Lemma 9 and Lemma 10), we only need to show 1 satisfies (3.1)
for with support in (since is supported in ). For any with support in ,

2 1 1 2 1
2

2

2 2
2

supp

2

where is by (8.8) and our definition of ; 2 can be computed correspond-
ingly. Moreover, since 1 , 1 2 2, we get that 2 on

, hence

2 1 1
4

2 2
supp

2

which is indeed of the form (3.1). By picking a proper , would correspond to the given
1 in (3.1).
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