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Abstract

We study the time regularity of local weak solutions of the heat equation in the context of
local regular symmetric Dirichlet spaces. Under two basic and rather minimal assumptions,
namely, the existence of certain cut-off functions and a very weak L? Gaussian type upper
bound for the heat semigroup, we prove that the time derivatives of a local weak solution
of the heat equation are themselves local weak solutions. This applies, for instance, to local
weak solutions of parabolic equations with uniformly elliptic symmetric divergence form
second order operators with measurable coefficients. We describe some applications to the
structure of ancient local weak solutions of such equations which generalize recent results
of Colding and Minicozzi (Duke Math. J., 170(18), 4171-4182 2021) and Zhang (Proc.
Amer. Math. Soc., 148(4), 1665-1670 2020).
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1 Introduction

When — P is the infinitesimal generator of a self-adjoint strongly continuous semigroup of
operators H; = e~'P acting on a Hilbert space H, spectral theory implies the time regularity
of any (global) solution u(#) = H,ug of the equation (3; + P)u = 0 with initial data ug € H.
When H = L2(X, m) for some nice measure space (X, m) and — P is associated with a
bilinear form &£ so that £(f, g) = f x fPgdm for enough functions f, g, it is often very
useful to consider the concept of local weak solution of the equation (d; + P)u = 0 in some
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open time-space cylinder I x £2 C R x X, in some appropriate sense. Such definition goes
roughly as follows. A local weak solution u is a function defined on I x £2 which must
belong (locally) to a certain function space JF (in the most classical case, JF is related to the
Sobolev space) and satisfies

—/ u8,¢dtdm+/5(u,d))dt:0 (1.1)
IxR2 I

for all “test functions” ¢ compactly supported in I x §2. The precise nature of the space F
and of the space of test functions to be used here are an important part of such definition.
When dealing with such a definition, the time regularity of a local weak solution is not
automatic. Formally, one expects the time derivative of a local weak solution to be a local
weak solution of (1.1), but the problem lies with the a priori requirement that v = d;u
belongs locally to the space F.

Consider the classical case when P is a symmetric locally uniformly elliptic second order
operator with measurable coefficients (a;; (x))l'{ j=1 50 that for any f, g € C°(R"),

o= [ Y aymns e dr.

i,j=1

The basic assumption, local uniform ellipticity, means that for any compact subset K there
are €xg > 0 and Cg < oo such that

n
max sup{laij|} < Cx and Y ati) > exlEN3, VE = ED,.
B K L
i,j=1

For any open subset 2 C R” and open interval (a,b), —o0 < a < b < 00, a local
weak solution of (d; + P)u = 0 in (a,b) x £2 is a function u that locally belongs to
L*((a,b) — W'2(2)), such that

b b n
_/ / u(t,x)0:¢(t, x)dxdt +/ / Z a;jj(x)o;u(t, x)0;¢(t, x)dxdt =0
a J2 a J2 ij=1

for all functions ¢ € C*®((a, b) x £2) with compact support in (a, b) x §2. Here, locally
in L2((a, b) - W12(£2)) means that u multiplied with any smooth function with compact
support in (a, b) x £2, is in L2((a, b) — W12(£2)). It is clear from this definition that
locally in L2((a, b) — W"2(£2)) and locally in L?((a, b) — W,*(£2)) are equivalent.

One consequence of the general results proved in this paper is that the iterated time
derivatives v (f, x) = 8,"u(t, x) of any local weak solution u of the equation above are
themselves locally in L*((a,b) — W1'2(£2)) and are local weak solutions of the same
equation in (a, b) x £2. This follows from the following more general theorem. In this
statement we assume that (X, m) is a locally compact separable metric measure space where
m is a positive Radon measure with full support. In the following theorem, local weak
solutions are in the sense of Definition 1.

Theorem 1 Assume (£, F) is a symmetric strongly local regular Dirichlet form on
L2(X, m) whose intrinsic pseudo-metric is a continuous metric which induces the topology
of X. For any local weak solution u of the associated heat equation in (a, b) x §2, where
—o00 <a < b <ooand 2 C X is an open set, the iterated time derivatives vy = 8,1‘14 are
themselves local weak solutions of the same heat equation in (a, b) x 2.
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Theorem 1 is an immediate consequence of our main results, Theorem 5 and Corol-
lary 1. Theorem 5 is more general in several ways. First, it treats local Dirichlet forms,
not just strongly local ones. Second, it replaces the existence of a continuous intrinsic
pseudo-metric with weaker assumptions we now explain. One weakness of Theorem 1 is
that it excludes fractal sets such as the Sierpinski gasket and the Sierpinski carpet (on such
examples, the intrinsic pseudo-distance is identically equal to 0) as well as some infinite
dimensional examples (e.g., on the infinite dimensional torus there are cases where the
intrinsic pseudo-distance is infinite almost surely). These cases are in fact covered by The-
orem 5 and Corollary 1. Indeed, Theorem 5 depends on the following two related types of
assumptions which allow for spaces of the type just mentioned:

— the existence of good cut-off functions (in a sense that is somewhat weaker than most
conditions of this type that exist in the literature);

— avery weak L? Gaussian bound, namely, the fact that for any @ > 0 and any integer
k=0,1,2, ..., for any disjoint compact sets Vi, V3,

1~ sup / $20X Hyprdm — 0 (ast — 0)
d1.¢2JX

where the sup is taken over all functions ¢, ¢, supported respectively in Vi, V, and

with L?-norm at most 1.

As an application of our results, we extend two recent structure theorems regarding
ancient weak solutions, [9, 29, 38]. The first result of this type describes very general con-
ditions under which any ancient (local) weak solution u of (3; + P)u = 0 with “polynomial
growth” must be of the form u(z, x) = Zle t*ur (x) where all uy’s are of polynomial
growth, 14 is a harmonic function, and other uy’s satisfy —Puy = (k + 1)uj41 in a weak
sense. The integer d is related to the given growth degree of u. The second result describes
very general conditions under which any ancient (local) weak solution of “exponential
growth” is real analytic in time.

The general approach we take is to utilize the heat semigroup to study the time regu-
larity properties of local weak solutions of the heat equation. The basic idea of deriving
hypoelliticity type results from properties of the heat semigroup goes back to Kusuoka and
Stroock’s paper [24] which is written in the context of the heat equation associated with
Hoérmander sums of squares of vector fields in Euclidean spaces. It was also implemented
in [7] to study distributional solutions of the Laplace equation on the infinite dimensional
torus and other infinite dimensional compact groups.

This approach differs from the classical hypoellipticity viewpoint in the primary role
it gives to the fundamental solution of the heat equation (here, in the very minimal form
of the heat semigroup itself). On the contrary, traditional studies of hypoellipticity treat
all solutions equally and are then used to deduce the basic regularity of the fundamental
solution. In this paper we generalize the heat semigroup approach on hypoelliticity to the
general setting of Dirichlet spaces on metric measure spaces. One natural goal is to cover
rougher structures that make smoothness more elusive. Here, we treat a purely L2-theory. In
the companion paper [20], we further utilize this method to study the local boundedness and
continuity properties of local weak solutions of the heat equation (the L°°-type properties)
under additional assumptions.

This work is organized as follows. Section 2 introduces the general Dirichlet space setup
for this paper and defines the related notion of local weak solutions. Section 3 describes
the two main hypotheses, the existence of certain cut-off functions and the notion of a very
weak L2 Gaussian bound. Section 4 states the main theorems proved in this paper, Theorem
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5 and Corollary 1, and gives a sketch of the main idea of the proof while avoiding many long
necessary computations and technical details. Section 5 gives a complete proof of Theorem
5 and Corollary 1. Section 6 is devoted to the results concerning the structure of ancient
(local weak) solutions. Section 7 discusses briefly several typical examples that illustrate the
results of this paper in a variety of different contexts. Lastly Section 8 verifies that the very
weak L2 Gaussian bound is satisfied under rather weak assumptions involving the existence
of cut-off functions, and provides proofs of some lemmas regarding cut-off functions.

We remark that, in this paper, the Dirichlet forms we treat are symmetric, and are not time
dependent. The independence on time is a crucial assumption for us, as we take advantage
of the smoothness of the heat semigroup in time. The symmetry assumption can proba-
bly be replaced by some form of the sector condition but we leave this to a further study.
For related but different results (under stronger assumptions) for nonsymmetric or time
dependent Dirichlet spaces, we refer to [34, 35] and [26-28].

2 Dirichlet Spaces and Local Weak Solutions
2.1 Dirichlet Spaces

We briefly review some concepts and properties related to Dirichlet forms. A classical ref-
erence for (symmetric) Dirichlet forms is [16]. Let (X, d, m) be a metric measure space
where X is locally compact separable, m is a Radon measure on X with full support, and d
is some metric on X that we omit writing in the rest of the paper because we do not use it
explicitly. For p € [1, oc], we use L? (X, m) or L?(X) to denote the L”-space on (X, m).
Recall that the L?-space is equipped with norm

1/p
1 f e = (/X |f|"dm)

Il fllLoocxy = esssup | f(x)]
xeX

for p € [1, 00), and

where the essential supremum is with respect to the measure m. We use (-, -);2(x) to denote
the standard inner product on L3(X), ie.,

(.fv g>L2(X) :/ngdm

Let (£, F) be a symmetric regular local Dirichlet form on L?(X, m), F denotes the
domain of £. By definition, a (symmetric) Dirichlet form is a closed symmetric form that
further satisfies the Markov property. Here the term symmetric form refers to any symmet-
ric, nonnegative definite, densely defined bilinear form. The domain F equipped with the
£] norm

172
1flle, = <8(f, £+ /X f2dm)

is a Hilbert space.

Let C.(X) be the space of continuous functions in X with compact support. A Dirichlet
form (&, F) is called regular, if C.(X)NF is dense in C.(X) in the sup norm and dense in F
in the £; norm. Any subset C C C.(X) N F that is dense in these two senses is called a core

@ Springer



Time Regularity for Local Weak Solutions of the Heat Equation on Local.. 83

of £. Any u in the domain F of a regular Dirichlet form admits a quasi-continuous modifi-
cation [16, Section 2.1]. In the following we do not specify quasi-continuous modifications
of functions.

A Dirichlet form (&, F) is called local, if £(u, v) = 0 for u, v € F whenever supp{u}
and supp{v} are disjoint and compact. Here supp{f} for any m-measurable function f
denotes its (essential) support, i.e., the smallest closed subset F of X such that f = 0 m-a.e.
outside F.

Regular Dirichlet forms satisfy the Beurling-Deny decomposition formula [16, Section
3.2]; as a corollary, any regular local Dirichlet form (£, F) can be written in the form

5(u,v):/ dr (u, v)-l-/ uvdk, Yu,v e FNC.(X).
X X

This formula extends natually to all u, v € F via quasi-continuous modification. Here dk is
a positive Radon measure, called the killing measure, and dI" stands for the energy measure,
which is a (Radon) measure-valued bilinear form first defined for any u in F N L°°(X) by

/ ddI(u,u) = E(pu, u) — lz;‘(u2,¢)
X 2

for any ¢ € F N C.(X), then extended by polarization for arbitrary pairs of u, v € F N
L*°(X). For u € F, the energy measure of u is the limit of the energy measures associated
with the truncation functions (u A n) V (—n) asn — oQ.

As a generalization of the classical energy integral fR,, Vu - Vvdx in R”, that is, intu-
itively as a measure given by gradient square, the energy measure satisfies the following
properties. As mentioned earlier, we do not specify quasi-continuous modifications of
functions.

—  (Leibniz rule [16, Lemma 3.2.5]) For any u,v,w € F with uv € F (e.g. u,v €
F NL®(X)),

dl'(uv, w) =udl’ (v, w) +vdl (u, w).

— (Chain rule [16, Theorem 3.2.2]) For any u,v € F, any @ € C(R) with bounded
derivative and satisfies @ (0) = 0, then @ (1) € F, and

dr(®w),v) = @' W) drI (u, v).

—  (Cauchy-Schwartz inequality [16, Lemma 5.6.1]) For any f, g,u,v € F N L®(X)
(more generally, forany u, v € F, f € L2(X, I'(u, u)), and g€ L3(X, (v, v))),

12 12
/Ifgldlf(u, vl < (f fzdF(u,u)) (f $dr (. v))
C [ 1,
< ff dF(u,u)+2C/g dr (v, v). .1

The last inequality holds for any C > 0. The corresponding measure version is
C s I,
[f8ldIl )| = = f2dl . u) + 5 ~¢7d I (v, v).

—  (Strong locality [16, Corollary 3.2.1]) For any u, v € F, if on some precompact open
set U € X, v = C for some constant C, then
lydI'(u,v) =0.

Here the symbol & refers to precompact inclusion, i.e., A € B means that the closure
A of A is a compact subset of B.
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Any Dirichlet form (£, F) is associated with a corresponding Markov semigroup
(H;)t>0, an (infinitesimal) generator — P with dense domain D(P), and a Markov resol-
vent (Gy)q>0 (in the sense of [16, Section 1.3]). The semigroup H; and resolvent G, have
domain L2(X, m); the domain D(P) of —P is dense in F with respect to the £ norm.
These are self-adjoint operators. By spectral theory, P has a spectral resolution (E;);>0
such that, for any ¢ > 0,

oo
PH, = / re M dE;.
0
As a consequence, for any k € N where N = {0, 1,2, ...},

= |ra]
L2(X)—L%(X)

ok H,

< (k/et)k.
L2(X)—L%2(X) — (k/et)

For any function ug € L2(X, m), u(t, x) :== Hyug(x) is smooth in # > 0, and solves
o;u = —Pu
in the strong sense. That is,

ou(t+h,) —u(t,-)
lim =-P .
h1—>0 h M(t, )

in L2(X, m).
Given the notations above, our main goal in this section is to define local weak solutions
of the heat equation (with appropriate right-hand side f)

0+ Pu=f.
2.2 Function Spaces Associated with (£, F)

To properly discuss candidate functions for local weak solutions, and later their properties,
we first introduce some function spaces associated with (£, F). In choosing notations for
these function spaces, we mostly follow [34], with a few exceptions that we will remark
on later. Among these function spaces there are two prevalent types, one type consisting
of functions that have compact support (all denoted with subscript “c”); the other type of
functions that locally satisfy the required properties (all with subscript “loc”).

Recall that F C L?(X) and the inclusion is dense. Equating L>(X) with its dual with
respect to the L2 inner product, we get the Hilbert triple

FcL*X)cCF

)

in which the inclusions are dense and continuous. Intuitively, the “~.” spaces are on the
“F” end, and the “~o.” spaces are on the “F’” (dual space) end. We consider the dual
spaces of “~.” spaces too.

We now give precise definitions of these spaces, organized in pairs, starting with the
following two pairs:
- Fo(X) :={f € F| f has compact (essential) support};
= Floe(X) = {f € L (X.m) |

Veompact K C X 3f% € Fs.t. f* = f m-ae.onK}.

For any open subset U C X, define

- F.(U) :={f € F| f has compact (essential) supportin U} ;
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— Froc):={f eL} (U m)|

Yeompact K C U 3f% € Fsit. f* = f m-ae.onK}.

Remark 1 When U # X, by definition, there is an injection i : F.(U) — F.(X), and
clearly Fioc(X) <> Fioc(U) by restriction to U. Note, however, that Fio.(U) is not a
subspace of Fioc (X).

Fix an arbitrary open interval I = (a,b) C R, —o0o < a < b < oo. Consider the
following function spaces involving time and space. In defining these spaces, we switch
freely between two viewpoints where elements in these spaces are viewed (1) as functions of
time and space; (2) as functions on the time interval / with values in some (spatial) function
space. The rigorous setup for the latter viewpoint is the theory of Bochner integrals, for
which we refer to [37, Section 24].

In the sequel, when there is no ambiguity, we use the notation u’(-) as an abbreviation
for u(t, -). That is, for any fixed #, consider u(¢, y) as a function of y, denoted by u’. Note
that this is not any power of u or time derivative of u; the time derivative is denoted by 0, u.

First, we fix the notation for the “base space”

- Fd xX):=L*I — F),the L2 space of functions on I with values in F.

Remark 2 The space L>(I — JF) is the completion of the space of bounded continuous
functions from I to F, Cp(I — F), under the norm

) 12
iz = ([ 12, ar)

The space C2°(1 — F) of smooth compactly supported functions from / to F is also dense
in L2(I — F) with respect to the ||| 2¢;_, 7y norm. We use the notation F x X) to
clarify the use of notations F.(I x U) and Fioc(I x U) for function spaces defined below.
See also Remark 4.

Based on the “base space” F (I x X), for any open subset U C X, define

- F(I xU):={ueFU x X)|uis compactly supported in I x U};
— Fioe x U):={u € L} (I x U)|Vopeninterval I’ € I, ¥ open subset

loc

UeU, W e F(I x X), st.u*=uonl xU'ae.}.

Here a.e. refers to df x dm-a.e.. The first two spaces F (I x X) and F.(I x U) are subspaces
of L2(I x X) and L2(I x U), respectively. We identify the L2-spaces with their own duals
(under the L? inner product), and denote the dual spaces of F(I x X), F.(I x U) by
(FU x X)), (Fe x U))'.

Remark 3 (F(I x X)) = (L*(I — F)) = L2 — F).

Remark 4 Here our notations are slightly different from the ones used in other places (e.g.
[17, 34]). In the definition of F (I x X), we do not require the functions to further be in
Wb2(I — F), the space of functions in L>(I — F’) with distributional time deriva-
tives that belong to L?>(I — F'). The reason we consider the function spaces defined
above instead of the ones obtained by taking the intersection with W'-2(I — F7), is to put
minimum assumptions in the definition of local weak solutions. Under our definition and
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86 Q. Hou, L. Saloff-Coste

hypotheses, such local weak solutions automatically satisfy better properties. In particular,
we explain at the end of this section that under a very natural assumption on existence of
cut-off functions, and when we require the right-hand side f to be locally in L2(I — F7),
our choice of definition of local weak solutions agrees with the definition used in other
papers. This is verified by adapting the proof of Lemma 1 in [15].

To include more time derivatives we introduce the following notations for function
spaces. For k € N := {1, 2, ...}, define

- F¥I x X) := W*2(I — F), the index-k Sobolev space from [ to F;
- FKI x U) :={u € FX(I x X)|u is compactly supported in I x U'};
- FUxU)={uel}

loc

U eU, e F*U x X), st.u* =uonl' x U a.e.}.

(I x U)|Yopeninterval I’ € I, Vopen subset

Here a.e. refers to dt x dm-a.e.. When k = 1, these are the F-spaces defined above. More
details on the general theory of Sobolev spaces of functions with values in a Hilbert space
can be found in for example [37, Section 25].

Remark 5 In general, we say that a function u is locally in some function space &, if for
any compact subset of the underlying space with measure p, there exists a function w in &
such that w = u p-a.e. on the compact set.

2.3 Notion of Local Weak Solutions

For any symmetric local regular Dirichlet form (£, F) on L2(X, m), we define the follow-
ing notion of local weak solutions of the associated heat equation (below — P and (H;);~0
are the corresponding generator and semigroup as before).

Definition 1 (local weak solution) Let U C X be an open subset and / C R be an open
interval. Let f be a function locally in L2(I — F'). We say u is a local weak solution
of the heat equation (0; + P)u = fon I x U, if u € Fioc(I x U), and for any ¢ €
FeIxU)yNnced - F),

—/f u~8,(pdmdt+/5(u,<p)dt =/(f, ) 7 5 dt. 2.2)
1JX 1 1

Here u in the integral is understood as u® (relative to the support of ¢) as in the definition
for Fioc(I x U). We take this convention throughout this paper. Note that £ (u, ¢) is well-
defined (independent of the choice of u*) by the local property of £. The symbol (-, -) 7 7
stands for the pairing between elements in F’ and F.

We remark that we can define local weak solutions for more general right-hand side f,
e.g., f € (F.(I x U))'. But in the propositions and theorems in this paper we always put
more restrictions on f than f locally in L2(I — F’); moreover, the results are interesting
even for the case f = 0, so here in the definition we do not aim to consider the most
general right-hand side. With this choice, Definition 1 will be shown to be equivalent to the
following variant, under a natural assumption on the existence of certain cut-off functions.
As mentioned in Remark 4, the following definition is often adopted in the literature.

Definition 2 (local weak solution, variant) Let U, I, f be as in Definition 1. Let u be a
function locally in L2(I — F) N\ W'2(I — F’). u is called a local weak solution of the
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heat equation (3; + P)u = f, if for any ¢ in L2(] — F) N WL2(I — F’) with compact
support in I x U, for any subinterval J € I,

/J(E)tu, (/))]:/7]: dt+/]£(u,¢)dt=[](f, (/))]:f’]: dt.

Note that in general,
Fel xU) - FiocI x U) € Fe(I x U),
roughly because F is not an algebra. Here
Fed xU) - FrocI xU)={gh|g € Fc(I xU), h € Fioc(I x U)}.

What we want to assume is that there is a subset of F.(I x U) N C(I x U) that contains
enough functions, each of which brings functions in Fioc(I x U) to F.(I x U) by mul-
tiplication (these can be thought of as cut-off functions with some nice properties). Here
C(I x U) is the space of continuous functions in / x U. We denote this subset of cut-off
functions by €(I x U). Observe that we just need the existence of an analogous subset
&U) c F.(U)NC(U), and then to construct €(I x U), take products of functions in €(U)
with standard cut-off functions in C2°(I) C CZ°(R). The following assumption makes
precise what we require from the set €(U) C F.(U) N C(U).

Assumption 2 There exists a subset €(U) C F.(U) N C(U) such that

(i) for any pair of open sets V € U € X, there exists a function ¢ € €(U) such that
¢ = 1onV,supp{ep} C U;
(i) forany ¢ € €(U), any u € Fioc(U), the product pu € F.(U).

Remark 6 The requirement (i) in Assumption 2 is standard and easily fulfilled when the
Dirichlet form is regular. The requirement (ii) is nontrivial. In general, only the products of
functions in F N L°°(X) are guaranteed to belong to F.

We now state the equivalence of the two definitions for local weak solutions.

Lemma 1 (equivalence of definitions of local weak solutions) Under Assumption 2,
Definition 1 is equivalent to Definition 2.

Proof The proof follows essentially that of [15, Lemma 1]. O

3 Main Hypotheses

As summarized in the Introduction, two related types of assumptions play a key role in
our analysis. We now introduce and elaborate on these assumptions. Let (X, m, £, F) be a
symmetric local regular Dirichlet form as before, with the associated semigroup (H;);=o.

3.1 Assumption on Existence of Cut-off Functions
For a pair of open sets V € U € X, by a cut-off function for the pair V C U we mean a
function n € FNC(X) in between 0 and 1 such that » = 1 on V and supp{n} C U. Such cut-

off functions always exist for any pair of precompact open sets V C U in a regular Dirichlet
space, see [16, page 6 and Exercise 1.4.1]. For results in this paper we need the existence
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88 Q. Hou, L. Saloff-Coste

of cut-off functions that further have controlled energy, we explain what this means in the
following assumption.

Assumption 3 (existence of nice cut-off functions) There exists some topological basis 75
of X such that for any pair of open sets V. € U, U,V € TB, forany 0 < C; < 1, there
exist some constant C>(C1, U, V) > 0 and some cut-off function 5 for the pair V C U,
such that for any v € F,

/vzdl"(r;, n)§C1/ r]zdF(v,v)—i-Cz/ v2dm. (3.1)
X X supp{n}

We call such n functions nice cut-off functions corresponding to Cy, C».

Remark 7 Later we show that in Assumption 3, the condition U, V € T B for some topo-
logical basis 7 B is “redundant”, in the sense that Assumption 3 implies automatically that
nice cut-off functions in the sense of (3.1) exist for any pair of open sets V & U. See
Lemma 3. We also remark that Assumption 3 has a straightforward equivalent form that for
any pair of precompact open sets U, V with disjoint closures, i.e., U NV = @, for any C in
(0, 1), there exists a cut-off function n such that n = 1 on U, n = 0 on V, and there exists
some constant C>(Cy, U, V) > 0, such that for any v € F,

/v2dF(n,n) 5C1/ n?dI' (v, v) + C2(Cy, U, V) v2dm. (3.2)
X X supp{n}

Let n(x) be a nice cut-off function and /(¢) (0 < I(f) < 1) be a smooth function on R
with compact support, then the product n(x)I(¢) is a function in F,(I x X). We call such
product functions nice product cut-off functions, and we denote such functions by adding
an overline, i.e., (¢, x) := n(x)I(¢).

Remark 8 If a cut-off function n for some pair V' C U satisfies that its corresponding energy
measure is absolutely continuous with respect to m, and dI"(n, n) /dm is bounded, i.e.,

dI'(n,n) < Cdm (3.3)

for some C < oo, then 7 is a nice cut-off function and satisfies (3.1) with C; = 0 (hence
any 0 < Cy < 1), C2 = C. Here, C3 is independent of C;. We say in this special case that
the cut-off function n has bounded gradient.

Conversely, if for some nice cut-off function 7, (3.1) can be extended to hold true for
C1 =0and C3(0, U, V) < oo, then n has bounded gradient.

In particular, when the intrinsic pseudo-distance of the Dirichlet space,

px(x,y) =sup{p(x) — () ¢ € Fioe(X) N C(X), dI' (¢, p) < dm}, (3.4)

is a continuous metric that induces the same topology of X, the Dirichlet space satisfies
Assumption 3 with existence of cut-off functions with bounded gradient, and the cut-off
functions can be explicitly constructed using the intrinsic distance. See Section 7.1 for more
details.

Remark 9 Typical examples of Dirichlet spaces that satisfy Assumption 3 but do not possess
cut-off functions with bounded gradient are some fractal spaces, including for example the
Sierpinski gasket and the Sierpinski carpet. For fractal spaces, usually the existence of nice
cut-off functions is guaranteed as a consequence of other properties like sub-Gaussian upper
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bounds satisfied by the Dirichlet space (heat kernel). In general, in such cases, there are no
simple explicit constructions of cut-off functions satisfying (3.1). For references we mention
[1] and [3].

Let (X, m, &£, F) be a symmetric regular local Dirichlet space as before. We first verify
that the cut-off functions in Assumption 3 indeed satisfy the conditions in Assumption 2.

Lemma 2 Any nice cut-off function ¢ in the sense of (3.1) satisfies (ii) in Assumption 2.
Namely, let U € X be some open set such that supp{ep} C U, then for any u € Fioc(U), the
product pu € F.(U).

Proof The support of the product function gu is clearly contained in U. To show ¢u € F,
recall that u € Fioc(U) means that u is in leoc(U ), and satisfies for any V & U, there exists
some u* in F such that u® = u m-a.e. on V. Pick some open set V such that supp{¢} C
V € U, fix some u* € F that agrees with u m-a.e. on V. Then

lowl, = [ udam+ [ arcet. o) + [ o2 an
X X X

< /(Wﬁ)2dm+f(<puﬁ)2dk+2[[ (pzdl"(uﬁ,uﬁ)—l—/(uﬁ)zdl“((p,ga)j'.
X X X X

The first two terms are clearly finite, the third term is bounded above by 2(€ u?, u%))?, and
the last term is finite due to (3.1). Hence ||gouti ||51 < 400, and pu = gut € F.(U). O

So far the examples we have described satisfy Assumption 3 for all pairs of open sets
V & U. The reason in Assumption 3 we only require nice cut-off functions to exist for pairs
of open sets in some topological basis 7 13 is to make the assumption easy to check for some
infinite dimensional examples, like the infinite dimensional torus or the infinite product of
Sierpinski gaskets.

In the next lemma we state the automatic extension of existence of nice cut-off functions
for general pairs of open sets, given Assumption 3. We postpone the proof to Section 8.

Lemma 3 Suppose Assumption 3 holds. Then for any open sets U,V with V. € U, for
any constant 0 < Cy < 1, there exist some C, = C2(C1,U,V) > 0 and some nice
cut-off function in the sense of (3.1) corresponding to C1, Cy. In particular, U, V are not
necessarily in T B.

Given any nice cut-off function and any function in the domain F, by Lemma 2, their
product belongs to F. The energy of the product function satisfies the following estimate,
which we later refer to as the gradient inequality.

Lemma 4 (gradient inequality) Let n be a nice cut-off function associated with C1, Cy in
the sense of (3.1), where 0 < C; < 1/4, let v € F. Then

1-2C 2 C 2
dr’ (nv, nv) < 7f dr'(n-v, v)—f—i/ v-dm. 3.5)
/X T =" [ 1—4C1 Jsuppin)

The point of the lemma is to bound the energy of the product function nv on the left-
hand side by L? integrals on the right-hand side, when v € D(P). Indeed, the first integral
then equals f x n?v Pvdm (when & is strongly local).
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It is easy to check the validity of this lemma in the special case when the cut-off function
has bounded gradient. In this case, by expanding |’ x dI"(nv, nv) by the product rule and
utilizing the upper bound d 1" (n, n)/dm < M, we get

fdl“(nv, nv) S/dl“(nzv, v)+ M v’ dm,
X X supp{n}

which is exactly (3.5) with C; = 0 and C» = M. In the general case, when the cut-off
function does not have bounded gradient (thus C; in (3.1) must be taken as positive), (3.5)
is less obvious, and we give the proof below.

Proof of Lemma 4 By the Cauchy-Schwartz inequality (2.1), and the assumption that n is a
nice cut-off function associated with constants Cy, C»,

/ drI’ (nv, nv) :/ 772d1"(v,v)+/ vzdF(r;,n)—}—Z/ nvdI (n,v)
X X X X
n (w,v)+ | v°dI'(n,n) n=dr(v,v) =2 [ v<dI'(n,n)
X X 2 Jx X

1/ 2 / 2
= n dr(v,v) — | vdI'(n,n)
2 Jx

X

1
> 7/‘ nzdF(v,v)— [C]/ nzdF(v, v)+C2/ vzdm]
2 Jx X supp{n}

1
= <f—cl>/ nzdF(v,v)—CQ/ v2dm.
2 X supp{n}

Henceas C; < 1/4 < 1/2,

v

C
/ n*dl (v, v) < /dr(m), ) + f v dm. (3.6)
X 2 supp{n}

%_Cl X 2 _Cl
On the other hand,
/dmzv, nv)zfdl“(nzv, v)+/ v?dI'(n,n)
X X X
< / dr (n’v, v)+C1/ n2drl (v, u)+c2/ v2dm.
X X S

upp{n}

Substituting the upper bound in (3.6) for fX n*dI (v, v) here, we get
/ dI' (nv, nv) < / dF(nzv, v)+C2/ v2dm
X X supp{n}

1 C
+C dI'(nuv, nv) + 2 vdm ).
1 1
53— C1Jx 5 — C1 Jsupp(n}

As C1 < 1/4, this implies

1-2C C
/ dI’ (nv, nv) < ! / d]"(nzv, v) + 2 / v2dm.
X 1—-4C; Jyx 1 —4Cy Jsuppin)
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In applications, we do not care about the exact constants. So in the following we consider
C1 < 1/8, and (3.5) implies

/ dr (nv, qv) < 2/ dr (n’v, v)+2C2/ v2dm. (3.7
X X supp{n}

Adding the positive terms f X n2v2 dk to the left-hand side and 2 f ¥ n?v? dk to the right-
hand side of (3.7), we get

Em, nv) <20, v) +2C2/ v>dm. (3.8)
supp{n}

3.2 L2 Gaussian Type Upper Bound

In our treatment of the L? time regularity of local weak solutions, we rely much on the heat
semigroup, which is smooth in time. Roughly speaking, we use the heat semigroup to con-
struct an approximate sequence to a local weak solution u, and show that this approximate
sequence (1) converges to u in some weak sense; (2) forms a Cauchy sequence in the space
Fr x X) = W*2(I — F) for some integer n € [1, 0o]. These two statements together
then imply that u is (locally) in " (I x X). To show the approximate sequence is Cauchy,
we use the following (very weak) L? Gaussian type upper bound for the heat semigroup.

Assumption 4 (L? Gaussian type upper bound) For any two open sets Vi, V, € X with
ViNnVv, =0, let

AWV, Vo) == {(g1. 82) | supplgi} C Vi, lgill 2y < 1. i =1,2}.

For any a > 0, any n € N, the semigroup H, satisfies that

1
lim sup {—a
1=0% \ (g1.80)eAV1, Vo) LT

To simplify notation we write

(8;1H[g1’ g2>L2(X) ‘ }) = 0

1 k
Gy, v,(a,n,t) = Oléll?gn sup {— (8, H: g1, g2>L2(X)‘ ‘ (g1, 82) € A(Vy, Vz)} .

ttl
In this notation, the condition above is

lim Gy, v,(a,n,t) =0
t—0t ’

for any @ > 0, n € N. When this condition holds, we say that H; satisfies the L? Gaussian
type upper bound.

Remark 10 The L* Gaussian type bound above is a very weak upper bound. For example,
from this bound itself we cannot tell if the heat semigroup admits a density, and even if we
assume there is a density, neither can we say anything about the pointwise estimate of the
density function. On the other hand, when there is some (global or local) pointwise Gaussian
or sub-Gaussian upper bound, then the L? Gaussian bound is a very weak consequence. So
we still name it “L? Gaussian type upper bound” after the name of the classical pointwise
Gaussian or sub-Gaussian upper bound.

Typical examples where the > Gaussian type upper bound for the heat semigroup holds
are when there are enough cut-off functions with bounded gradient (see (3.3)), or when
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Assumption 3 holds with C»(Cy, U, V) = C(U, V)Cf“ for some C(U, V) > 0and @ > 0.
More precisely, under Assumption 3 with cut-off functions with bounded gradient, one can
define the distance between sets as follows (cf. [2, 19]). For any two precompact Borel sets
u,v,

dlu,Vv) = sup essinfep(x) —esssupp(y) ¢, 3.9)
$EFioc(XONL¥(X) | *€U yev
dr(¢,¢)<dm

where ess sup and ess inf are with respect to the measure m. The following more concrete
L? Gaussian bound is a classical result, often referred to as the Takeda formula (cf. [36,
Lemma 4.1]). See [12, Theorem 2] for a more related statement and proof. Let Vi, V, be
two precompact measurable subsets of X with ViNnV, =% Then 0 < d(V;, V») < oo. For
any pair (g1, g2) € A(Vy, V2),any ¢t > 0,

4 (3.10)

Proofs for various kinds of Gaussian upper bounds usually use the so-called Davies” method,

d(Vi, V2)?
|(Hig1. 82)120x)| < exp {—7 .

cf. e.g. [11]. To generalize the upper bound for terms like )(8{' H g1, g2) , One can use

L2(X)
for example the complex analysis method from [10], or the method in [13].

However, when the existence of nice cut-off functions with bounded gradient is not
guaranteed, there could be disjoint closed measurable sets U, V with distance d(U, V) =
0 (because roughly speaking, the only functions with bounded gradient are constant
functions). Then this distance notion is not helpful in getting a Gaussian type upper bound.

Under Assumption 3 with cut-off functions satisfying the general inequality (3.1), or
(3.2) as in the equivalent form of Assumption 3 (see Remark 7), when furthermore C;
depends on Cj in the specific form C(Cy,U,V) = C(U, V)Cfo‘ for some ¢ > 0,
C(U, V) > 0, by a modification of Davies’ method, we can show that for any ¢ > 0,

1
1 T+2a
‘(Htgl’ gZ)LZ(x)’ < exp [— <m> } 3.11)

Here again Vi, V, are two precompact Borel sets in X with Vinv, = @, (g1,8) €
A(Vy, V»). A relevant but different L2 upper bound is given in [1, Proposition 2.3], under a
different assumption concerning existence of cut-off functions.

Both bounds (3.10) and (3.11) imply that the semigroup H; satisfies the L> Gaussian
type upper bound in Assumption 4. Note that (formally) if we take « = 0 and C(V1, V2) =
d(V1, V2)"%in (3.11), then we recover (3.10). In Section 8 we give a proof of (3.11), as well

as how this implies a similar bound for ’(8;’ H, g1, gz)Lz(X) ’

4 Statement of the Main Results and Overview of the Proof
4.1 Statement of the Main Results

In this section we state our results on the time regularity property of local weak solutions
of the heat equation (3; + P)u = f. Our main result is that the regularity in time of u
is as good as that of the right-hand side f. Note that as a local weak solution on some
time-space cylinder / x U C I x X, u satisfies the prerequisite u € Fioc(I x U), so
any of its “F(I x X) representative” u” automatically has distributional time derivatives
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of any order. The challenge hence lies in showing that these time derivatives belong to
F( x X) = L*>(I — F). Our main theorem is the following.

Theorem 5 Let (X, m) be a metric measure space and (€, F) be a symmetric regular local
Dirichlet form satisfying Assumption 3 (existence of nice cut-off functions). Assume that
the associated heat semigroup (Hy);~ satisfies Assumption 4 (the L> Gaussian type upper
bound). Let I = (a,b), —o0o < a < b < 0o, be an open interval, U C X be an open set,
and f be a function locally in w21 — L2(U)) for some n € N. Let u be a local weak
solution of (3 + P)u = fonl x U. Thenu isin F; (I x U).

In short, Theorem 5 claims that if the right-hand side f of the heat equation locally has L
time derivatives up to order n, then so does the local weak solution u, and its time derivatives
up to order n locally belong to L2(I — F). An important implication of Theorem 5 is that
the time derivatives of u (up to order n) are local weak solutions of the corresponding heat
equations.

Corollary 1 Under the hypotheses in Theorem 5, if f is locally in the space W"2(I —
L2(U)), then for any 1 < k < n, 3u is a local weak solution of

(3 + P)oku =a*f. .1

In particular, if u is a local weak solution of (0;+ P)u = 0 on I XU, then all time derivatives
of u are local weak solutions of the same heat equation on I x U.

Remark 11 It will be evident after we present the proofs, that Theorem 5 and Corollary 1
are of a local nature. In fact, to obtain the conclusions of these results, we may ignore the
Dirichlet form (&, F) and use instead the restricted Dirichlet form 56/ on U, the domain
of which is the completion of F.(U) with respect to the £ norm. The subscript 0 refers
to Dirichlet boundary condition. It is enough to have the hypotheses in Theorem 5 hold
for 561 and its corresponding semigroup (H\Y);~, to conclude that local weak solutions
u € F' (I xU).See Sections 4.2 and 4.3 in the companion paper [20] for more details and

loc
for more examples illustrating this point.

4.2 Sketch of Proof for a Special Case of Theorem 5

In the next two sections we prove Theorem 5 and Corollary 1. In this subsection, we give
an outline of proof for a simplified case to demonstrate some main ideas while avoiding
certain technicalities. The sketched proof below is only for illustration and is not part of the
rigorous proof in the next two sections. The simplified setting we consider here (Proposition
1 below) concerns a compact space X and local weak solutions u of the heat equation on
I x X. There, Assumption 3 and Assumption 4 are not needed. To treat the general context
of Theorem 5, we need these further assumptions to conduct localization, which brings in
more complications.

Recall the following convention: for any function g(s, x), we write g*(x) := g(s, x). In
the special case where X is compact and u is a local weak solution on the “full” time-space
cylinder I x X, since F.(X) = F = Floc(X), we know that u’ itself is in the domain of the
Dirichlet form, and in particular, in L>(X). The spaces F.(I x X), F(I x X), Fioc (I x X) are
different due to the inclusion of the open time interval I = (a, b). We do need to multiply
u with some smooth cut-off function in time, but in the outline proof below we ignore that
technicality and pretend that the functions are globally good in time.
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Proposition 1 (special case of Theorem 5) Ler (X, m) be a compact metric measure space
and (&€, F) be a symmetric regular local Dirichlet form. Given I = (a,b) C R and a
function f that is locally in WY2(I — L*(X)), let u be a local weak solution of (8, + P)u =
fonl x X. Thenu is locally in F' (I x X).

Outline of Proof Let p € CZ°((1,2)) be some smooth nonnegative cut-off function on R
with [ p(1)dt = 1. For any t > 0, define

1
pr(t) = —p (5)
T T

Then supp{p:} C (t,27), and {p;}r>0 is an approximation to identity in R. Note that

drpr (1) = —0; 07 (1), where
_ t t
pr(t):=—=p| ).
T T
Define an approximate sequence {u }; ¢ as follows. For any 7 > 0, let

ug(s, x) = /pr(s —)H;_u'(x)dt, (s,x) el x X.
i

Observe that because of the p, term, the integrand is nonzero only when t € I N (s —
21, s — ). In particular, t < s so that Hy_, is well-defined, and the integral makes sense as
a Bochner integral. Note that when there is the notion of convolution and when H; admits
a density function (heat kernel), the approximate sequence above is exactly the convolution
in time and space of u and the heat kernel (with a cut-off function p; in time).

Because H; is smooth in time, it is easy to show that u, is smooth in time. More precisely,
forany v > 0, u; € C®°(I — F).Itis routine to verify that u, converges to u in L2(I x X)
as 7 tends to 0. So to prove the proposition, it suffices to show that {#;},;~¢ is Cauchy in
wh2(I - F) = FY(I x X). Here by {u.}:~0 is Cauchy, we mean that for any subsequence
7; that converges to 0 as j tends to infinity, the sequence {ur,}jen, is Cauchy.

To this end, we show that ||dzu< [ly12(;_ 5 is integrable in T near 0, then for any 0 <
y’ <y, by Minkowski’s (integral) inequality,

14
lluy — ”y’||W1v2(I—>]-') = H/ Orucdt
v’ W2(1—F)

v
= / ||3rl4r||wl.2(1_>]:) dt — 0 as Yy — 0,
0

thus {u;}; is Cauchy in W2(I — F). We first estimate [|0; 0yu« [l 127 x)- By duality,

10 0surll 201w xy = sup (07 Osur, ‘P>L2(1xx)-
el 207 x) <1
PeCP(I—L%(X))
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Here (-, -);2(/xx) denotes the standard inner product on LI x X). Using d;p(t) =
—0; p (1) to express d; dsu, we have

|07 dsur ||L2(I><X)

= sup {</ O [81,5,(s — Z)Hs_t] u' (x) dt, <p> ’
1 I L2(IxX)

el 2gux)=
peC®(I—L*(X))

B o {///u(x)aat ['OT(S 1) Hs— t] *(x) dmdsdt

II<pHLz(,XX><1
peC®(I—L*(X))

—/// u' (x) y [pr (s — 1) 8,HS,,]<ps(x)dmdsdt}.
1JIJX

From the second line to the third line we used the Fubini theorem and the self-adjointness of
H; to move 9,4[0; p; (s —t) Hs_,] from the “u” side to the “¢” side, then used the product rule
to redistribute 0;. Because 9; H;_; = PH,_;andu isa local weak solution of (0; 4+ P)u = f
on I x X, the above two terms in the curly brackets together, modulo a cut-off function in
time that we omit in this proof (i.e., think of the function (¢, x) + 09s[p; (s — 1) Hy—;]¢* (x)
as a test function), equals

_/// f(tvx) as [,5-[(S _t)Hs—z] (ps(x)dmdtds
1JI1JX

By rewriting ds[p; (s —t) Hy—;] as —9;[p; (s —t) Hy—;] and using integration by parts, we get

|07 051+ ||L2([><X)

Btf(t x) pr(s — ) H;_,¢° (x) dmdtds]| .

HwIILz(,XX)
peCP(I— L% (X))

Here we did not consider the boundary term, but that is not a problem once we add in the
cut-off function in time in the rigorous proof in the next section. For the same reason, we
think of || f [l 127 12(x)) as being finite, when more rigorously it should be f multiplied
with some cut-off function in time. We now show that the above integral has an upper bound
in terms of || flly12(;_ £2(x))> Which in particular is independent of 7. First, by Holder’s
inequality,

0 f(t,x) pr(s — t)Hy—1¢" (x) dmdtds
X

d f (1, %) (/ pr(s — ) Hs—¢" (x) dS) dmdt
X 1

1
2
100 £ 12005 (f/ (/p (s — ) Hy_10 (x)ds> dmdt)

I8¢ £l 201 xx) (C (T, D)2

172

IA
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To estimate C(t, ¢), first note that forany t € I (i.e.,a <t < b),

byt s—t) 1
/ﬁ,(s—t)ds:/ p( >fds
I e T T T

b=t b=t

= / ! 9p(9)d9<2/ " p0)do <2, 4.2)
0 0

where in the last line we made a change of variable & = (s — t)/t, and used the fact that p
is supported in (1, 2). Let r(¢) := f, pr(s —t)ds,then 0 < r(¢) < 2. When r(¢) > 0, by
Jensen’s inequality we have

2
( f Bels — r)Hs_zgo%x)ds)
1

1 ‘ 2
= (r(1)? (% /I pr(s — 1) Hy—¢* (x)ds)

r (1) /1 pre(s — 1) (Hs—1¢° (1)) ds.

IA

The inequality holds for () = 0 too. So the term C(z, ¢) satisfies that

C(t,p) < 2//,5T(s —t)/ (HS,,gos(x))zdm dsdt
1J1 X

< 2<sup/ﬁf(s —t)dt)/f @(s, x)> dmds,
sel JI 1JX

where in the second inequality, we used the fact that the semigroup is a contraction semi-
group, | Hs—1¢* | 2(x) < Il9* Il 2(x)- We can similarly check that sup¢; f, pr(s—t)dt < 2.
Hence

sup [|9;dsuz ||L2(1><X)

O<t<l1
B sup 1, £ 1l 20 (€@ @)% < 201 Fllwr 201 12000
O<z<l ol 2/ x)=1
(pECCOO(]—>L2(X))

To estimate ||0; dsu+ ||L2(1%_7_-), note that for any T > 0, s € I, 9;9;u, belongs to D(P).
Thus

1/2
2 2

( / E @byt afasuz)ds> < 10dsucll 22, ) 1P @i ot

1

It is shown above that supy_, . 0 9suzll 2 xx) < 00, so it suffices to show that for
0<t<l,

C
||P(arasur)”L2(l><X) = ?

for some constant C that depends only on f. Running the estimates above with Hy_;

replaced by P H;_;, we can get the desired estimate. See the rigorous proof in the next
section for more details. O
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5 Proof of the Main Results

5.1 Proof of Theorem 5 - General Strategy

In this section we prove Theorem 5. To verify u € F (I x U), we show that for any
J x V € I x U, there exists some function in 7" (I x X) that equals ¥ u a.e. over J x V.
Here ¥ (s, x) := ¥ (x)w(s) is some nice product cut-off function such that ¢/ = 1 on some
Jy x Vg where J x V€ Jip x Vi supp{¥'} C Iy x Uy for some Iy x Uy € I x U.
Our notational choice is that J, V are proper subsets of I, U, and subscripts mark which
function these sets are “affiliated with”.

More precisely, we first define an approximate sequence (now, with proper nice cut-off
functions inserted) to the local weak solution # and show that the approximate sequence is
Cauchy in F"(I x X). Next, we show that the sequence converges to ¥ u in the L? sense
(this step does not make use of the fact that u is a local weak solution). The limit of the
approximate sequence then serves as the function in 7" (I x X) that agrees with Yru a.e. on
J x V.

The approximate sequence is defined as follows. Let p; be as in the last section, that
is, p(t) € C2°((1,2)) is some nonnegative smooth function satisfying fR p(t)dt =1, and
pr (1) is defined by p,(t) = (1/7t)p(t/7) (r > 0). Note that supp{p;} C (7, 27). Recall
that 0, p; (t) = —0;0:(t), where p;(¢) = (t/‘l,'z)p(l/l'). Let n(y, t) = n(y)I(t) be another
nice product cut-off function which is 1 over some neighborhood of the support of /. More
precisely, 77 = 1 on some J;; x Viy where J x V' € Iy x Uy € Ji x Vi supp{n} C Iy x Uy
for some I; x Uy € I x U. Consider the sequence {1 }¢>0 defined by

Ur (s, x) = f oc(s —t)Hy_; (ﬁzut) (x)dt, (s,x) el x X.
I

Like in the definition of u, in Section 4.2, the integrand is nonzero only whent € I N (s —
27, s — 7). This guarantees the integral is well-defined.

As mentioned above, we claim that (1) the family {Wﬁ, }r>0 is Cauchy in F"(I x X)
and hence has a limit in the same function space, here Cauchy means that any subsequence
{vir, }kEN+ with 7; — 0 is a Cauchy sequence in F*(I x X); (2) Yil; — Yiu = Yu in
L*(I x X) as T — 0. So the two limit functions must equal a.e.; in particular, the “L2-limit”
u in fact belongs to (I x X). Because Yyu = u a.e.onJ x V,and J x V is arbitrarily
taken, the statement in Theorem 5 follows.

To prove {iir}, _ is Cauchy in F"(I x X) = W™3(I — F), we first show that for
each v > 0, ¥ii, € C®(I — F). It then suffices to prove the following two propositions.

Proposition 2 Under the hypotheses in Theorem 5, for any nice product cut-off function v
supportedin I x U,

max sup +00

O<k=<ng<r<1

0,05 (Vi)

<
L2(IxX)

Proposition 3 Under the hypotheses in Theorem 5, for any nice product cut-off function
supportedin I x U, forany0 <1 < 1,

1

1/2
E@ X (Yiiy), .05 (Wiiy)) d ) < —.
max (/1 (095 (Y1) s (Yur))ds NG

0<k<n
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Here < means that the left-hand side is less than some finite positive constant C times
the right-hand side, where C is independent of t. These two propositions together imply
that forany 0 < ' <y < 1,

—_—— —_— y —~
lWru, — wlly’“Wn.Z(l_)]-‘) = H/ O (Yur)dr
y/

Wn2([—F)
/V ” i H — S g

< 9z (Vi) || yn, d‘L’N/ dt =2./y,
0 T T/ || w 2(1 F) 0 ﬁ f

which tends to 0 as y tends to 0. Here, the first inequality is by Minkowski’s inequality and
enlarging the domain of integration to [0, y]. It thus follows that the family {Eﬁf }T>0 is
Cauchy in W"2(I — F).

We now verify that yu; € C®(I — F) forevery T > 0. Recall that the norm || - || cn(r)
is the sum of L° norms of the function and its derivatives up to order n. Note that for any
fixedt > 0andm,n € N,

[ 800 = 1| PP Hes )

1

= —llpcllenwlsupp{l}]

1/2 ”
(eT)™

nullr27xx)

which is a finite upper bound and independent of s € I. Here |supp{l/}| is the one-
dimensional Lebesgue measure of supp{/}. It follows that all aﬁr, k € N, are well-defined
as Bochner integrals and are in L>°(I — F). Hence u; € C®°(I — F). More precisely,
we have

k~

ke~ ak N2
BU ooy = o (51(8“!“ asur))
(o e o U N
sel L2(X) L2(X) L2(X)

The estimate above implies that the right-hand side here is finite. The conclusion that Vi, €
C*(I — F) then follows from applying the gradient inequality (3.8).

In the next two subsections we prove Proposition 2. We present the proof in two steps. In
the first step we express and split H 07 &f (i) H L2(IxX) into three parts; in the second step
we estimate each part and show that they are all bounded above independent of 0 < 7 < 1
and 0 < k <n.

5.2 Proof of Proposition 2 - Step 1
We first compute 3, (s, x). Forany t > 0, (s,x) € [ x X,
dell (s, x) = / Oz pr (s — t)Hs—t(ﬁtut)(x) dt = / 0rpr (s — t)Hs—l(ﬁtut)(x) dt.
I I

Recall that here

_ s —1t s —1t s —1t
ms—r):—pf(s—z):—zp( )
T T
Let
T ={¢| lol2gxx) < 1. ¢ € CXU — LX)}
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Recall that (s, x) = ¥ (x)w(s). We have

T, :;g(waraf(wm), o)

L2(IxX)’
where

k ~
(vorok i), o),

= /;/;( {/;asl‘([w(s)(atﬁ_’r(s —I))vat](ﬁzll[)(x)dl} Y (x)(s, x) dmds

- /;/]/}((ﬁfut)(x) af[w(s)(at'él(s_t))HY*t](I//(PS)(X)dmdtds,

The last line is by the Fubini Theorem (changing the integration order from
[; Jx [; dtdmdsto [, [, [y dmdtds) and by the self-adjointness of H;_,. Using the prod-
uct rule for d; to rewrite w(s)(d;pr(s — t))Hs—; in the square bracket as d;(w(s)p. (s —
t)Hs—y) — w(s)pr (s —t)0; Hg_;, altogether we get that

0% (Vit,)

L2(IxX)

— sup [ /1 /1 /X @) () 34 (05w (53 (5 — 1) Hy—1(¥r@*) ()} dmdieds

@eT
_/I/;,/;((ﬁlul)(X) 8‘f[w(s),51(s — 1) Hy— 1(¥¢*) (x) dmdtds},

In the last line, since d; H;_; = P H,_;, the second term equals

second term

= /;‘[/;((ﬁtut)(x)P[aﬁ(w(s)ﬁf(s_I)Hsfl)(wfﬂs)()()]dmdtds

- f / EG U, 9 ws)fe(s — D Hy_)(Yg*)) drds.
1JI
To simplify notation, let

Ve, (s, 1, x) 1= 3N (w(5)pr (s — 1) Hy—) (Y 9*) (x). (5.1
When s, t € I are fixed, we write v,i’r (x) := vk, (s, 1, x). It is clear that for any fixed T > 0

and s, t € I, v,itr € D(P). Moreover, v ; € L?(I* — D(P)). Using Vk,7, WE can rewrite
the previous equality as

k —~
aras (Yue) L2(IxX)
= sup {f// n(t, x)u(t, x)o;[vk - (s, t, x)]dmdtds
peT W1J1Jx
- [ [ g . vt -))drds}. 52)
1J1I

Recall that u is a local weak solution on I x U. If in (5.2), 77 is not grouped with u but
appears on the same side with vy ., then (5.2) is exactly

sup/ f, v} ds.
oeT 1< k,r)LZ(IxX)
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This observation inspires us to write (5.2) as this term plus the difference, and then estimate
them each separately. More precisely, using (5.2), we have

k —~

aras (Yue) L2(IxX)

< sup |Ak(z, )| + sup |Bi(z, )| + sup [Ck(z, 9)I,
peT @eT oeT

where

Ar(t, @) = /// @'u") B,vz:tr —u' 8,(ﬁ’v,ijtr)dmdtds
1J1Jx ’

= —/// u(t, x)(0m(t, x)vr,z (s, t, x) dmdtds;
rJrJx

Bi(t, ) = —//E(ﬁ’u’, v,i’tf)dtds—l—//é’(ut, ﬁtv,i’lr)dtds
1J1 ’ 1JI ’
= _/// dr'u’, v,i’tr)dtds+/// dr', 7'vyt)dids;
1J1Jx ’ 1J1Jx ’

Ck(r,(p)=/[<f, ﬁvi,r)Lz(lxx) ds=/I/I/Xf(z,x)ﬁ(z,x)vk,f(s,t,x)dmdtds.

5.3 Proof of Proposition 2 - Step 2

Next we estimate |Ax(t, ¢)|, |Bx(t, ¢)|, and |Ci (7, ¢)| individually. We will see that the
upper bounds we find for |Ag|, | Bk|, |Ck| involve some L? or £ norms of the local weak
solution u# on some precompact subsets of / x X (hence the norms are well-defined). To
conveniently express these norms of u, we introduce a nice (product) cut-off function that
lives in (i.e., has compact support in) / x U and is flat 1 on some open set that covers the
supports of all other cut-off functions in the whole proof. We denote this cut-off function
by ¥(t,x) = ¥ (x)n(t). It can be determined after all other cut-off functions in the proof
of Theorem 5 are introduced.

For Ai(z, ¢), note that 9,7(¢, x) is only nonzero for ¢ € (Jﬁ)c (i.e., away from where
I[(t) = 1), while s € IW € Ji because of w(s). Hence for small T, more precisely, for

v < minld(z, (J7))/2. 172) =«
om(t, x)vk (s, t,x) =0.

So Ai(t,¢) =0for 0 < t < ¢g. For T > ¢y, first note that for any s, ¢ € I,

Ok (w(s)pr (s — ) Hy— ) (Wg*)

L2(X)
- 3k” I 54 s —1 s —1
w max su X
- CER) O=<a=<k r<s—tp<2r s 72 P T
max  su ob H,_ y .
RErec iy SN kil PEYP SR RIS 1Vl 2cx,
Here |19 Hy—tll1200)— 1200 = |1PPHy—tll 2~ 1200) < (b/e(s =1) < (b/er)” since

T < s —t < 2t. Direct computation shows that for any 0 < a <k,
afS—1 s—t _a @ (S—1 S—1 (o (s—1
9 ( 2 P\ 7 =Zari P . )t ? : )
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which is bounded above by (a +2)T=“*D|p Il ck(wy- So there exists some C (k, W, p) >0,
such that

- C(k, ¥, p)
s (w(s)pq L2(X) = 72k+1 ”(,0 ||L2(X) :
It follows that
|Ak (T, )| = u' 9,7 af(w(s)lar (s = )Hs—) (Y ¢*) dmdtds
X

IA

5. (s —

J

C(k, ¥, p) 19,7l 0
- ST [ ds [ 1]y @
v 1

dtds
2 X)

A

< Ctk,7, V. p) ol 22 |Pu HL2(1><X)'

~ — _ —(2k+1

Here the constant C(k.7.9.p) = |fzl" 215" 2C K. p) 1907 Lovrx) g @
depends only on the two cut-off functions 7, ¥, the function p, and the sum of the trino-
mial coefficients that is bounded by 3¥. Note that cg is determined by the cut-off functions

since ¢y = min {d (IW’ (Jﬁ)c) /2,1 /2}. The function ¥ is equal to 1 on the support of 77 as
introduced at the beginning of this subsection. So

Ca(n, 7.9, p) == Jmax C(k 7.%, p) < oo
Recall that we take supremum over functions ¢ with [[¢|| 2. x) < 1. Hence

max sup sup |Ax(z,@)| < Ca(n, 7, ¥, p) |[Wu . (5.3)
0<k<no<r<1geT H HL2(1><X)

For By (7, ¢), because (¢, y) = [(t)n(y) and n = 1 on V5, by the strong locality of the
energy measure d I, the two terms in B (7, ¢) satisfy that

Ly, dl (@', vh) = Ty d W', 7'opy).
In other words,
dr@'u', vey) —dr @', gol) =dr @', @ve) —dr @', o7've)  (54)

for any “bowl-shaped” @ that equals 0 inside V5 and becomes 1 before it reaches the bound-
ary of V4, provided that the products of the functions are still in the domain J. To later
utilize the L2 Gaussian type upper bound to estimate, we take @ to be a nice cut-off func-
tion “disjointly supported” from . More precisely, recall that VJ S UJ € Vi € Ug. Let
V', U’ be two open sets that sit in the middle of this chain, and let V", U” be two open sets
at the right end of the chain, i.e.,

VpelUpeV el eVzelUseV' el el.

Let Vo := V/\ U’ and Up := U” \ V'. Then Vo € Usg, and there exists a nice cut-off
function that is 1 on Vg and supported in Ug. We fix such a function and denote it by @.
The existence of @ is guaranteed by Lemma 3, or we can take the difference of two nice cut-
off functions (for pairs V”/ C U” and V' C U’) and show that the difference still satisfies
(3.1). The nice cut-off function @ has the desired “bowl-shape”, satisfies equation (5.4),
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and has disjoint support from . In summary,

| Bi(t, ¢)|

= ’—/f/d]“(n qbv,i;)dtds+///dr(u @7 v dids |,
1J1JX

where by the Cauchy-Schwartz inequality for the strongly local part of £ and Holder’s
inequality applied to the integrals on /, we have

dr@'u', v, dtds

1
1/2
([ [ v moraas) ([ [ [ aris. o)
Ly JIJX I

12 12
5(’1ﬂ/15(ﬁ n’u’)dt) (// E@v, <kar)dtds) ,

and similarly (recall that ¥ equals 1 on the supports of all other nice cut-off functions),

= ///d]"(@tu’, @ﬁtvit)dtds
1/2 172
5(1”/5(4% um)dx) (//5@;7’1);;, 7' ”)dtds) .

12, _
Bee o)l < 15| (Wl g m) + ||w|!L2(,%f)) x 5.5)

12
(/ E(Cka i vak T)dtds) (//E(qbnfvz’r’ ﬁtvit)dtds>
1)y

It remains to estimate the two integrals in the square bracket. The estimates for
the two terms are almost identical so here we only do it for the second term,

(fl I 5(@77’1),2 - ﬁ’v,i D dtds) . Recall that v;" € L*(I? — D(P)), we first want

to move both @7 to one side in £(-, -), in order to rewrite the £-integral as an Lz—integral
of something times Pv,i:tr To this end we apply the gradient inequality. Using (3.8) applied
to the nice cut-off function @, we get that

//S@nfv,ii, n'uy)dids < 2

+2C2/// (vk ) dmdtds.
Iy Jsupp{®@n}

Here C; is associated with @1. The first integral is (plugging in (5.1))

dr(uf, o' v dids

Hence

/(@ QUIS(’T kafdm‘ dtds

/((D 2v,itr kardm‘dtdv

=2/,/,
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Up to derivatives of w(s)p, (s — t) which are bounded by some multiple of 1/(s — Pkt
this integral is bounded above by a sum of integrals of the form

S

for 1 < m < k + 1. Note that the functions (@7’ )2111?I and ¥ ¢° have disjoint supports
because @ and v do. The second integral above equals

20, / f f Laupp(onVy s X Vp'k dmdtds,
1/ JX

which is essentially the sum of

Tyt O Heet (")) | | drds

L2(X)

) <1¢>nv,i:tr, 3;"Hv;(1//(ps)>L2(X)’dtds

for 0 < m < k (up to derivatives of w(s) 0. (s — t)). Here, for simplicity, we write 1¢, :=
Lsupp{@n)- Again, by construction, @ and v have disjoint supports, so the functions lfp,]v,i”r

and ¥ ¢® have disjoint supports. We can then use the L? Gaussian type upper bound to
estimate each such term. Note also thatas 7 < s — ¢ < 27, forany 0 < a <k,

Jf(s—t (s—t a+?2 20+ (g 4 2)
d 2 P\ 7 = Latl lollexw) = W”P”ck(ﬂg)

In summary, we have

//5(@,’1;;3, 7'y dids

1
<2(1+Cy) x 3k lwllcrmy % ok+1 k+2)pllcr) <m3k+1 f/ G ne X
0zm=kr1 * 1

(@720 o Hym (g

st am s
oo 1o o), ) dras

< 2k+23k(1 + C2)(k + 2)||w||ck(R)”p“Ck(R) X sup G(k + 1, k + 1’ r) X
T<r<2t
2 t ot \
// (‘(¢ U/i Tllr2ex) + H ]‘ﬁﬂvli,t LZ(X)) ”VfﬁovHLz(X) dtds.

The last inequality is obtained by letting » := s —¢ and applying the L Gaussian type upper
bound. Here G(k + 1,k + 1,7) := Gy, v, (k + 1,k + 1,r) as defined in Assumption 4.
So there exists some C (k, w, p, C2) > 0, such that

/fsmbnfv,i’r, o' vy ) dids < Clk,w, p, C2) sup Gk +1,k+1,r)x

T<r<2t

2
{H (@M vke L2axixx T ”l‘p”vkvf||L2(1ﬁX’XX)} 1ol 2y -
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Next we estimate || 1pyvk,z H L2(yx IxX) (and || (@ﬁ)zvk,r || L2(1><IXX))’ Note that

”1‘1)77vkvf||iz(17><1><X) = /]7/]<14>nvkyr! v"sT>L2(X) dsdt
n

/ // Lonvk,c(s, 1, x) X 3f(w(S),5r(S—f)vaz)(lﬁﬁt’S)(x)dmdef
Iy

172

IA

Ck,w,p) sup Gk+1,k,r) x [onvke |2 190200 |l

T<r<2t

for some C (k, w, p) > 0. The left-hand side H Loyvk,c and the right-hand side

2
” L2(Igx I xX)

of the inequality have a common factor || lq>,]v1(’f} that cancel each other. The

|L2(Iﬁ><l><X)
same argument works for || (@ﬁ)zvk,f ||L2(lexx) (as0<®dnp <1). S0

|@D?ue.c

L2(IxIxX) + H Loyvee ||L2(lﬁ><l><x)

< 2Ctk,w,p) sup Gk+ 1k, r) x Vol 20x) |l

T<r<2t

|1/2

Combining the two estimates above gives

//5(¢n’v,§;, ﬁ’v,z’r)dtds < Ck,w, p, C2)x

2C(k, w, IV ey [l X sup Gk + 1.k +1,1)% x [lol%,

T<r<2t

(IxX) " (5.6)

By Assumption 4, supy_, .» Gu,, v, (k+ 1,k +1,7) < co.
Recall that C, here is the constant associated with @7. To include the upper bound
for the other term in (5.5), fl f, 8(<1>vk i <ka T)a’tds in the next few lines we write

Cr(@n) and C, (D) for the Cy constants associated with the nice cut-off functions @7 and
@, respectively. Let

Cp(n, 7, ¥, p, ®) := max [C<k, w, p, Co (P2 + Ck, w, p, C2(¢))1/2] x

0<k=<n

~ 12 12
Tk, w. o) 2 W oy | |72 s Glk+ Lk 17) x ’Iﬂ

<r<2

Then Cp is finite, and we obtain the estimate for By (7, ¢) from (5.5) and (5.6)

max sup sup |Br(t, ¢)|
0=k=n(g<r<1gpeT

< Cou 7, 0, @) (1Tl 2oy + [P oy ) (5.7)

Last, we estimate the term Ci(t, ¢). The idea is to first use the product rule for
differentiation in time (ds) to expand and rewrite

ot = W) e s — D He- )W)

k
Z( Jok o) x 8 ets = D))

Il
M» I

k '
(a)affaw(S) x (=D?97 (pe (s — ) Hs—1) (Y ¢*),

a=0
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then move all the 95 on p, (s —t)Hs_;, 0 < a < k, to 7 f, using integration by parts. More

precisely,
|Cr (T, @)
/[ﬂ/)(f(f,x)ﬁ(t,X) aSk(w(S)ﬁ,(s — O H,_) (Y 9*) (x) dmdtds

k

SY() [ 0w (2T 1, Bels — B W) d
a)l; s r (N » Pt s—t (Y@ L2(IxX) Ky

a=0

IA

2Kl o max
lwllcr ) omax,

/ / / 3T f1) e (s — 1) Hy—y (Y*) dmdtds
1JI1JX

For any 0 < a < k, note that by Holder’s inequality and Minkowski’s inequality,

‘ [ [axas [ 5 - oo ds amar
1JX 1

dt
L%(X)

< /1 197 @ £ 2xy ’ /1 pr(s — D) Hy— (Yg°) ds

E V/I ”a[a(ﬁtft)”LZ(X') v/]‘ léf(s - t) ”HS—I(WQOS)HLZ(X) dS dt

To further estimate, we apply Holder’s inequality to the integral in ¢. First,

1/2
_ 2 _
max (/[ ||ata(77tft)”L2(X) dt) < mfllwe2—r2ex)) -

0<a<k

Second, by Jensen’s inequality and the fact that H, is a contraction semigroup on L2(X),

2 1/2
</I (/1 pe(s = 1) [Hs—s (0o | 2, dS> dt)
) 12
: (/1 r /1 pr(s =) | Hsme (W™ | 12 x, ds dt)

1/2
- 2
< (20w [ 5o =0 [ 100 oy ds) <2100l

sel JI 1

where r(t) = f ; Pr(s —1)ds < 2. See (4.2) and the paragraph below it for more detailed

computations. Altogether we get that

|Ci (T, )

IA

// 3f(ﬁ’ft)/ﬁf(s — )H,_; (Y ¢*) ds dmdt
1JX I

2% 1wl ek max
lwll cr w) omax,

IA

k1 _
2wl ey 175 lwez 200y 1V @l 120x) -

Hence

max sup sup |Ci(z, @)| < Co(n, V) 1S lwneq—r20x)) »
Osk=no<r<igeT

where Cc(n, ¥) = 2ntl ||w||ck(R) 1Vl ooy = 2+l ||w||ck(R)~

(5.8)

In the above estimates for Ay, Bk, Cx, we kept terms like |7 f w2 12(x)) and

| @l L2(I—>F)’

since u, f are only assumed to be locally in those function spaces. If we take
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any proper representative u®, f¥, we can bound those norms by the corresponding norms of
u® and f°.

Combining the estimates (5.3), (5.7), and (5.8) for Ay (7, ), Bi(t, ¢), and Ci (7, ¢), we
complete the proof of Proposition 2. To finish with the proof of {77 };~o being Cauchy in
W"2(I — F), we still need to prove Proposition 3.

5.4 Proof of Proposition 3

Our aim is to show that for 0 < k < n,forany0 <7 < 1,

f[ £k (T, 00} T ds 5 (5.9)
By the gradient inequality (3.8),
f, E(@-0F (Yity), d-0f (Yiiy)) ds
<2 /1 EW28:08 w()E), 30 w(s)E)) ds
+2C, / / (3, 0F (w()@2))? dmds. (5.10)
I Jsupp{y}

Here C is associated with ¥, we write it as Co (1) sometimes to specify its dependence.
The proof of Proposition 2 implies that the second term is bounded, i.e.,

max sup C, / / (3, 0% (w(s)W))? dmds
I Jsupp{yr}

O<k=n(g<r<1

< sup Collde WD) ynag_, 2y < Mi
O<t<l1 v
for some constant M. More precisely, we may fix some nice cut-off function p in between
¥ and n,i.e., p =1 on Vy, supp{p} C Uy, where UW € Vp € Uy € V5. Then

/ / (305 (w(s)u%))? dmds < / / p2 (0,0 (w(s)i8))* dmds.
1 Jsupp{y} 1JX

Take the product p(s, x) := p(x)w(s) to replace ¥ and run the estimates in the proof
of Proposition 2, we get that the right-hand side (taking supremum in 0 < 7 < 1 and
0 < k < n) is bounded from above by some My = Mi(n, p,7,p, w, ¥, d,u, f). So the
M above can be taken as M| = Co () M.

Next we estimate the first term in (5.10). Because u; € C®°(I — D(P)),

f EW2a 88 w(s)id), 3.5 (w(s)as)) ds
I

= // Y20, 08 (w(s)it) x 805 (w(s) Pis) ds
1JX

IA

IO 30X (¥ Pii)

L2(IxX) L2(IxX)

The first L? norm is exactly the quantity treated in Proposition 2, it is bounded above
uniformly in 0 < t < 1. Thus, (5.9) follows after we show that the second L? norm,

1

0.9 (¥ Pilc) 2axx) ™~ ¢’
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Replace u; by Pu; in the proof of Proposition 2. By the same arguments,
||8f 3f($Pﬁf)||L2(lXx) breaks into three parts A (z, @), B(t, ¢), C;.(t, ¢), and the esti-
mates for A;( and B,’c look almost identical to that for A; and By. We write about the estimate
for C,’{(r, @) here. The only difference is that instead of using || Hs— |l 20y r2x) < 1
as in the estimate for Cy, here we use | P Hs—tll12x)—p2(x) < 1/e(s — 1) < 1/et for
T<s§s—t<?2T.

Ci(z, 9)
= /[/;/Xf(f,x)ﬁ(l,)c) Bsk(w(s)ﬁ,(s — OPH,_)(Wr¢*)(x) dm(x)dtds.

As in the estimate for Cy, the estimate for C,’( comes down to estimate

max | [ [ ot 1) [ 5ets — 0P H- () ds dmar
O0<a<k |J1Jx 1
) 12
= ||ﬁf||wkv2(1—>L2(X)) [2//,51(5 —1) HPHs—t(l/fﬁﬂs)”Lz(X) del‘]
1JI
12 1 5 12
< n 2 [ p(s —1)dt — s d
= I fllwe2a— 200, i‘g[’{ /[Pf(s ) } (/: @) lve' |20 s)
<

o 17 f lwre— 20y 1V el 2@ xx) -
Hence indeed forany 0 <k <n,0 <7 < 1,

3. 0% (¥ Piiy)

sup a0k w(s) PR, )
loll 2 x) =1
PeCX(I—L*(X))

L2(IxX) = L2(IxX)

/ / / MZ
< sup ’Ak(r,go)’ + sup |Bk(r,(p)’ + sup ‘Ck(r, (p)’ < —,
T T oeT T

where My = My(n, p, 7, %, ¥, @, u, f) < 0.
5.5 Convergence of the Approximate Sequence in L2 Sense

Proposition 2 and Proposition 3 together imply that the approximate sequence {¥7i; };~0 is
Cauchy in W"2(I — F) (recall that by this we mean any subsequence {Vii, i }jen, with
7; — 01is a Cauchy sequence). As we explained at the beginning of this section, to finish
with the proof of Theorem 5, it remains to show that the approximate sequence converges
to u in some weak sense. We prove a slightly more general result (Proposition 4). In this
proposition we treat the class of strongly continuous semigroups on L?(X), as roughly the
same proof works. This is a larger class of semigroups as the semigroups not necessarily
satisfy the Markov property or correspond to a Dirichlet form.

Let (H;);~0 be a strongly continuous semigroup of bounded linear operators on L2(X).
Then there exist some M > 1, w > 0, so that for any ¢ > O,

| H, ||L2(X)—>L2(X) =< Me®'.

Let I = (a, b) be an open interval, —oo < a < b < oo. For any function w in L2(I x X),
forany s € 1,0 < t < 1, define

Arw(s, x) = /pr(s —t)H;_; (w")(x) dt. (5.11)
1
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As before, the integrand is nonzero only whent € I N (s —2t, s — 7) because of the p, term,
and the integral is well-defined. To be more rigorous, A; is first defined on C.(I — L%(X)),
then extended to the whole L2(I x X) under the fact that for any w € C.(I — L*(X)),

sup [[Arwlip2gxxy < Cllwllp2zgxx
O<t<1

for some C < oo. This operator norm bound can be verified using a combination of

Minkowski’s inequality and Jensen’s inequality as we did in the estimates of Ci(z, ¢).

When 7 is not small enough, A;w is the zero function on / x X. Similar to checking that
€ C*®(I — F) forany t > 0, we can show that for any 7 > 0, A;w € C®(I — F).

Proposition 4 Let (H;);~q be a strongly continuous semigroup of bounded linear operators
on L*(X). Then for any w in L3I x X), A;w defined as in (5.11) converges to w in
L%(I x X), as T tends to 0.

Proof We first show that for any w in C.(I — L2(X)), A;w converges to w in L3(I x X).
Because C.(I — L%(X)) is dense in L2(I x X) and

sup Azllz2gwx)—r2axx) < 00,
O<t<l

the statement holds for all w in L2(I x X). Forw € C.(I — L*(X)),

lAzw —wllp2xx) <

: pr (- — 1) [H_(w") — w] dt

(1= [ —nar)w

Whena = —o0,0ra # —ooand s —a > 21, (s — t)/t runs over the full (1, 2) as ¢ runs
over I,s0 1 — [, pr(s —1)dt =1 —1=0.S01— [, p:(s — t)dt can only be nonzero
whena # —ooand a < s < a + 2t, which is an interval of length 27. Because w is in
C.(I — L%(X)), we conclude that the second term

(- re)e

Next we estimate the first term. In the following, let J C I be a bounded open interval such
that supp{w} C J x X. Then for v small enough, w*~" =0foralls € J°and 0 < r < 2t.
That is, the interval where w is supported on is at distance larger than 27 from J€. The first
term is the L2(I x X) norm of

[ orts =0 [Hemstw') — wJar
1

L2(IxX)

L2(IxX) .

— 0 ast— 0.
L2(IxX)

= [ e =0 —wydt+ [ pets =0 [t = v
1

The L2 pr(s — O Hg_s(w' — w*) dt is bounded from

above by (let r = s — ¢ and apply Minkowski’s inequality)

||L2(1><X)’

2t 2t
/ Pr(”) || Hr(wlir - W')HLz(IXX) dr = / Pt ” Hr(w'ir - w)||L2(X)‘ LZ(I) dr
T T
2t
< /T pr(r) HMewr Hw'_r - w'”LZ(X)‘ L2(D) dr=C fg? ” w' —w' ”Lz(x) ,

T<r<2t
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which tends to 0 as T — 0. The constant C can be taken as Me2®|J|1/2. By the same
reasoning, the L norm of the second part satisfies

<C sup |[H (w')—

L2(IxX) selJ
T<r<2t

H/I pr(s — 1) [Hy— (W) — w*]dt

w’ ” L2(X) "

The right-hand side tends to 0 as t — 0 essentially because {s — H,(w*)};~0 C C.(J —
L%(X)) is equicontinuous in s. The details are as follows. First note that for any fixed r > 0,
any s,t € J,

H Hy(w’) —w? ||L2(X)

IA

” Hy(w® — wt)”Lz(X) + H Hy(w') —w' HLZ(X) + ”wt —w’ ”LZ(X)

IA

t t t
2Me”” Hw —w’ HLZ(X) + H Hy(w') —w ”LQ(X)'
For any € > 0, any s € J, there is some 79(s) > 0 such that
(1) foranyr < to(s), |H (w*) — w* lz2(x) < € (since H.(w®) — w' in L2(X));

@ |w' —w* ||L2(x) < e, forany |s — 1] < 10(s) (since w € C.(J — L%*(X))).

Let B(s; 10(s)) := (s —70(s), s+70(s)),s € J. Because J is compact and {B(s; To(s))}ses
covers J, there exists some finite subcover {B(sg; to(sk))},i\/= |- Hence there exists some
fixed 1o (7o = min|<k<n{70(sk)}) such that

(1) foranyr < tp,any s, 1 <k <N, |H-(w’) — w' lr2x) <€
(2) foranys € J, there exists some s such thats € B(sx; to(sx)). So [|lw® — w'* ||L2(X) <

€.
Therefore,
sup |Hy(w') — w* ||L2(X) —0ast— 0.
seJ
T<r<2t
This completes the proof of Proposition 4. O

Note that for any local weak solution u in Theoiem 5, tlE function u; is exactly A, (7ju).
So Proposition 4 applies to iy, and it follows that ¥, — Yu in L?>(I x X) as t — 0. This
completes the proof of Theorem 5.

5.6 Proof of Corollary 1

In this subsection we prove Corollary 1, which says essentially that time derivatives of local
weak solutions of the heat equation are still local weak solutions.

Proof of Corollary 1 By Theorem 5, u belongs to | (I x U). For any test function ¢ in
FIxU)yNncxrd — F), 3tk<p forany 1 < k < n is also a test function. By definition of
local weak solutions on I x U, u satisfies

—// uatk‘”(pdmdt—i-/f(u,atkgo)dz=// fokpdmdr. (5.12)
1JX 1 1JX

To show B,ku is a local weak solution of the heat equation (4.1), intuitively it suffices to do
integration by parts k times to move 8," to the u and f sides of the integrals. We now justify
this procedure.
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For the justification of integration by parts for the first and third integrals in (5.12), we
only describe the first step and the remaining is clear by induction. By the Fubini-Tonelli
theorem, suppose supp{¢} C J x V € I x U, since

// ‘ll 3,k+l(p)dmdt < ||u||L2(J><V) ||§0||Wk+l,2(l_)L2(U)) < o0,
1JX

we can switch the order of integration and get

—// uatkﬂgadmdt:—/ /uB,kH(pdtdm:f /atuatk(pdtdm,
1Jx xJi xJi

where the second equality is by integration by parts and that ¢ is compactly supported in
time. The same argument works for the integral

// faf<pdmdt=—//atfa,kfhpdtdm.
1JX XJI

For the second term in (5.12), let

e +1/n,) — @@, )
1/n ’
then ¢, — ¢ in C*°(I — F). By the Cauchy-Schwartz inequality for £,

/E(M, ©n — 0) dt
I

(pﬂ(t7 ) =

< /(Sw, ) 2 (E(pn — B9, on — o) dt — 0
I

as n — o0o. Here &(u, u) is understood as & (u?, u®) where u® € F1(I x X) = wH2(I —
JF) and agrees with u a.e. on a neighborhood of supp{¢}. For n large enough,

ff(u,(pn)dt :/E(M,,,ga)dt,
I I

where u, (t,) == (u(t —1/n,-) —u(t,-)) /(1/n). More rigorously, u, should be defined
in terms of the u* above. Then u,, — du in F(I x X) = L>(I — F) as n — oo. Passing
to the limit then shows that

/E(Lt, 0;p) dt = —/E(Btu,go) dt.
I I

In summary, after k times of integration by parts, 1 < k < n, (5.12) becomes
(—Dkt! // OFu 00 dmdt 4 (—1)k / E@Fu, pydr = (—1* // of fodmdt,
1JXx I 1Jx

thus 8tku is a local weak solution of (4.1) on I x U. The statement in Corollary 1 for f =0
then follows. O

6 Application to Ancient Solutions

Ancient solutions of a heat equation, also called ancient caloric functions, are the heat
operator/equation version of “global harmonic functions”. It is therefore interesting from a
variety of points of view to study the structure of various linear spaces of such functions,
especially spaces defined by particular growth conditions. In this section, we generalize the
results in [9, 38] on the structures of ancient caloric functions with certain growth types.
The results of [9, 38] are set in the setting of smooth Riemannian manifolds where solutions
are smooth and time derivatives of solutions are automatically solutions themselves, and
this fact is a key ingredient in the proof. Therefore, the extension to the setting of ancient
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local weak solutions in Dirichlet spaces (with appropriate properties) presented here pro-
vides a good illustration of the usefulness of the property that time derivatives of local weak
solutions are local weak solutions themselves (Corollary 1). For instance, in R”, Corollary
1 allows us to show that polynomial growth ancient local weak solutions of the heat equa-
tion associated with divergence form uniformly elliptic operators with bounded measurable
coefficients, admit structural properties similar to those proved in [9] for classical ancient
caloric functions.

6.1 Statement of Results

As before we assume that (£, F) is a symmetric regular local Dirichlet form. We call a local
weak solution u of (9; + P)u = 0 on (—o00, b) x X for some b > 0 an ancient local weak
solution, or ancient solution for short. We assume (X, m, £, F) satisfies the assumption on
existence of nice cut-off functions (Assumption 3), and the following further assumption.
Recall that N = {1,2,3,...}.

Assumption 6 For any precompact openset V € X, any C; > 0, any n € N, there exist

(1) an exhaustion of X, {Wy, ;}ien, , with each set Wy, ; covering V. That is, {W"}’i},-ENJr
is a sequence of increasing open sets, satisfying

o0
VCWy,, Wy, @Wy ., U Wy, =X.
i=1
(2) asequence of cut-off functions {(p"'/y ;Yien, , satisfying that each (p’\‘,, ; = @i is a cut-off
function for the pair W"}’i C W\'}’H_], ie., ;i € FNC:(X) and is in between 0 and 1,
@i = 1on Wy ., supp{e;} C Wy i1 G further satisfies that for any v € F,

1
/vzdf(wi,wi) < le gaizdl“(v,v)—i-f./ vZdm. 6.1)
X X supp{g; }

n

When X is compact and 1 belongs to F, Assumption 6 trivially holds because we can
take all W"}’i to be the whole space X, and take all ¢; to be the constant function 1. For
noncompact spaces, in the most classical setting (R?, dx) with the Dirichlet form of the d-
dimensional Brownian motion, if V C B(0; R) where B(0; R) stands for the ball of radius
R centered at the origin, we can take W\’}Y ; = BO; R+ci nl/2) for some ¢ > 1. It is standard
to construct nice cut-off functions ¢; for each pair W"}’i - W\’}y i1 such that

dr (i, o) < —-dx,
c*n
which implies (6.1) with C; = 0. See also the end of Sections 6.1 and 7.1.

In the following theorems we consider two types of ancient solutions, one with polyno-
mial L? growth bound, and the other with exponential L? growth bound. We first remark
that for any ancient local weak solution u, by Theorem 5, u is locally in W°°’2((—oo, b) —
F) C C®((—o00, b) — F). As generalizations of results in [9, 38], we state the following
two theorems on the structure of ancient solutions in the Dirichlet space setting.

Theorem 7 Let (X, m) be a metric measure space and (€, F) be a symmetric regular local

Dirichlet form on X. Assume that the Dirichlet space (X, m, &, F) satisfies Assumptions 3
and 4, and when X is not compact, further satisfies Assumption 6. Let (H;);~o and — P be

@ Springer



112 Q. Hou, L. Saloff-Coste

the corresponding semigroup and generator. Let u be a local weak solution of (9; 4+ P)u = 0
on (—o0, b) x X for some b > 0, i.e., u is an ancient solution of the heat equation. Suppose
u satisfies the L? polynomial growth condition, namely, for any open subset V. € X, any
i € Ny, there exist positive constants by, d,, C, v,; > 0 (b, d, are independent of Vi),
such that forany T > 1, n € N4,

1/2
/ lu(t, x)>dmdt | < Cy.y.;max [Td", nbu } : 6.2)
[=T,01x W},
Then there exists some N > 0 such that for any k > N,
afu=o0.

More precisely, u is a polynomial in time, with
2 1 2 N 1 N
u(t,x) =u(0, x) + 0;u(0,x)t + 9;u(0, x) 5t + -+ 09, u(0, x)ﬁt .
Here N = |d, — %J, the largest integer not exceeding d,, — 1/2.

For ancient solutions of the exponential growth type, we only need one sequence of
exhaustion to get sufficient estimates, so we fix n = 1 and some precompact open set Vj,
and consider the sequence W\l,0 ; =: W; only.

Theorem 8 Let (X, m) be a metric measure space and (€, F) be a symmetric regular local
Dirichlet form on X. Assume that the Dirichlet space (X, m, £, F) satisfies Assumptions 3
and 4, and when X is not compact, further satisfies Assumption 6. Let (H;);~0 and —P be
the corresponding semigroup and generator. Let u be a local weak solution of (3; + P)u =0
on (—oo, b) x X for some b > 0, i.e., u is an ancient solution of the heat equation. Suppose
u satisfies the L exponential growth condition, namely, there exists some ¢, > 0, such that
forany T > 1, anyi € Ny,

f lu(, x)|? dmdt < T+, (6.3)
[—T, 0]x W;
Then u is analytic int € (—o0, 0], in the sense that for any precompact open set V .C X,
ko 0lu(0,)
u(t,:) — Z #t’ — 0ask — oo, (6.4)
i=0 i! L2(V)

and the convergence is uniform int € [a, 0] for any a < 0.
We first make some remarks about the two theorems.

Remark 12 In Theorem 7, if we denote 8tku(0, x)/k! = up(x) andlet N = |d, — 1/2],
then {uk},ivzo satisfies

—Pup(x) = (k+ Dugg1(x), for0<k <N -1,
—Puy(x) =0,

both in the sense that for any ¢ € F.(X),

—Eug, ) = (k+ 1)/ Ugr1@ dm,
X
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forany 1 < k < N (uy4+1 = 0). In other words, uy is a local weak solutions of —Puy =
(k + Dugy1 on X. In addition, by [9, Corollary 0.5], each uy is a linear combination of
u(ty,-),i =0,1,..., N,where —1 <ty <t < --- <ty <0 are arbitrarily fixed numbers.
It follows that all u;’s satisfy the L? growth bound that for any precompact open set V € X,
any i, n € N, there exists some constant C,, v ; > 0, such that

12
([ Jug ()] dm) < Cuvinb.
wn

V.,i

Remark 13 In Theorem 8, if we write u(t, x) = Z/C:io ag (x)r* / k! where the two sides equal
in the above L? sense, then the ay (x) functions are ay (x) = Btku(O, x). A Caccioppoli type
estimate for local weak solutions can be derived from the proof of Proposition 6, namely,
for any ancient local weak solution v of the heat equation (d; + P)v = 0, for any 7" > 0,
there exists some K > 0 such that

sup / [v(t, x)|>dm < K/ lu(t, x)|*> dmdt,
re[~T, 0] J W; [T —1,0]x Wiy

where i € Ny and W; is defined as in Theorem 8. For any k, by taking 7 = 1 and v =

8,1‘ u(t, x) which by Corollary 1 is a local weak solution, and by using the inequality in

Proposition 5 given in the next section, we get that ax (x) satisfies the L2 upper bound that

for some constant C;, > 0,

/ lax () |> dm < Cy e HK+3)

W;

Remark 14 The conclusion in Theorem 8 is in the L? sense. By Proposition 6, for any
ancient (local weak) solution u, it is also true that the partial sum Zf:o 8{ u(0, x)t! /i!tends
to u in the energy integral over any precompact set as k tends to infinity, uniformly in time
on any finite interval. If the (essential) supremum of u over each time-space cylinder can be
controlled by the L2 integral of u over some cylinder, then we can make the conclusion in
Theorem 8 an (m-a.e.) pointwise conclusion. For example, some ultracontractivity property
of the heat semigroup is sufficient for this purpose. See the companion paper [20].

As a corollary of Theorem 7, we recover in the current setting the dimension result in
[9, Corollary 0.5] under an additional condition on the polynomial volume growth of the
sets, Wy, ;. Here V' € X is an arbitrarily fixed open set. We first define the appropriate
function spaces. For each d,b € N, let Py ;(X) denote the vector space of all ancient
(local weak) solutions u of (d; + P)u = 0 satisfying that for any i € N, there exists some
constant B, v ; > 0, such that

esssup |u(t,x)| < By v, max {Td, nb} . (6.5)
[T, 0]x Wi,

Let H;,(X) denote the vector space of all local weak solutions v of Pv = 0 on X with poly-
nomial growth bound with exponent b, that is, for any i € N, there exists some constant
Dy v, > 0, such that

esssup [v(x)| < Dy v, n?.
er{}J
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Corollary 2 Under the hypotheses of Theorem 7, and the additional assumption that for
some precompact open set V. € X, foranyn, i € Ny, the sets Wy, ; satisfy some polynomial
volume growth bound

m(Wy ;) < Ey;n“ (6.6
where Ey ;,a > 0 are constants. Then

dim Py p(X) < (d + 1) dim Hp (X).

Proof Take any u € Py ,(X). Note that (6.5) and (6.6) together imply the L? growth con-
dition (6.2) for some d,,, b, (e.g., 2d,, = 2d + 1, 2b, = 2b + a). Hence by Theorem 7, u
is a polynomial in time with 3u = 0 for k large enough. The growth condition (6.5) then
implies that 8,"14 = 0fork > d. Asin Remark 12, let u;, = (atku(O, x))/k!. As shown in the
proof of [9, Corollary 0.5], for any fixed 1, t1, ..., tz € (—1, 0] that are distinct, there exist
numbers b’; such that forany 0 < k < d,

d
ur(x) = Zb];u(tj, x).

Because all [¢;| < 1, and u € Py (X), forany i, n € N,

ess sup ()| = (d +1) max ‘b ‘ X Buv.in

er”

This implies that u; € Hp(X). By the same arguments as those in equation 1.21 through
equation 1.23 in the proof of [9, Corollary 0.5], it follows that

dim Py p(X) < (d + 1) dim Hp(X).
O

We make some final remarks about the two assumptions on existence of cut-off
functions, Assumption 3 and Assumption 6.

First, Assumption 3 focuses on for any fixed pair of open sets V & U, in particular they
could be very close to each other, for any small C; > 0, the existence of a cut-off function
for the pair V' C U that satisfies (3.1). There C; depends on C1, U, V and is usually a large
number when Cj is small and U, V are close. Intuitively, the cut-off function is steep. In
contrast, in Assumption 6, the focus is on for any fixed initial set V € X and fixed Cj, for
small C; (Cy = 1/n for large n), the existence of an exhaustion and cut-off functions for
each pair of adjacent open sets therein. Intuitively, for large n, the sets in the exhaustion are
far apart, and the cut-off functions have flat shapes.

Regarding the validity of Assumption 6, we remark that in general Dirichlet spaces which
have some notion of distance that interacts well with the energy measure, this assumption
is satisfied. Roughly speaking, for large n, to find Wy, ;’s and ¢;’s, we just require Wy ;
and the complement of WV ;41 o be separated by a large enough distance. For example
consider a Dirichlet space (X m, £, F) that admits “nice metric cut-off functions”, namely,
there exists some distance d that defines the same topology of X, such that for any pair of
opensets V € U, any 0 < C; < 1, there exists some nice cut-off function ¢ satisfying that
for any v € F,

/vzdF(w, ®) §C1/<p2df(v,v)+C(C1)d(V, U")’ﬁ/ v2dm,
X X supp{ep}
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where 8 > 0 and C(C)) is some positive function of Cj. Assume that V' C B(xo; R) where
the radius R is with respect to the distance d. Then we can take W"} ; = B(xo; R+ ainl//s),

for any a satisfying a? > C(C1). For example,

(1)  when the Dirichlet space admits a nice intrinsic distance, it is a special case of the
discussion above with 8 = 2;

(2)  when the Dirichlet space is the standard Dirichlet form on the Sierpinski gasket and
d is the Euclidean metric, the discussion above applies with 8 = log 5/ log 2, which
is the walk dimension d,, of the Sierpinski gasket.

6.2 Proofs of Theorem 7 and Theorem 8
6.2.1 Overview and a Key Estimate

There are two difficulties in generalizing the structure results for ancient caloric functions to
the current Dirichlet space setting. The first difficulty is in formulating proper assumptions
on the existence of cut-off functions in order to adapt estimates of the form

172 1/2
< (f(fg)zdx) </|Vv|2|Vw|2dx)

to estimates in terms of energy measures, especially when the energy measure is singular
with respect to the measure m in the metric measure space (X, m). The second diffi-
culty concerns whether time derivatives of an ancient (local weak) solution are still ancient
solutions. This is answered positively by Corollary 1, which thus plays an essential role.

In this subsection we state the key estimate and use it to prove Theorem 7 and Theorem
8. The estimate is about bounding the L? integral of time derivatives of an ancient solution
over some time-space cylinder by the L? integral of u over some larger time-space cylinder,
where the spatial sets are ones in an exhaustion of X. Let C1, C > 0 be two fixed constants.
Let {W;}ien, be an exhaustion of X, let {¢; };en, be a sequence of cut-off functions where
each ¢; is a cut-off function for the pair W; C W, 1, and satisfies that for any v € F,

‘/ngv -Vwdx

/ v dI (i, ) §C1/ ordI (v, v)+C/ v2dm.
X X supp{g; }

We call such a pair ({Wi},-em, {i }i€N+) an exhaustion of X corresponding to Cq, C. The
key estimate is as follows.

Proposition 5 Let (X, m) be a metric measure space and (£, F) be a symmetric reg-
ular local Dirichlet form on X. Assume that the Dirichlet space (X, m, &, F) satisfies
Assumptions 3 and 4, and when X is not compact, further satisfies Assumption 6. Let
(Hp)t=0 and — P be the corresponding semigroup and generator. Let u be an ancient (local
weak) solution of (0; + P)u = 0. Let J := (c, 0] where —oo < ¢ < 0 is an arbitrar-
ily fixed number, let J_; := (¢ — s, 0]. Take C; = 1/16 and fix an arbitrary C > 0. Let
({W,- YieNg s {@i }ieN+) be an exhaustion of X corresponding to C1, C, the existence of which
is guaranteed by Assumption 6. Then for any i, k € N4,

k
(k 2 1\? 2
ofu) dmdr < (1200( € + - u? dmdt.
J Jw; r J-2kr ¥ Wigsk
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In Lemma 5 below it can be seen that C; can take any value less than 1/9, we take
C1 = 1/16 for convenience.

We now use Proposition 5 to prove Theorem 7 and Theorem 8. The proof of the proposi-
tion is given in Section 6.3. Note that the inequality in Proposition 5 remains true if we take
J as aclosed interval J = [c, 0]. We use J = (c, 0] in the statement of the proposition for
convenience in describing the cut-off function in time in its proof.

6.2.2 Proof of Theorem 7

To show 8t/‘u = 0 for k large enough, we follow the idea in [9] and show that the L? integral
of such 8,ku over any time-space cylinder is zero. Consider an arbitrary cylinder [-T, 0] x V
where T > 0 and V C X is a precompact open subset. For any n € N, Assumption 6

guarantees the existence of an exhaustion ({W{} ilieNgs {@itien +) of X corresponding to

Ciy = 1/16, C = 1/n. In particular, [-T,0] x V C [-T,0] x W\';,l’ for any n. Taking
J =[-T,0],r =n,i =1 in Proposition 5 gives

2 5000\
// (a}‘u) dmdt < ( 5 ) / f u? dmdt.
J {21 n —2kn wy,

V, 143k

Then by the growth condition of u, we have

2 5000% (C, T7 + 2kn)®, nbe})?
/ (atku) dmdi < ( ,V,l+3kmax{2i|— 14 2kn)%, nbu}) ‘
(=T, 01x W} | n

Because for any fixed k with 2k > 2(d, + b,), the right-hand side tends to O as n tends to
infinity, by the discussion above, we conclude that for k > d,, + b,,,

aku =o0.

Hence u is a polynomial in 7. Applying the growth bound (6.2) to u in the explicit
polynomial form

N
1
k k
u(t, x) =Y dfu(, )t
k=0

we have for any Wy, forany T’ > 0,

/ lu(t, x)|> dmdt
[=T,01x Wy,

= oni TV oo TN + ooy TN+ b o T

IA

2
(Cu,v,,- max{Td”, nbu ) ,

where

1 1y 2
CON+1 = N1 . ﬁa, u(0,x)) dm.

Let T tend to infinity, it follows that 2N + 1 < 2d,. We conclude that 8tku = 0fork >
d, —1/2.

n
V.i
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6.2.3 Proof of Theorem 8

This proof follows the idea in [38]. By the Taylor expansion formula (expansion in ¢), for
any ¢t < 0,

k .
3u(0, x) ; t t —s)k
u(t,x):ZMt’—}-/OBfHu(s,x)( 5) ds

il k!
i=0

as L? functions in x. So to prove the statement in Theorem 8, we prove that for any
precompact open set V, for any a < 0,

! (t — )k 2
sup / (/ 3 u(s, x) o ds> dm(x) —> 0 6.7)
0 .

a<t<0JV

as k — oo. We first bound the integral by Jensen’s inequality,

t Nk 2
/(/ Berlu(s,x)(t $) ds) dm(x)
v \Jo k!

();')2 / f 8k+1u(s X)X (t—5) ) dsdm

|l|2k+l
< / f 0k us, x)) dsdm. 6.8)

Recall the notation introduced in the statement of Theorem 8, i.e., W; := W1 o, for some
fixed Vp € X. Intuitively, by fixing n = 1 (or any fixed integer), we are lookmg at open
sets whose sizes grow linearly. Because V € X and {W,};cw, is an exhaustion of X, there
exists some jo such that for all j > jo, V C W;. By Proposition 5, for any r > 0,

0 2
/ f (0 uts, )" dmar
t WjO
N2\ o
< (1200 (1 +7) ) / f u(s, x)> dmdt.
r t=2(k+1r I Wjj136+1)

By the exponential growth assumption (6.3) on u, we conclude that (take for example r = 1)
for any ¢ € [a, 0],

0
/ / (8‘f+lu(s,x))2 dmdt < (5000)k+lec‘u(|11|+j0+5(k+1)).
WjO

Substituting this bound back to (6.8), noting that V. C W, we get

t ok 2
/(/ Bfﬂu(s,x)(t 5) ds> dm(x)
v \Jo k!

|a|2k+1

= T2

(5000)H geullaltiot5k+D) 0 (k — o0).

This completes the proof of Theorem 8.
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6.3 Proof of the Key Estimate

In this subsection we give the proof of Proposition 5, which is an iteration of the following
proposition.

Proposition 6 Under the same hypotheses as Proposition 5, for C1 = 1/16 and for any
C >0, let ({Wi}i€N+, {(pi}ieN+) be an exhaustion of X corresponding to C1, C. Then for
any r > 0, there exist constants K1, K, (dependent on C and r) such that for any i € N,

// (Btu)zdmdt K (C, r)/ (/ dF(u,u)—l—/ uzdk> dt
JJW; Wita Wit
K (C, r) / / u* dmdt.

Jor JWig3

1 1\?
K1 (C,r) =200 (c + 7> , K2(C,r) = 1200 <c T 7> .
r r

IA

IA

Here

6.3.1 Proof of Proposition 6
We present the proof in three steps.

Step 1. We first prove two Caccioppoli type inequalities, one of which gives the second
inequality in the proposition. Recall that J = (¢, 0] for some ¢ < 0, and J_; = (c—s, 0] for
any s > 0. Let / be a smooth cut-off function in time (on (—oo, 0]) that equals 1 on [c, 0],
has compact support in (¢ — r, 0], and satisfies 0 < < 1, ||l'||p~ := SUP/ ¢ (—00.0] '@ <
2/r. It can be easily extended into a function in C2°(R), in the following we only use its
part on (—oo, 0]. By construction, each ¢; is a nice cut-off function for the pair W; C Wy,
and satisfies that for any v € F,

/vzdF(go,-,go,-) < c1/ @2dI (v, u)+c/ v2dm. (6.9)
X X

supp{g; }
The product ¢; (x)I(t) is then a nice product cut-off function for the pair J x W; C J_, X
Wi 4. First we have

/ / 2u(Bu)p}? dmdt + / ugp, 12 dmdt
- Wl+1 — W1+1

= / Or (/ u2<pl-212 dm) dt = (/ u2<pl~212 dm)
- Wit Wit

On the other hand, since u is an ancient local weak solution of the heat equation (9; + P)u =
0, ¢; is supported in W;1, the first term above is

f / 2u(Bu)?1* dmdt = —2 / PE(u, ug?)dt
—r Y Wit J_r
= —2/ 12/ <p,?dr(u,u)dr—4/ 12/ giudl (i, u)dt
—r Wit _r Wit
-2 / 2 / u’@? dkdt
_, X

=1+ 11+ 1.

> 0.
t=0
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By the Cauchy-Schwartz inequality (2.1), the middle term

I = —4/ 12/ oiudl (¢;, u)dt
—r Wit

1
< 4<,/ 12/ Q7 dI (u,u)dt + 1 x/ 12/ uzdF(wi,wi)dt),
4 —r Wit - Wit

where by (6.9), the part f]—r 2 me u*>dI (i, ;) dt is further bounded by

/ 12/ W? dT (gi. i) di
—r Wit

< c1/ 12/ wfdr(u,u)dt+c/ 12/ u® dmdt.
, Wi —r Wit1

So I + II is bounded by

I+11 = —2/ 12/ ¢?dr(u,u)dt—4/ 12/ giudl (i, u)dt
—r Wit —r Wit1
—/ 12/ w?dr<u,u>dr+4f 12/ W2 d (i, g) dt
—r Wit1 —r Wit

—(1—4C1)/ 12/ (pl»zdF(u,u)dt+4C/ 12/ u*dmdt.
J_r Wit —r Wit

Combining the estimates so far and apply H %y H Lo = H 2[l/|

IA

IA

‘LOO <4/r,we get

(1—4C)) 12/ goizdF(u,u)dt-i-Z/ 12/ u’p? dkdt
J- Wit -

4
< (4C+7>/ / u* dmdt,
r —r Y Wit
which then implies
/(/ dF(u,u)+/ uzdk>dt
J i i

4
< (1-4c)! <4C+;>/ / u*dmdt. (6.10)
—r Y Wit1

This proves the second inequality in Proposition 6. It is a Caccioppoli type inequality that
we will use later in the proof. We also need a version of the inequality with gal.zuz instead of
u? on the right-hand side of (6.10). To get that we repeat the above computations, replacing

@; with <p2 [ with 2. First,

/ / ugo, 14 dmdt

Wr+1

/ / Zu(aru)wi‘l“dmdt:—Z/ PEw, ugl) dr

—r WI+1 J_r

—2/ l4f w?dl“(u,u)dt—Sf l“f Q3udl (g, u)dr
—r Wit —r Wisi

—2/ 14f u’e} dkdt,

IA
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where

—2/ 14/ ga;‘dr(u,u)dz—s/ 14/ Qudl (p;,u)dt

_r Wit —r Wit

< —f 14/ otdl (u,u)dr + 16/ 14/ ru? dr (g, ) dt.
—r Wit —r Wit

Instead of applying (6.9) as before, we now use Lemma 5 below to get that the term

/ 14/ gru”dI (g;, gi)dt < Co/ 12/ @}u? dmdt.
—-r Wi+1 —r Wi+l

Here Co = Co(Cq, C, 1) is independent of . Combining the estimates as before (note that
|(1%)| = 43|I'| < (8/r)I?), we thus have

/ 14f <p;‘dr(u,u)dt+/ 14/ u’g} dkdt
—r Wi+l —r X

2 2 22
< 4(4cy+ l pru” dmdt. (6.11)
r —r Wit1

Here both sides of the inequality are integrals over the same set J_, x Wj4 .

Step 2. Next we estimate the L? norm of d,u, which by Corollary 1 is also an ancient
solution. In this step we do some preparatory work. Because d;u is a local weak solution of
0y + P)o;u = 0 on (—o0, b) x X for some b > 0, we have

/ / O @il)? dmdt = —/ 12EWw, du <pl-2) dt
—r Wi+1 Jr

= —/ lzf wizdl"(u,atu)dt—/ lZf 20; dudl (u, ¢;)dt
—r Wit Jr Wit

—/ 12/ u dyu g} dkdt. (6.12)
., X

To estimate the right-hand side, we first show that

1
/ @ dT (Bu, u) = =9, (/ @2dI (u, u))
Wit 2 Wit

to replace the first term in (6.12). By Theorem 5, u locally belongs to the space
C*®((—00,b) — F).Fix any t € (—00, 0], let

ut+1/n, x) —u(t, x)

t ——
v, (x) = n
Then v/, — 9;u locally in F. In particular,
lim a’F(v,’1 — Osu, vfl —ou) =0.

=0 JWip
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By definition,

Y (/ @}dr (u, u))
Wit

i Jwi, Q}dI(u(t+1/n,-), u(t+1/n,-)) = Jw.,, QFdI (u(t,-), u(t,-))
m

n—00 ]/l’l
1 1

1 I+r ot
lim / ordr (u+s, L +/ orar (u, L1
=00 \ JW; 4y 1/n Wit 1/n
=00 NI Wit Wit1

More accurately, # should be some ut e C*®((—o0,b) - F) that agrees with # on some
time-space cylinder covering {r} x W4, and v/, is given using u® in its definition. Then
using the Cauchy-Schwartz inequality (2.1) and noting that u/*t!/" — 4’ locally in F;
vl — 9;u locally in F, we can check that the limit above is

2f @}dr @', du).
Wit1

For example,

/ g2dr (u'*s, o) —/ QA (', du)
Wit Wit
= f (pl-zdF (u""% —u, vfl) +/ <pi2dF (u’, vl — Btu)
Wit Wit1
. 1 172 1/2
([ grdr (MH-E —u, u'te — uz)) (/ @rdl (v, v;))
Wit Wit
12 12
+ (/ (pl-z dr @', ut)) </ (pl-2 ar (UZ — Osl, v; — 8,u)) ,
Wit Wit1

where each summand is a product of one term uniformly bounded in n, and one term that
tends to 0 as n tends to infinity. Here to show the uniform boundedness it is useful to use

the estimate
1/2
< (/ de(v—w,v—w))
X

1/2 1/2
’(/ fdrw,v)) —([ de(w,w))
X X

where f is any nonnegative bounded Borel function, and v, w € F N L*°(X) (cf. Chapter
3in [16]). So we conclude that

1
50 (/ w?dF(u,u)> =/ @2 d T (Ou, u).
2 Wit Wit

IA
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Step 3. We are now ready to estimate (6.12). The first term is

2 2 1 2 2
— l o;dI'(u, du)dt = —— 1< 0; @;dI'(u,u) |dt
—r Wit 2 —r Wit
1 1 i
_ _7/ 3 (12/ ga?dr(u,u)) dz+7/ (12) / QAT (u, u)dt
2Jr, Wit1 2Jr, Wi

i+1

lf 2 ’f 2
- l ©2dI(u, u)dt. (6.13)
2], @),

The second term in (6.12) satisfies

‘—/ 12/ 20i0udl (u, ;) dt
—r Wit1

- ’_f 12/ 20ii+10udl(u, ¢;)dt
. Wit

1
sef / 14¢?<atu>2dr(¢,»,¢i>dr+—/ /¢3+1dr(u,u)dt
—r JWin € JpJX

for any € > 0. Here ¢; 4 is the nice cut-off function for the pair W; 1 C W;4,. In particular,
@vi+1 = 1 on supp{e;}. By Lemma 5,

/ f 4@ (Bu)* dT (g;, p1)dt < Co / / @} (3,u)* dmdt,
—r J Wit Wit

where Co < 3C + 1/r. Thus

‘—/ 12/ 20;dudT (u, ;) dt
—r Wit

1
< eCO/ / (Oru go,'l)2 dmdt + f/ / <pi2+ldF(u,u) dt. (6.14)
_r J Wit €JJ,Jx

The last term in (6.12) satisfies by the Cauchy-Schwartz inequality

—/ l2f udu ? dkdt = —[ /wi+1l2u3,u¢i2dkdt

. Jx L JIx
1

< —f f¢?+1u2dkdt+5/ /14(a,u)2<p;‘dkdt (6.15)
2¢ Ji_, Jx 2Jy, Jx

for any ¢ > 0. Now we plug in C; = 1/16 and take € = (2Cy)~L, then by (6.11), (6.12),
(6.13), (6.14), and (6.15),

/ / (8,u<p,l) dmdt
—r Y Wit
< 7/ (12>/ gol dI'(u,u)dt + - / / (8tug0,l) dmdt
2 l+l I‘H
+2Cof /¢l+1df(u u)dt—l—f/ f¢,+1u dkdt
+c <8Co+7> / / 12 (3u)> @} dmdt.
r)Ji,Jx
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Letting ¢ = 47! (8Cy + 4;’*1)7l and combining coefficients for the term on the left-hand
side, we get

/ / Oru @il)?> dmdt

—r Y Wit
/

< 2/ (12)/ (p}dr(u,u)dwrsco/ /wadr(u,u)dr

J_r Wit J_rJX
4 22
8(8Cy+ - u?@?, | dkdt

r)Ji.Jx
4 2

< 8(8Cy+ - dr(u,u) + u®dk ) dt. (6.16)
r —r \I Wiy Wita

Take J_, and W4, on the left in (6.10) with C; = 1/16, combine (6.10) and (6.16), and
recall that Cy < 3C + 1/r, we obtain that

/ / (3,u)* dmdt

J JW;
1

2oo(c+7)/ </ dF(u,u)+/ uzdk)dt
r —r \IWip Wita

1 2
1200 <C + 7> / / u® dmdt.
r J_or I Wigs

Let K1(C,r) := 200(C + 1/r) and K»(C,r) := 1200 (C + 1/r)2. This completes the
proof of Proposition 6. Note that by taking C small and r large enough, we can make the
coefficients K1 (C, r) and K»(C, r) as small as needed.

Straightforward iterations lead to Proposition 5.

IA

IA

6.3.2 ATechnical Lemma
Last we state and prove the technical lemma used in the proof of Proposition 6.

Lemma 5 Let (X, m) be a metric measure space and (€, F) be a symmetric regular local
Dirichlet form on X. Assume that the Dirichlet space (X, m, E, F) satisfies Assumption 3.
Let (H;);>0 and — P be the corresponding semigroup and generator. Let I, I’ be two inter-
vals where I = (a, b) or (a,b], —00 <a < b <00, I C I'. Let u be a local weak solution
of the heat equation (3; + P)u = 0on I’ x X. Let ¢(t, x) := ¢(x)I(t) be a nice product cut-
off function, where ¢ corresponds to coefficients C1, Co with C1 < 1/9, andl € C°(I) isa
smooth cut-off function on R. Then there exists some Cy that depends on @, or equivalently,
on Cy, Cy, 1, such that

//¢2u2d1“(¢,¢)dt§co//azuzdmdt.
I1JX I1JX

The last inequality says when the same cut-off function with bounded energy is both
in the integrand and in the energy measure, the net effect is the same as having a cut-off
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function with bounded gradient in the energy measure. Observe that for || % ©*dI (¢, @), it
is easy to check that

/ P dl(p.¢) < (1— clrlcz/ & dm.
X supp{ep}

In the lemma we generalize this observation to bound f I f X ¢2u2 dI (¢, ¢), for local weak
solutions u.

Proof Because ¢ is a nice product cut-off function associated with Cy, C»,

f/ azuzdr(a,@dzga// ¢2dr(¢u,¢u)dr+02// 1>G%u® dmds.
1JX 1JX 1JX

To estimate f I f x @2 dT" (pu, gu) df, we make the following two observations

W) [, [x@*dTw, @*uydt = [, [y @*dI (pu, pu)dt — [, [, 9*u>dI (. 9) dt;
(i) flfxw drI (u, @*u) dt

= [, [xyd[w,9*wydt —2 [, [\ 9*udl (Gu,p)dt +2 [, [y g*u*dI' (g, ) dt.
The middle term in (the right-hand side of) (ii) satisfies (by (2.1))

’2//¢2udf(g0u,¢)dt
1JX
—2 — 1 —2 2 —
< Ef/ ® dF(wu,wu)dt+f// o udI'(p, ) dt,
1JX € J1Jx

for any € > 0. To estimate the first term in (ii), note that u being a local weak solution
implies that (using Definition 2)

ffdr(u,a“u)dtz—// a,ua“udmdt—ffa“uzdkdt
1JX 1JX 1JX
1
< -3 / / B (*uPphy — 8, (o™ dmdr < 2||I'|| L) / / Pu’e* dmds.
I1JX I1JX

Combining (i)(ii) and the estimates above, we get that

[ [#ar@ugna <2 [ [ Fot and
+€// @ dI (gu, wu)dl‘—f-( +3)// @*u*dr (g, 9)dt
<2 ||LOC(,)// Bo*u? dmdt—|—|:6+C1( +3)}ff @ dI (Qu, pu) dt
+<1+3> Cg// 1>@*u® dmd.
€ 1JX

When C; < 1/9, we can pick € small so that € 4+ C; (e_l —|—3) < l.Leta =1 —
[€ + Ci (7' +3)] > 0, the above estimate is equivalent to

// - dI (pu, pu) dt
1
< f{znz ||Lm(,)// z*<p4u2dmdt+( +3> sz/ lzazuzdmdt}.
X
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Letting K := o~ ' [2]|'l| (1) + (¢ 7! + 3) C2] and noting that lp? < 1,1% < 1, we get

/fawn@@mmgK//#ﬁwm.
1JX 1JX

Combining this with the very first inequality, we get

f/#ﬂw@@mqu//#ﬂmm+Q//#fmw
1JX 1JX 1JX

Letting Co = C1 K + C; gives the inequality in the lemma. To apply this lemma to the proof
of Proposition 6, let C; = 1/16 and C = C, plugin ||I'||poosy < 2/r (here I = (¢ —r, 0]),
and take for example o« = 5/16, we getthate = 1/4, Co <3C + 1/r. O

7 Examples

In this section we list some examples to which our theorems apply. We group them accord-
ing to the types of nice cut-off functions they admit. Note that the properties we require
on the nice cut-off functions involve only the energy measure associated with the Dirich-
let form, so in the following we describe examples of strongly local Dirichlet forms; our
theorems apply to local Dirichlet forms whose strongly local parts belong to the following
examples as well.

7.1 Dirichlet Spaces with Good Intrinsic Distance

In [34], Sturm showed that for a symmetric strongly local regular Dirichlet space, when the
topology induced by the intrinsic distance (3.4), that is,

px(x,y) =sup{p(x) — () | ¢ € Foc(X) N C(X), dI'(p, p) < dm},

is equivalent to the original topology on X, one can use the intrinsic distance to construct
nice cut-off functions with bounded gradient. More precisely, for V € U € X, define

(J5ox (V.U = px(x. V)

SPx (V. U)

n(x) =

Here (-)+ denotes the positive part. Clearly n = 1 on V and supp{n} C U. Further, 7 is in
Fioc(X) N C(X), and

drn,n) = (7.1)

—dm.
px(V,U°¢)?

See [34, Lemma 1.9]. It clearly follows that such Dirichlet spaces satisfy Assumption 3 and
Assumption 6 (pick the exhaustion {W"}’ ;}ien, to be balls with radii ;’s that increase fast
enough). By Lemma 6, these Dirichlet spaces satisfy the L> Gaussian type upper bound.
Thus all results in this paper apply to this type of examples which includes:

(1) Weighted Riemannian manifolds with Dirichlet forms associated with any locally
uniformly elliptic second order divergence form operator with locally bounded mea-
surable coefficients. See, for example, [33]. This includes the example we described
in the Introduction.

(2) Riemannian polyhedra under minimal local assumptions (cf. [14, 32] and [8]).
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(3) Alexandrov spaces and their Dirichlet space structures as considered for instance in
[25, 31].

7.2 Fractal Type Dirichlet Spaces

For fractal spaces, Assumption 3 is a nontrivial hypothesis to check. It is well known that
in many fractal spaces the only functions in Fjoc(X) N C(X) with bounded gradient are
constant functions (cf. e.g. [18]). More generally, in a recent paper [23], it was shown that
for a very general class of Dirichlet spaces, two-sided off-diagonal heat kernel estimate with
walk-dimension strictly larger than two implies the singularity of the energy measure with
respect to the symmetric measure.

On the other hand, many fractal spaces admit cut-off functions satisfying the inequality
(3.1) in Assumption 3. We remark that the existence of cut-off functions satisfying (3.1)
on such examples is highly nontrivial, and although their existence is known, there is in
general no direct geometric construction of such cut-off functions. Some first examples
satisfying Assumption 3 include the Sierpinsket gasket and its non-compact extension as
in the following pictures. (The picture on left (SG) is from Wikipedia, the picture on right
(ZSQ) is created by shifting copies of SG.)

(a) the Sierpinski
gasket SG

(b) the infinite Sierpinski gasket ZSG

One example of obtaining the validity of Assumption 3 in an indirect way is [1, Theo-
rem 1.12]. In [1], Andres and Barlow showed that certain Dirichlet spaces satisfying some
pointwise heat kernel upper bound (called HKU(¥) in [1]), must satisfy a condition called
CSA(Y). The CSA(¥) condition guarantees that the Dirichlet space admits cut-off func-
tions that satisfy some more specific version of the inequality (3.1). CSA(¥) also implies
Assumption 6. Therefore, under the HKU(¥) condition, all our results apply.

Consider the following refined version of Assumption 3: there is some distance dy that
defines the same topology of X, such that Assumption 3 holds with C; in (3.1) satisfying
Cy < CCfo‘dx(V, U¢)~# for some constants C, «, B > 0. While this condition by itself
does not imply any pointwise heat kernel upper bound like HKU(¥), it does imply the
L? Gaussian type upper bound by Lemma 6. It is obvious that this condition also implies
Assumption 6 (taking balls given by dy, see the final remark before Section 6.2 for more

@ Springer



Time Regularity for Local Weak Solutions of the Heat Equation on Local.. 127

details). So this refined version of Assumption 3 is a sufficient condition for all our results.
In [3], Barlow and Murugan proved that this condition is quite typical.

7.3 Infinite Products of Dirichlet Spaces of the First Two Types

The first examples of this type are the infinite dimensional torus T* and the infinite product
of Sierpinski gaskets SG°, the first one being a special case of the class of compact (more
generally, locally compact) connected metrizable (infinite dimensional) groups, cf. [5], and
the second one the simplest of the infinite product of compact fractal spaces. To have some
noncompact examples, consider R x T, or the Iwasawa’s example (cf. [5, 22]), or replace
one piece of Sierpinski gasket in the product SG*° with the infinite Sierpinski gasket ZSG.
This type of examples does not satisfy a property often satisfied in the previous two types
of examples, namely, for these infinite dimensional spaces, the volume doubling property
(local or global) cannot hold.

A general treatment of the elliptic diffusion on infinite product spaces like T is given
in [4], and their results apply more generally to anomalous diffusion on infinite products of
fractal spaces too. On a locally compact connected metrizable group G that is unimodular,
one usually starts with a heat (convolution) semigroup, or a (left-invariant) Laplacian of the
form L = — Z?j‘:l a;j X; X j, where (aij)l?’j:l is symmetric positive definite and {X;};en,
is a projective basis of the left-invariant vector fields on G (i.e., a basis of the projective Lie
algebra of G), and then consider the associated (left-invariant) Dirichlet form. Depending on
the coefficients, the Dirichlet form may or may not have non-degenerate intrinsic distance.
See [5].

For general product spaces X that have rougher differential structures, like SG*°, it is
easier and more convenient to consider only the “diagonal Dirichlet form”, namely, for any
diagonal matrix (aii)l.oil with all a;; > 0, consider

£f0) = Yoai [ Ef g (jgm,-) . (7.2)
i=1 !

Here &; stands for the standard Dirichlet form on the i-th factor of X, m j stands for the
normalized Hausdorff measure on the j-th factor of X, and f, g are proper functions.

Some infinite product examples do possess non-degenerate intrinsic distances that define
the same topology (e.g. when the coefficient matrix for the Laplacian on T is diagonal
and satisfies ) o, a;I < 00), in which case Assumption 3 and Assumption 6 follow.
More generally, one can show that the cut-off function assumptions (Assumption 3 and
Assumption 6) are satisfied using the fact that each factor in the infinite product possesses
nice cut-off functions in the senses required.

More precisely, since the product topology is generated by cylindric sets (sets that are
direct products of open sets of the first few factors, and the whole space for all remaining
factors), for pairs of cylindric sets it is easy to construct a nice cut-off function being a
product of nice cut-off functions for pairs of open sets on the first few factors, namely,

N
o) = [ Joi(x) (13)

i=1

for some N € N,. We verify this for the simpler case when the Dirichlet form is defined as
in (7.2) (for the group case this is when the coefficient matrix is diagonal).
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Suppose ¢; (x;) is a nice cut-off function on the i-th factor X; of the infinite product
space X = [[72, X;, satisfying that for any v € D(&;),

/ v dTi(gi. ¢i) < clf 97 dTi (v, v) +C2/ v dm;. (74)
Xi Xi supp{e; }

Here I represents the energy measure on X;, and C, C» are the same for all factors X;.
Then for any f € D(E), for the function ¢ defined as in (7.3),

f Al (e, ¢)
X

2

- N
=) a fzdl?(qmwm)) 0i(x) d(@m )
; /l'lk# Xk </X, ]1:[1 J\AJ & k

J#
2

N
pann)|floe | «(gm)
(/x,.("’) f. ) Ew,(x,) & mk

1
J#

N
< iiC/
2|y

ki Xk

+C, / 12 dmi| .
supp{¢}

In the last line we bounded the product of ¢;’s by 1. Then since

/wzdF(f, f>=2aii/ / o> dIi(f, f)d(®'mk>,
X i=1 Hk#ixk Xi ki

we conclude that

N
| £areo =c [ Garg.n+ <Zau> af pm
X X iz supp{¢}

Thus these infinite product spaces satisfy Assumption 3. Using cylindric open sets to build
an exhaustion of X, we can also easily check that these infinite product spaces satisfy
Assumption 6. By Lemma 6, these spaces satisfy the L> Gaussian type upper bound, given
that each factor X; satisfies the hypotheses of the lemma. We remark that here we do not
have additional requirements on the coefficient matrix (a;; )72 except that all a;; > 0.

Remark 15 On infinite dimensional compact groups, when the Laplacian L is bi-invariant,
one can define more function spaces associated with L that capture the smoothness of func-
tions and define corresponding distributional solutions of the heat equation (3; + L)u = 0.
These are broader classes of solutions than the local weak solutions we consider in this
paper. In the new settings one can consider the time regularity and other spatial regularity
properties of the distributional solutions of the heat equation, under more assumptions on
the associated heat (convolution) semigroup, cf. [6, 7]. In [21], the authors show that for
these bi-invariant Laplacians L and other left-invariant Laplacians L that have compara-
ble Dirichlet forms with L, the distributional solutions are smooth, with reEeated time and
spatial derivatives belonging to the function spaces associated with L and L. These results
provide generalizations of the results in [7] and describe hypoellipticiy type properties of
o+ L.
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8 The Weak Gaussian Bound and other Lemmas
8.1 The L2 Type Gaussian Bound

In this subsection we prove an L? Gaussian type upper bound assuming the existence of
cut-off functions satisfying (3.2) with C,(C1, U, V) = CF“C(U, V) for some o > 0 and
C(U, V) > 0. Our proof is a modification of the classical proof of L? Gaussian bound
when there are enough cut-off functions with bounded gradient. For references that discuss
about stronger (sub)-Gaussian estimates under stronger assumptions, we mention [11] and
[30]. The last part in this subsection about transitioning to estimates on derivatives of the
heat semigroup is a straightforward modification of the methods in [10].

The following is the main lemma for L? Gaussian type upper bound. Its proof is close to
for example the beginning part of the proof in [30].

Lemma 6 Let (X, m) be a metric measure space and (€, F) be a symmetric regular local
Dirichlet form on X. Assume that the Dirichlet space satisfies Assumption 3 and that for
any precompact open sets U,V with disjoint closures, C» in (3.2) is of the form C, =
C{*C(U, V) for some o > 0 and C(U, V) > 0. Then for any such open sets U, V, for any
f. g € L*(X) with supp{f} C U, supp{g} C V, foranyt > 0,

1
1 1 T
|(H, f, &) 120x)| < exp [—2 (m) ] If 200 812 (x) - 3.1)

When there exist enough nice cut-off functions with bounded gradient, Lemma 6 is a
classical result obtained from the so-called Davies’ Method. We adapt it to include the
case when there only exist nice cut-off functions with bounded energy (as specified in the
statement above). In the proof below we refer to the cut-off functions (that equal to 1 on U
and 0 on V) corresponding to some Cy, Cp with C; = Cf“C(U, V) in short as nice cut-off
functions.

Proof For any fixed A > 0, any nice cut-off function ¢, define the perturbed semigroup
(#9), o b
t>0

H,wf =e MH, (emf) .

For any f, g € L*>(X) with supp{f} C U, supp{g} C V, first observe that

’<Ht}\¢fv g> :€A|<H;f, g)Lz(X)|. (8.2)

L(X)

On the other hand,

||g||L2(x)~

‘<Htl¢f, g)

=[ms

LX(X) LX(X)

@ Springer



130 Q. Hou, L. Saloff-Coste

We estimate H H,A by looking at its (square’s) time derivative first.

jt (H be LQ(X)> /;(Z(Hz)@f) %H,wfdm
= /;( ( M’f) *)“15 H, (e)«ﬁf) dm = —2& (ef)tquz)tq&f7 €A¢Ht)‘¢f)

—25( HM 7, H“”f) + 2)\2/ (H,wf)zdl“(q&, ). (8.3)

Because ¢ is a nice cut-off function associated with C1, C, we have

[ (#¢5) ar@.o

X

Ci / $2dr (H,“’f, Ht’w’f) n CZ[
X

(H,W f)z dm
supp{@}
C\E ( HYf, HM f) 1 G /S - (H,W f)zdm

IA

IA

Substituting this bound back to (8.3) gives
2
(H iy ) =28 (8 £ 127) + 247 [ (H%7) ar .
L2(X) X

2
< (—2 + 2xzc1) £ (H,W £, HM f) + 2220, / (Ht“’> f) dm
supp{¢}

When —2 + 202C; < 0 (Cy < 1/A?), we can drop the first term and get

Mb 2 MJ
(H f LZ(X)) =20 H f

L2x’
,vb 5 L ' .
f Lz(X) = [I£1I72x,» so Gronwall’s inequality gives
0 5 ,
H f L2x) ~ = 1 f 172 x) exp (Z)L Czt).

Combining this with (8.2), we have

— A
(Hf. )| = 7 |1 f

200 g2y = NFlz2ex) 18l z2¢x) exp <—)L +)»2C21)-

Take ¢ corresponding to C; = 1/A% and let

1 e
- (ZC(U, V)t) :

As C, = C;¥C(U, V), we have A = 2)2Ct, and

1
1 1 T+
[(H f. @) 200 < 1 12 gl 2 xy exp {—2 <m> }
O
Remark 16 When C; satisfies the more explicit dependence Co(Cy,U,V) =

CCI_“dX (U, V)_ﬁ for some C, «, B > 0 and some distance dx on X that defines the same
topology, substituting C(U, V) = dx (U, V)~# in the above L? Gaussian type bound gives
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the L? version of the sub-Gaussian upper bound. For example, for fractals with walk dimen-
1—dy /2

sion dy, C2 = C| dx (U, V)~ up to a multiplicative constant (see, for example,

[30, Lemma 2.1]), then in our expression, « = (dy/2) — 1, B = dy, and the exponen-
dyw \ 1/(dw—1)

tial term in the upper bound for ‘ (H; f, g)Lz(X) ’ is exp {—c (M) } for some

constant ¢ > 0.

Next we estimate ‘<3tkHz £ g)Lz(X)‘ where k € N, . The estimate essentially fol-

lows from a straightforward adaptation of Proposition 2.2 in [10]. For another approach
on obtaining estimates on time derivatives of (H, f, g) L2(X)> See [13]. We first record a
lemma. In the following, C, denotes the right half plane C; := {z € C|Re(z) > 0};
R4 = (0, 00).

Lemma 7 Suppose that F is an analytic function on C. Assume that, for given numbers
A, B,y >0,

|F(2)] < B, Vz € Cy,

and for some 0 < a < 1,

)4

IF(1)] < Ae“e™ (D), vt e R,

|F(2)| < Bexp (—Re [(g) D Vz € Cy. (8.4)

When a = 1, this is exactly Proposition 2.2 in [10]. The proof of Lemma 7 is close to that
of the proposition in [10] (essentially, replace ¢ with ¢ in that proof), and we omit it here.

Then

Lemma 8 Under the hypotheses in Lemma 6, for any f, g € L*(X) with supp{f} C U,
supp{g} C V, where U, V are precompact open sets with disjoint closures, for any n € N,
t >0,

‘<athtf7 g)Lz(X)‘

n 1 1 T+20
< ”!,7 1 lL2ex) I8l L2x) exp 7 <W> . (8.5)

Proof For t > 0, set F(¢) := (H; f, g)12(x)- By spectral calculus, for any z € C with
Re(z) > 0,

+00
sz:/ e *dEv
0

is well-defined for all v € L%(X), hence F(z) can be analytically extended to z € C,.
Moreover,

o
”HZf”iZ(X) :‘/(; 672 Re(z)kd(E)\f, f>L2(X) f ||f||iZ(X) )
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so F(z) satisfies |F ()| < I fll2(x) 18l 2(x)- By Lemma 6, for ¢ > 0,

1 1 =
|[F ()] <exp ) (m) Iz g2 xy -

So by Lemma 7,

==
[F(z)] < ||f||L2(X) ||g”L2(X) exp <—Re |:<)Z/) 1 :|>» (8.6)

where y = @!*ecw, v))~L
Recall that we have by Cauchy’s integral formula the expression of the n-th derivative of
F(z) using the integral over some circle C with radius r around z,

n!yg F (&) J _onl [T F(z+re?)
27i Jo -2t 7 27 Jo rheint

Consider z = ¢ € R. Take for example r = ¢/2. Then (8.6) gives the bound

tr .
F[ 719
‘ <+2e )‘

F™(z) = do. 8.7

IA

%
Y
I fl2ex) l181L2cx) exp | —Re (z n ée"(’)

1 /2y e
I fl2ex) 8Lz x) exp 5\ 3 .

1 1+ 5

1+%ei9_1+%+cos9_

Then || < m/6and r = ,/(% +cos@)~! >2/3. Then

1
1\ : ¢ : 1 2\
Re _ — r 1+2«¢ CcOSs > rit2e cosp > - | = .
1+ Lei® 1+ 2a 2\3

Substituting the above bound of ‘F (t+ %ei0)| in (8.7), we get

IA

Indeed, suppose

re'?.

1

o 1 2y =
[FO0] = |0 Hi 1. 82| = nt5 11200 elie exp {—2 (;) }

Plugging in the expression of y gives (8.5). O

In the proofs in previous sections, the exact form of the upper bounds is not important,
we only need the property that the upper bound, divided by any positive power of ¢, tends
to 0 as ¢ tends to 0. So we use Assumption 4.

8.2 Other Lemmas
In this subsection we prove Lemma 3 on existence of nice cut-off functions for general pairs
of open sets. Starting with the existence of nice cut-off functions for pairs in a topological

basis 7 B in the sense of Assumption 3, we now construct nice cut-off functions for any pair
of open sets V € U (Lemma 3).
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In the next two lemmas we first discuss properties of the sum and product of two nice
cut-off functions. By taking maximum if necessary, we assume that all cut-off functions
correspond to the same C1, Cs.

Lemma 9 (sum of nice cut-off functions) Let ny, n2 be two nice cut-off functions for some
Vi € U, Vo € U,, respectively, where V1, Uy, Va, Uy are open subsets of X. Suppose
N1, M2 both correspond to C1, Cy. Then their sum n := 11 + 0y satisfies that for any v € F,

/ v d (1 + 2, m+1m2)
X

=< 2C1/(m +n)*dI (v, v)+4C2/ vidm.
X supp{n1+n2}

Proof The energy measure dI"(n1 + n2, n1 + n2) equals

dr'(m +mn2, m +mn2) =dIT (m1, m) +2dI (1, m2) +dI" (2, n2).

By applying the Cauchy-Schwartz inequality (2.1), we get that for any v € F,
/ v dI (i +m. m+m) < 2/ v2dI (1, m) + Zf v2d I (2, m2)
X X X

< 2C1/(n1 +m2)?dI (v, v)+4C2/ v2dm.
X supp{ni+n2}

The last line follows from that ny, , are nice cut-off functions corresponding to Cy, C;
n1, m2 > 0; supp{n1}, supp{nz2} C supp{n + n2}. O

In general, by induction, given k nice cut-off functions 71, ..., nx corresponding to
C1, Cy, their sum satisfies that for any v € F,

/Uzdr(nl‘f‘"""']k» m )
X

< kCl/(ﬁl +~~~+77k)2dF(v,v)+k2C2/ v2dm. (8.8)
X supp{ni +---+nk}

We can then normalize the sum by dividing by & to get a nice cut-off function for the pair
Mizi Vi € Uiz Ui

Lemma 10 (product of nice cut-off functions) Let 11, n2 be two nice cut-off functions for
some V| € Uy, Vo € Uy, respectively, where Vi, Uy, V, Uy are open subsets of X. Suppose
N1, M2 both correspond to C1, Ca, and 0 < C1 < 1/4. Then the product function n := nin2
is still a nice cut-off function satisfying

/ v d I (nina, mn2)
X

< 16c]/(mn2)2dr(v,u)+8c2/ vZdm. (8.9)
X supp{n1n2}

Proof By the product rule for the energy measure,

dI (mma, mn2) = 03 dT (n2, ) + 2mma d T (1, m2) + n3 dT (1, ).
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Then by the Cauchy-Schwartz inequality (2.1), for any v € F,

/vzdf(mnz, 771772)§2f vzn%dr<n2,nz>+2/ Pr2dl (). (8.10)
X X X

Because 11, 1, are associated with Cy, C», for any g > 0,

/ vzn%dl"(nz,nz)wL/ vn3dl (m, m)
X X

IA

C [/ mdI (v, 771v)+/ nidI (nv, nzv)] +2C2/ v dm
X X supp{nin2}

IA

2.2 1 2.2
c [2(1+ﬂ)/ Pnddl (v, v) + (H—)f P2 dT (. 1)
b% B/ Jx

1
+(1 + —)/ n%vzdr(m,m)] +2C2/ v2dm.
BJ) Jx supp{n1 72}

The second inequality is obtained by expanding dI"(n;v, n1v) and dI" (n2v, n2v) using the
product rule, then applying the Cauchy-Schwartz inequality (2.1). So

1
(1 -C (1 +—)> [/ vznfdl"(nz,nz)+/ vzngdl"(m,m)]
B X X

< 2C1(1+,B)/ nin3drl (v, v)+2C2/ v2dm.
X supp{nin2}

For C; < 1/4, we can take 8 = 1, then
20i01+p) 4G
1—c(1+4) 1726

and the above inequality becomes

/ vzn%df(nz,nz)Jrf v n3dI (1, m)
X X

< 8Cq,

< 8C1f nin3dr (v, v)+4C2/ v2dm. 8.11)
X supp{ni7m2}

Combining (8.10) and (8.11), we get (8.9). O

To extend Assumption 3, we use a construction similar to the standard construction of
partitions of unity to obtain cut-off functions for general pairs of open sets and then check
that the so-obtained functions satisfy (3.1). We first state the following lemma on using open
sets in the basis 7 B to cover any compact set.

Lemma 11 For any compact set K C X and any open neighborhood U of K (K C U €
X), there exist two finite open covers Cy = {Uy, Ua, ..., Uy} and Cy = {Vy, Va, ..., Vp},
such that all U, V; are elements in TB; K C UL, Vi € U}, U; C U; Cy is subordinate
to Cy, i.e., for any V; € Cy, there exists some U; € Cy such that V; € U;.

Proof For any point p € K, there exists an open neighborhood U, € 71 such that p €
U, € U since T B is a topology basis and X is regular (to ensure there is some U, that is
precompact in U). Then {U p } pekK } is an open cover of K, which has a finite sub-cover
C = {Upl, Upys s Up”}. We rename U, as Uj.
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Now we construct C; from Cy. For any point p € K, there exists some U;, j = 1,2, ..., n,
such that p € U;. Then there exists some smaller open neighborhood V,, € 7B such that
peV, €U {V, |pe K} is an open cover of K. Let {V,,, V,,, ..., Vp,} be a finite
sub-cover, then this gives the C; open cover we wanted, after renaming Vp; as V. O

Next we proceed to prove the lemma on the automatic extension of the applicability of
Assumption 3 from pairs of open sets in a topological basis to all open sets.

Proof of Lemma 3 For any pair of open sets V € U, for any 0 < C; < 1, we want to
construct a nice cut-off function ¥ for the pair V C U corresponding to Cy in (3.1). Pick
another open set V' such that V € V' € U € X. Applying Lemma 11 to the compact
set K = V/ with open neighborhood U, we get two finite open covers C; = {0y, ..., Oy}
and C» = {£21, ... 2} such that C, is subordinate to C;, and that both cover V’ and are
contained in U. Applying Lemma 11 to the compact set U \ V' with open neighborhood
X \ V, we get two more finite open covers Cl = {Oi, e 0;[,} and C} = {.Qi, e SZ};,},
such that C} is subordinate to C}, both C{, C cover U \ V', and are contained in X \ V.

For any 0 < C < 1, apply Assumption 3 to each pair £; € O; and 2] € 0}. Because
allCy, G, C i , Cé are finite covers, there are finitely many nice cut-off functions {n1, ..., n,}
and {¢y, ..., g} for pairs £2; € O; and .Ql’ S 0}, respectively, where all cut-off functions
correspond to C; =: C in (3.1). Let

k r
ni=ak e, 9= @it )
i=1 j=1
Then1 < ¢ <k+ronU,and ¢ =5 on V,since all ¢;’s vanish on V. Hence 1/¢ is well-
defined on U and becomes 0 before it reaches the boundary of U since 7 is supported in U.
By extending the quotient by 0 outside U, we obtain a function ¥ satisfying

n/e, x €U, 1, xeV,
Y(x) = = dbetweenOand 1, x e U\ V,
0, x e U¢ 0, x e UC.

Hence it remains to show that y satisfies (3.1). By the lemmas on the sum and product of
nice cut-off functions (Lemma 9 and Lemma 10), we only need to show 1/¢ satisfies (3.1)
for u € F with support in U (since ¢ is supported in U). For any u € F with support in U,

2
[ warare o= | (—%) drg. o)
X X %

< [wargo=c [ Farawre [ lam,
X X supp{e}
where C’ = (k + r)C is by (8.8) and our definition of ¢; C, can be computed correspond-
ingly. Moreover, since | < ¢ <k +r, 1 < ¢*> < (k4 r)?, we get that ¢ < (k +r)*/¢ on
U, hence

k 4
&+ dF(u,u)—{—Cg/ u*dm,
¢ supp{e}

which is indeed of the form (3.1). By picking a proper C, ¥ would correspond to the given
Cyin (3.1). O

/ AT (g, 1/g) < c’/
X X
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