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ABSTRACT

Learning the latent network structure from large scale multivariate point process data is an important
task in a wide range of scientific and business applications. For instance, we might wish to estimate the
neuronal functional connectivity network based on spiking times recorded from a collection of neurons. To
characterize the complex processes underlying the observed data, we propose a new and flexible class of
nonstationary Hawkes processes that allow both excitatory and inhibitory effects. We estimate the latent
network structure using an efficient sparse least squares estimation approach. Using a thinning representa-
tion, we establish concentration inequalities for the first and second order statistics of the proposed Hawkes
process. Such theoretical results enable us to establish the non-asymptotic error bound and the selection
consistency of the estimated parameters. Furthermore, we describe a least squares loss based statistic for
testing if the background intensity is constant in time. We demonstrate the efficacy of our proposed method
through simulation studies and an application to a neuron spike train dataset. Supplementary materials for
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1. Introduction

Large-scale multivariate point process data are fast emerging in
a wide range of scientific and business applications. Learning
the latent network structure from such data has become an
increasingly important task. For instance, one may wish to
estimate the neuronal functional connectivity network based on
spiking times (i.e., times when a neuron fires) recorded from
a collection of neurons (Farajtabar et al. 2015), or to estimate
the financial network based on trading times recorded for a
collection of stocks (Linderman and Adams 2014). Both the
neuron spiking times and the trading times can be viewed as
realizations from multivariate point processes. To characterize
the latent interactions between the different point processes,
a useful class of models is the multivariate Hawkes process
(Hawkes 1971). The multivariate Hawkes process is a mutually-
exciting point process, in which the arrival of one event in
one point process may trigger those of future events across
the different processes. Because of its flexibility and inter-
pretability, the multivariate Hawkes process has been widely
used in many applications, such as social studies (Zhou, Zha,
and Song 2013), criminology (Linderman and Adams 2014),
finance (Bacry et al. 2013) and neuroscience (Okatan, Wil-
son, and Brown 2005). In the network setting, each com-
ponent point process of the multivariate Hawkes process is
viewed as a node, with a directed edge connecting two nodes
indicating an event in the source point process increases the
probability of occurrence of future events in the target point
process.

Despite the popularity of the multivariate Hawkes process,
there is a need of new statistical theory and methodology for
its broader applications. First, most existing theoretical results
for the Hawkes process are derived using a cluster process
representation of the process. This cluster process represen-
tation by its definition depends on the mutually excitation
assumption, that is, the arrival of one event increases the
probability of occurrence of future events (Hawkes and Oakes
1974; Hansen, Reynaud-Bouret, and Rivoirard 2015). How-
ever, such an assumption may not be valid in certain appli-
cations. For example, it is well known that the firing activ-
ity of one neuron can inhibit the activities of other neurons
(Amari 1977). A more flexible model should allow both exci-
tatory and inhibitory effects, which renders the cluster pro-
cess representation infeasible. Second, most existing models
assume that the background intensities, that is, the baseline
arrival rates of events from the different component processes,
are constant in time. Under this assumption, the multivariate
Hawkes process satisfies a stationary condition (e.g., Brémaud
and Massoulié 1996). However, assuming constant background
intensities may also be too restrictive. For example, stock trading
activities tend to be much higher during market opens and
closes (Engle and Russell 1998), and the associated background
intensities are therefore not constant in time. A multivari-
ate Hawkes process with constant background intensities may
not fit such data well (Chen and Hall 2013). A more flexible
approach instead should allow the background intensities to be
time-varying. For such nonstationary models, new development
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on both theory and methodology is needed, as most existing
results are established assuming the underlying process to be
stationary.

Some existing work have considered broadening the class of
Hawkes process models. Specifically, Brémaud and Massoulié
(1996), Chen et al. (2017), and Costa et al. (2018) considered a
class of nonlinear Hawkes processes that allows both excitatory
and inhibitory effects. A thinning process representation was
used to investigate the properties of the proposed process. How-
ever, these work focused on processes with constant background
intensities and the thinning representation technique depended
critically on the stationarity condition. Some recent work also
considered nonstationary Hawkes processes. Lewis and Mohler
(2011), Chen and Hall (2013), and Roueff, Von Sachs, and San-
sonnet (2016) considered Hawkes processes with time varying
background intensities. However, they only considered univari-
ate processes, and only with excitatory effects. Lemonnier and
Vayatis (2014) considered a multivariate Hawkes process with
time varying background intensities. However, they focused on
an approximate optimization algorithm for model estimation,
and did not provide any theoretical results.

In this article, we propose a flexible class of multivariate
Hawkes process that admits time-varying background intensi-
ties and allows both excitatory and inhibitory effects. We show
the existence of a thinning process representation of this nonsta-
tionary process. Such a result has not yet been established in the
literature, and it enables our subsequent theoretical analysis. To
estimate the network structure, we consider a computationally
efficient penalized least squares estimation, in which both the
background intensities and the transfer functions are approxi-
mated using basis functions. We establish theoretical properties
of the penalized least squares estimator in the high-dimensional
regime, where the dimension of the multivariate process p can
grown much faster than the length of the observation window
T. Specifically, we investigate the following properties in our
analysis:

1. (Concentration inequalities.) We establish concentration
inequalities for the first and second order statistics of the
proposed Hawkes process. Such inequalities are established
using a new thinning process representation result for non-
linear and nonstationary Hawkes processes.

2. (Non asymptotic error bound.) Under certain regularity
conditions, we establish, in the high-dimensional regime, the
non asymptotic error bound of the intensity functions esti-
mated using basis approximations. Specifically, we verify that
the design matrix satisfy a restricted eigenvalue condition
and a bounded eigenvalue condition for the diagonal blocks;
these bounds on eigenvalues depend on the number of basis
functions.

3. (Network recovery.) We show that, under certain regularity
conditions, our proposed estimation method can consis-
tently identify the true edges in the network with probability
tending to one. Moreover, we propose a consistent general-
ized information criterion (GIC) for regularizing parameter
selection.

4. (Test for background intensity.) We propose a least squares
based statistic for testing if the background intensity is con-
stant in time. Specifically, we show that the null distribution

of the test statistic is asymptotically x and the test is power-
ful against alternatives.

It is worth mentioning that there is another class of
approaches that estimate the latent network structure from high
dimensional multivariate point process data (Zhang et al. 2016;
Vinci et al. 2016, 2018). These methods divide the observation
window into a number of bins, and model the number of events
in each bin. The network structure is estimated using methods
such as correlation of event counts (Vinci et al. 2016), regular-
ized generalized linear models (Zhang et al. 2016), or Gaussian
graphical models (Vinci et al. 2018). The heuristic binning pro-
cedure may result in information loss, for example, short-term
excitatory effects may be overlooked if the bins are chosen to be
too wide. Choosing an appropriate binning procedure remains
a challenging task.

The rest of the article is organized as follows. Section 2
introduces the proposed model, and Section 3 describes the
model estimation and selection. The aforementioned theoretical
results are detailed in Sections 4. Section 5 includes simulation
studies. The detailed analysis of a neuron spike train dataset is
presented in Section 6. A short discussion section concludes the
article.

2. Model
2.1. Notation

Given a function f on X' € R, let ||f]lco,x = sup,cy [f(¥)| and
Ifllzx = {f,cx f(®*dt}/?(or, respectively, ||flloo and ||fll2,
when there is no ambiguity). Let f*) denote the kth derivative
of a function f when such a derivative exists. For a matrix
A € R™" we use ||All2, ||Allmax and ||A]oo to denote its
spectral norm, maximum entry-wise £; norm and maximum
row-wise £ norm, respectively. We write [n] = {1,2,...,n}
and let |x| denote the largest integer less than x. For a set S,
we use |S| to denote its cardinality. We write 1, to denote a
length-n vector of 1, I, to denote a n x n identity matrix,
diag{d;, .. .,d,} to denote a n x n diagonal matrix with diagonal
elements dy, . ..,d,, and use omin(-) and omax(-) to denote the
smallest and largest eigenvalues of a matrix, respectively. For two
positive sequences a, and b, write a, = O(b,) if there exist
¢ > 0and N > Osuchthata, < cb, foralln > N, writea, < b,
ifa, = O(b,) and b, = O(ay),and a, = o(by) ifa,/b, — Oas
n — oo. For a sequence of random variables Y, and a positive
sequence a,, we write Y, = Op(a,) if for any € > 0, there exist
M > 0and N > 0 such that P(]Y,/a,| > M) < € for any
n > N; we write Y, = 0p(a,) iflim, oo P(|Yy/an| > €) =0
forany e > 0.

2.2. The Multivariate Hawkes Process Model

Consider a directed network with p nodes. For each nodejj € [p],
we observe its event locations {tj1, ¢, ...} in the time interval
[0,T] such that 0 < tj; < tj» < --- < T. For node j, let
the associated counting process be Nj(t) = [{i : t;; < t}|,
t € [0,T]. Write N = (N))je[p] as the p-variate counting
process. Let #; denote the entire history of N up to time ¢, and
write Nj ([t, t + dt)) as dNj(t). The p-variate intensity function



A = M), ..., 2p(H) " of Nis defined as

A(Hdt = PANj(t) = 1[Hy), j € [pl.

We propose a flexible class of Hawkes processes with intensity
functions defined as

P t
ri(t) =h {vj(t) + Z/o wjk(t — u)de(u)} , jelpl, (1)
k=1

where () : R — R™ is a link function and it is assumed to be
6-Lipschitz (see Assumption 1), v;(-) : R — R is the time-
varying background (or baseline) intensity function of the jth
process, and wjk(-) : Rt — R is the transfer function that
characterizes the effect of the kth process on the jth process.
Specifically,

i. wjx(s) > 0 corresponds to excitatory effect, that is, an event
in process k increases the probability of event occurrence in
process j at a time distance of s.

ii. wjk(s) < 0 corresponds to inhibitory effect, that is, an event
in process k decreases the probability of event occurrence in
process j at a time distance of s.

iii. wjk(s) = 0 corresponds to no effect, that is, an event in
process k has no effect on the event occurrence in process
j ata time distance of s.

The proposed model in (1) considers a time dependent back-
ground intensity function instead of the constant background
intensity considered in existing multivariate Hawkes process
models (Chen and Hall 2013; Hansen, Reynaud-Bouret, and
Rivoirard 2015; Bacry et al. 2020; Wang, Kolar, and Shojaie
2020). Consequently, the proposed Hawkes process model is
nonstationary, and its analysis requires new theoretical tools,
which will be introduced in Section 4.

Let the directed network G(V, ) summarize the relation-
ships between the p component processes. Specifically, let V =
{1,2,...,p} be the set of p nodes and £ be the set of edges such
that

E=A{G.k) : wjx # 0, jk € [pl},

where w; ;s are the transfer functions in (1). Therefore, (j, k) € £
ifand only if the kth process has an excitatory or inhibitory effect
on the jth process.

Next, we introduce a set of regularity conditions on the
background intensities and transfer functions in (1).

Assumption 1. Let & be a p x p matrix with Qj =
fooo |wjk(®)|dt, j, k € [p] and assume that Omax(RTR) < 0g <
1. Moreover, assume that h(-) is a 6-Lipschitz link function with
0 < 1, and the background intensity functions are bounded,
thatis, 0 < vi(t) < v,jelpl for some positive constant v.

Assuming the Lipschitz constant 6 to satisfy & < 1 is not
restrictive. For example, if h(-) is Ko-Lipschitz for some Ko > 1,
we can reparameterize (1) by setting h(x) = h(x/Ko), vj(t) =
Kovj(t) and c~uj,k(t) = Kowj k(). In this reparameterized model,
E(-) is 1-Lipschitz. The Lipschitz condition on the link function
was also considered in Massoulié (1998) and Chen et al. (2017).
Assumption 1 implies that h{v;(t)} is bounded as Lipschitz
functions are bounded on bounded supports.

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION e 97

Define the mean intensity of (1) as Xj(t) = E{dN;j(t)}/dt.
Under Assumption 1, the mean intensity A;(¢) is upper bounded.
This can be shown in three steps. First, define a p-dimensional
Hawkes process N* = (N})je[p) with intensity function

p t
A;-‘(t) =v*+ Z./o lwjk(t — w)|dNF (W), jelpl, (2)
k=1

where v* is a positive constant such that v* > h{v;(¢)} for any j
and £, and wj ;s are as defined in (1). By Brémaud and Massoulié
(1996), the point process defined in (2) satisfies a stationary
condition under Assumption 1. Next, write the mean intensity
of (2) as A* = (A%,..., A;)T, where A¥ = E{dN;(1)}/dt.
Correspondingly, we have

A*=v*+ {/Oo Iw(t)ldt} A%, ®)
0

where v = (v*,...,v")T € RP and w(t) € RP*P, with
{@()}jx = wjk(t). The mean intensity A* in (3) can be rewritten
as A* = Y12, @Fv*, which is upper bounded given og < 1in
Assumption 1. Finally, it can be shown that the mean intensity
of (1), that is, )_»j(t), is upper bounded by A;" (see Lemma S6 and

its proof in the supplementary materials). Consequently, Xj(t) is
also upper bounded under Assumption 1.

3. Estimation

From the observed event locations in [0, T, our objective is to
estimate the intensity functions A;(t), j € [p]. Furthermore, by
identifying the nonzero transfer functions w; x’s in the estimated
intensity functions, we can estimate the structure of the directed
network G(V, £). In this section, we consider the link function
to be h(x) = max(0, x) in (1). It is seen that this link function is
a 1-Lipschitz function. To ease notation, we write

P t
Ui =0+ Y /0 ot — wdNew), (@)
k=1

and A;j(t) = max{0, ¥;(t)},j € [p].

To estimate the intensity functions, one may consider a like-
lihood function based approach (Ogata 1981; Chen and Hall
2013; Zhou, Zha, and Song 2013). However, minimizing the
negative log-likelihood function may require a very involved
and computationally intensive iterative procedure (Veen and
Schoenberg 2008). To improve the estimation efficiency, we
consider a least squares loss based estimation approach. That is,
we consider the following loss function

1< (T
2 [ wpoa—2uwan o) )
=1

The least squares loss comes from the empirical risk minimiza-
tion principle (van de Geer 2000) and has been fairly com-
monly considered in estimating point process models (Hansen,
Reynaud-Bouret, and Rivoirard 2015; Chen et al. 2017; Bacry
et al. 2020). We later show that (5) can be separated into p
objective functions that can be estimated individually, which
significantly reduces the computation cost.
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We consider a nonparametric estimation of v;(t) and w; x(t),
j,k € [pl, using B-spline approximations. Given [a;,a2] C R
and aset of K knotsa; = §y < {1 < -+ < {g4+1 = ap such
that maxj<j<gx+1 |k — &k—1] = O(K™1), let Sk be the space
of polynomial splines of degree I > 1 consisting of functions
satistying: (i) restricting to each interval [¢;, ¢it1], i € [K], the
function is a polynomial of degree | — 1; (ii) for I > 2 and
0 <!’ <1-2, the function is’ times continuously differentiable
(Stone 1985). Such a space Sk is of dimension m = K + |
(Schumaker 2007) and as such, let {¢1(¢),..., ¢ ()} be the
normalized B-spline basis of Sk;. When | = 1, the basis is a
set of K + 1 step functions with jumps at knots (Stone 1985). In
our procedure, we approximate the background intensity v;(t)
with an mg-dimensional normalized B-spline basis ¢(t) =
(0.1 (Ds - > Gomg (1) T, such that vi(5) = Boo(®) + ry0 (),
where B;, € R™ and rjo(-) denotes the approximation resid-
ual. Furthermore, we approximate the transfer functions w; k(%)
with an m;-dimensional normalized B-spline basis ¢(t) =
(@11(8)s .., Prm, (D), such that w;x(t) = By (1) + 7jx(1),
where B € R™ andr;(-) denotes the approximation residual.
The dimensions and degrees of the bases ¢, () and ¢, (¢) are
allowed to be different for more flexibility in characterizing the
background intensities and transfer functions. For example, one

L[ do(epg (Hdt,

Gkuka) —

With the above expressions for B, & and G, we define

ti(B) = —2B] a; + B GB;. @

Some straightforward algebra shows that the loss function in
(5) can be written as Zle Ej(ﬂj). We note that both «; and
G are calculated based on the observed event locations and the
prespecified basis functions, that is, ¢ (¢) and ¢, (¢). Therefore,
to estimate the background intensities and transfer functions,
we can directly optimize (7) with respect to ;. Since the loss

function Z}l;l ¢;(B;) can be decomposed into p separate convex
loss functions, that is, £1(8;), ..., ¢ (ﬂp), we can optimize each
loss function separately.

Deﬁne’\‘c"j = {k : wjx # 0,k € [p]}. To estimate &, we
consider & = {k : @jx # 0,k € [p]}, where @;)’s are the
estimated transfer functions. Note that if w;jx = 0, then all
coefficients associated with w; x are zero (i.e., ﬂj’k = 0). Thus,
to encourage sparsity in the estimated network, we impose a
standardized group lasso penalty on B; with the coeflicients in
Bj) grouped together, k € [p]. Specifically, we consider the
following optimization problem

min
ﬂjeRm0+Pml

P 1/2
—2ﬂjTaj+ﬁjTGﬁj+an( kaG(k’k)ﬂj,k> . (8)
k=1

3o do(®) | fy 81 (¢ = wdNi ) | dt,
F I o 91t = wdNk, () | 67 (Ddt,
YIS 91— wang o | [ f5 6] (¢ — N @] a,

may use cubic B-splines to approximate the background inten-
sities and step functions to approximate the transfer functions
(Hansen, Reynaud-Bouret, and Rivoirard 2015). The choices for
the number and locations of knots are discussed in Section 3.1.

Write B; = (Bjo:Bj1--- ,ﬁj,p)T. We define o =
(@09, 0D alP)T such that a*?) € R™ with

. 1 T
af” =3 [ o, 1€ ml
T Jo
and a0k € R™ k [p] with
i 1 T t
o[(l,k) — ?/ / @1 (t — u)de(u)de(t), l € [m].
0o Jo

Moreover, we define G € R{(motpm)x(mo+pm) gych that

G000 GO G-p)
G(LO) G(l’l) . G(LP)

G= . . , A (6)
GeO G G

where the component G*1:%2) is defined as

ifk; =0,k =0,
ifk; =0,k; #0,
ifk; #0,k; =0,

ifky # 0,k # 0.

The penalty term Zﬁ:l (ﬂj’kTG(k’k) ﬂj,k>l/2 is an extension of
the standardized group lasso penalty (Simon et al. 2013). This
optimization problem in (8) is convex and can be efficiently
solved using a block coordinate descent algorithm (Simon et al.
2013). The terms a,...,ap, and G can be computed using
standard numerical integration methods and such calculations
can be carried out before implementing the block coordinate
descent algorithm.

3.1. Tuning Parameter Selection

Our proposed estimation procedure involves a number of tun-
ing parameters, including the numbers of B-splines (i.e., mg
and m, ) for approximating the background and transfer func-
tions, respectively, knots locations for the B-splines, and tuning
parameter 7;s in the penalized least squares estimation in (8).
Cross-validation procedures may not be appropriate for tuning
parameter selections under our setting as the proposed process
is nonstationary due to the time-varying background intensity
in (1). As such, the data cannot be divided into training and
validation sets in a straightforward manner.

Given myg and my, we let the knots be evenly distributed
(Ravikumar et al. 2009; Huang, Horowitz, and Wei 2010). For
mg and m;, theoretical conditions in Theorem 3 can guide
their empirical choices. In Section B1, we describe a heuristic



procedure for selecting mo and my; a similar procedure was
considered in Kozbur (2020). In Section B2, we show that this
heuristic procedure achieves good performance; additionally,
we demonstrate that the estimation accuracy is not overly sen-
sitive to the choices of mg and mj. Once ¢ (¢) and ¢,(¢) are
determined, we then move to select 7;’s.

The tuning parameter 7); in (8) controls the sparsity of ;,
which in turn controls the sparsity of the estimated network. To
select 1, we propose a generalized information criterion (GIC)
defined as

GIC(n) = 4;(B)) - kj + (o /T) - 1&]] )

where ¢;(-) is as defined in (7), x; = T/N;{(0, T]} is a scaling
parameter, B; is estimated from (8) with n;, and ar > 0 is

a parameter that scales with T and p. As Ej(ﬁj) is the squares
loss and not the log-likelihood function, the GIC is not directly
comparable to the likelihood based selection criteria such as the
BIC or extended BIC (Schwarz 1978; Chen and Chen 2008).
In Theorem 5, we show that the proposed GIC is consistent
given appropriate choices of e, such as O((logp)*log T). In
Section 5, we evaluate the efficacy of the proposed GIC and show
it achieves satisfactory performance.

4. Theoretical Properties

In this section, we first show the existence of a thinning process
representation of the proposed nonlinear and nonstationary
Hawkes process. We then establish concentration inequalities
for the first and second order statistics of the proposed point
process. These results are useful in the subsequent analysis of
the estimated intensity functions. Next, we establish the non-
asymptotic error bound of the estimated intensity functions and
show that our method can consistently identify the true edges
in the network. Lastly, we propose a test statistic for testing
if the background intensities are constant in time. We derive
its asymptotic null distribution and show the test is powerful
against alternatives. All proofs are collected in the supplemen-
tary materials.

4.1. Concentration Inequalities

Many existing theoretical analyses rely on the cluster process
representation of the Hawkes process (Hawkes and Oakes 1974;
Hansen, Reynaud-Bouret, and Rivoirard 2015; Bacry et al.
2020), which needs the transfer functions to be nonnegative.
Brémaud and Massoulié (1996) employed a thinning process
representation of the Hawkes process that permitted negative
transfer functions, but required a stationarity condition. As
such, the results in Brémaud and Massoulié (1996) are not
directly applicable to our problem. Next, we first show the
existence of a thinning process representation of the proposed
nonlinear and nonstationary Hawkes process in (1).

Let N = (Nj)je[p] be a p-variate homogeneous Poisson
process on R? with intensity 1. Let A;O)(t) = (pl,

and Nj(o) = @. For n > 1, construct recursively A" =

0,j €

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION e 929

(kgn)(t), cees )»}(,")(z‘))—r and N = (N].("))je[p] as follows:

p t
g“”a)=h{wa)+§:1;%ka—umekm},
k=1

de(”“)(t) =N, ([o A]f”+1)(t)] X dt), jelpl,  (10)

where h(-), v; and wjx are as defined in (1), and
ITI]-([O, )\;"H)(t)] x dt) denotes the number of points for
Nj in the area [0, A;"+l)(t)] x [t,t + dt]. It follows from
Lemma S2 that A;")(t) is the intensity function of the point

process N (t). Next, we show that the sequence {N™}% in
(10) converges in distribution to the Hawkes process N with
intensity function (1).

Theorem 1. Let L(t) be as defined in (1) satisfying Assumption 1.
Let (A (£)}°2, and {N™}°  be sequences as defined in (10).
Then, it holds that

(a) A (1) converges to A(t) almost surely for any ¢,
(b) {N(”) }zozl converges in distribution to N with intensity (1).

Theorem 1 shows the existence of a thinning process repre-
sentation of the proposed nonstationary Hawkes Process. It pro-
vides a theoretical guarantee, analogous to Massoulié (1998), for
nonstationary multivariate Hawkes processes. This new result is
critical in our subsequent theoretical analysis.

Assumption 2. Assume that there exists Amax > 0 such that
Aj(t) < Amax for any t and j and wjt, j,k € [p] are bounded
functions with a bounded support [0, b] for some b > 0.

This condition first assumes that the intensities are upper
bounded. One example of such processes is when the link
function h(-) is upper bounded by a positive constant; see
also Section 7. Assumption 2 also assumes that the transfer
functions w;x’s have a bounded support. The bounded support
assumption has been fairly commonly considered in the analysis
of multivariate Hawkes process (Hansen, Reynaud-Bouret, and
Rivoirard 2015; Costa et al. 2018).

Assumption 3. There exists pg € (0, 1) such that Zi:l Qj <
pe,j € [pl.

This assumption requires that £ has bounded column sums,
which prevents the intensity function from concentrating on any
single process.

Recall that H; denotes the history of N up to time ¢. For H;-
predictable functions fi (-) and f,(-), define

1 (T
Yk = ?/ S @®ANk(D),
0

1 T T
Yik = ?/ / fo(t — tH)dN(t)dN;(1).
0 0

Theorem 2. Consider a Hawkes process on [0, T] with inten-
sity as defined in (1) satisfying Assumptions 1-3. Let f;(t) be
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a bounded function and f,(f) be a bounded function on a
bounded support. Then, for k € [p], it holds that

P(lyx — Eyil = a1 T7%°) < ;T exp(—c3T'?), (11)

where c1, ¢, and c3 are positive constants. For any j, k € [p], it
holds that

Pk —Eyjal = ¢ T7%) < Texp(=4T'/%),  (12)

where ¢/, ¢}, and ¢} are positive constants.

The proof of Theorem 2 is provided in the supplementary
materials. Our proof strategy for the concentration results in
Theorem 2 follows from that in Chen et al. (2017). Specifically,
as in Chen et al. (2017), we first define a coupling process of N,
which is used to bound the temporal dependence of N. Then,
a Bernstein type inequality for weakly dependent sequences
(Merlevéde, Peligrad, and Rio 2011) is used to obtain the desired
results. The main difference in the proof is that the validity of the
thinning process representation in Chen et al. (2017) is ensured
by Massoulié (1998), established under a stationarity condition.
In the nonstationary case, the validity of the thinning process
representation is established in Theorem 1.

We remark that the concentration results for stationary pro-
cesses in Chen et al. (2017) may not be directly applicable to
establish (11)-(12) under the nonstationary case we consid-
ered, even though N is dominated by a stationary process (see
Lemma S6), as no existing theoretical results, to our knowl-
edge, establish the concentration inequalities of a target process
using directly the concentration inequalities of its dominating
process. Theorem 2 is useful in the ensuing theoretical analysis
that derives the non-asymptotic error bound of the estimated
intensity functions and establishes edge selection consistency.
The next corollary is a direct consequence of Theorem 2.

Corollary 1. Consider a Hawkes process on [0, T] with intensity
as defined in (1) satisfying Assumptions 1-3. Considering the
matrix G defined in (6), we have

P[] I6s - 56| <24}
i#j
>1—c(p+ 1)2Texp(—c6T1/5),

where c4, ¢5, and cg are positive constants.

The result in Corollary 1 is a direct consequence of Theo-
rem 2, once we show that the entries in G are first and second
order statistics of the proposed Hawkes process.

4.2. Non asymptotic Error Bound

In this section, we derive the non asymptotic error bound of the
estimated intensity function in the diverging p regime. @To sim-
plify notation, we define W(t) = (¥J (), ¥/ (1), ..., q:;(t))T,
where ¥ () = ¢y(t) and Vi(t) = fot ¢, (t — w)dNi(u),
k € [p]. Correspondingly, it holds that G = % fOT W (HW ' (1)dt
and Gkb = %fOT \Ilk(t)\IIkT(t)dt. Let s = max; |&|, where
& ={k:wjx # 0,k € [p]}.

Recall the first order mean intensity function X (u) is defined
as Ax(u) = E(dNk(w))/du, k € [p]. For ki # k» € [p] and
ki = ky € [pl, u1 # uy, define the second order mean intensity
function )_\,(fl?kz (u1, up) as

D (w1, 19) = E(dN, (1) dN, (1)} /(dinduz). — (13)

Denote the p x p covariance function as CO(uy, u), such that,
for k1 # ky € [pland k; = ky € [pl, u1 # ua, the (ki,kz)th
entry is defined as

CY 4t 0) = A (u1,10) — A (u) gy (w2). (14)
When k; = k; and u; = uy, it holds that E {dNy(u)dN;(u)} =
E {dNk(u)} (Hawkes 1971). Thus, the complete covariance
matrix can be written as

Clup, ) = 8(uy — ) A(uy) + CO(uy, uz),

where §(-) is the Dirac function, A(u;) =
diag {Xl(ul),...,ip(ul)} and Cg’k(ul,uz) is continuous at
Uy = uy, k € [p] (Hawkes 1971). Note that C(uy,uz) is
in general not symmetric (Li and Zhang 2011). Specifically,
C(u1,up) is symmetric when u; = up; when u; # u,
C(u1,up) is the cross-covariance function, which is not
necessarily symmetric, and it holds by definition that
Chyky (U1, u2) = Cpy iy (U2, 11).

Assumption 4. Assume there exist constants Amin, Amax > 0
such that, Ax(f) > Amin and )_L,(j?kz(ul,uz) < Amax. Addi-
tionally, assume that CO(uy, up) is nonnegative definite, that
is, [ [fu) COur,u)f(ur)durdu, > 0 for any square-
integrable functions f = (f}, ..., fp).

This condition assumes that the first and second order
mean intensities are bounded. The lower-bounded condition on
the mean intensity 2;(f) can be satisfied when the inhibitory
effect from the negative transfer functions is not excessive
when compared to the background intensity and the excitatory
effect from the positive transfer functions. The nonnegative
definite assumption of C%(uy, uy) holds true for many com-
monly used univariate point process models (Guan, Jalilian, and
Waagepetersen 2013). In the stationary multivariate Hawkes
process case, Bacry and Muzy (2016) showed that C®(uy, u,) is
directly related to the solution to an integral equation involving
the transfer functions; the integral equation can be numer-
ically solved and an estimate of C%(uy, uy) can therefore be
obtained. In our nonstationary multivariate Hawkes process
setup, C®(u1, up) may instead be estimated through parametric
bootstrap (see Section B4). Validity of the nonnegative definite
assumption of C°(u1, u;) can be subsequently assessed using an
estimated C°(uy, u2).

Assumption 5. Assume that there exist Ej =
~ 2 ~ T )

(Bjo>Bj1>---»Bjp) ' € R™TP™M, j e [p], and a smoothness

parameter d > 2 such that, for some positive constants C;, C,
and Cj,

1 [T ~ 2 _

T/o {\IIT(t)ﬂj — xj(t)} dt < Ci(s+ 1)%m7, (15)
with probability at least 1 — C,pT exp(—C,T"/?), where m; <
mo and B;; = Ofork ¢ &;.



This condition assumes that the true intensity function can
be well approximated by the basis functions, in that residuals
from the truncated basis approximation decreases at a poly-
nomial rate of the number of basis functions. The d > 2 is
a smoothness parameter for the background intensities v;(¢)’s
and transfer functions w; x(t)’s. While this parameter may differ
between v;(¢)’s and w;jk(#)’s, it is assumed to be the same to
simplify notations in our analysis. Condition (15) can be verified
when, for example, h(x) = x and the approximation errors
satisfy +[|bjodo(t) — (D137 = O(my>?) and [[bjxep, () —
a)j,k(t)||%,[0’b] = O(ml_Zd) for some bjp € R™ and bjx € R™,
j € [pl, where b is as defined in Assumption 2; see a detailed
proof of this statement in Section A10 and also Section 7. Such
approximation errors hold for B-spline basis (Stone 1985) or
trigonometric basis (Tsybakov 2008) when the target functions
belong to certain function classes. For example, when w;  is d-
smooth (Chen 2007), that is, |a)](2 () — a)](llz ()| < c|t — s|%,
where | = |d] and c is some positive constant, there exists
bjx € R™ for normalized B-spline basis ¢, (t) of dimension m,
such that b, (1) — wjk(D13 0, = O(m;*) (Stone 1985).
We refer to Chen (2007) and Tsybakov (2008) for thorough
reviews of basis approximations and truncation errors.

Next we establish the non-asymptotic error bound of the
estimated intensity functions.

Theorem 3. Consider a Hawkes process on [0, T'] with intensity
as defined in (1) satistying Assumptions 1-5. For j € [p],
let Aj(H) = \IIT(t)ﬂj, where ﬂj is estimated from (8). Given
n = (CGlogp/T)V? s = o(T*5), logp = O(T'5) and
smy = O(T*%), we have, forj e [p],

1 T 2
?/0 OEFHGI

1
<32 {Cl(s—i- l)zm;2d+9sxmax%p}, (16)

holds with probability at least 1 —C3p~2 — C4p* T exp(—Cs T'/?),
where C,, C3, Cy4, and Cs are positive constants, and C; is as
defined in (15).

The error bound on the right hand side of (16) consists of
two terms. The first term comes from the B-spline basis approx-
imation error (i.e., bias from approximating the nonparametric
background and transfer functions using basis functions) and
the second term comes from the statistical error (i.e., stochastic
error in estimating the intensity functions). It is seen that when
sT/logp = o(m%d), the bias term Ci(s + 1)2m1_2d would
become negligible when compared to the statistical error term.
When, for example, s = O(1),d = 2 and m; < T'/5, the error
bound in (16) reduces to O(T~*/> + logp/T), which is com-
parable with the estimation error in sparse additive regressions
(Raskutti, Wainwright, and Yu 2012).

Two key ingredients in the proof of Theorem 3 are estab-
lishing an upper and lower bounded eigenvalue condition for
G*R (see Lemma S10) employed in the standardized group
lasso penalty in (8) and a restricted eigenvalue condition for
G under the group lasso setting (see Lemma S11). Establishing
these two conditions under the proposed nonstationary process
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is nontrivial; it requires a delicate analysis that combines proper-
ties of the basis functions and concentration inequalities of first
and second order statistics of the proposed process. Combining
these two ingredients and a martingale central limit theorem for
counting processes (van de Geer 1995), we are able to derive the
result in Theorem 3. We note that if the basis approximation
error condition in Assumption 5 is not satisfied, we may replace
the first term in the error bound (16), that is, C; (s + l)zml_zd
with

1 (T ~ 2
Ry, = _ min —f {\Iﬁ(t)ﬂj - ,\j(t)} dt
ﬂjeRmoerml T 0
and Theorem 3 holds with an error bound of 32(Rym, +
9sAmax logp/T).

4.3. Network Structure Recovery

In this section, we show that, under certain regularity condi-
tions, our proposed method can consistently identify the true
edges in the network with probability tending to one. Recalling
V() = fot(ﬁl(t — u)dNi(u), k € [p], we introduce two
assumptions.

Assumption 6. For all j € [p], we assume that
T T
{E/ <I>k(t)<1>gj(t)dt} {]E/ <1>gj(t)<1>g(t)dt}
0 0

-1

max
keE;

2
Ymin

S —7
6\/§Vmax

where ®i(H) = [, (t — 5) {dNk(s) — Ax(s)ds}, Wg (1) €
R™ & is the concatenation of vectors {Wy(f) : k € &}, and
Ymin and Ymax are constants as defined in Lemma S10.

This is the irrepresentable condition (Zhao and Yu 2006)
under our setting and it is a condition on covariances between
the component processes. Considering the jth component pro-
cess, this condition stipulates that the ®;(f) from non neighbors
of j (ie, k ¢ &) has small covariances with ®(t) from
neighbors of j (i.e., k € &;). A trivial sufficient condition is if
the covariance function Ck],kz (u1,uz) = 0fork, ¢ & andky €
&;. More generally, Assumption 6 is satisfied if the covariance
|C21,k2 (u1,uz)| < co/sfor ki ¢ &, ky € & and some constant
co > 0; see a detailed proof in Section All. The condition
can be further relaxed if the adaptive lasso (Zou 2006; Huang,
Horowitz, and Wei 2010) penalty term is considered and we
plan to investigate this extension in our future work. The next
condition is a minimal signal condition.

Assumption 7. There exists a constant Bmin > 0 such that
1Bjkll2 = Bmin for k € &, where B; is as defined in Assump-
tion 5.

Note that this condition is not placed on B since B;, is not
included in the penalty term. This minimal signal condition can
be relaxed; see discussions in Section 7.

Theorem 4. Consider a Hawkes process on [0, T'] with intensity
as defined in (1) satisfying Assumptions 1-7. Assume that n; =
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(Clogp/ T2, 2T/ logp = O(m3?), s = O(T'/), logp =
O(T'?), s*my = o(T*?). It holds that, forj € [p],

&=5

with probability at least 1 — 2C3p~2 — 3C4p*T exp(—Cs T/%),
where C,, C3, C4, and Cs are as in Theorem 3.

This result establishes selection consistency. The condition
$>T/logp = O(m3%) is needed in selection to ensure the bias
term O(szml_2d) does not dominate the group-wise estimation
error O(logp/T). The conditions in Theorem 4 are satisfied
when, for example, s = O(1),d = 2, logp = TY5 and
my < T'. We note that selection consistency was also stud-
ied in Chen et al. (2017), under a stationary Hawkes process
setting. In comparison, our result is established under the more
flexible nonstationary setting. Moreover, our result significantly
relaxes a restrictive condition in Chen et al. (2017). Specifically,
Assumption 7 (second equation) in Chen et al. (2017), after
some simplification, would require T to be upper bounded. This
result on the selection consistency has an important implication
in practice, as it ensures that our method can correctly identify
the true edges in the latent network.

Next, we investigate the selection consistency of the proposed
GIC in (9). We use é;ﬂ / to denote the estimated &; with tuning
parameter 1. Let max and nmin be, respectively, the upper and
lower limits of the tuning parameter 1;, where nmax can be
easily chosen such that £ i % s empty and 7min can be chosen

such that 3;7“““ is sparse, and the corresponding model size

so = |:€;’7mi“| satisfies conditions in Theorem 5. We partition the

interval [min, 'max] into two subsets
2
.= [77]‘ € [Mmin> Mmax] : gjj ) 5]} >
o ~ni
Iy = [ﬂj € [Mmin> Mmax] : gjl D) (c;] and 5}] * 5j} ,

corresponding to 7;’s that result in under-fitted and over-fitted
models, respectively. The next result states that the proposed
GIC is consistent in model selection.

Theorem 5. Consider a Hawkes process on [0, T'] with intensity
as defined in (1) satisfying Assumptions 1-5 and 7 and that
$T/logp = O3, s = O(T'5), logp = O(T'®) and
mp = O(T??). Assume that there exists r;;" € [Nmin> Nmax]

such that 5'7 I = &j. Consider the GIC function defined in (9).

When sy = |<€7]“‘“‘| = o(T?), s = o(sp), smiar/T = o(1) and
slog p/ar = o(1), it holds that

]P’< inf  GIC(n;) — GIC(n}") > O) — 1.
njel_Ur'y 1

The assumption that there exists r};‘ € [Mmin»> Nmax] such that
21

& =¢&is satisfied, for example, by the result in Theorem 4,
which would additionally require Assumption 6. This is true
by noting |é‘;’7m“| = 0, |<§7m‘"| = sp, s = 0(sg) and the size
of the selected model decreases as nj increases (Zhang, Li, and
Tsai 2010). The main challenge in establishing Theorem 5 is

the large number of candidate models in the over-fitted case,

which increases combinatorially fast with p. To overcome this
challenge, we introduce a proxy criterion on a support of size
so < p (Zhang, Li, and Tsai 2010); see proof details in Section
A7. The two conditions on «t specify a range that ensures con-
sistency. Specifically, slog p/ar = o(1) suggests that ot should
diverge adequately fast such that the true model is not domi-
nated by over-fitted models. On the other hand, smjar/T =
o(1) restricts the rate of divergence for o based on the size of
the true model s and observation window length T. If we take,
for example, ar < (logp)?log T, both conditions on a7 are
met. While other choices of ar can also satisfy both conditions,
we have chosen a uniform choice a1 < (logp)*log T in our
empirical investigations. Moreover, we take sg < T%/°/loglog T

and choose nmay such that that |é;'7m"“‘| = 0 and nin such that

1E) = so.

4.4. Test of Background Intensity

In this section, we consider the problem of testing if the back-
ground intensities of the proposed Hawkes process are constant
in time. If the background intensities v;(t)’s in (1) are constant,
under Assumption 1, a stationary process whose intensity fol-
lows (1) exists (Brémaud and Massoulié 1996).

In our model, the background intensity v;(t) for the jth
process is represented as ¢ () B o. Without loss of generality, let
the first term in the basis @ (¢), that is, ¢o1 (f), be the constant
term. Testing if vj(¢) is constant in time can then be formulated
as testing the following hypotheses:

Hy : A,Bj)o =0 versus H; : Aﬂj’o #0 (17)
0 0, —
where A = | 1 mo=1 i| € R™M>*™M0_ The test
0p—1 Limo—1)x(mo—1)

in (17) can detect any fixed departure in v;(¢) from a constant
provided that my is sufficiently large (Fan, Zhang, and Zhang
2001). Recall that B; is obtained from

_ p 1/2
_ , ‘ . T akk)
'BJ =g ﬂjeﬂg’ly’lorimlp {e](ﬂ]) + 77] ; (ﬂj’kG 'Bj’k) } ’
(18)
where Zj(ﬂj) is defined as in (7). Next, letting suppl(ﬂj) ={ke

. -1
[pl : Bjx # O}, and define the refitted estimator ,Bj and the
. . ~H
restricted estimator 8 I ’ under Hy as

~1 .
B =ar min
! s bjeRM0-+mp

supp, (by)=supp, (B;)

(b)),

min (19)
bjERm0+m1P:Abj’0=0

supp; (bj)=supp, (Ej)

H
ﬁj ' = arg fj(bj).

Note that the number of basis functions used in (18) and (19)
may not be the same; see discussion after Theorem 6. Finally,
we define the test statistic as

s=T{66" - 4],

where Ej(ﬂ]-) is defined as in (7). The following theorem states
the asymptotic null distribution of the test statistic.



Theorem 6. Assume that all conditions in Theorem 4 are satis-
fied and the m; used in (19) satisfy s> T = o(m%d"'l). Under Hy,
we have that

- D
Sj/hj = Ximg—1-
where )_»j = E{dN;(t)}/dt is a constant under Hy.

Theorem 6 is derived for a two-step procedure, where the
first step involves a regularized estimation in (18) and requires
appropriate regularization to achieve selection consistency and
the second step involves refitting based on the selected set
of edges from step 1. The selection consistency in step 1 is
ensured by Theorems 4-5, and the tuning parameter n; used
to calculate B; is selected following the proposed GIC in (9).

In step 2, the condition s’T = o(m%d“) is needed such that
the bias from approximating the background and transfer func-
tions using basis functions is asymptotically negligible relative
to variance of the test statistic. Such a condition is usually
referred to as under-smoothing (Chen 2007) and is common
in nonparametric regression testing problems. For instance, if
my = TV is used in (18) (see discussion of Theorem 4), the
under-smoothing condition s*T = o(m%dﬂ) will be satisfied
if we multiply 1, by, for example, a factor of T'/2°. We do not
assume my is fixed when estimating ,?3}1, that is, 1y may increase
with T. As my increases, we may alternatively write the limiting
distribution as (S;/Aj—mo+1)/(2mg—2)'/? —4 N(0,1), which
does not depend on my. In practice, given the mg and m; used
in network structure estimation (see Section B1), we multiply
both of them by an under-smoothing factor (e.g., T'/?°), which
results in the under-smoothed mg and m; used in the testing
procedure.

Based on the result in Theorem 6, we would reject the null
Hy : Aﬂj’o = 0if S]-/Xj > Z1_q4> Where zy is the ath quantile
of szng—l and Xj is estimated with ij = %fOT/):j(t)dt. As the
limiting distribution in Theorem 6 is derived under perfect
model recovery, ensured by Assumptions 6-7, cautions should
be exercised when performing this test, as the testing procedure
may be invalid when perfect model recovery does not hold. We
plan to relax this assumption on perfect model recovery in our
future research; see discussions in Section 7.

Next, we discuss the asymptotic power of our proposed test.
The following theorem provides a lower bound on the growth
rate of the test statistic under alternatives.

Proposition 1. Assume that all conditions in Theo-
rem 4 are satisfied. For any alternative H; such that
||Aﬂj,0||2/(52m1 logp/T)'/? — oo, we have

P(S; > Mislogp) — 1,
for some constant M; > 0.

This result shows that the growth rate of S; under the alterna-
tive is at least s log p, while p diverges. The asymptotic null distri-
bution in Theorem 6 and the growth rate under the alternative
together suggest that the null and the alternative hypotheses are
well separated, and our proposed test is asymptotically powerful
against alternatives. Moreover, the test is locally powerful, that
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is, || Afﬁj’o [|2 is allowed to tend to 0 as long as it decreases no faster
than the rate of (s>m; log p/T)/2.

Compared with the inferential result in Chen and Hall (2013)
for the maximum likelihood estimator of univariate Hawkes
process, Theorem 6 is derived for least squares based estimation.
Hence, the specific form of the martingale, the characterization
of its large jumps and the asymptotic variance are different when
applying the martingale central limit theorem. Moreover, as
S;j calculates the difference between two least squares losses, a
careful treatment was needed to derive its asymptotic expansion;
see Step 1 in the proof. Finally, Chen and Hall (2013) con-
sider parametric forms of the background intensity and transfer
function while we consider a nonparametric estimation using
B-splines. Consequently, our analysis is challenged by a bias
term of fOT \Ilgj(t) {xj(t) — Aj(t)} dt in the test statistic, which
is bounded by combining properties of the B-spline basis and
results in Lemmas S2 and S11.

5. Simulation Studies

In this section, we carry out simulation studies to investigate
the finite sample performance of our proposed method, and to
compare with existing solutions. We consider three simulation
settings. In Simulation 1, we investigate the estimation accuracy
of our proposed method; in Simulation 2, we investigate the
network edge selection accuracy; in Simulation 3, we evaluate
the size and power of our proposed test of hypothesis. Due
to space limitations, results from Simulation 3 is relegated to
Section B3 of the supplement. We refer to our proposed method
for nonstationary Hawkes processes as NStaHawkes. In Sim-
ulations 1 and 2, we compare our method with Chen et al.
(2017), referred to as StaHawkes, which was proposed for
stationary Hawkes processes. We also compare with a binning
based approach in Zhang et al. (2016) on selection accuracy,
referred to as BinGLM.

In all simulations, we use the criterion in (9) with
ar = (logp)?logT/2 to select the tuning parameter for
NStaHawkes. The tuning parameters in StaHawkes and
BinGLM are selected using the BIC-type functions recom-
mended, respectively, in Chen et al. (2017) and Zhang et al.
(2016).

Simulation 1
In this simulation, we consider two different network settings.
The first setting considers the network in Figure 1(a), where
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Figure 1. Directed network structuresin Simulation 1 with (a) considered in Setting
1.1 and (b) considered in Setting 1.2. Red (solid) edges represent excitatory effects
and blue (dashed) edges represent inhibitory effects.
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all transfer functions are positive, corresponding to excitatory
effects. The second setting considers the network in Figure 1(b),
with both positive and negative transfer functions, correspond-
ing to excitatory and inhibitory effects, respectively. Let the net-
work edge set be £ = {(k,1),k = 2,...,11}. The background
intensity functions and transfer functions for each setting are as
follows:

Setting 1.1:

v1(t) = 60 + 50 x sin(2wt/T),

vi(t) = oj + o X sinrt/T), j=2,...,21,

w1k = 20000(x + 0.001) exp(1 — 500x), k=2,...,11,
Setting 1.2:

v1(t) = 60 + 50 x sin(2wt/T),

vi(t) = @j + @ x sinQwt/T), j=2,...,21,

w1k = 20000(x + 0.001) exp(1 — 500x), k=2,...,6,

w1k = —15000(x + 0.001) exp(1 — 500x), k=7,...,11,

where «; is generated from N(30, 5%). We let the supports of all
transfer functions be [0, 0.01], and simulate events in [0, T'] with
the intensity function (1) under Settings 1.1-1.2. To estimate the
background intensities and transfer functions, we use cubic B-
splines with equally spaced knots. To select the numbers of B-
splines mg and m;, we first perform selection using the proposed
procedure in Section B1 over 20 data replications. The numbers
of B-splines are then fixed at the respective averages of the
20 selected values for mg and m;. It is worth noting that the
estimation and selection accuracy are not overly sensitive to
the number of B-splines used in the estimation (see additional
results in Section B2). We have also considered larger ranges
for the transfer functions and the results are very similar. We
thus focus on the current setting when reporting our simulation
results.

To evaluate the estimation accuracy, we report the mean
squared errors. For the background intensity, it is calculated as

MSE(v) = % | MSE(v}), where

jelp

1 T 1/2
MSE(v)) = {?/ (ﬁj(t)—uj(t))zdt}
0

and V;(¢) is the estimate of v;(¢). For the transfer functions, it is
calculated as
MSE(w) = 1% jcip) MSE(w;,), where

p b 1/2
MSE(w;,.) = {Z /0 @ (1) —wj,k(t))Zdt}
k=1

and aj,k(t) is the estimate of wjx(f). To evaluate the selection
accuracy, we report the false positive rate (FNR), the false pos-
itive rate (FPR) and the F; score (Forman 2003; Ho, Parikh,
and Xing 2012), calculated as 2TP/(2TP+FP+FN), where TP is
the true positive count, FP is the false positive count, and FN
is the false negative count. The highest F; score is 1 indicating
perfect selection. For both NStaHawkes and StaHawkes
estimators, we report the estimation and selection accuracy. For
the BinGLM estimator, we only report the selection accuracy, as
this method cannot be used to estimate the intensity functions.
Table 1 reports the average criteria from the three methods, with
standard errors in the parentheses, over 100 data replications.
The proposed method NSt aHawkes is seen to achieve the best
performance, both in terms of the estimation accuracy and edge
selection accuracy, and this holds true for different observation
window length T. Moreover, it is seen that the estimation error
of NStaHawkes decreases as T increases. Such an observation
agrees with our theoretical result in Theorem 3.

Simulation 2

In this simulation, we evaluate the edge selection accuracy of
our proposed method. We consider two types of networks.
The first type of networks are assumed to follow an Erdos-
Renyi network model with edge probability p, (Erdés and Renyi
1969). In an Erdos—Renyi network model, edges are generated
independently from a Bernoulli distribution with probability
pe- The second type of networks follow a scale-free network

Table 1. Comparison of the three methods with varying observation window length T in Simulation 1.

Setting 1
T Method MSE(v) MSE(w) FNR FPR F1 score
10 NStaHawkes 7.921 0.071) 0.332 (0.003) 0.008 (0.003) 0.011 (0.001) 0.816 (0.007)
StaHawkes 25.576 (0.073) 1.363 (0.026) 0.000 (0.000) 0.305 (0.008) 0.139 (0.003)
BinGLM - - 0.003 (0.002) 0.058 (0.001) 0.443 (0.002)
20 NStaHawkes 7.389 (0.038) 0.279 (0.003) 0.002 (0.001) 0.005 (0.000) 0.908 (0.006)
StaHawkes 24.574 (0.034) 0.899 (0.010) 0.000 (0.000) 0.321 (0.005) 0.129 (0.002)
BinGLM - - 0.000 (0.000) 0.058 (0.001) 0.447 (0.002)
Setting 2
T Method MSE(v) MSE(w) FNR FPR F1 score
10 NStaHawkes 6.111 (0.038) 0.279 (0.003) 0.113 (0.012) 0.005 (0.000) 0.835 (0.007)
StaHawkes 25.549 (0.083) 1.297 (0.028) 0.042 (0.012) 0.305 (0.009) 0.135 (0.004)
BinGLM - - 0.342 (0.019) 0.041 (0.001) 0.376 (0.007)
20 NStaHawkes 5.545 (0.026) 0.252 (0.002) 0.094 (0.011) 0.001 (0.000) 0.924 (0.006)
StaHawkes 24.648 (0.047) 0.938 (0.014) 0.414 (0.010) 0.316 (0.007) 0.080 (0.002)
BinGLM - - 0.359 (0.018) 0.094 (0.004) 0.236 (0.007)

NOTE: NSt aHawkes refers to the proposed method, StaHawkes refers to Chen et al. (2017) and BinGLM refers to Zhang et al. (2016). Standard errors are shown in

parentheses.
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Erdos-Renyi p.=0.05

power-law =1

Figure 2. Directed network structures in Simulation 2. Red (solid) edges represent excitatory effects and blue (dashed) edges represent inhibitory effects.

model, with the degrees of nodes generated from a power-law
distribution with parameter «; such networks have a skewed
degree distributions and a larger « indicates a higher degree
heterogeneity (Clauset, Shalizi, and Newman 2009). We set p =
100, p, = 0.025,0.05 and @ = 1,2. The generated networks
are shown in Figure 2. Based on the generated networks, we
simulate data using the following setting.

Setting 2: v;(¢) = o + @j x sin(2nft/T),j = 1,...,100,

where «; is generated independently from N(100,5?) for each
node. The transfer functions are the same as in Setting 1.2.
We simulate events in [0, T'] with intensity function (1) with
f = 5and T = 20. To estimate the background intensities,
we use cubic B-splines with equally spaced knots and to esti-
mate the transfer functions, we use step functions with equally
spaced knots, as considered in Hansen, Reynaud-Bouret, and
Rivoirard (2015) and Chen et al. (2017). The numbers of basis
functions mg and m, are selected following the same procedure
as in Simulation 1. Table 2 compares the false negative rate,
false positive rate and F; score of the three methods over 100
data replications. It is seen that NStaHawkes achieves the
best edge selection accuracy, in terms of F; scores, across all
settings; StaHawkes shows a large false positive rate and this
is likely due to the biased estimation of the background intensity
functions; BinGLM shows a large false negative rate and this is
possibly due to the loss of information in the binning approach.

We have also considered p = 200, where NStaHawkes
continues to achieve a satisfactory edge selection accuracy (see
Section B3).

6. Application to Neurophysiological Data

In this section, we apply our proposed method to a neuron
spike train dataset and estimate the functional connectivity
network of neurons in the rat prefrontal cortex. The data were
obtained from adult male Sprague-Dawley rats performing a T-
maze based delayed-alternation task of working memory (Dev-
ilbiss and Waterhouse 2004). In the experiment, the animal was
trained to navigate down the T-maze and choose one of two
arms (opposite to the one previously visited) for food rewards.
In each trial, the animal was released after being placed in a start
box for a fixed length of delay. On a correct trial (i.e., the arm
with food was chosen), the animal was rewarded and returned
to the start box. On an incorrect trial (i.e., the arm without food
was chosen), the animal was returned to the start box without
being rewarded. In the study, the animal remained in a training
period until it reached 90%-100% accuracy on 40 trials. After
the training period, a recording session was performed. The
spike train recording consisted of 73 neurons in an experiment
of 40 trials. Each trials took about 36 sec and the total recording
had 1434.22 sec. See Zhang et al. (2016) for more information
about data collection and processing.
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Table 2. Comparison of the three methods with varying network parameters in Simulation 2.

Erdés—Renyi network

pe = 0.025 pe = 0.05

FNR FPR Fq score FNR FPR Fq score

NStaHawkes 0.003 0.002 0.935 0.005 0.005 0.909
(0.001) (0.000) (0.002) (0.000) (0.000) (0.001)

StaHawkes 0.000 0.859 0.027 0.000 0.882 0.053
(0.000) (0.001) (0.000) (0.000) (0.001) (0.000)

BinGLM 0.394 0.133 0.097 0.369 0.171 0.148
(0.003) (0.001) (0.001) (0.002) (0.001) (0.000)

power-law network
oa=1 oa=2

FNR FPR Fq score FNR FPR Fq score

NStaHawkes 0.005 0.002 0.928 0.003 0.003 0.870
(0.001) (0.000) (0.002) (0.001) (0.000) (0.001)

StaHawkes 0.000 0.848 0.023 0.002 0.824 0.024
(0.000) (0.001) (0.000) (0.000) (0.001) (0.000)

BinGLM 0379 0.121 0.090 0.787 0.060 0.059
(0.003) (0.000) (0.000) (0.004) (0.000) (0.001)

NOTE: NSt aHawkes refers to the proposed method, StaHawkes refers to Chen et al. (2017) and BinGLM refers to Zhang et al. (2016). Standard errors are shown in

parentheses.
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Figure 3. Estimated neuronal networks using NStaHawkes (left), StaHawkes (middle) and BinGLM (right). The red and blue arrows represent excitatory and
inhibitory effects, respectively. Light colored nodes represent neurons that have self-exciting effects.

We applied our proposed method to this dataset. To estimate
the background intensities, we used cubic B-splines with equally
spaced knots and to estimate the transfer functions, we used step
functions with equally spaced knots, as considered in Hansen,
Reynaud-Bouret, and Rivoirard (2015) and Chen et al. (2017).
The numbers of basis functions g and m; were selected using
the proposed procedure in Section B1. The GIC in (9) was used
to select the tuning parameters with ar = (log p)* log T/2. The
range of the transfer functions were set to [0, 2]. We have also
considered a larger range, and the results remain very similar.
First, we performed the proposed test of hypothesis for each
neuron to assess the if the background intensity is constant in
time. Based on the p-values from the tests, 38 neurons had time-
varying background intensity functions (significance level was
set to 0.05). Next, we move to estimate the neuronal connectivity
network using the proposed NStaHawkes. When estimating
the network structure, we also considered StaHawkes and
BinGLM. The tuning parameters in StaHawkes and BinGLM
were selected using their recommended BIC functions, respec-
tively. Figure 3 shows the estimated neuronal networks from the

three different methods. We can see all three estimated networks
are sparse, with both excitatory and inhibitory relationships.
However, their structures are quite different. The network esti-
mated from our method is highly clustered and has a power-
law degree distribution, which are two unique features of real
world networks (Barabdasi and Albert 1999). Also interestingly,
about 70% of the identified edges in our estimated network are
within the right prefrontal cortex, which agrees with existing
findings that the right prefrontal cortex is highly related to the
episodic memory retrieval (Henson, Shallice, and Dolan 1999).
The biological significance of the identified edges requires fur-
ther investigation.

Compared to our estimated network, StaHawkes identi-
fied a very sparse network. This difference is likely due to the
bias in estimating the background intensity function from their
method. BinGLM also identified a very different network struc-
ture. This network has two hub (or densely connected) nodes,
namely, neurons 60 and 62, and a small clustering coefficient. We
find that neurons 60 and 62 are the two most frequently fired
neurons in the ensemble. Specifically, neurons 60 and 62 have



14,433 and 8191 firing events, respectively, while other neurons
have on average 501 firing events during the experiment. The
regularized generalized linear model framework in BinGLM
penalizes the frequently and infrequently firing neurons equally
when encouraging sparsity. This can potentially lead to over
selection for the frequently firing neurons, and under selection
for the infrequently firing neurons.

7. Discussion

As summarized below, Theorems 3-6 each require a set of rate
conditions on s, p and m;.

Theorem 3 s = o(T?/°),logp = O(T'/?), sm; = O(T*®)
Theorem 4 s = O(T'/%), logp = O(T'%), $2my = o(T¥?),
$2my2 = O(logp/T)
Theorem 5 s = O(T"/®),logp = O(T/?), m; = O(T?/%),
szml_z‘i = O(ogp/T)
Theorem 6 same as Theorem 4, s> T = o(m%d“)
In Theorem 4, the requirement s?m; = o(T*%) is needed

to characterize the estimation error of ;in £5,00 nOrm, that is,
MaXgeg; ||;§j,k - ﬁj,k”%. In Theorem 5, the requirement m; =
O(T?/3) is needed to ensure GIC selection consistency in the
under-fitted case. In Theorems 4-5, the additional requirement
szml_zd = O(logp/T) is to ensure that the B-spline approxima-
tion error does not dominate the estimation error. In Theorem 6,
the condition s’ T = o(m%dﬂ) is required such that the approx-
imation error is negligible relative to the variance of the test
statistic. For example, when the smoothness parameter d = 2
and s = O(1), Theorems 3-5 are satisfied when logp < T'/°
and m; =< T3, and Theorem 6 is satisfied when m; =< T4,
We remark that the minimal signal condition in Assumption 7
can be relaxed with more stringent assumptions on s or log p in
Theorems 4-5 to control the estimation error and with modified
conditions on ot in Theorem 5 to control the penalty strength
in GIC.

We conclude the article with a brief discussion on some
potential future directions. We hypothesize that the bounded
intensity condition in Assumption 2 can be relaxed at the
cost of an additional log T term in the estimation error and
Assumption 5 can be verified under nonlinear link functions.
The limiting distribution result in Theorem 6 requires condi-
tions for establishing selection consistency (i.e., irrepresentable
condition in Assumption 6 and minimal signal condition in
Assumption 7). To derive a valid inferential procedure that
does not reply on such conditions, we could consider the de-
correlated score testing procedure in Neykov et al. (2018); Wang,
Kolar, and Shojaie (2020) or the double selection procedure in
Bach et al. (2020). We plan to investigate these directions in
our future work. In our work, we investigated empirically the
reliance of the testing procedure on model selection accuracy.
In Simulation 3.1, we showed that the size of the proposed test
is well controlled; for this setting, the average false negative rate
is 0, false positive rate is 0.015. In Simulation 3.2, we showed
that the proposed test is powerful against alternatives; for this
setting and p = 0.25, the average false negative rate is 0, false
positive rate is 0.016. These results suggest that the proposed

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 107

testing procedure may not be overly sensitive to errors in model
selection.

Supplementary Materials

The supplementary materials contain proofs to all theoretical results, addi-
tional simulation results and computational details.
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