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This study presents a novel machine learning approach for predicting the anisotropic parameters of the
Y1d2000-2d non-quadratic yield function using a hole expansion test. Heterogeneous stress-strain fields dur-
ing the test substitute for multiple experiments required in the conventional parameter identification approach.
An artificial neural network model for the parameter prediction is developed using a virtually generated train-
ing dataset composed of strains from hole expansion simulations, performed using randomly selected aniso-
tropic parameters. The developed model predicts the YId2000—2d parameters for AA6022-T4 based on the

measured strain field from a hole expansion experiment, and the parameter results are evaluated by comparing
anisotropy in uniaxial tension tests, the yield locus, and thinning variation in hole expansion test.

© 2024 CIRP. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Finite element (FE) analysis is often employed to investigate
issues in metal forming processes, such as shape irregularities and
part failure, prior to implementation in mass production. One of the
crucial requirements for the FE simulation is an accurate description
of material behavior including the anisotropy during plastic deforma-
tion. Among the several anisotropic yield functions proposed over the
decades, the Yld2000-2d non-quadratic anisotropic yield function,
developed by Barlat et al. [1], has been widely used to describe vari-
ous levels of plastic anisotropy in different materials, such as alumi-
num, steel, titanium, etc. The model prediction is often very sensitive
to the anisotropic parameters determined by the calibration method.
Also, the ability to predict all anisotropy characteristics, e.g., normal-
ized yield stresses and r-values in different orientations, with a single
set of anisotropic parameters is challenging and depends on choice of
experiments and optimization method [2-4].

Conventionally, the calibration of the anisotropic parameters
requires multiple experiments employing specific stress states and
material orientations. For instance, the 8 anisotropic parameters of the
Y1d2000-2d yield function are typically determined by uniaxial ten-
sion (UT) in the rolling (RD), diagonal (DD, 45° from the RD), and trans-
verse directions (TD) and a balanced biaxial tension experiments [1].
Additionally, plane-strain tension (PST) or simple shear experiments
are used when they are important stress states in the FE analysis. For
instance, Park et al. [5] investigated the influence of calibration for
accurate description of plastic anisotropy and found that calibration of
Y1d2000-2d yield function using PST in RD and TD rather than bal-
anced biaxial tension can significantly improve the accuracy of
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thickness prediction in hole expansion (HE) tests. To mitigate the sub-
stantial costs and efforts associated with these experiments, non-stan-
dard testing specimens have been developed to derive anisotropic
parameters by inducing heterogeneous deformation incorporating
holes, notches, and M-shaped uniaxial or biaxial loading samples
[2,6—8]. The heterogeneous strain field can be observed through opti-
cal full-field techniques, such as digital image correlation (DIC) [6].

To calibrate the anisotropic parameters from the heterogeneous
deformation fields, an inverse method is often used. Finite element
model update (FEMU), a popular inverse method, compares the het-
erogeneous deformation field of FE simulation with the DIC measure-
ments and iteratively updates the yield function parameters until a
convergence criterion is satisfied. Several researchers have employed
FEMU for anisotropic parameter calibration. Zhang et al. [4] identified
the 13 parameters for the Bron and Besson yield function using
FEMU. Similarly, Guner et al. [6] described the anisotropy of AA6016-
T4 using the Y1d2000—2d anisotropic yield function with 8 parame-
ters identified via the FEMU method. Zhang et al. [9] integrated an
identifiability framework along with the FEMU process. This allowed
them to optimize a notched tensile specimen to enhance the inhomo-
geneity of the strain field while calibrating the Yld2000—2d aniso-
tropic parameters. However, the FEMU process may need excessive
time and computation costs due to the iteration required.

Alternatively, the virtual field method (VFM) was introduced by
Rossi and Pierron to address the drawbacks of FEMU [10]. They applied
VFM to calibrate the Hill48 yield function parameters. Rossi et al. [11]
simultaneously calibrated Hill48 and YIld2000-2d yield function
parameters along with the Swift hardening model using a notched
specimen. Even though they yielded reasonable results, they suggested
specimen geometry optimization for potential improvement.

Wessel et al. [12] recently introduced a machine learning-based
sampling in a crystal plasticity FE method to efficiently sample virtual

Please cite this article as: J. Kim et al., Identification of YId2000—2d anisotropic yield function parameters from single hole expansion test
using machine learning, CIRP Annals - Manufacturing Technology (2024), https://doi.org/10.1016/j.cirp.2024.04.026



mailto:jinjin.ha@unh.edu
https://doi.org/10.1016/j.cirp.2024.04.026
https://doi.org/10.1016/j.cirp.2024.04.026
https://doi.org/10.1016/j.cirp.2024.04.026
https://doi.org/10.1016/j.cirp.2024.04.026
http://www.ScienceDirect.com
http://https://www.editorialmanager.com/CIRP/default.aspx

JID: CIRP [m191;May 23, 2024;15:17]
2 J. Kim et al. / CIRP Annals - Manufacturing Technology 00 (2024) 1-4
experiments and identify anisotropic parameters for various aniso- (@ , (b) Initial Formed
tropic yield functions. Karadogan et al. [13] applied an artificial neu- f Punch —— o
ral network (ANN) to determine the 3 parameters of the YId89 Dk P e—
anisotropic yield function. They used 1080 strain values extracted LS slank R12
from certain elements of notched tensile sample simulations along 3 l -17_5L i
orientations as inputs in the ANN model to include various strain 8 - L0 -
© 4 Unit: mm

fields. However, a complex architecture with many inputs can be a
barrier to create an effective ANN model.

In this paper, a feedforward ANN is proposed to predict the
Y1d2000-2d yield function parameters for AA6022-T4 using a single
HE test. In Section 2, material properties and the plasticity model are
summarized. Section 3 describes the machine learning strategy,
including the virtual training data generation and optimized architec-
ture. Section 4 shows the validation of the developed model compar-
ing plastic anisotropy in UT tests, yield locus, and HE test thinning
predictions. Section 5 summarizes conclusions and future work.

2. Material properties and plasticity model

The material used in this study is a 1 mm thick, AA6022-T4 sheet.
The material characteristics, including strain hardening and plastic
anisotropy, were studied by Ha et al. [3]. UT tests at every 30° from RD
to TD, PST tests in the RD, DD, and TD, and a disc compression (DC) test
to determine the in-plane strain ratio in balanced biaxial tension were
performed. The mechanical properties are summarized in Table 1. Note
that a total of 11 data from 8 experiments with 3 different test setups
were used to achieve varying stress states to calibrate the Yld2000—2d
anisotropic parameters in [3].

Table 1
Summary of mechanical properties of AA6022-T4 [3].

Elastic properties

Young’s modulus  E=70 GPa Poisson’sratio  v=0.3

Plastic properties (WP= 20 MJ/m?)

uT RD 30° 60° 90°
of7 1.000 1016 0976 0954
r-value 0793 0465 0352 0510

PST RD 45° 90°
/5 1.096  1.019 0.978

DC r,, 1.080

In this work, the same Voce isotropic strain hardening model is
used as in the previous study [3]:

o =430.52 — 213.71 - exp(—8.88¢)(MPa) (1)

where ¢ is the equivalent plastic strain.
The Y1d2000-2d non-quadratic anisotropic yield function with a
plane-stress condition [1] is used:

Xy = Xo|™ 4 [2X, + X, ™+ [2X) + Xo|™ = 25 2)

where X;_,, and X;:LZ are the principal values of two linearly trans-
formed deviatoric stress tensors with anisotropic parameters, i.e.,
aj_g. An exponent m is recommended to be 6 for body-centered
(BCC) and 8 for face-centered cubic (FCC) crystal structure metals,
such as AA6022-T4 used in this study. Detailed information regarding
this yield function can be found in [1].

3. Machine learning strategy
3.1. Hole expansion simulations

Past research [2,4,6-11] recommends various experiments and
non-standard geometries to achieve heterogeneous deformation
fields for anisotropic yield function parameter calibration. As an alter-
native, the HE test achieves various stress states in a single experi-
ment from uniaxial to biaxial tensions along the radial direction of
the specimen [3,14]. In this version of the HE test, a cylindrical
shaped punch with a recession in the center is used to avoid contact
between the punch and the blank near the expanding hole as seen in
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Fig. 1. FE model for hole expansion test: (a) iso-view of quarter model, (b) tool dimen-
sions, and (c) blank mesh with data extraction points.

Fig. 1. The HE test is performed until the first rupture is visually
observed in the DIC images.

A HE simulation is performed in ABAQUS/Implicit with the von
Mises yield function initially to observe the stress states during the
deformation. A schematic of the HE test FE model and meshed quar-
ter blank of 75 mm radius with an initial hole of 17.5 mm radius are
shown in Fig. 1. The mesh is generated using element type S4R with
9 integration points through the thickness and 60 elements in cir-
cumferential and radial directions. A Coulomb friction coefficient, u=
0.12, is used.

Stress states are extracted from the elements, which are at the
hole edge, i.e., at 17.5 mm, to 34.1 mm in the radial direction on the
blank from RD (x-direction) to TD (y-direction). Although the hole
will be expanding, the initial element locations will be used to iden-
tify these elements during analyses. The measurement points on the
mesh and the corresponding stress states with the von Mises yield
surface are shown in Figs. 2(a) and (b), respectively. Note that the
same color indicates the same radial distance from the center. It can
be seen that the blank is subjected to various stress states from UT to
biaxial tension, including PST. Thus, the HE test in a single experi-
ment provides the various stress states required to predict the aniso-
tropic parameters for the YId2000—2d yield function.

™

Unit: mm

Psrm)) PST(RD)
\  UT(RD)

Fig. 2. Stress state analysis from HE simulation: (a) color-coded locations on the mesh
and (b) stress states corresponding to color points for von Mises yield surface.

3.2. Virtual training data generation

The HE simulations are performed by implementing a user-
defined material subroutine (UMAT) for the YId2000—2d yield func-
tion into ABAQUS/Implicit to virtually generate training data. In total,
2500 simulations are conducted using randomly selected anisotropic
parameters between 0.8 and 1.2, i.e., a;_g=[0.8—1.2].

The 2 normal strain components, i.e., & and ey, are extracted
from 7 elements at certain locations on the specimen (see Fig. 1(c))
and used to train the ANN model for the Yld2000—-2d anisotropic
parameter prediction. In RD, the data is extracted from 3 elements
located initially at 18 mm, 28 mm, and 35.2 mm in the radial direc-
tion from the hole center corresponding to UT, PST, and nearly bal-
anced biaxial tension. In DD and TD, the same data is extracted from
2 elements in each direction initially at 18 mm and 28 mm near the
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UT and PST. The data initially at 35.2 mm from the center is not
included in DD and TD because the nearly balanced biaxial tension
would be redundant and bias the ANN training if considered for all 3
directions, i.e., RD, DD, and TD.

3.3. Artificial neural network modelling

The architecture of the ANN model is constructed with the extracted
strain data from the simulations and anisotropic parameters as the
input and output variables, respectively: 14 normal strain components
from the 7 points, ie., (sfm,af‘DZ,afm,z?m,aPDz,a}m,c}m)azxx W) (see
Fig. 1(¢)), at a punch stroke of 164-0.005 mm for input and 8 anisotropic
parameters of the Yld2000-2d, i.e., «1_g, for output. The datasets are
extracted from 2500 simulations and divided into 70 %:15 %:15 % for
training, validation, and testing of the model.

KerasTuner, hyperparameter optimization library with random
search algorithm, is used to determine the architecture from the
training data, with the search space being 2 to 5 hidden layers and 8
to 64 nodes in each layer. The optimal architecture consists of 3 hid-
den layers with 24, 16 and 8 nodes respectively (see Fig. 3). All hid-
den layers are activated with the sigmoid function and mean
absolute error (MAE) is employed as the loss function. The ANN
model is trained in full batch mode with a learning rate of 0.001. Early
stopping call back with a patience of 20 is employed to automatically
stop and to prevent underfitting or overfitting. The ANN model is suc-
cessfully trained with MAEs of 0.057, 0.059 and 0.057 for training,
validation, and testing, respectively.

Hidden layers (3)

AN

alnl

Input Output
Nodes (24x16x8)

Fig. 3. Architecture of ANN model to predict YId2000—2d anisotropic parameters.

4. Prediction and validation of YId2000—-2d parameters
4.1. ANN model prediction of YId2000—2d anisotropic parameters

To predict the YId2000—2d anisotropic parameters using the ANN
model developed in the previous section, the same 14 normal strain
data at the 7 locations in Fig. 1(c) from an experimental HE test of
AA6022-T4 are used as inputs into the ANN model. The DIC post-
processing parameters are 5 for the filter, 29 pixels for the subset,
and 1 pixel for the step sizes. The predicted anisotropic parameters
are summarized in Table 2 (ANN) with the reference values (Ref.),
which were identified by a conventional method using the multiple
experiments indicated in Table 1 [3]. Recall that the Ref. parameters
were calibrated by a numerical optimization, i.e., least square error
minimization, from 8 experiments with 3 different test setups to
achieve varying stress states (Table 1) [3] as opposed to the single
experiment for the ANN model. The mean deviation of anisotropic
parameter values between the Ref. and ANN predictions is 3.13 %,
with only one exceeding 3.8 % deviation from the Ref. The ANN pre-
diction for Yld2000—2d parameters is evaluated by two different
methods in this paper. Firstly, the plastic anisotropy in the UT tests, i.
e., normalized yield stresses and r-values, and yield loci will be

Table 2
Y1d2000-2d anisotropic parameters for AA6022-T4 (m = 8).

a o asz oy as ag o7 ag

Ref. 098 1.02 098 109 102 097 090 1.04
ANN 1.00 098 105 105 1.01 1.01 090 1.01

compared with the experiments and YId2000—-2d prediction using
Ref. parameters in Section 4.2. Secondly, the thinning profile around
the hole periphery and strain path in the HE simulations using ANN
prediction of YId2000—-2d parameters is evaluated in Section 4.3.

4.2. Validation of plastic anisotropy in uniaxial tension

Fig. 4(a) shows the yield loci described by ANN and Ref. parameters.
The ANN prediction (red solid line) closely aligns with Ref. (blue
dashed line) yield locus and the UT and PST experiments (circular sym-
bol), except for UT in TD, where the ANN prediction is slightly overesti-
mated. Despite the deviation from the experiments, the ANN model
effectively captures the variation of normalized stress and r-value with
respect to the material orientation as shown in Figs. 4(b) and 4(c),
respectively. Specifically, the ANN model shows good agreement with
the Ref. and experiments within the ranges of 0° and 45° for normal-
ized stress and 30° and 60° for r-value. Although the cause of the devia-
tion in predictions is unclear due to the complexity of ANN structure
and training, this potentially could be improved with additional ANN
input variables and training data. From the comparisons of the plastic
anisotropy, it can be concluded that the ANN model developed in this
study can predict reasonable anisotropic parameters for the
Y1d2000—-2d yield function using a single HE test with significantly
reduced experimental effort.
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Fig. 4. Comparison of (a) yield loci, (b) normalized yield stresses, and (c) r-values from
experiments and numerical simulations, from both ANN prediction and reference
Y1d2000—2d anisotropic parameters.

4.3. Validation of thinning prediction in HE test

HE simulations are performed with both ANN and Ref. anisotropic
parameters to compare the thinning distribution. The thickness strain
profiles are measured at 3 punch strokes, i.e.,, U = 10 mm (black),
13 mm (blue), and 16 mm (red) in Figs. 5(b) and (c), for 2 different
initial circumferences of R18 mm (Fig. 5(b)) and R20 mm (Fig. 5(c)),
corresponding to initially 0.5 mm and 2.5 mm from the hole edge as
seen in Fig. 5(a). The ANN (solid line) and Ref. (dashed line) predic-
tions capture the thinning behavior, e.g., max. thinning location and
average strain level around the hole, reasonably well at both R18 mm
(Fig. 5(b)) and R20 mm (Fig. 5(c)). The average deviations of thinning
distributions by ANN and Ref. predictions from the experiments
shown in Figs. 5(b) and 5(c) are 8.9 % and 7 %, and 8.9 % and 8.9 %,
respectively. This highlights the importance of capturing the material
behavior at various stress states, including PST, for accurate thinning
predictions in HE [5,15], as in both ANN and Ref. cases.

The strain paths, extracted at 3 locations along the RD, DD, and TD,
are also compared in Fig. 6. The experiment reveals that the strain
states are changed from UT at P1 (R18 mm), to PST at P2 (R28 mm),
and to biaxial tension at P3 (R35.2 mm). Strain path predictions by
the ANN are closely aligned with Ref. and are comparable with the
experiment (see Fig. 4(c)). This demonstrates the ability of the ANN
model to predict anisotropic parameters well despite only requiring
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Fig. 5. Comparison of the HE experiments and simulations: (a) thickness strain con-
tour at punch stroke U=16 mm and thickness strain profiles measured at (b) R18 mm
and (c) R20 mm.
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Fig. 6. Comparison of strain paths at P1, P2, and P3 along the radial directions in the
RD, DD, and TD.

a single experiment compared to 3 different testing setups in the Ref.
approach. A means to further validate the simulations in relation to
the experiments is by comparing the punch force-stroke curves in
Fig. 7. Both simulation curves are comparable with the experiment.

50
o Exp.

40 | —Y1d2000-2d (ANN) @@9
_ — —Y1d2000-2d (Ref)
Z 30 t 5
§ o
S 20 f “

10 |

0 1 1 1
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Fig. 7. Comparison of punch force-stroke curves for the experiment and simulations
performed with ANN and Ref. anisotropic parameters.

5. Conclusions and future work

An ANN model to predict material parameters of the non-quadratic
anisotropic yield function, YId2000-2d, is proposed as an alternative
to the conventional method, which needs at least 4 experimental tests
and a numerical algorithm. A HE test is utilized due to the various
stress states exhibited during the experiment. In this study, 2500 HE
simulations are performed to generate a virtual training dataset using
randomly selected 8 anisotropic parameters, and the 2 normal strain
components at 7 different elements, including nearly UT and PST
located at 0°, 45°, and 90°, corresponding to RD, DD, and TD, and nearly
balanced biaxial tension at RD, are extracted from simulations. Hidden
layers and nodes in the ANN architecture are optimized using Keras-
Tuner and activated using a sigmoid function. The ANN model is then
trained using the dataset obtained at a punch stroke of U =16 mm.

The ANN model is applied to AA6022-T4 and validated by
comparing plastic anisotropy in UT, i.e., normalized yield stresses and

r-values, and yield loci, as well as HE test data, including thinning
variation, stain path, and punch force-stroke curve. The predictions
of ANN YId2000—-2d parameters are in good agreement with the
experiment and the prediction with Ref. YId2000—2d parameters.
For future work, additional training data extracted from more ele-
ments in the HE simulations and the inclusion of shear data may
improve the ANN model performance.
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