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ABSTRACT

Dynamic heterogeneous networks describe the temporal evolution of interactions among nodes and edges
of diferent types. While there is a rich literature on onding communities in dynamic networks, the applica-
tion of these methods to dynamic heterogeneous networks can be inappropriate, due to the involvement
of diferent types of nodes and edges and the need to treat them diferently. In this article, we propose a
statistical framework for detecting common communities in dynamic and heterogeneous networks. Under
this framework, we develop a fast community detection method called DHNet that can eociently estimate
the community label aswell as the number of communities. An attractive feature of DHNet is that it does not
require the number of communities to be known a priori, a common assumption in community detection
methods. While DHNet does not require any parametric assumptions on the underlying network model,
we show that the identioed label is consistent under a time-varying heterogeneous stochastic block model
with a temporal correlation structure and edge sparsity. We further illustrate the utility of DHNet through
simulations andanapplication to reviewdata fromYelp,whereDHNet shows improvementsboth in termsof
accuracy and interpretability over alternative solutions. Supplementarymaterials for this article are available
online.

ARTICLE HISTORY

Received October 2022
Accepted June 2023

KEYWORDS

Community detection;
Consistency; Dynamic
heterogeneous network;
Modularity; Null model; Yelp
reviews

1. Introduction

One of the fundamental problems in network data analysis
is community detection that aims to divide the network into
nonoverlapping groups of nodes such that nodes within the
same community are densely connected and nodes from dif-
ferent communities are relatively sparsely connected. Commu-
nity detection can provide valuable insights on the organiza-
tion of a network and greatly facilitate the analysis of net-
work characteristics. As such, community detection methods
have been applied to numerous scientioc oelds such as social
science (Moody and White 2003), biology (Sørlie et al. 2001)
and business (Linden, Smith, and York 2003). Over the past
few decades, the problem of community detection has been
approached from methodological, algorithmic and theoretical
perspectives with substantial developments. We refer to Fortu-
nato (2010) and Abbe (2017) for comprehensive reviews on this
topic.

While the majority of existing community detection meth-
ods are developed for a homogeneous network or a dynamic
network, networks that are dynamic and heterogeneous are
fast emerging in recent years. For example, in a dynamic
healthcare network, nodes can be patients, diseases, doctors
and hospitals and edges can be in the type of patient–disease
(patient treated for disease) and patient–doctor (patient treated
by doctor) and doctor–hospital (doctor works at hospital).
These edges are expected to evolve with time as patients may
develop new diseases that are treated by diferent doctors at
possibly diferent hospitals. Figure 1 provides an illustration
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of a dynamic heterogeneous Yelp review network, which is
analyzed in Section 6. In this ogure, there are three types of
nodes including users, businesses, and categories and three types
of edges including user-user (user is friend with user), user-
business (business is reviewed by user), and business-category
(business is labeled with category). As users review diferent
businesses over time, this network is both heterogeneous and
dynamic.

Due to the rich information embedded in a dynamic hetero-
geneous network, many methods have been developed recently
for its analysis, such as network embedding (Wang et al. 2022;
Zhang, Huang, and Tan 2022), representation learning (Yin et al.
2019) and link prediction (Xue et al. 2020; Jiang, Koch, and
Sun 2021). However, community detection in dynamic hetero-
geneous networks is less studied. One relevant work is Sun et al.
(2010), which provides amixturemodel-based generativemodel
for estimating the community structure, which is assumed to be
time-varying. Other works on this topic include Sengupta and
Chen (2015) and Zhang and Cao (2017), though they only focus
on a single heterogeneous network.

In our work, we focus on detecting common communities
in a dynamic heterogeneous network, that is, the community
assignment does not vary with time but the interactions within
and between communities do. Finding common communities
are useful in many applications. For example, in genetic studies
and brain connectivity studies, the common communities rep-
resent functional groups of genes or brain regions that are coor-
dinated in biological processes, and identifying them is of keen

© 2023 American Statistical Association and Institute of Mathematical Statistics
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Figure 1. The dynamic heterogeneous Yelp network with two communities, including three types of nodes (user, business, category) and edges (user is friend with user,
business is reviewed by user, business is labeled with category).

scientioc interests (Zhang and Cao 2017; Zhang, Sun, and Li
2020). In the Yelp review network, it is plausible that businesses,
categories and the majority of users have a common community
structure over time, as the service ofered by a business and the
interests of users (e.g., pets, parks, one dining) are oven stable
over a period of time. One notable advantage of considering a
common community structure is that the networks observed
at diferent time points are allowed to be highly sparse if S,
the number of time points, increases. For example, we show in
Theorem 1 that consistent community detection is achievable
as long as λS → ∞, where λ is the average degree, while the
single network case requires λ → ∞ to achieve community
detection consistency. Moreover, our approach allows the com-
munity strength to be highly variable over time. For example,
a community needs to be active for only a very short period of
time for it to be consistently identioed; seemore discussions aver
Theorem 1.

In this article, we propose a statistical framework for
modularity-based common community detection in the
dynamic heterogeneous network, where no parametric
assumptions are made on the model underlying the observed
networks. Under this framework, we develop a fast community
detection method called DHNet that can eociently estimate
the community label as well as the number of communities.
An attractive feature of DHNet is that it does not require the
number of communities to be known a priori, a common
assumption in community detection methods. Although
DHNet does not rely on parametric assumptions on the
underlying network model, we propose a new dynamic
heterogeneous stochastic block model with a temporal
correlation structure and edge sparsity, and show that DHNet
can consistently estimate the community label under thismodel.
This provides theoretical justiocations of the proposed method
and also sheds lights on how diferent network properties (e.g.,
sparsity, size, community strength) afect its performance.
The consistency property of our method when applied to
dynamic bi-partite or multi-partite networks follows as special
cases.

The remainder of the article is organized as follows. Sec-
tion 2 describes a community detection framework and pro-
poses a modularity function for onding common communities

in a dynamic heterogeneous network. Section 3 describes a fast
community detection method called DHNet that can eociently
estimate the community label as well as the number of com-
munities. Section 4 shows the consistency property of DHNet
under a dynamic heterogeneous stochastic block model. Sec-
tion 5 demonstrates the eocacy of DHNet through simulation
studies and Section 6 applies the proposed method to review
data from Yelp. The article is concluded with a short discussion
section.

2. Community Detection with Modularity

2.1. Notation

We write [m] = {1, . . . ,m} for an integer m > 0. To ease
notation, we start the introduction with a single heterogeneous

network with L types of nodes. Let V[l] = (v
[l]
1 , . . . , v

[l]
nl ) be the

set containing the lth type of nodes for l ∈ [L], where nl is the
number of lth type nodes. Denote the heterogeneous network
as G = (∪L

l=1V
[l], E ∪ E+), where set E contains edges between

nodes of the same type and set E+ contains edges between nodes
of diferent types. When E = ∅, G forms a multi-partite net-
work, that is, edges are only established between diferent types
of nodes. Let G[l] denote the homogeneous network formed
within node set V[l] with an nl × nl adjacency matrix A[l], and
G[l1l2] = (V[l1] ∪ V[l2],E[l1l2]) denote the bi-partite network
formed between node sets V[l1] and V[l2] with an nl1 × nl2 bi-
adjacency matrix A[l1l2], l1, l2 ∈ [L]. See Figure 2 for an example
of a heterogeneous network with L = 2.

Consider a dynamic heterogeneous network {G(t), t ∈ T }

with L types of nodes, where G(t) = (
⋃L

l=1 V
[l], E(t)∪E+(t)) is

a heterogeneous network at time t deoned as above. The network
G(t) at time t can be uniquely represented by its adjacency
matrixA(t) deoned as

A(t) =

»

¼

½

A[11](t) . . . A[1L](t)
...

. . .
...

A[L1](t) . . . A[LL](t)

¾

¿

À
,

where A[l1l2](t) ∈ R
nl1×nl2 is deoned as in Figure 2. Deone

d[l](t) = (d
[l]
1 (t), . . . , d

[l]
nl (t)), where d

[l]
i (t) is the number of



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 489

Figure 2. An illustrative example of a heterogeneous network with two types of nodes.

links incident to v
[l]
i from V[l] at time t, and d[l1l2](t) =

(d
[l1l2]
1 (t), . . . , d

[l1l2]
nl (t)), where d

[l1l2]
i is the number of links inci-

dent to v
[l1]
i from V[l2] at time t. Write the number of edges in

A[l1l2](t) asm[l1l2](t) =
∑

i,j A
l1l2
ij (t) for l1, l2 ∈ [L] .

2.2. Modularity Function

The modularity function measures the strength of division of a
network into communities, and themaximummodularity func-
tion value is ametric frequently used for quantifying the strength
of community structure within a network (Fortunato 2010). The
function was orst deoned in Newman and Girvan (2004) for a
simple networkG(V ,E)withnnodes,m edges, adjacencymatrix
An×n and a community assignment e = (e1, . . . , en), where
ei ∈ [K], as

Q(e,G) =
1

2m

∑

1≤i<j≤n

[

Aij − E(Aij)
]

1(ei = ej), (1)

where 1(·) is the indicator function. In (1), the expectation
E(Aij) is calculated under a null model for random networks
with no community structure. A common consideration is to let
graphs in the null space share some basic structural properties
with the observed graph G (Newman, Strogatz, andWatts 2001;
Zhang and Chen 2017). In particular, the distribution of edges
in real world networks is oven inhomogeneous with global
inhomogeneity, where the majority of nodes have low degrees
and a few nodes have high degrees, and local inhomogeneity
(or community structure), where there is a high concentration
of edges within certain groups of nodes and a low concentra-
tion of edges between these groups (Fortunato 2010). To study
local inhomogeneity (or community structure), it is desirable to
preserve the observed degree sequence in the null model. For
this purpose, the most common choice for the null model is the
Chung-Lu model (Newman and Girvan 2004; Newman 2006).
The Chung-Lu model (Chung et al. 2006) is a random graph
model that generalizes the Erdos-Renyi model where all edges
are placed with a uniform probability p0 and all nodes have the
same expected degree. In a Chung-Lumodel, given the expected
degrees for a pair of nodes, denoted as di and dj, the probability
of having an edge between nodes i and j is

E(Aij) = f (di)f (dj) =
didj

2m
, (2)

where m =
∑

i di/2. The Chung-Lu model is a random graph
model that allows for general degree distributions, and it has

been widely used to generate null graphs, that is, simple ran-
dom graphs that follow certain characteristics in their degree
distributions, for in network analysis (Milo et al. 2002). In
another view, Zhang and Chen (2017) considered a null model
deoned as,

P(G) =
1

|�d|
, G ∈ �d, (3)

where �d is the set of all simple graphs with degree sequence
d and |�d| is the total number of graphs in �d. Under the
null model (3) with a uniform distribution, every network in
the null space occurs with the same probability and there is
no preference for any particular graph conoguration such as
community structures. Interestingly, Zhang and Chen (2017)

showed that E(Aij) ≈
didj
2m under model (3), which gives the

Chung-Lu model in (2). Hence, under the Chung-Lu model,
networks in the null space �d asymptotically occurs with the
same probability, which makes it a desirable choice as the null
model. It is seen that themodularity function in (1)measures the
diference between the observed number of intra-community
edges and the expected number of intra-community edges under
the null with no community structure. Correspondingly, the
community label of a network is identioed by maximizing the
modularity function with respect to e.

To deone the modularity function in a dynamic heteroge-
neous network, we orst describe the corresponding null model
that characterizes a dynamic heterogeneous network with no
community structure. Consider the heterogeneous network at
time t, G(t) =

(

∪L
l=1V

[l], E(t) ∪ E+(t)
)

with degree sequence

D(t) = {d[l1l2](t), l1, l2 ∈ [L]}. We deone a heterogeneous
Chung-Lu model as the null. Under the null, we assume that a
heterogeneous network at time t is generated with

A
[l1l2]
ij (t) ∼ Bernoulli

»

½

d
[l1l2]
i (t)d

[l2l1]
j (t)

m[l1l2](t)

¾

À , l1, l2 ∈ [L], (4)

where all edges in G(t) are independent. Under (4), it is easy to
show that the expected degree sequence under the null is the
same as the observed degree sequenceD(t). Following the same
argument as in Zhang and Chen (2017), it can be shown that
under (4), every heterogeneous network in the null space �D(t)

occurs with the same probability.
Next, wemove to deone themodularitymatrix. At time t ∈ T

and givenA(t), we write the (n1 + · · · + nL) × (n1 + · · · + nL)
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modularity matrixM(t) as

M(t) =

»

¼

¼

½

M[11](t)
m[11](t)

. . .
M[1L](t)
m[1L](t)

...
. . .

...
M[L1](t)
m[L1](t)

. . .
M[LL](t)
m[LL](t)

¾

¿

¿

À

,

where M[l1l2](t) = A[l1l2](t) − E
(

A[l1l2](t)
)

. The modularity
matrix M(t) measures the distance between the observed net-
work and the expected network under the null model at time t.
Given the dynamic heterogeneous networks {A(t), t ∈ T }, the
integrated modularity matrixM is deoned as

M =

»

¼

½

M[11] . . . M[1L]

...
. . .

...

M[L1] . . . M[LL]

¾

¿

À
,

where M[l1l2] =

∫

t∈T M[l1l2](t)

m̄[l1l2]
,

m̄[l1l2] =
∫

t∈T m[l1l2](t). The integrated modularity matrix M

measures the distance between the observed network and the
expected network under the null model over all t ∈ T .

We are now ready to deone the modularity function. Write
the community assignment label as e =

(

e[1], . . . , e[L]
)

with

e[l] =
(

e
[l]
1 , . . . , e

[l]
nl

)

, l ∈ [L], the modularity function of the

dynamic heterogeneous network is deoned as

Q(e, {G(t)}t∈T ) =
1

L2

∑

1≤l1,l2≤L

∑

i,j

M
[l1l2]
ij 1(e

[l1]
i = e

[l2]
j ).

(5)
From the above deonitions, it can be shown that
Q(e, {G(t)}t∈T ) ∈ [−1, 1]. This modularity function measures
the overall diference between the observed number of intra-
community edges and the expected number of intra-community
edges under the null model. When Q(e, {G(t)}t∈T ) approaches
1, the observed number of intra-community edges is greater
than the expected values, which indicates a strong community
structure. In contrast, when Q(e, {G(t)}t∈T ) approaches 0, the
observed number of intra-community edges is close to the
expected values under the null, which indicates no or weak
community structure.

In practice, the networks are oven only observed on anumber
of time points T = {t1, t2, . . . , tS}, where S is the total number
of observations or snapshots. In this case, we can deone

M =

»

¼

½

∑S
s=1M

[11](ts)/m̄
[1] . . .

∑S
s=1M

[1L](ts)/m̄
[1L]

...
. . .

...
∑S

s=1M
[L1](ts)/m̄

[L1] . . .
∑S

s=1M
[LL](ts)/m̄

[L]

¾

¿

À
,

(6)
where m̄[l1l2] =

∑S
s=1m

[l1l2](ts), l1, l2 ∈ [L], and write the
modularity function as

Q(e, {G(ts)}s∈[S]) =
∑

1≤l1,l2≤L

Q[l1l2](e, {G(ts)}s∈[S]),

and

Q[l1l2](e, {G(ts)}s∈[S]) =

∑S
s=1m

[l1l2] (ts)Q
[l1l2] (e,G (ts))

∑S
s=1m

[l1l2] (ts)
,

whereQ[l1l2](e,G (ts))=
1

m[l1 l2](ts)L2

∑

i,jM
[l1l2]
ij (ts)1

(

e
[l1]
i = e

[l2]
j

)

.

The abovemodularity function can be considered as an averaged
version of the modularity in each graph G(ts), s ∈ [S].

3. Modularity Maximization

We aim to ond the community assignment that maximizes the
modularity function (5), that is,

ĉ = arg max
e=(e[1],...,e[L]),

e
[l]
i ∈{1,...,K}

Q(e, {G(t)}t∈T ). (7)

Finding the exact maximizer of (5) is challenging due to the
combinatorial nature of the problem and the fact that the num-
ber of communities K is generally unknown. Brandes et al.
(2008) showed that onding the partition that maximizes the
modularity function for a simple graph is NP-hard. There are
a number of existing heuristic algorithmic solutions to max-
imizing the modularity function, some of which are fast and
hence feasible for very large networks (Clauset, Newman, and
Moore 2004; Wakita and Tsurumi 2007; Blondel et al. 2008),
while some others could be more precise though restricted to
graphs of moderate sizes (Guimera, Sales-Pardo, and Amaral
2004; Massen and Doye 2005).

In our approach, we adopt a fast Louvain-type maximization
method. The Louvain method was orst proposed by Blondel
et al. (2008) for modularity maximization in simple graphs. In
the Louvain method, small communities are orst identioed by
optimizing the modularity function locally on all nodes. Then
each small community is grouped into one <meta= node and the
orst step is repeated. The Louvainmethod is fast to compute and
enjoys a good empirical performance. It has been successfully
applied to network analyses from various scientioc oelds, per-
mitting up to 100 million nodes and billions of edges. Notably,
the modularity maximum found by the Louvain method oven
compares favorably with those found by alternative methods
such as Clauset, Newman, and Moore (2004) and Wakita and
Tsurumi (2007); see Fortunato (2010).

Motivated by the Louvain algorithm, we propose a dynamic
heterogeneous network modularity maximization algorithm,
referred to DHNet. To do so, we orst deone a unit, which is a
group of nodes with at most one from each node type and it can
be regarded as a <meta= vertex in a heterogeneous network. For
example, a unit may contain one node of any type or L nodes
of diferent types. In our algorithm, a unit serves as the building
block and a community is built to contain a group of units. The
restriction that each unit can take at most one node of each type
is needed to distinguish a unit and a community. The concept of
a unit is developed for community detection in heterogeneous
networks. In a homogeneous network where there is only one
type of nodes, a unit becomes the same as a node. Next, given a
heterogeneous n×nmodularity matrixM as in (6), we deone a
modularity network, which is a network of n nodes and the edge
between nodes (i, j) is Mi,j. From (5) and (7), it is easy to see
that our optimization task is to ond a partition of themodularity
network such that the within-community sum of edges fromM

is maximized.
The DHNet has three phases and is summarized as Algo-

rithm 1. Phase 0: to start, the algorithm assigns each node to
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Figure 3. A simple illustration of DHNet. Nodes of the same type are marked using the same shape and nodes of the same color are in the same community.

its own unit and each unit to its own community. Hence, there
are n units and n communities initially, where n is the total
number of nodes in the network. The algorithm DHNet then
seeks to combine units to form larger communities. Phase 1:

for each unit i, DHNet removes it from its current community
and assigns it to its neighboring community (communities to
which the unit is linked to), such that it leads to the largest
increase of the modularity function. If no move increases the
modularity, unit i remains in its current community. This step is
repeated to all units until none can bemoved and the ordering in
which the units are considered are random. The algorithm then
moves to the next stage that forms a new <reduced= network.
Phase 2: taken the communities formed aver Phase 1, DHNet
merges nodes of the same type in each community, such that
each community becomes a unit in the new network and the
edge between merged nodes in the new network are given by
summing the edge weights connecting per-merging nodes. This
is further illustrated via a concrete example below. With this
new network, DHNet then returns to Phase 1 and perform
community assignment.

Figure 3 showswith an illustrative example of DHNet applied
to a dynamic heterogeneous network with n = 11 nodes and
L = 2 node types. There are two iterations in the implemen-
tation and each iteration has two phases, including the com-
munity assigning phase and mergine phase. The algorithm orst

computes an 11 × 11 modularity matrix M, and then starts
with 11 units and 11 communities. In phase 1 of iteration 1,
four communities are formed with nodes {1, 2}, {3, 7, 8}, {4, 9}
and {5, 6, 10, 11} and colored in pink, blue, green and yellow,
respectively. In phase 2 of iteration 1, nodes of the same type in
each community are merged. That is, nodes 1 and 2 are merged
into v∗

(1,2). Similarly, nodes 5 and 6, 7 and 8, 10 and 11 aremerged
into v∗

(5,6), v
∗
(7,8), v

∗
(10,11), respectively. Nodes 3, 4, 9, denoted as

v∗
3 , v

∗
4 , v

∗
9 , are notmergedwith others, as there are no other nodes

of the same type in the communities that they are in. Next, each
of the four communities is treated as a unit in the new network.
Aver this step,we have a newnetworkwith sevennodes v∗

(1,2), v
∗
3 ,

v∗
4 , v

∗
(5,6), v

∗
(7,8), v

∗
9 , v

∗
(10,11) and four units, where unit 1 is {v∗

(1,2)},
unit 2 is {v∗

3 , v
∗
(7,8)}, unit 3 is {v

∗
4 , v

∗
9}, and unit 4 is {v

∗
(5,6), v

∗
(10,11)}.

We then calculate a newmodularity matrixMnew of dimension
7× 7. The edges ofMnew are calculated by summing weights of
the corresponding nodes that are merged. For example, the edge
between nodes v∗

(5,6) and v∗
(10,11) are obtained by summing four

edge weights (v5, v10), (v5, v11), (v6, v10), and (v6, v11) from the
original modularity matrix. In phase 1 of iteration 2, we com-
pute the change in modularity when unit 1 = {v∗

(1,2)} is placed
with unit 2 = {v∗

3 , v
∗
(7,8)} in the same community. The same is

calculated for unit 1 with 3 and unit 1 with 4. We then place unit
1 with the one that increases the modularity the most. If no such
move is found, then unit 1 remains in its own community. This is
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Figure 4. The computing time of DHNetwith a varying network size n (left) and number of communities K (right).

Algorithm 1 Dynamic Heterogeneous Network Modularity
Maximization (DHNet)

Input: Dynamic heterogeneous networks A1,…, AS.

Step 1: Calculate the modularity matrix using (6).
Step 2: Assign each node to its own unit and assign each unit
to its own community.
Step 3: Repeat Steps 3.1–3.4 until the modularity value no
longer increase.

Step 3.1: For each unit, place it into the neighboring com-
munity that leads to the largest modularity increase in (5). If
no such move is possible, then this unit stays in its present
community.

Step 3.2: Repeated apply Step 3.1 to all units until none can
be moved.

Step 3.3: If the modularity is higher than that from the
previous iteration, merge nodes of the same type in each
community such that each community is regarded as a unit
and go to Step 3.4. If not, exit with the assignment from the
previous iteration.

Step 3.4: Calculate the modularity matrix of the merged
network.
Output: Community assignment and the corresponding
modularity value.

done for units 2, 3 and 4 as well. Aver this step, two communities
are formed as {v∗

(1,2), v
∗
3 , v

∗
(7,8)} and {v∗

4 , v
∗
(5,6), v

∗
9 , v

∗
(10,11)}, respec-

tively. In phase 2 of iteration 2, nodes of the same type in
each community are merged. That is, nodes v∗

(1,2) and v∗
3 in

community 1 are merged into v∗
(1,2,3), nodes v∗

4 and v∗
(5,6) in

community 2 are merged into v∗
(4,5,6) and nodes v∗

9 and v∗
(10,11)

in community 2 are merged into v∗
(9,10,11). Each community

is then treated as a unit in the new network. Aver this step,
we have a new network with four nodes v∗

(1,2,3), v
∗
(4,5,6), v

∗
(7,8),

v∗
(9,10,11) and two units, where unit 1 is {v∗

(1,2,3), v
∗
(7,8)} and unit 2

is {v∗
(4,5,6), v

∗
(9,10,11)}. We then calculate a new modularity matrix

Mnew of dimension 4 × 4. Finally, merging these two units
cannot further increase the modularity. Thus, DHNet returns
two communities with the orst community including nodes 1,
2, 3, 7, 8 and the second community including nodes 4, 5, 6,
9, 10, 11.

Remark 1 (initialization). In Step 3.1, if there are multiple com-
munities that lead to the same maximum modularity increase,
DHNet randomly selects a community to assign the unit to.
Hence, the result of DHNet may difer each time the algorithm

is implemented. Moreover, the result of the algorithmmay difer
depending on the node ordering in Step 2. That is, a node
ordering of {1, 2, 3} or {3, 1, 2} may give diferent results. These
two sources of randomness in the implementation of DHNet
are discussed in Section S2 of the supplementary materials. We
recommend applying the Louvain method κ times with random
node orderings and using the assignment with the largestmodu-
larity function value as the onal output. In our simulation studies
and real data analysis, we set κ = 100 and notice that the output
from DHNet is not sensitive to node orderings. Generally, it
is recommended that κ should increase with the size of the
network.

Remark 2 (time complexity). The complexity of computing the
modularity matrix input in DHNet is O(nS), where n is the
number of nodes and S is the number of snapshots. In Step
3, computing whether and where to move each unit based on
modularity changes is of time complexity O(1), assuming node
degrees are bounded. The complexity per iteration of DHNet
is O(m), where m is the total number of edges in the network.
Consequently, the total running time of DHNet can be upper-
bounded by O(γm), where γ is the total number of iterations.
While no upper bound has been established on the number
of iterations in a Louvain-type method, we ond DHNet con-
verges within tens of iterations in practice. Figure 4 provides
the computation time of DHNet with a varying network size
n and number of communities K. Speciocally, we set S = 20
and generate networks fromDHSBMwhere the inter- and intra-
community connecting probabilities are 0.1 and 0.15, respec-
tively, in the homogeneous networks, and the inter- and intra-
community connecting probabilities are, respectively, 0.05 and
0.1 in the multi-partite networks. It is seen that the computing
time is roughly linear in n and K. All experiments are run on an
Intel(R) Xeon(R) with 3.10GHz and 192 GBmemory processor.

4. Consistency

In this section, we investigate the theoretical properties of
DHNet for onding common communities in a dynamic hetero-
geneous network. To do so, we orst propose a discrete-time het-
erogeneous stochastic block model with a temporal correlation
structure.

Dynamic Heterogeneous Stochastic Block Model (DHSBM)

1. Dynamic heterogeneous network {G(ts), s ∈ [S]} with L
node types has a latent community label c =

(

c
[1], . . . , c[L]

)

,
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where c[l] = (c
[l]
1 , . . . , c

[l]
nl ) and c

[l]
i ∈ {1, . . . ,K} denotes the

community that node i of type-[l] belongs to, l ∈ [L].
2. The label c[l] follows a multinomial distribution with nl trials

and probability π
[l] =

(

π
[l]
1 , . . . ,π

[l]
K

)

, l ∈ [L].

3. Deone the time-varying probability matrix �(ts) such that

�(ts) =

»

¼

½

�[11](ts) . . . �[1L](ts)
...

. . .
...

�[L1](ts) . . . �[LL](ts)

¾

¿

À
,

where �[l1l2](ts) =

»

¼

½

θ
[l1l2]
11 (ts) · · · θ

[l1l2]
1K (ts)

...
. . .

...

θ
[l1l2]
K1 (ts) · · · θ

[l1l2]
KK (ts)

¾

¿

À

and θ
[l1l2]
k1k2

(ts) is a function of ts, l1, l2 ∈ [L], and k1, k2 ∈

[K]. Speciocally, �[l1l2](ts) is a K × K probability matrix
that specioes the connecting probabilities between type-[l1]
nodes and type-[l2] nodes in diferent communities at time

ts, and each element θ
[l1l2]
k1,k2

(ts) represents the probability of
generating an edge between a type-[l1] node in community
k1 and a type-[l2] node in community k2 at time ts.

4. Given c, we treat A
[l1l2]
ij (ts)’s as independent Bernoulli ran-

dom variables satisfying

A
[l1l2]
ij (ts) = uA

[l1l2]
ij (ts−1) + (1 − u)v[l1l2],

where u
iid
∼ Bernoulli(α), and given c

[l1]
i = k1 and c

[l2]
j = k2,

v[l1l2] iid
∼ Bernoulli

(

θ
[l1l2]
k1k2

(ts) − αθ
[l1l2]
k1k2

(ts−1)

1 − α

)

,

l1, l2 ∈ [L].

In Assumption 4, we use a two-step design to impose a temporal
correlation structure, with α controlling the strength of correla-

tion.Also, we require that 0 ≤ α < 1,αθ
[l1l2]
k1k2

(ts−1) ≤ θ
[l1l2]
k1k2

(ts),

and α

(

1 − θ
[l1l2]
k1k2

(ts−1)

)

≤ 1 − θ
[l1l2]
k1k2

(ts), so that the above

Bernoulli distribution is valid with the probability parameter in

[0, 1]. Here, it is possible to let u
iid
∼ Bernoulli(α[l1l2]), though we

assume α[l1l2] = α to simplify notation. Based on Assumption
4, some algebra shows that

P

(

A
[l1l2]
ij (ts) = 1

)

= θ
[l1l2]
k1k2

(ts),

which shows that the marginal distribution of A
[l1l2]
ij (ts) is

Bernoulli
(

θ
[l1l2]
k1k2

(ts)
)

. Hence, for a oxed ts, A
[l1l2](ts) follows

a stochastic block model with a probability matrix �[l1l2](ts).
Additionally, under our DHSBMmodel, we have

corr
(

A
[l1l2]
ij (ts) ,A

[l1l2]
ij (ts−1)

)

= α[l1l2]

√

√

√

√

√

θ
[l1l2]
k1k2

(ts−1)

(

1 − θ
[l1l2]
k1k2

(ts−1)

)

θ
[l1l2]
k1k2

(ts)
(

1 − θ
[l1l2]
k1k2

(ts)
) .

And for the special case α[l1l2] = 0, Aij(ts), s = 1, . . . S,
are independent. If �(ts) is constant over time, then

corr
(

A
[l1l2]
ij (ts) ,A

[l1l2]
ij

(

ts−k

)

)

= (α[l1l2])k for k = 1, 2, . . ..

Next, we show the consistency property of the estimated
assignment vector ĉ under theDHSBMmodelwhen the network
size n and the number of time points increases in that nS → ∞.
This regime is more general and includes the results fromZhang
and Cao (2017) and Zhang and Chen (2020) as special cases.We
say a label e =

(

e
[1], . . . , e[L]

)

is consistent if it satisoes

∀ε > 0, P

[

1

n

L
∑

l=1

nl
∑

i=1

I
(

e
[l]
i �= c

[l]
i

)

< ε

]

→ 1 as nS → ∞,

which stipulates that the misclassiocation ratio tends to zero.

Here ĉ
[l]
i = c

[l]
i means that they belong to the same equivalent

class of label permutations. To allow sparsity, we reparameterize

�(ts) as �̃(ts) = ρn,S�(ts), where �(ts) is oxed as nS → ∞.
This reparameterization allows us to separate ρn,S, the sparsity
parameter, from the structure of the network.

Theorem 1. Consider a dynamic heterogeneous network

G

(

⋃L
i=1 V

[i], E(ts) ∪ E+(ts)
)

from the DHSBMwith c, π [l]’s, α

and �(ts)’s, and further assume that the community sizes are
balanced, that is, minl nl/n is bounded away from zero. Deone a
K × K matrix

T
[l1l2]
ab (ts) =

π
[l1]
a π

[l2]
b θ

[l1l2]
ab (ts)

∑

ab π
[l1]
a π

[l2]
b θ

[l1l2]
ab (ts)

.

Let W
[l1l2]
[ab] (ts) = T

[l1l2]
ab (ts) − T

[l1l2]
a. (ts)T

[l1l2]
b. (ts) with

T
[l1l2]
a. (ts) =

∑K
q=1 T

[l1l2]
aq (ts). If the following assumptions hold

S
∑

s=1

L
∑

l1,l2

W[l1l2]
aa (ts) > 0 and

S
∑

s=1

L
∑

l1,l2

W
[lll2]
ab (ts) < 0

for all a �= b ∈ [K], (8)

and nSρn,S → ∞, then we have

∀ε > 0, P

[

1

n

L
∑

l=1

nl
∑

i=1

I
(

ĉ
[l]
i �= c

[l]
i

)

< ε

]

→ 1 as nS → ∞,

where ĉ is the maximizer of (5).

It is seen that the network is allowed to be highly sparse at
each time point s, for example, the probability of forming an edge

can be O
(

log(nS)
nS

)

. Denoting the average degree as λ = nρn,S,

it is seen that consistency is achievable when λS → ∞, while
the single network case requires λ → ∞ to achieve community
detection consistency (Zhang and Chen 2020). When L = 1,
the above result reduces to that in Zhang and Cao (2017) and
when S = 1, the above result reduces to that in Zhang and Chen
(2020). We note that Zhang and Cao (2017) only considered the
case where the network size n is oxed and their results require
ρn,S = O(1). In comparison, our result in Theorem 1 allows n
and/or S to diverge and only requires nSρn,S → ∞ as nS → ∞.

The condition in (8) requires that edges are on average
more likely to be established within communities than they
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are between communities, though communities may not exist
within all types of nodes or at all time points. For example, in the
simulation setting in Section 5.2, there is no community struc-
ture within type-[1] nodes and/or type-[2] nodes, while exists
a community structure between the type-[1] and type-[2] nodes
at some time points. This type of assortative condition, requiring
more edges within communities than between communities, is
oven required for algorithm-based community detection such
as modularity maximization. For the special case of L = 1,
K = 2, and �(ts) is time homogeneous, the condition (8) can
be simplioed as

θ
[11]
11 θ

[11]
22 >

(

θ
[11]
12

)2
.

When L = 2, K = 2 and �(ts) is time-varying, the condition
(8) is satisoed if

S
∑

s=1

(

θ
[11]
11 (ts) + θ

[22]
11 (ts) + θ

[12]
11 (ts) + θ

[21]
11 (ts)

)

>

S
∑

s=1

(

θ
[11]
12 (ts) + θ

[22]
12 (ts) + θ

[12]
12 (ts) + θ

[21]
12 (ts)

)

,

S
∑

s=1

(

θ
[11]
22 (ts) + θ

[22]
22 (ts) + θ

[12]
22 (ts) + θ

[21]
22 (ts)

)

>

S
∑

s=1

(

(θ
[11]
12 (ts) + θ

[22]
12 (ts) + θ

[12]
12 (ts) + θ

[21]
12 (ts)

)

,

which indicate that edges are more likely to form within com-
munities than between communities.

5. Simulation

In this section, we evaluate the clustering accuracy of DHNet
and compare it with several alternative solutions including:

Method 1: treat the dynamic heterogeneous network as a
dynamic homogeneous network without distinguishing the dif-
ferent node and edge types and apply a dynamic network com-
munity detection method (Zhang and Cao 2017).

Method 2: apply a heterogeneous community detection
method (Zhang and Chen 2020) to an aggregated matrix Ā =
»

¼

½

Ā[11] . . . Ā[1L]

...
. . .

...

Ā[L1] . . . Ā[LL]

¾

¿

À
, where Ā

[l1l2]
ij = maxt A

[l1l2]
ij (t), that

is, detect community based on a static summary heterogeneous
graph.

Method 3: infer the community label from G (ts) for a ran-
domly selected time point ts in {t1, . . . , tS}. That is, community
detection based on a single snapshot of the dynamic heteroge-
neous network, which is the same as Zhang and Chen (2020).

Method 4: decompose the dynamic heterogeneous network
with L diferent types of nodes into L dynamic homogeneous
networks and apply a dynamic network community detection
method (Zhang andCao 2017) to each separately, that is, discard
information from the edges linking diferent types of nodes.

We generate networks from the DHSBM proposed in Sec-
tion 4 with L types of nodes, K communities and S equal-
spaced observations within the time interval [0, 1]. We consider

three diferent settings in our experiments including a time-
homogeneous DHSBM with independently sampled networks
in Section 5.1, a DHSBMwith independently sampled networks
in Section 5.2 and a DHSBM with temporally correlated net-
works in Section 5.3. In each setting, we consider dense and
sparse networks. We set L = 2, K = 3, n1 = 300, n2 = 150
and π

[1] = π
[2] = (1/3, 1/3, 1/3). To evaluate the clustering

accuracy, we adopt the normalized mutual information (NMI)
(Danon et al. 2005), a commonly used metric in community
detection experiments to quantify the diference between two
clustering labels. Some additional simulation results for L = 3
and K = 4 are illustrated in Section S3.2 of the supplementary
materials.

5.1. Simulation Setting 1

We consider networks independently sampled from a DHSBM
with a time-homogeneous probability matrix deoned as

�(t) =

»

¼

¼

¼

¼

¼

½

θ1 + r1 θ1 θ1 θ3 + r3 θ3 θ3
θ1 θ1 + r1 θ1 θ3 θ3 + r3 θ3
θ1 θ1 θ1 + r1 θ3 θ3 θ3 + r3

θ3 + r3 θ3 θ3 θ2 + r2 θ2 θ2
θ3 θ3 + r3 θ3 θ2 θ2 + r2 θ2
θ3 θ3 θ3 + r3 θ2 θ2 θ2 + r2

¾

¿

¿

¿

¿

¿

À

.

In �(t) with L = 2 and K = 3, the parameter θ1 (θ2)
represents the connecting probability between type-[1] (type-
[2]) nodes in diferent communities, θ1 + r1 (θ2 + r2) represents
the connecting probability between type-[1] (type-[2]) nodes in
the same community, θ3 represents the connecting probability
between type-[1] and type-[2] nodes in diferent communities,
and θ3 + r3 represents the connecting probability between type-
[1] and type-[2] nodes in the same community. Hence, the
θk’s are the between community connectivity probabilities and
θk + rk’s are the within community connectivity probabilities.
By varying the values of r1, r2 and r3, we can control the signal
strength for community structures.

Scenario 1 (Sc-1): θ1 = 0.5, θ2 = 0.6, θ3 = 0.3, r1 = 0, r2 = 0,
Scenario 2 (Sc-2): θ1 = 0.1, θ2 = 0.2, θ3 = 0.05, r1 = 0,

r2 = 0.
In Scenarios 1 and 2, neither G[1] or G[2] has a community

structures. We have also considered the case where G[1] has
a weak community structure while G[2] has no community
structure. The results are similar to those from Scenarios 1 and
2 and delayed to Section S3.1 of supplementary materials . We
set S = 20 and vary r3, that is, the strength of the community
structure in G[12], from 0.05 to 0.15. Figure 5 summarizes the
community detection results averaged over 100 data replicates
for Scenarios 1-2, respectively.

For dense networks in Scenario 1, it is seen from the lev
panel in Figure 5 that DHNet outperforms the other methods
on all values of r3. The NMIs from Methods 1–4 are below 0.25
for both types of nodes. For Method 1, the clustering output
places nodes of the same type in the same community, leading
to an NMI close to zero. For Method 2, the aggregated network
becomes very dense and the number of inter-community edges
is very similar to that of the intra-community edges for each edge
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Figure 5. Average NMIs against the value of r3 for diferent methods in Setting 1 under Scenarios 1-2. The gray bands are the 95% conodence intervals for the mean NMI.

Figure 6. The three time-varying functions r31(t), r32(t) and r33(t).

type, leading to anNMI close to zero. Method 3 detects commu-
nity based on a random snapshot of network, which contains
relatively weak structural information, leading to a lower NMI.
In addition,Method 4 ignores the edges linking diferent types of
nodes and hence performs worse when no community structure
exists among the investigated type of nodes.

For sparse networks in Scenario 2, it is seen from the right
panel in Figure 5 that the performance of Methods 1 and 3
increases notably with r3, as the community structure strength
(i.e., the diference between the inter- and intra- community
connecting probability) is high in this scenario. Due to this
reason, Method 2 also performs better in the sparse case as the
community structure signal is strong in the aggregated network,
with many more inter-community edges than intra-community
edges. Our method still outperforms most of the other methods
when the signal is weak, for example, r3 ≤ 0.1.

5.2. Simulation Setting 2

We consider networks independently sampled from a DHSBM
with a time-varying probability matrix deoned as

�(t)

=

»

¼

¼

¼

¼

¼

¼

¼

¼

½

θ1 + r1 θ1 θ1 θ3 + r31(t) θ3 θ3

θ1 θ1 + r1 θ1 θ3 θ3 + r32(t) θ3

θ1 θ1 θ1 + r1 θ3 θ3 θ3 + r33(t)

θ3 + r31(t) θ3 θ3 θ2 + r2 θ2 θ2

θ3 θ3 + r32(t) θ3 θ2 θ2 + r2 θ2

θ3 θ3 θ3 + r33(t) θ2 θ2 θ2 + r2

¾

¿

¿

¿

¿

¿

¿

¿

¿

À

.

We set θ1, θ2, θ3, r1, and r2 the same as those in the two
scenarios in Simulation setting 1 and r31(t), r32(t), and r33(t)
as plotted in Figure 6. In this setting, at time t = 0, community
1 in G[12] is active while communities 2–3 are inactive; at time
t = 0.5, community 1 in G[12] becomes inactive while com-
munities 2–3 are active; at time t = 1, community 2 in G[12]
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Figure 7. Average NMIs against the value of S for diferent methods in Setting 2 under Scenarios 1-2.

becomes inactive while communities 1 and 3 are both active.We
consider S in [20, 100], and Figure 7 summarizes the community
detection results averaged over 100 data replicates for Scenarios
1–2, respectively.

It is seen that DHNet performs better than Methods 1–
4 for all values of S, regardless the sparsity of the networks.
Interestingly, the performance of Method 2 in Figure 7 is much
worse than that in Figure 5 from Simulation 1 when S is large.
This is because the connecting probability is time-varying in
Simulation 2, and the signal from communities that are active
at diferent time points may get ablated in an aggregated picture
when S is large.

5.3. Simulation Setting 3

We consider temporally correlated network samples from a
DHSBM with a time-varying connecting probability matrix.
Speciocally, we adopt the time-varying connecting probability

�(t) from Simulation setting 2. At time ts, the edge A
[l1l2]
ij (ts) is

a Bernoulli random variable with

A
[l1l2]
ij (ts) = uA

[l1l2]
ij (ts−1) + (1 − u)v[l1l2],

where u ∼ textiid Bernoulli(α) and

v[l1l2] textiid
∼ Bernoulli

(

θ
[l1l2]
k1k2

(ts) − αθ
[l1l2]
k1k2

(ts−1)

1 − α

)

,

l1, l2 ∈ [L].

Given �(t), a larger α leads to a higher correlation between
the networks at two adjacent time points. We set S = 100,

and α ∈ [0, 0.4], as to keep the probability parameter
θ

[l1 l2]

k1k2
(ts)−αθ

[l1 l2]

k1k2
(ts−1)

1−α
> 0. Figure 8 summarizes the community

detection results averaged over 100 data replicates for Scenarios
1–2, respectively.

Similar conclusions as before can be drawn for all methods
shown in Figure 8. DHNet has the best performance out of the
ove methods. When α = 0, Aij(t) is uncorrelated with the past
observations, and the model is equivalent to the model used in
Simulation setting 2. In fact, when the sample size S is small, the
efective sample size decreases as α increases, which may lead to
deterioration in the performance of DHNet. This deterioration
is demonstrated by the green star line in Figure 8(a), which
represents the case of S = 20. However, when the sample size
S is large enough, as in the case of S = 100 considered in this
part, such a tendency of deterioration can be mitigated. Method
3 relies only on a random snapshot of network and as such, it is
insensitive to changes in α.

6. Yelp Review Network

Yelp is a well-known review website, founded in 2004 in the
United States. It collects reviews on a wide range of busi-
nesses such as restaurants, bars and shops from many coun-
tries. On the Yelp platform, users can rate businesses, submit
reviews, and share experiences.We analyze the review data from
the Yelp Challenge (https://www.kaggle.com/yelp-dataset/yelp-
dataset) during the period from January 1st, 2006 to Decem-
ber 31, 2017. This dataset contains a set of businesses and
the category labels of each business (a business usually has
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Figure 8. Average NMIs against the value of α for diferent methods in Setting 3 under Scenarios 1-2.

several labels), a set of users and the friendship information
among these users, and the reviews of these businesses by these
users. The businesses and users are anonymized and labeled
with numerical identioers. In this dataset, the business-category
(business is labeled with category) and user-user (user is friend
with user) information are not labeled by time (i.e., not time-
varying) while the user-business (business reviewed by user)
interactions are labeled by time, and a usermay review a business
several times.

Our analysis focuses on onding heterogeneous communities
in the Yelp review network and predicting interests for new
users. Our results show improvements both in terms of accuracy
and interpretability over alternative solutions, and demonstrate
the need to consider network heterogeneity and dynamics in
community detection.

6.1. Finding Heterogeneous Communities

To get a comprehensive view of the Yelp review network, we
consider a heterogeneous network with three types of nodes
including business, user and category, connected via three types
of edges, user-user (user is friend with user), user-business
(business is reviewed by user), and business-category (business
is labeled with category); see Figure 1 for a simple illustration.
As discussed earlier, the user-user and business-category edges
are not time-varying but the user-business edges are. We focus
on businesses that operated continuously in the study period,
business categories that had at least 10 occurrences and users
that reviewed at least 20 times in the study period. This gives
a total of 3566 businesses, 207 categories and 5116 users, with

Table 1. Summary of the 11 communities identioed by DHNet.

categories # of # of theme
users businesses

1 Animal Shelters, Pet Groomers 719 331 Pets
Pet Services, Veterinarians

2 Tex-Mex, Southern 939 408 Tex-Mex
3 Tea, Fast Food 2629 1036 Casual Dining

Diners, Pizza, Restaurants
4 French, Pasta Shops, Steak House 679 337 Fine Dining

Professional Services, Seafood
5 Candy Stores, Farmers Market 13 239 Stores

Chocolatiers & Shops, Grocery &Markets
6 Adult Entertainment, Bars 46 225 Bars,

Dance Clubs, Beer Bar Entertainment
7 Beauty & Spas, Doctors 79 441 Beauty

Hair Salons, Health &Medical &Medical
8 Home Services, Laundry Services 5 289 Shopping

Music & Video, Shopping Centers & Life
9 Hotels & Travel, Venues & Event Spaces 4 123 Leisure

Landmarks & Historical Buildings, Tours & Travel
10 Bufets, Indian, Pakistani 3 103 Asian Fusion
11 Auto Parts & Supplies, Auto Repair 0 34 Auto

Automotive, Gas Stations, Tires

141,744 user-user and 17,280 business-category and 194,712
user-business edges. Due to the high sparsity of user-business
edges, we use year as the time unit when constructing the
dynamic network, that is, the network at time t summarizes the
review activity between users and businesses in the tth year of
the study period, and correspondingly S = 12.

We applied DHNet to the constructed dynamic heteroge-
neous network with κ = 200 and identioed 11 communities
with a maximized modularity value of 0.237. Table 1 shows
the representative categories, number of users and number of
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businesses in each identioed community, along with a sum-
marizing theme. The complete list of categories in each com-
munity can be found in the supplement. We found that each
community identioed by DHNet contains a distinctive type of
businesses. For example, Communities 3–4 are on dining and
Community 7 is mostly on Beauty & Medical. Users in Com-
munity 1 prefer activities related to pets, users in Community
6 prefer bars and entertainment and users in Community 9
show interests in traveling and sports. Community 11 is mostly
on Auto and we did not identify users whose main review
activity and interests are in this type of businesses. These insights
can help us understand the life styles and interests of users
in each community. The numbers of users for categories 8–
11 detected by DHNet are low, but these communities are still
meaningful in summarizing businesses and business categories.
Using our method, each user is classioed into one community
based on their most frequently reviewed businesses and friend-
ship information. As a future research direction, we plan to
investigate heterogeneous network clustering with overlapping
communities, in which case, a user can belong to more than one
communities.

We had also applied Methods 1–3 from Section 5, though we
did not implement Method 4, which considers each homoge-
neous networks separately and discards information from the
edges linking diferent types of nodes, as there are no business-
business or category-category edges and the user-user edges are
not time-varying. The results from Method 1, which does not
distinguish the diferent node and edge types, are very diocult
to interpret. For example, one community contains only busi-
nesses and one community contains only users.Method 2,which
considers an aggregated heterogeneous network over time, also
identioed 11 communities (see details of the communities in the
supplement). The community detection results from Method
2 are less interpretable compared to DHNet and several com-
munities contain mixed businesses themes. For example,Hobby
Shops is placed into Community 4 that is on one dining, and
Colleges & Universities and Education are placed into Commu-
nity 9 that is on leisure and travel. Method 3, which considers
a snapshot of the dynamic work, does not perform well, as the
network at each time point is highly sparse with a large number
of isolated nodes.

6.2. Prediction Interests for NewUsers

In this section, we aim to predict the interests, in terms of
business categories, for a newYelp user based onYelp activities of
his/her friends, a practically useful task inmaking recommenda-
tions and placing advertisements. We focus on predicting inter-
ests in business categories as opposed to individual businesses, as
the number of businesses is large and user-business interactions
are highly sparse. For a new Yelp user, the platform can oven
collect his/her friendship information with other existing Yelp
users, by accessing phone contacts, email contacts and Facebook
friendship. In terms of make recommendations, the Yelp activ-
ities of friends of a new user can help to ease the <cold start=
problem, the issuewhere personalized recommendations cannot
be made before a user interacts with the system (e.g., reviewing
businesses).

Consider training and testing datasets taken from two difer-
ent time periods (e.g., data from years 2006 to 2015 as training
and years 2015–2017 as testing). We are interested in making
predictions for the new users in the testing set, which are user
accounts that did not exist in the training data. Speciocally, for
a new user in the testing set, based on Yelp activities of his/her
friends in the training data, we predict the his/her interests over
the business categories and compare the prediction with the
<true= measure calculated from the testing set.

We compare two diferent prediction strategies. The orst
strategy uses community detection results from DHNet in mak-
ing the prediction and the second strategy is a simple alternative
that directly averages interests from the new user’s friends with-
out using any community information, referred to as the naive
strategy. Speciocally, let gi denote the interest measure of the ith
new user in the testing set, which is a probability distribution
over all categories; it is calculated using the appearance fre-
quency of each category in the businesses reviewed by this user.
In the orst strategy, we applyDHNet to the training network data
and ond the category distribution of each community, denoted
as fj for the jth community, calculated using the appearance fre-
quency of each category from the businesses in this community.
We then make prediction gDHNeti using the weighted average of
fj’s as below

gDHNeti =
∑

j

nij
∑

j nij
fj,

where nij denotes the number of friends that the ith user has in
the jth community. In this strategy, the prediction is a weighted
average of measures from all communities where the weight
renect the number of connections the new user has to each
community. In the second strategy, we directly calculate the
category distribution gNaivei based on the businesses that ith
user’s friends visited during the training period. This strategy
only focuses on the ego-centric network of the newuser anddoes
not take into the rich information in the network communities.
To assess the prediction accuracy, we use the Jensen–Shannon
divergence (JSD) to compare the estimated and observed cate-
gory distributions, that is,

JSD(ĝi‖gi) =
1

2
D(ĝi‖m) +

1

2
D(gi‖m),

where ĝi refers to the estimated category distribution, m =
1
2 (ĝi + gi) and D(ĝi‖m) is the Kullback–Leibler divergence
between distributions ĝi andm.

Table 2 compares the performance of the two strategies in 6
diferent sets of training and testing periods, where

JSDDHNet =
1

n0

n0
∑

i=1

JSD(gDHNeti ‖gi),

JSDNaive =
1

n0

n0
∑

i=1

JSD(gNaivei ‖gi)

and n0 denotes the number of new users in the testing period.
It is seen that DHNet outperforms the naive strategy in terms of
predicting accuracy in all training and testing datasets, demon-
strating the advantage of using community structures when
predicting user interests.
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Table 2. Jensen–Shannon divergence of the DHNet and naive methods across the 6 moving windows.

training years 2006-2010 2007-2011 2008-2012 2009-2013 2010-2014 2011-2015
testing years 2011-2012 2012-2013 2013-2014 2014-2015 2015-2016 2016-2017

JSDDHNet 0.122 0.133 0.132 0.136 0.135 0.138

JSDNaive 0.252 0.196 0.199 0.196 0.182 0.196

7. Discussion

Maximizing the modularity function as in (7) is not limited to
the Louvain-type method considered in DHNet. Other modu-
larity maximization techniques developed for a homogeneous
network may be applied to (7) with some modiocations, such
as the spectral method based on the eigen decomposition of
the modularity matrix or the stochastic optimization method in
Massen and Doye (2005). As noted in modularity maximization
for other types of networks (Fortunato 2010; Zhang and Chen
2020), we ond that the Louvain-type method is computationally
much more eocient and yields a good performance in our
setting.

While the modularity function value increases at each step
of DHNet and the algorithm is guaranteed to converge, there
is no guarantee that it will converge to the global optimum.
Since the modularity maximization problem is NP-hard, most
existing methods are heuristic methods that may only ond local
optima and are not guaranteed to ond the global optimum. A
thorough theoretical investigation of the local convergence of
DHNet can be helpful. Our proposed method is not designed to
identify dynamic or overlapping communities in heterogeneous
time-varying networks, that is, when communities vary with
time or a nodemay belong tomultiple communities. Finally, our
proposed method can be extended to weighted and/or directed
networks. To incorporate weighted and/or directed edges into
our framework, we need to deone a null model for a weighted
and/or directed heterogeneous dynamic network, followed by
calculating the expectations under the null model. This is an
interesting topic to investigate next.

Supplementary Materials

Our narrative supplement provides proofs of theoretical results and addi-
tional numerical results for both synthetic and real data. Besides, we provide
codes to conduct DHNet and an example to reproduce our simulations
results.
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