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ABSTRACT ARTICLE HISTORY
Mark-point dependence plays a critical role in research problems that can be fitted into the general Received July 2022

framework of marked point processes. In this work, we focus on adjusting for mark-point dependence when  Accepted July 2022
estimating the mean and covariance functions of the mark process, given independent replicates of the KEYWORDS

marked point process. We assume that the mark process is a Gaussian process and the point process is a log-
Gaussian Cox process, where the mark-point dependence is generated through the dependence between
two latent Gaussian processes. Under this framework, naive local linear estimators ignoring the mark-point
dependence can be severely biased. We show that this bias can be corrected using a local linear estimator
of the cross-covariance function and establish uniform convergence rates of the bias-corrected estimators.
Furthermore, we propose a test statistic based on local linear estimators for mark-pointindependence, which
is shown to converge to an asymptotic normal distribution in a parametric 4/n-convergence rate. Model
diagnostics tools are developed for key model assumptions and a robust functional permutation test is
proposed for a more general class of mark-point processes. The effectiveness of the proposed methods
is demonstrated using extensive simulations and applications to two real data examples. Supplementary

Mark-point dependence;
Marked point processes

materials for this article are available online.

1. Introduction

In many scientific fields, numerical variables of interest are com-
monly observed at some random event times for a collection of
subjects. For example, Fok, Ramsay, Abrahamowicz, and Fortin
(2012) considered systemic lupus erythematosus disease activity
index (SLEDAI) scores of patients at times of flare episodes;
Gervini and Baur (2020) studied the bid prices of Palm M515
personal digital assistants on week-long eBay auctions. In these
examples, the events in turns are flare episodes and bids, while
the associated numerical variables are SLEDAI score and bid
price. The event times in each example are random and can
be viewed as a realization from a point process, whereas the
numerical variables are often referred to as marks. The random
event times and the marks together form a so-called marked
point process (Illian et al. 2008). The marks are often well
defined over the entire study domain, but not just at event times.
For example, SLEDALI scores could potentially be obtained at
any time (Fok, Ramsay, Abrahamowicz, and Fortin 2012), and
it is therefore reasonable to assume a separate mark process that
generated the SLEDAI scores for each patient.

Marked point process data commonly arise in the analy-
sis of longitudinal data with irregularly scattered observation
times, where independent observations from different subjects
are typically available. Tools from functional data analysis have
been used to model such data by treating the mark processes
as random functions and the observed mark values as discrete

observations on the functions (Hsing and Eubank 2015). While
there has been extensive recent literature on this topic (e.g.,
Yao, Miiller, and Wang 2005; Chen and Miiller 2012; Zhang and
Wang 2016; Wang, Wong, and Zhang 2021), most of existing
work rely on a convenient but restrictive assumption stipulat-
ing that the marks and points are independent; we will refer
to this assumption as mark-point independence in this article.
Potential mark-point dependence is not considered except in a
few papers (e.g., Fok, Ramsay, Abrahamowicz, and Fortin 2012;
Gervini and Baur 2020). In real applications, however, the mark-
point independence assumption may be invalid. For example,
the SLEDALI scores are expected to be high at times of flare
episodes (Fok, Ramsay, Abrahamowicz, and Fortin 2012) and
hence the SLEDALI scores and the flare episode times may be
correlated. Ignoring such mark-point dependence can lead to
biased estimation results for the mark process. Hence, testing
mark-point independence and correcting any biases caused by
such dependence can have a major impact on statistical practice
in this area.

In this article, we consider the problem of estimating the
mean and covariance functions of the mark process nonpara-
metrically and testing mark-point independence, when inde-
pendent replicates of the marked point process are available.
To that end, we assume that the point process in each replicate
is a log-Gaussian Cox process (LGCP; Moller, Syversveen, and
Waagepetersen 1998). Mark-point dependence can be modeled
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through the correlation between the latent Gaussian process
defining the LGCP and the mark process which is also assumed
to be Gaussian. Similar assumptions have also been made in
Diggle, Menezes, and Su (2010) and Gervini and Baur (2020).
Under the proposed modeling framework, we show that the
naive local linear estimators of the mean and covariance func-
tions that ignore the mark-point dependence are biased, where
the biases can be corrected by using a local linear estimator of
the cross-covariance function between the mark process and the
latent Gaussian process for the point process; see Theorems 1-
2 for more details. The resulting bias-corrected estimators are
shown to be uniformly consistent for their respective population
counterparts.

Our proposed approach estimates the mean and covariance
functions via nonparametric smoothing. Unlike the likelihood-
based approaches (e.g., Fok, Ramsay, Abrahamowicz, and Fortin
2012; Gervini and Baur 2020), the proposed estimators do
not require fully specifying the data generating mechanism
of the marked point process. In particular, there is no need
to model the point process other than assuming it to be an
LGCP and requires no explicit assumption on how the mark-
point dependence is generated. In this sense, these estimators
are therefore more robust to model misspecifications than the
existing likelihood-based methods. A second advantage of the
proposed method is computational since the local linear estima-
tors can be efficiently computed given the selected bandwidths.
In contrast, Gervini and Baur (2020) used the Karhunen-
Loéve expansion to approximate the mark process and the
Gaussian process for the point process separately with some
basis functions. The resulting model parameters are estimated
by a penalized maximum likelihood approach, which can be
computationally intensive with several tuning parameters to be
selected.

Finally, another important contribution of this work is the
introduction of a new testing procedure for mark-point inde-
pendence. To the best of our knowledge, the proposed test is
the first formal test designed for marked point processes with
replicates. The limiting distribution of the proposed test statistic
under mark-point independence is shown to be normal with
mean 0 and a variance that can be estimated using observed
data. Surprisingly, the proposed test statistic converges to its
limiting distribution at the classical parametric rate of nl/ 2
even though it is constructed based on some nonparametric
estimators; see Section 4.2 and Theorem 3 for details. Our test
relies on the assumptions that the mark process is Gaussian and
the point process is an LGCP. We describe a set of diagnostic
tools to check these assumptions, and propose a functional
permutation test for mark-point independence that does not
rely on distributional assumptions of the underlying marked-
point process. Our simulation studies demonstrate the validity
and power of the proposed functional permutation test for a
variety of mark-point process models.

We note that some methods are developed to test the mark-
point dependence (see, e.g., Schlather, Ribeiro, and Diggle 2004;
Guan and Afshartous 2007; Zhang 2014, 2017) in a single spatial
mark-point process, though the majority require the marked
point process to be stationary, which can be implausible in many
applications. For example, both bid intensity and bid price may
increase with time during an auction (Gervini and Baur 2020);

as aresult, neither the mark (i.e., bid price) process nor the point
(i.e., bid time) process is stationary.

The rest of the article is organized as follows. In Section 2,
we describe our model. In Section 3, we discuss the naive mean
and covariance estimators for the mark process and their biases
in the presence of mark-point dependence. In Section 4, we pro-
pose an estimator for the cross-covariance function between the
mark process and point processes, based on which we propose
bias-corrected estimators for the mean and covariance functions
of the mark process; we also propose a testing procedure for the
mark-point independence. Asymptotic properties of the pro-
posed estimators and the test statistic are studied in Section 5. In
Section 6, we describe a functional permutation test and some
diagnostic tools to assess model assumptions. Numerical perfor-
mances of the proposed methods are illustrated by simulation
studies in Section 7 and two real datasets in Section 8. Finally,
some concluding remarks are provided in Section 9, and imple-
mentation details, additional numerical results, together with
technical proofs, are collected in the supplementary materials.

2. Model Specification

Consider a marked point process defined over a time window
T < R.Let {[s,Zi(s)] : s € Nj,i = 1,...,n} denote n
independent realizations of the process, where N; = {s;; : s; €
T,j=1,...,n;}isthe set of n; events from the ith point process
and Z;(s) is the associated mark for an eventat s € 7. We assume
that the random event times in N; are generated by an LGCP,
with the latent intensity function

Li(s) = do(s) exp [Xi(s)], 1)

for s € T. In the above, A¢(-) is a baseline intensity function
and X;(-) is a latent zero-mean Gaussian process with a variance
function 0)2((~), i =1,...,n. Conditional on the latent intensity
function, an LGCP is simply an inhomogeneous Poisson pro-
cess. The first- and second-order marginal intensity functions
of the point process are therefore

p(s) = E[1i(s)] = ro(s) exp [0%(s)/2]. )
pa(s,t) = E[1i(s)2i(t)] = p(s)p(t) exp [Cx (s, )], (3)

where Cx (s, t) = cov[Xi(s), X1 (t)], s, t € T.

We assume that the mark process is well defined for alls € 7.
More specifically,

Zi(s) = p(s) + Yi(s) + ei(s), (4)

where p(-) is some deterministic function, Y;(-) is a zero-
mean Gaussian process with a variance function o(+), and e;(+)
is a zero-mean Gaussian white noise process with a variance
function 022(.), i=1,...,n

Denote Cy(s,t) = cov[Yi(s),Y1(t)] and Cxy(s,t) =
cov[X;(s), Y1(#)], for any s,t € T. When Cxy(-,-) # 0, the
mark process and the point process are not independent. We
are interested in estimating the mean function u(-) and the
covariance function Cy(:,-) based on the observed data. We
remark that if the point process reduces to Poisson, that is,
Cx(-,-) = 0, it always holds that Cxy(-,-) = 0.



3. Naive Estimation of the Mean and Covariance
Functions

When the mark process and the point process are independent,
local linear estimators for (-) and Cy (-, -) are well studied (e.g.,
Yao, Miiller, and Wang 2005). We refer to these estimators as the
naive estimators. Define Ky 5, (s) = h, 'Ky (s/hy ), where K; ()
is a kernel function and h,, is a bandwidth. Then, the naive local

linear estimator for (s), s € T, is defined as fi(s) = Bo ., where
Bo,u. is obtained by minimizing
2
nu. ﬂO/uﬁlu Z Z ,BOM ﬁl,u(u_s)]
i=1ueN;
Kyp, (u— s)

with respect to fo,. and By, Let ¢, (s) = (1,s/h,)7, and
denote by e, a p-dimensional vector whose first entry equals 1
and all other entries equal 0. Then,

~

N T -1 A
A(s) = e, [An,h ,1(5)] Anp, 2(s), seT, where (5)

~

Anp,1(s) = - Z > Kip, (u—5)$y, (1 — 5)y, (1 — ) (6)

i=1 ueN;

—ZZth ufsd)h (u—s)Zi(u). (7)

i=1ueN;

An,hu 2 (5)

Define Ky, (s, 1) = h;sz(s/hy, t/hy), where Ky(-,-) is a
bivariate kernel function and h,, is a bandwidth. Let Wi(u,v) =
[Zi(u) — (w)][Zi(v) — t(v)]. The naive local linear estimator
for Cy(s,t),s,t € T, is defined as Cy(s,t) = Bo,, where By, is
obtained by minimizing

n #*
)=
i=1 u,veN;
[Wi(“) v) = Boy — Bry(u—s) — Bay(v— t)]2
Kz’hy(u

with respect to By, B1,y, and By,. In the above, the # sign
indicates u # v. Let l//hy(s, t) = (L,s/hy, 1‘/h},)—r

estimator Cy (s, £) can be written as

Lncy (ﬁO,yr /31,)/’ ,32,y

—sv—t)

. Thelocal linear

Crist) = el [Buna(st)|  Bunal(so)
steT, where (8)
By, (s ZZZKZh —sv—1yy,
i=1 u,veN;
(u—s,v—t)lﬁh (u—s,v—1)7, 9)
Byup (5 t) ZZZKZh —sv =¥y,

i=1 u,veN;

(u—s,v— ) Wi(v). (10)

When the mark process and the point process are indepen-
dent, i(-) and Cy(-,-) are consistent estimators for u(-) and
Cy(-,-) under mild conditions (Yao, Miiller, and Wang 2005;
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Li and Hsing 2010). However, in the presence of mark-point
dependence, both estimators will have non-negligible biases for
their target parameters as we will show in the following two
sections. To facilitate the derivations, we first present a technical
lemma.

Lemma 1. Let X, Y1, and Y, be three normal random variables

with means 0, i1 and u; and variances 0)2(, 012, and 022, respec-

tively. Then it holds that,

E[Y; exp(X)] = [u1 + cov(X, Y1)] exp(0z/2), (11)
E[Y7exp(X)] = {of + [p1 + cov(X, Y1)]*}
exp(03/2), (12)
E[Y1Y2exp(X)] = {cov(Y1, Y2) + [cov(X, Y1) + u1]
[cov(X, Y2) + u2]} exp(o3/2).  (13)

The proof is given in the supplementary materials.

3.1. Biasof i(-)

To derive the bias of [i(s), s € T, we first note that

Z Kl,hu (Ll

ueN;

— [ K, (0= 9y, (0= 9z,
.

b, (4 — $)Zi(u)

where N;(du) denotes the random number of events from the
ith point process in an infinitesimal time interval du atu € 7.
Then, we have that forany s e 7T,

[nh 2<>]

(4 = S)E [Zi(u)

Ah# 2(s) =
J K, (u
-

where ;xn,h“,z (s) is as defined in (7). It follows from (2) and (4)
that

Ni(du)],

Ap,2(s) = L_ () p(u) Ky, (4 — s)y, (u — s)du

" f Ao (u)E {Yi(u) exp[X;(u)])
.
Koy, (4 — )by (1 — $)du,

where p(-) is as defined in (2). Since X;(u) and Y;(u), u € T,
are both normal random variables, it immediately follows from
(11) that E{Y;(u) exp[Xi(u)]} = Cxy(u,u)exp [of(u)/2]. If
w(+) and Cxy (-, -) are smooth functions such that u(u) ~ u(s)
and Cxy(u,u) ~ Cxy(s,s) for any u in a small neighborhood
around s, then Ay, »(s) ~ [1(s) + Cxy(s,s)] ap, (s), where

(14)

an, (5) = ijwﬂq,hM( by, (1 — 5)d.

Note that, due to the definition of ¢y, (-), aj,(s) is the first
column of the following matrix
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Ap,i(s) =E [Rn,hwl(s)]
= J p(u)Kyp, (u—s)
-

b, (1 — )y (u— s)du, (15)

where 11,,,;, ,,1(8) is as defined in (6). By the law of large numbers,
it holds under mild conditions that |Xn,h,t,1 (s) — Ap,1(s) 20

and |A”:hw2 (s) = Ap, 2(5)] 2, 0,as n — o0, where 2 stands for
convergence in probability. It then follows from the definition
of fi(+) in (5) and the continuous mapping theorem that for any

seT,
fi(s) = €] [An1(s)] " an, (s) [1(s) + Cxy(s:9)]
x[140p(1)] D> u(s) + Cxy(s,5) = p*(s). (16)

In other words, i() is asymptotically unbiased for p*(-), but
not for () unless Cxy(-,-) = 0.

3.2. Biasof Cy(-,")

For ease of presentation, we replace W,-(u, v) in (10) by
Wilu,v) = [Zi(u) — n*(w)][Zi(v) — w*(v)]. This is not of
particular concern since [i(-) converges to u*(-) uniformly
in probability; see Theorem 1 in Section 5. Now define

Ni(z) (du,dv) = Nij(du)N;(dv)I(u # v), where I(-) is an
indicator function. Note that for any real functionf (-, ), it holds
that

g ©)
Z Zf(”) v) = L_zf(u, V)N; ™ (du, dv).

u,veNj;
Then, for any s, t € T, it holds that
By (s t) =E []A?vn,hy,z (s, t)]
- J- Ko, (= sv—=1)¥y, (u—sv—1)
7‘2
E [Wi(u, v)Ni(z) (du, dv)] ,
where ﬁn,hy,z (s) is as defined in (10). Since for any u,v € T,
E [Wi(u, v)Ni(z) (du, dv)]
= Ao(u)ho(V)E{Wi(u,v) exp [X;(u) + X;(v)]} dudv,
it follows from (3) and (13) that for anys,t € T,
By 25, 1) — fﬂ 21 V) C (1 V) iy 1t — 5, — 1)
Vi, (u—s,v — t)dudv,
where p,(u, v) is as defined in (3) and
Cy(u,v) = Cy(u,v) + Cxy(u,v)Cxy (v, u). (17)

If Cy(-,-) and Cxy(-,-) are both smooth functions such that
Cy(u,v) ~ Cy(s,t) and Cxy(u,v) ~ Cxy(s,t) for (u,v)

in a small neighborhood around (s,t), then By (s,t) ~
Cy (s, t)by, (s, t), where

by, (s, 1) = f p2(u, V) Ko, (u— s, v — )¢y, (u—s,v—t)dudy.
T2 y

(18)
Note that, due to the definition of ¥ hy(" ), by, (s,t) is the first
column of the matrix

Bhy,l (s, t) =E [ﬁn,hy,l (s, t)]

= L’Z P2t v) Ko, (u — s,v — 1)

why(u e t)lﬁ;y(u — s, v — t)dudv, (19)

where ﬁn,hy,l (s) is as defined in (9). By the law of large numbers,
under suitable conditions, |]A3,,,hy,1(s, t) — Bu,1(s.t)] 2, 0and

|1A3n,hy,2 (s,t)=Bp,2(s, 1) 2, 0asn — oo. It then follows from the
definition of Cy (-, -) in (8) and the continuous mapping theorem
that

=e] [Ba(s0)| by, (50CH(s )

x[1+0,(1)] & Ci(s,1), steT.

Cy (S, l‘)
(20)

This shows that the naive covariance function estimator C y(+-)
given in (8) is an asymptotically unbiased estimator for C§ (-, -)
defined in (17), but not for Cy (-, -) unless Cxy(+,) = 0.

4, Bias-Correction and Test for Mark-Point
Independence

In this section, we propose a local linear estimator for the cross-
covariance function Cxy(-,-), based on which bias-corrected
estimators for u(-) and Cy(:,-) are constructed. We also pro-
pose a formal testing procedure for mark-point independence.
The bandwidth selection procedure is detailed in Section S.1.1,
supplementary materials.

4.1. Bias-Corrected Estimation of the Mean and
Covariance Functions

Following similar steps to obtain (8), the local linear estimator
for Cxy(s,t),s,t € T, can be defined as Cxy (s, t) = Bo.xy, where
/§0,xy is obtained by minimizing

Ln,CXy (ﬂO,xy: ,Bl,xya IBZ,xy)
n #*
i=1 u,veN;
~ 2
[Zi(V) - PL(V) - .BO,xy - ,Bl,xy(u - 5) - ,32,xy(V - t)]
Koy (u—sv—1t)
with respect to Bo,xy, B1,xy> and Ba,xy, and hy,y is a bandwidth. It
can be shown that

~

~ ~ —1
Car(st) = €] [Bunya(st)| Bunya(st) steT, @D



where ﬁn,hxy,l (s,t) is as defined in (9) with bandwidth £, and

ZZZ

i=1 u,veN;
Ko, (u

B, hxy

SV — t)i/lhxy(u —sv—1t). (22)

We will show below that Cxy (s, t) is asymptotically unbiased for
Cxy (s, t), despite the fact that fi(-) is a biased estimator for p(-).
For ease of presentation, we replace [i(-) in (22) by u*(-) as we
did previously when studying the bias of Cy (-, ). Then,

By, 3(s,t) =E I:ﬁn)hxyﬁ (s, t)]
= J. Kz,hxy(u — S5V — t)lﬁhy(u —sv—t)
7'2
E{[() - w* 0INT (d dv)}

Note that for any u,v e T,

E{[Z(v) — 1* 0)IN (du dv) |
= Ro($)o(E {{Zi(¥) — ()] explXi(u) +

which is equal to p;(u, v)Cxy (u, v)dudv due to (3) and (11). If
Cxy () is a smooth function in a small neighborhood around
(s, 1), then By, 3(s,t) ~ Cxy (s, t)bn,, (s, t), where by, (s, t) is as
defined in (18) with bandwidth hy,. Recall that b, (s, ) is the
first column of the matrix By, 1 (s, t). It then follows from the

~ ny(s, t),
that is, axy(s, t) is an asymptotically unbiased estimator for
Cxy(s,t) foranys,t € T.

In light of (16) and (20) and given E:XY(, -), it is natural to
consider the following bias corrected estimators for u(s) and
Cy(s,t) foranys,te T,

n(s) =
Cy(st) =

X;(v)]} dudv,

same steps used to obtain (20) that E [EXY (s, t)]

(23)
(24)

(5) — Cxr (s:5),
Y(s,t) — Cxy (s, t)Cxy (¢, 5),
where fi(-) and Cy (-, -) are as defined in (5) and (8), respectively.

As we shall show in Section 5, 7i(-) and Cy(-,-) are uniformly
consistent for p(-) and Cy (-, -), respectively.

i
C

4.2. Test for Mark-Point Independence

In practice, it may be difficult to know in advance whether
there exists mark-point dependence. In this section, we pro-
pose a formal procedure to test the hypothesis of mark-point
independence, that is, Hy : Cxy(-,-) = 0. To motivate our
test statistic, we first temporarily assume that ;1*(s) and o3(s),
where 0Z(s) = var[Z(s)], are both known for any s € 7.
Consider the following two random sums:

Sn1 = — ZZZ (v)]* and
i=1 u,veéN;

Sz = —ZZZGZ
i=1 u,veN;
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Under Hy, it is straightforward to see that E(S,;) = E(S,z).
More generally, note that

E(Su1) = fﬂ Ao()ho(V)E

{[Zi(v) — 1n*(v)]* exp[Xi(u) + X;i(v)]} dudv.

Recall that u*(v) = u(v) + Cxy(v,v) for any v € T. By the
definition of p,(-,-) in (3) and using (12) in Lemma 1, we can
then verify that

E(Su1) = | _ o2l [030) + Cxr(1)?] .

Combined with the fact that E(S,2) = {1 p2(u, v)o 7 (v)dudv,
it holds that

E(Sn,1) = E(Suz2) + f p2(u, v)Cxy (u, v)zdudv. (25)
T2

Since the integral term in (25) is strictly nonnegative and equals
zero under the null, a test statistic can be formed based on the
difference between S,,; and S, 5.

In practice, both 4*(-) and 0’2 (-) are unknown, and thus Sy, ;
and S, cannot be calculated exactly. For p*(-), we estimate
it with /i(-) as defined in (5). For o2(-), we consider its naive
local linear estimator &2(s) = fo,,, where fo, is obtained by
minimizing

nﬂ /300),61(7

D)

i=1 ueN;
~ 2 2
{[Zi(”) — [(u)]* — Boo — Bro(u — 5)}
Kip, (u—s)
with respect to Bo» and B, and h, is a bandwidth. It imme-

diately follows from the same arguments used to obtain (5) that
foranyse 7T,

S
=
[

o
S
| —

>
=
=
Q
“
| S—
|
B>

nhy,3(s), where

[Zi(u) — Fi(u))*.
As we shall show in Section 5, /i(-) and 52(-) are uniformly
consistent for *(-) and o2(-), respectively. The uniform con-

(26)

vergence of 52 (-) to o2(+) is surprising considering that Cy(s,s)
is biased for Cy(s,s), that is, the variance of Y(s), fors € T,
under mark-point dependence.

Given /i(-) and 52(-), we propose a test statistic of the fol-
lowing form

ZZZ

i=1 u,veN;

*-ZZZ

i=1 u,veN;

- (27)

Theorem 3 in Section 5 shows that, under some conditions,
when b, = o(n~*) and hy = o(n~V4), \/nT, converges
to N(0, r) in distribution under Hy. The specific form of Qr
is given in Theorem 3, based on which an empirical estimator
can be derived, as given in Section S.1.2 of the supplementary
materials. See also Section S.1.1, supplementary materials for
the bandwidth selection procedure.
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5. Theoretical Properties

In this section, we investigate theoretical properties of the pro-
posed estimators and test statistic. We consider the asymptotic
framework where the time domain 7 is bounded while the
number of replicates n goes to infinity. For any matrix (or vector)
A, denote |A[max = max;;(|a;j|) as the max norm, and Amin(A)
as the smallest eigenvalues of A. We use diag{d,...,d,} to
denote an n x n diagonal matrix with diagonal elements
di,...,d,. Finally, for a function f(-), we denote fU)(-) as its
jth derivative for some j > 1.

The following assumptions are sufficient for our theoretical
investigation.

[C1] Assume that Z(s) is well defined for any s € 7, and p(-),
(-), u*(-) and o2(-) are third-order continuously dif-
ferentiable on 7" with bounded first-, second-, and third-
order derivatives, and there exists a constant py > 0 such
that p(s) > po forallse 7.

[C2] Assume that K;(-) and K3 (-, -) have supports [—1,1] and
[—1,1]?, respectively.

(a) Define og, ¢ = §',s2Ki(s)¢p;(s)ds and Ql{gl}:qS =
Sl_l K. (s)p,(s)$] (s)ds for j = 1,2. Assume that
Amin QK5 ) > 0.

(b) Define og,y(w) =
Ky (s, t)¥ (s, t)dsdt and

, (ST
Ql{gz},lli = Ll Ll K (s, )W, (s, )9 (s, t)dsdt,
forj =1,2.

8171 Sil [(1—w)s? + wt?]

Assume that A i, (QI{<12}1/I) > 0.

[C3] Assume that (a) hy — 0 as n — 00 such that
nhi/[log(n)]z — ; (b) ho/hy, — casn — oo for
some constant ¢ > 0.

[C4] Assume that p,(:,-), Cy(+,-) and Cxy(:, -) are third-order
continuously differentiable on 72 with bounded first-,
second-, and third-order partial derivatives.

[C5] Assume that (a) by — 0 as n — 0 such that
nhﬁ/[log(n)]2 — 05 (b) hyy — 0asn — o0 such that

nh2, /[log(n)]? — 03 (c) byl /hy — 0 and by /ey — 0

asn — o0.

Assumptions Cl1 and C4 impose some conditions on the
smoothness of the intensity functions and the mean, variance
and covariance functions. Assumption C2 specifies some
desirable properties of the kernel functions used for the
proposed local linear estimators and is satisfied by many popular
kernel functions such as the Epanechnikov kernel. Assumption
C3 warrants that the bandwidths /1, and h, are of the same order
and neither can approach 0 at a rate faster than log(n)/+/n as
n — o0. In addition, Assumption C5 requires that h, and hy,
decay at a rate slower than log(n)//n as n — o0 and h,, cannot
be too large compared to hy, or hyy. Similar conditions have
been commonly used in the existing literature, see, for example,
Yao, Miiller, and Wang (2005) and Li and Hsing (2010). The first
theorem investigates the uniform convergence of the three naive
estimators when there is possible mark-point dependence.

Theorem 1 (Naive estimators). Under Assumptions C1-C5, we
have that, as n — o0,

@ super [fi(s) = 1(s) + Cxv (s.9)
= Op {12 + llog(m)/(nh, )]}

53(5) —03(5)| = Op {12 + Dlog(n) (ko )]

ay(s,f) — Cy(s,t) — ny(s,t)CXy(t,S)

—~A

(b) sup,er

(©) supger

0, {hg + [1og(n)/(nh§)]l/ 2}.

The proof is given in the supplementary materials.

Theorem 1 suggests that when there exists mark-point
dependence (i.e., Cxy(s,t) # 0), both the naive mean function
estimator [i(-) and the naive covariance function estimator
E‘y(~, -) are biased for their respective targets. The uniform
convergence rates in Theorem 1 are comparable to the optimal
rates in the literature (Li and Hsing 2010), where the non-
diminishing biases caused by mark-point dependence were
not considered. A somewhat surprising observation is that
the local linear estimator 57(-) is still uniformly consistent for
o2(+), despite the existence of mark-point dependence. The
next theorem studies the asymptotic properties of the proposed
bias-corrected estimators.

Theorem 2 (Bias corrected estimators). Under Assumptions C1-
Cs5, it holds as n — o,

A~

Cxy (s, t) — Cxy (s t)'

(@) supyjer
=0, {hiy + [log(n)/(nh,zcy)]l/z};
(6) super |(s) — u(s)| = Op { B, + I, + [log(m)/(nhy)]"?
1/2
+ [toatn 0]

Cy(s,t) — Cy(s, t)‘

(©) supyer
-0, {h; R+ [1og(n)/(nh§)]

+ [rogtn /0] .

1/2

The proof is given in the supplementary materials.

The key result in Theorem 2 is part (a), which establishes
uniform consistency of the local linear estimator GXY(-, -) to
the cross-covariance function Cxy (-, -) between the mark pro-
cess and the point process. The proposed estimator achieves
the same uniform convergence rate as the classical local linear
estimator of the covariance function based on sparse functional
data (Li and Hsing 2010). As a result of part (a), uniform
consistency of the bias-corrected estimators /i(+) and Cy (-, -) are
subsequently established in (b) and (c). Note that the bandwidth
hyy appears in the uniform convergence rates in parts (b)-(c)
because Cxy (-, -) is used for bias corrections in /i(-) and Cy (-, -).

Finally, we give the asymptotic distribution of the test
statistic proposed in Section 4.2. Define p3(s,u,v) = E [Ai(s)
Ai()A(v)], pa(s,tu,v) = E[Ai(s)Ai(t)Ai(uw)ri(v)], for



s,t,u,v € T. Expressions of p3(:,-,-) and p4(-,-,-,-) can be
derived with some algebra and be expressed in terms of o3 (-)
and Cx(+, -). We omit their detailed expressions here.

Theorem 3 (Test statistic). Under Assumptions C1-C3 and
assuming nh® — 0 and nh® — 0asn — oo, under
Hy : Cxy(+,+) = 0, we have that,

V[t [ Baopemn] L voer)

_ Szpz(u,s)du L Boa(s) =

where 7(s) 20

(@) (s) 131!
e [Qz{qib]
0K.45€T,and

Qr = Zj C2(t,v) pa(s, t, u, v)dsdtdudv
T4
+2 JTS {o7(v) + [3 = 27(s)]CY (5, ) } p3(s, u, v)dsdudy
+2 L—z [1—7(w)][1—t(v)] C(u,v)p2(th v)dudv

2 L [1 = (v)] 7 (v)p (V) (v)dv.

d . . .
Here — denotes convergence in distribution.

The proof is given in the supplementary materials.

We remark that the bias term in Theorem 3 is negligible if
\/nh% — 0. Theorem 3 indicates that although T, is calculated
using local linear estimators fi(-) and 6z(+), it still achieves the
parametric convergence rate n~V2if n'/4h, — Oasn — oo,
which is a surprising result. Such a result enables us to conduct
a valid hypothesis test for mark-point independence without
specifying the complete data generating mechanism, provided
that a consistent estimator of the variance Q7 can be obtained.
In practice, we estimate Q7 by SAZTn given in Section S.1.2 of the
supplementary materials. Validity of the resulting testing proce-
dure and its empirical power are examined through simulations
in Section 7.

6. Functional Permutation Test and Model
Diagnostics

Our methods thus far are developed under two main assump-
tions, that is, the mark process is Gaussian and the point process
is an LGCP. In this section, we propose a functional permutation
test for testing the mark-point independence that does not reply
on these two assumptions; we also devise diagnostic tools to
check these two assumptions.

6.1. A Functional Permutation Test for Mark-Point
Independence

Using the Karhunen-Loéve expansion, the mark process Z;(-)
in (4) can be approximated by

py
Zi(s) ~ M(5)+Z Exdr(s)+ei(s), seT,i=1,...,n (28
k=1
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where éi{’s are uncorrelated random variables with mean 0 and
variance 7, with 7, being the kth largest eigenvalue of Cy (-, -),
and @) (-) is the associated eigenfunction, 1 < k < py.
Following similar proofs as in Section 5, we can show that under
mark-point independence, the bias-corrected estimator 6y(~, )
in (24) is uniformly consistent for Cy (-, -), regardless of whether
the mark process is Gaussian or the point process is an LGCP.
Denoting the kth eigenvalue and eigenfunction of Cy(-,-) by
Mk and (E,f (+), respectively, the functional principal component

~Y ~ ~
(FPC) scores &; = ( i‘f, s iﬁy)T for the ith process can be
obtained by

~Y . . by Yoy 2
£ - argmin 3} {z65) - ) - Y eldl 9} @9
k=1

SEN;

where [i(-) is as defined in (23). In practice, py can be chosen
as the smallest integer such that the percentage of cumulative
variation explained by the first k components is greater than or
equal to 95%, i.e., Zﬁil M/ S Nk = 0.95.

Let ¢(1),...,c(n) be a random permutation of the sequence
1,...,n, and define &;(s) = Zi(s) — A(s) — X4~ &4l (s).s €
N; for all i. We obtain a set of permuted mark-point pro-
cesses {[s,Z;],s € Nj}i=1,.n calculated as Z;(s) = fi(s) +
Ziyzl %) k(];,f (s)+e>(s), where ;;?C‘Ei) . s are the permuted scores

and &' (s)’s are the permuted residuals. To permute the resid-
uals, we start from a concatenation of the residual vectors from
all subjects, denoted as (¢;(s),s € Nj,i = 1,...,n) ', and ran-
domly permute all elements in this concatenated vector to get
permuted residuals, denoted as (¢} (s),s € Nj,i = 1,..., n)’.
We repeat the permutation for B times and obtain the p-value as

B
p-value = % 2 I(

Ch
Ty

> |Tl), (30)

where T, and T, are the test statistics computed based on the
observed data and the bth permuted data, respectively.

In the test described above, the permutations are designed
to remove the mark-point dependence, if there is any, while
preserving the marginal distributional properties of the mark
process and the point process. We shall empirically demonstrate
that the proposed functional permutation test is valid for various
classes of marked point processes, and can be implemented
together with the proposed test in Section 4.2. Theoretical justi-
fications of the functional permutation test shall be deferred to
future research. More implementation details of the functional
permutation test are given in Section S.1.3 of the supplementary
materials.

6.2. Model Diagnostics

~Y
If the mark process is Gaussian, the estimated FPC scores §; ’s
in (29) should approximately follow the normal distribution.

Consequently, we can check the normality of Z:lY s using, for
example, the QQ plot, to indirectly validate that the mark pro-
cess is a Gaussian process.

To evaluate the validity of the LGCP assumption on the
point process, we first derive nonparametric estimates of Ag(+)
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and Cx(-,-) under the LGCP assumption; see Section S.1.4
of the supplementary materials for details. Given these esti-
mates, we simulate independent realizations from the LGCP
defined by them and calculate some summary statistics from
the observed and simulated point processes. A large differ-
ence between these summary statistics indicates that the LGCP
assumption may be invalid. In this article, we consider the
empirical nearest-neighbor distance distribution function (e.g.,
Moller and Waagepetersen 2003). For the observed data, this
function can be calculated as

Z 2, 1l

l ueN;

where d;(u) is the distance from u € N; to its nearest neighbor
in Nj. The same summary statistic can be calculated from each
simulated point process, and we plot a(d) against the average of
those obtained from the simulated realizations over a range of d
values, along with the upper and lower simulation envelopes. If
the LGCP assumption holds, the plot should be roughly linear
and contained in the simulation envelopes. See Section 8 for an
illustration.

7. Simulation Studies

In this section, we evaluate the finite sample performance of
the proposed methods. The mark processes are generated from

Zi(s) = n(s) + Yi(s) + ei(s),s€ [0,1],i = 1,...,n, with
wu(s) = lBeta3,7(s) + lBeta7,3(s),
2 2
3
$) = D Exdy (s) ~ N(0,12), (31)
k=1

where Beta, ;(-) is the densrty function of the Beta(a,b) distri-
bution, &; Y (511 , 512 €5 )15 are iid random vectors with mean
0 and covariance matrix Xy = diag{1,0.6,0.4}, and

o1 (s) = V2sin(2ws), @5 (s) = V2 cos(2ms),
¢1 (s) = V/2sin(4ms).
The point processes are generated from an inhomogeneous Cox

process according to (1), where X;(-) therein has an isotropic
covariance function of the form

Cx(s,t) = 0’3 exp [7|5 - t|2/(2R2)] ,
ox > 0,R> 0, foranys,t € [0, 1].

(32)

(33)

For a given oy, we set Ag(s) = (15 + 25) exp ( 0f),s €
[0, 1], such that there are on average 30 observed events for each
subject if the point process is an LGCP. The parameters o, and
Rjointly control the clustering strength of the point process. We
fix R = 0.1 and vary oy in different scenarios. In particular,
when oy = 0, the resulting point process is an inhomogeneous
Poisson process.

By standard stochastic process theory, the Karhunen-Loeve
decomposition of X;(-) gives

a0
$) = Y Exdr(s)
k=1

with E&} = 0,

var(£) = i, foranys € [0, 1],

where {n},${ ()}, k = 1,2,..., are eigenvalue-eigenfunction
pairs of the covariance function Cx(-, -) defined in (33). Denote
g5 = (gf s 12, X)T such that E&X = 0 and =x = var(§)) =
drag{n X 0¥, nX}. We let the correlation matrix between &% and
&) be of the form

Exy—corr( Xg,Y)

1 —05 —0.25
=gx[0375 1 —0125], for0<gq<038,
0.125 0 1
(34)

and assume that the remaining & f,f s with k > 4 are independent
of £/, Under such a design, X;(-) and Y;(-) are independent
when g = 0, and the strength of correlation between X;(-) and
Yi(-) increases as q increases. The range of g is selected such
that the variance-covariance matrix of the joint distribution of
(§X,€)) is positive definite. When g = 0.8, the correlation

between X(s) and Z(s) ranges from —0.16 to 0.53 for s € [0, 1].
Finally, £5s and &)s are jointly simulated as follows

() -+()-

( Tx EXY> _R'R

35
=1, Sy (35)

where R is an upper triangular matrix obtained through the
Cholesky decomposition, &X' and &) are random vectors con-
sisting of iid random variables with mean 0, variance 1, and
marginal distributions Px and Py, respectively. Three types of
marginal distributions are considered for Px and Py, namely,
N(0,1), referred to as Gaussian, centered exponential distri-
bution with a rate 1, referred to as Exp, and scaled ¢-distribution
with a degrees of freedom 4, referred to as T4. When both Px
and Py are Gaussian, (35) generates data under models (1) and
(4). For ease of presentation, from now on, we shall denote,
for example, (Gau551an Exp) for the setting when &X’s are
Gaussian and &) ;s are exponential.

7.1. Estimation Accuracy

We first compare the estimation accuracy of the proposed esti-
mators in the presence of mark-point dependence. Specifically,
there are four functions of interest as discussed below.

1. pu(-): the mean function of the mark process. We consider
both the naive estimator ft(-) defined in (5) and the bias-
corrected estimator [i(-) defined in (23). The estima-
tion accuracy of each estimator is evaluated through the
mean absolute deviation (MAD) deﬁned as MAD(ﬁ) =
§0 17i(s) — pa(s)| ds, and MAD() = §; |@i(s) — u(s)| ds.

2. 0(-): the variance function of the mark process Given the
naive estimator 5(-) defined in (26), we report MAD(52) =
o [57(s) = a7(s)] ds.

3. Cy(+-): the covariance function of the mark process. The
estimation accuracy of the naive estimator Cy (-, -) in (8) and
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Figure 1. Estimation accuracy of local linear estimators under the (Gaussian, Gaussian) setting.

the bias-corrected estimator éy(-, -) in (24) are compared
through MAD(Cy) = §; o ‘Ey(s, t) — Cy(s, t)‘ dsdt, and

MAD(Cy) = §} 2 ‘6y(s, £) — Cy(s, t)( dsdt.

4. Cxy(-,-): the cross-covariance function between the mark
process and the point process. The estimation accuracy of
the estimator Cxy(:,-) defined in (21) is evaluated through

MAD(&X)/> = S(l) Sé ‘axy(s, t) — ny(s, t)‘ dsdt.

The Epanechnikov kernel is used with respective bandwidths
selected following Section S.1.1, supplementary materials for
each simulated dataset. We fix o, = 1 for the covariance func-
tion (33), and consider varying strength of correlation with g =
0.5,0.6,0.7, 0.8, as the sample size n varies from 100 to 600. Indi-
viduals with more than 200 time points are removed to enhance
numerical stability. Summary statistics based on 500 simula-
tion runs are illustrated in Figure 1 under the (Gaussian,
Gaussian) setting.

It is seen from Figure 1 that MAD({i) and MAD(G2) are
approximately of orders O(n~1/3) and O(n~2/%), respectively.
This agrees with our theoretical results in Theorems 1-2. Specif-
ically, by Theorem 1, the optimal bandwidth for 2(-) is roughly
of the order O(n~1/%), giving the optimal convergence rate
O(n=%/5). Moreover, Theorem 2 indicates that the optimal con-
vergence rate of /i(-) is approximately of order O(n~'/3), due
to the bandwidth hxy used in the bias correction term. Hence,
the observed rates for MAD(f1) and MAD(G2) support our
theoretical findings and validate the effectiveness of the band-

width selection criteria proposed in Section S.1.1, supplemen-
tary materials.

Similarly, Theorem 2 suggests that MAD(Cyxy) and
MAD(Cy) are roughly of order O(n~'/?) using the optimal
bandwidths of order O(n~1/¢), and the graphic summaries
in Figure 1 strongly corroborate these conclusions and the
effectiveness of the bandwidth selection criteria proposed in
Section S.1.1, supplementary materials. When there is no mark-
point dependence (g = 0), it appears that the estimation
efficiency loss caused by the unnecessary bias correction is
minimal. We, therefore, recommend always using proposed
bias corrections in practice.

Next, as expected, the naive estimator of u(-), that is, fi(-),
suffers from considerably larger estimation errors than the bias-
corrected estimators in all scenarios. To demonstrate this, in
Figure 2, we give the mean and 95% quantile bands of 500 esti-
mated functions under the (Gaussian, Gaussian) setting
in the case of ¢ = 0.8 and n = 600, where there is a larger bias
for the naive estimator ft(-) than the bias-corrected estimator
a().

Figure 1 suggests that the estimation errors of the bias-
corrected estimator EY(., -) are generally smaller than the naive
estimator Cy(-,-). The improvement is moderate when the
mark-point dependence is relatively small (e.g., when g = 0.5),
but becomes more pronounced when ¢ is larger. To further
demonstrate this point, we summarize in Figure 2 the last two
eigenfunctions of Cy(,-) and Cy(-,-) when n = 600 and
q = 0.8, and compare them with those of Cy(-,-). The first
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Figure 2. Estimation biases and 95% quantile bands for mean functions and last two eigenfunctions of Cy(-,-) when n = 600 and g = 0.8 under the (Gaussian,

Gaussian) setting.

eigenfunctions of Cy(-,-) and Cy(-,-) are similar and thus are
not reported. It is clearly seen that Cy(-,-) results in biased
estimates of the eigenfunctions, but such biases are reduced
with éy(-, -). Compared to the biases observed in the estimation
of u(-), the biases in the estimated eigenfunctions from the
naive covariance function estimator are less pronounced, even
in the case with ¢ = 0.8. This suggests that the mark-point
dependence may affect the estimation of the mean function
1 (+) more than the covariance function of the mark process.

Finally, additional simulation results for non-Gaussian X;(+)’s
and Y;(-)’s are reported in Section S.3.1 of the supplementary
materials. In such settings, the estimation bias resulted from
the mark-point dependence may not be eliminated, but it can
still be effectively reduced using the proposed bias correction
procedure.

7.2. Validity of the Proposed Testing Procedures

In this section, we demonstrate the validity of the proposed
testing procedures in Sections 4.2 and 6.1. For each simulated
dataset, the permutation test is conducted using 500 random
permutations. In our simulation settings, the null hypothesis of
mark-point independence corresponds to the case with g = 0.
We set o, = 0,0.5,0.7,1 and vary the sample size n from 100
to 600. For each setting, we summarize test results based on
3000 simulated datasets. For computational efficiency, we first
perform bandwidth selection using the cross-validation criteria
in Section S.1.1, supplementary materials over 50 simulated

datasets, apply the under smoothing corrections described in
(S.1) to the average of the selected bandwidths, and hold the
bandwidths fixed for all 3000 simulated datasets.

Figures 3 and 4 give empirical rejection rates of the proposed
tests under Hj at significance levels 0.05 and 0.10, respectively.
Figures 3 suggest that under the (Gaussian, Gaussian)
setting, the empirical rejection rates of both tests are close to the
nominal levels in all scenarios when 7 is greater than 200. Under
Hy, p-values from a valid test should follow Uniform|[0, 1]. In the
middle panels of Figure 3, we provide the empirical distribution
of the p-values under the scenario n = 500 and o = 1, which
indeed approximately resembles the desired uniform distribu-
tion. To quantify the closeness between the empirical distribu-
tion IEP() of the p-values and the uniform distribution, we also
consider the Mallow’s distance dM(IA’p) = Sé \IEP_ Y(u) — uldu,
where a smaller value of dj (IAJP) indicates that IAJP is closer to the
uniform distribution. In the right panels of Figure 3, we show the
values of dy (IAJP) as a function of n under various case scenarios.
As we can see, when n is sufficiently large, dM(lA?p) falls into
the envelope computed by the empirical quantiles of dM(IAJ g ’k),
where ﬁg k k 1,...,1000, are the empirical CDFs based
on B = 3000 random numbers drawn from the Uniform[0, 1].
This result further supports the validity of the proposed testing
procedures.

Figure 4 illustrates the rejection rates of the two tests when
the mark process is not Gaussian and/or the point process is
not an LGCP. While the asymptotic test still appears to be
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Figure 3. Validity of the proposed tests under the (Gaussian, Gaussian) setting. Top row: the asymptotic test; Bottom row: the permutation test.
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Figure 4. Rejection rates of two tests under mark-point independence in various distribution settings. Top row: the asymptotic test; Bottom row: the permutation test.
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Figure 5. Rejection rates of two tests at the 0.05 level under the local alternatives with varying oy (top row) and y (bottom row).

valid so long as the mark process is Gaussian, its rejection rates
significantly exceed the nominal level when the mark process is
non-Gaussian. In comparison, the permutation test seems to be
close to the nominal sizes provided # is sufficiently large in all
settings. Additional and similar simulation results can be found
in Section S.3.2 of the supplementary materials.

7.3. Powers Against Local Alternatives

Next, we investigate the power of the proposed tests against
local alternatives, which is a popular approach to study the
test power, see, for example, Xu and Wang (2011). The
asymptotic mean of 4/nT, in (27) when Cxy(.,-) # 0 is
V1§ p2(u,v)Cxy (u, v)>dudy. Using the simulation setup
as in (34) and define the local alternatives by letting ¢> =
n~1/2y for some constant y > 0. If Theorem 3 holds, the
asymptotic mean of 4/nT, should be proportional to y and
is independent of n. We set y 3.6,5.0,6.4, and refer to
the resulting rejection probabilities as the local power. If the
limiting distribution of the test statistic is correctly specified,
the local power should stay constant as # increases. Data are
simulated with varying values of n, o, and y. Figure 5 illustrates
the empirical rejection rates at the 0.05 significance level in
various settings based on 1000 data replicates.

The left panel of Figure 5 suggests that under the
(Gaussian, Gaussian) setting, the rejection rates of both
tests stay roughly constant as n and y increase. The local powers
of both tests first increase as o, increases. This is because the
magnitude of Cxy(:,-) increases with o, by our simulation

design. Correspondingly, the mean of the test statistic increases
as suggested in (25), leading to a greater power. However, if o
continues to grow, the power of the proposed test will decrease.
This can be explained by the fact that a larger o, also leads
to a more clustered point process and consequently inflate
the variance of the test statistic, which offsets the increase
in the mean of the test statistic and thus leads to a reduced
power. All these observations support our theoretical findings
in Theorem 3 under the (Gaussian, Gaussian) setting.
In other settings shown in Figure 5, the local powers of the
permutation test are roughly constant as » increases, provided
that n is sufficiently large. This further supports the validity
of the proposed functional permutation test in more general
settings. Similar results are observed when the T4 distribution
is replaced by the Exp distribution; see Section S.3.2 of the
supplementary materials.

8. Real Data Analysis
8.1. EMA Smoking Data

In this section, we analyze the situational associations of smok-
ing using the ecological momentary assessment (EMA) data.
Smoking is found to be cued or suppressed by immediate sit-
uational factors, such as craving, mood, and social settings,
and influences of these factors are modulated by gender (Todd
2004; Shiffman and Rathbun 2011). The data we analyze were
collected in real-time from 302 smokers over 16 days (Shiffman
et al. 2002). The participants were 43% male and 57% female.
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Figure 6. Top left: diagnostic plot for LGCP following Section 6.2; Top middle: QQ plot of the first-FPC scores following Section 6.1; Top right and bottom panel: Estimated
daily mean functions of “restless” and “negative affect for male and female participants, respectively.

To be included in the study, a participant had to smoke at
least 10 cigarettes per day and had been smoking for at least 2
years. Before data collection, participants were trained to use an
Electronic Diary (ED) device designed to collect data in real-
time. During the study period, the participants were instructed
to record each cigarette in the ED, immediately before smoking.
On about 4-5 randomly selected smoking occasions per day,
the device administered an assessment. Each assessment pro-
vided several continuously measured mood-related ratings such
as “negative affect” and “restless,” with higher scores indicat-
ing more affective distress and stronger feelings of restlessness,
respectively. See Shiffman et al. (2002) for more details about the
data.

The first few days of monitoring were designed to allow the
participants to become familiar with the ED. We therefore focus
on days 4-16 in our analysis as suggested in Shiffman et al.
(2002). In each day, the observation window for events, that is,
[0, 1], corresponded to all waking hours and was not subject-
specific, that is, participants were measured on a common time
interval; see Shiffman et al. (2002) for more details. For each par-
ticipant, we aggregate all time points observed on different days
into a single day for our analysis. As only 1.56% of total smoking
events across all participants were within [0, 0.2] [ J[0.8, 1], we
focus on the time interval [0.2, 0.8]. See Figure S.7 in the supple-
mentary materials for some sample trajectories. We estimate the
naive and the bias-corrected estimators of the daily mean func-
tions p(-) and covariance functions Cy(-,-) for two different

marks (i.e., “negative affect” and “restless”) of male and female
participants, respectively; see Figure 6 and Section S.3.3 of the
supplementary materials. The bandwidths are selected follow-
ing the proposed procedures in Section S.1.1, supplementary
materials.

Following Section 6.2, for the mark “restless” of the male
group, Figure 6 shows that summary statistics from the observed
data fell within the 95% percentile envelope based on 1000 sim-
ulated point processes, suggesting that the LGCP assumption
for the point process is reasonable. The QQ plot of the first
FPC scores of the mark process, which account for more than
95% of the total variations, is reasonably close to a straight
line, indicating the mark process can be considered as Gaussian.
Additional diagnostic plots for other marked point processes are
given in Section S.3.3 of the supplementary materials, support-
ing a similar conclusion.

It is seen from the reported p-values in Figure 6 that at the
significance level of 0.10, dependence between “negative affect”
and smoking times is significant for males, but is insignificant
for females. This is consistent with the findings in Shiffman
and Rathbun (2011). On the other hand, “restless” and smoking
times are found to have significant associations for both males
and females at 0.05 significance level. This is an interesting
finding that, to our best knowledge, has not been discussed
before in the literature. The estimated mean functions w(-)’s
are illustrated in Figure 6. For “negative affect,” it is seen that
females have a much lower level of “negative affect” compared to
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Figure 7. Model diagnostics and estimation for the auction data.

males. For males, there is a notable difference between the naive
estimator and the bias-corrected estimator; this is expected as
the small p-value indicates significant mark-point dependence.

For “restless,” there are notable differences between the naive
and bias-corrected estimators for both males and females. In the
bias-corrected estimates, male participants are seen to exhibit a
steady level of restlessness and then an increasing trend starting
around 0.7, while female participants have an increasing level of
restlessness throughout the day.

From the naive and bias-corrected estimates of the covari-
ance function Cy (-, -), we see that the first eigenfunction is flat
for both marks and both genders (not plotted). Interestingly,
the first eigenfunction accounts for more than 93% of the vari-
ability for both marks and both genders. This suggests that the
dominant mode of variation for “negative effect” and “restless” is
the overall magnitude, and this holds for both male and female
participants.

8.2. Ebay Online Auction Data

In this section, we analyze the bid prices of Palm M515 Personal
Digital Assistants (PDA) on week-long eBay auctions that took
place between March and May of 2003. This dataset contains
the bid times and prices of 194 PDA auctions, which has been
analyzed by many authors. See Figure S.10 of the supplementary
materials for sample trajectories. Earlier analyses (Jank and
Shmueli 2006) focused on dynamics of the bid price curves;
Wu, Miiller, and Zhang (2013) studied the bid times as point
processes; Gervini and Baur (2020) modeled the bid times and
bid prices jointly, since it was expected that items with lower
prices tended to experience “bid sniping” (i.e., concentrated
bidding activity close to the end of the auction), but they did
not formally test for the mark-point independence.

Our analysis focuses on the last day of the seven-day auction
period, which is rescaled to [0,1]. We remove subjects with
fewer than 2 bids in the last day, resulting in a total sample size
of n = 174. The bid prices are log-transformed as the mark
process. We plot the diagnostic plots described in Section 6.2,
and apply the testing procedures for mark-point independence
in Sections 4.2 and 6.1. The diagnostic plots in Figure 7(a)
and (b) suggest that the point process may not be an LGCP,
as the observed nearest-neighbor distance distribution is not

contained in the simulation envelope, and the mark process
may not be Gaussian, as some departure from normality is
seen in the QQ plot. From Figure 7(c), both the asymptotic
and permutation tests reject the mark-point independence at
the 0.05 level. The validity of the asymptotic test is sensitive to
model misspecification, but the permutation test is more robust,
as numerically demonstrated in our simulation. On one hand,
the agreement between the asymptotic test and the permuta-
tion test suggests that one can probably reject the mark-point
independence at the 0.05 level, supporting the well-recognized
“bid sniping” effects toward the end of an auction. On the other
hand, as demonstrated in Section S.3.1 of the supplementary
materials, when the point process is not an LGCP and/or the
mark process is not Gaussian, the proposed bias correction
technique may not be able to eliminate the bias caused by the
mark-point dependence and thus one needs to be cautious when
interpreting the bias-corrected mean function.

9. Concluding Remarks

In this article, we propose a computationally efficient moment-
based bias-correction procedure for estimating the mean and
covariance functions of the mark process when there is mark-
point dependence. We also propose two inferential procedures,
including an asymptotic test and a functional permutation test,
for testing the mark-point independence assumption.

While we focus on detecting mark-point dependence and
correcting estimation bias caused by potential mark-point
dependence, our work opens doors to a series of meaningful
research directions such as bias-corrected statistical inference
of functional principal component scores and bias-corrected
testing of the mean functions of two or more groups (e.g.,
treatment vs. control, male vs. female). It is also of interest to
extend the current methods to mark-point process data with
more complicated structures, see, for example, Xu et al. (2020)
and Yin et al. (2021).

Moreover, although our work has focused on temporal mark-
point processes, it can be readily extended to model spatial
mark-point processes if independent replicates are available,
which requires using multi-dimensional kernel or product ker-
nel functions. For future research, it is also of interest to consider
the case where the marks are non-Gaussian (e.g., Poisson, Bino-



mial). In the case of Poisson marks, we can assume that

Z(s) ~ Poisson (exp [u(s) + Y(s)]), seT, (36)
where ((+) and Y(-) are defined similarly as those in (4). Our
proposed framework can be extended to derive unbiased esti-
mators for ;(-) and Cy (-, -), that is, the covariance function of
Y(-) in (36). See Section S.2 of the supplementary materials for
more details. It is also of great interest to theoretically justify
the functional permutation test for mark-point independence
proposed in Section 6.1. We plan to investigate such directions

in our future research.

Supplementary Materials

The supplementary material contains method implementation details,
additional numerical results, and technical proofs.

Disclosure Statement

The authors report there are no competing interests to declare.

Funding

Zhang’s research is supported by NSF grant DMS-2015190 and Guan’s
research is supported by NSF grant DMS-1810591.

References

Chen, K., and Miiller, H.-G. (2012), “Modeling Repeated Functional Obser-
vations,” Journal of the American Statistical Association, 107, 1599-1609.
[217]

Diggle, P. J., Menezes, R., and Su, T.-l. (2010), “Geostatistical Inference
under Preferential Sampling,” Journal of the Royal Statistical Society,
Series C, 59, 191-232. [218]

Fok, C. C. T., Ramsay, J. O., Abrahamowicz, M., and Fortin, P. (2012),
“A Functional Marked Point Process Model for lupus Data,” Canadian
Journal of Statistics, 40, 517-529. [217,218]

Gervini, D., and Baur, T. J. (2020), “Joint Models for Grid Point and
Response Processes in Longitudinal and Functional Data,” Statistica
Sinica, 30, 1905-1924. [217,218,230]

Guan, Y., and Afshartous, D. R. (2007), “Test for Independence between
Marks and Points of Marked Point Processes: A Subsampling Approach,”
Environmental and Ecological Statistics, 14, 101-111. [218]

Hsing, T., and Eubank, R. (2015), Theoretical Foundations of Functional
Data Analysis, with an Introduction to Linear Operators, Chichester:
Wiley. [217]

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 231

Illian, J., Penttinen, A., Stoyan, H., and Stoyan, D. (2008), Statistical Analysis
and Modelling of Spatial Point Patterns, Chichester: Wiley. [217]

Jank, W, and Shmueli, G. (2006), “Functional Data Analysis in Electronic
Commerce Research,” Statistical Science, 21, 155-166. [230]

Li, Y., and Hsing, T. (2010), “Uniform Convergence Rates for Non-
parametric Regression and Principal Component Analysis in Func-
tional/Longitudinal Data,” The Annals of Statistics, 38, 3321-3351.
[219,222]

Moller, J., Syversveen, A. R., and Waagepetersen, R. P. (1998), “Log Gaus-
sian Cox Processes,” Scandinavian Journal of Statistics, 25, 451-482.
[217]

Moller, J., and Waagepetersen, R. P. (2003), Statistical Inference and Simu-
lation for Spatial Point Processes, Boca Raton, FL: CRC Press. [224]

Schlather, M., Ribeiro, Paulo J., J., and Diggle, P. ]. (2004), “Detecting
Dependence between Marks and Locations of Marked Point Processes,”
Journal of the Royal Statistical Society, Series B, 66, 79-93. [218]

Shiffman, S., Gwaltney, C., Balabanis, M., Liu, K., Paty, J., Kassel, J., Hickcox,
M., and Gnys, M. (2002), “Immediate Antecedents of Cigarette Smok-
ing;” Journal of Abnormal Psychology, 111, 531-545. [228,229]

Shiffman, S., and Rathbun, S. L. (2011), “Point Process Analyses of Vari-
ations in Smoking Rate by Setting, Mood, Gender, and Dependence,”
Psychology of Addictive Behaviors, 25, 501-510. [228,229]

Todd, M. (2004), “Daily Processes in Stress and Smoking: Effects of Nega-
tive Events, Nicotine Dependence, and Gender;,” Psychology of Addictive
Behaviors, 18, 31-39. [228]

Wang, J., Wong, R. K. W,, and Zhang, X. (2021), “Low-Rank Covariance
Function Estimation for Multidimensional Functional Data,” Journal of
the American Statistical Association (to appear). [217]

Wu, S., Miiller, H.-G., and Zhang, Z. (2013), “Functional Data Analysis for
Point Processes with Rare Events,” Statistica Sinica, 23, 1-23. [230]

Xu, G., Wang, M., Bian, J., Huang, H., Burch, T. R, Andrade, S. C., Zhang, J.,
and Guan, Y. (2020), “Semi-parametric Learning of Structured Temporal
Point Processes,” The Journal of Machine Learning Research, 21, 7851—
7889. [230]

Xu, G., and Wang, S. (2011), “A Goodness-of-Fit Test of Logistic Regression
Models for Case-Control Data with Measurement Error,” Biometrika,
98, 877-886. [228]

Yao, E, Miiller, H.-G., and Wang, J.-L. (2005), “Functional Data Analysis
for Sparse Longitudinal Data,” Journal of the American Statistical Associ-
ation, 100, 577-590. [217,219,222]

Yin, L., Xu, G,, Sang, H., and Guan, Y. (2021), “Row-clustering of a Point
Process-valued Matrix,” Advances in Neural Information Processing Sys-
tems, 34, 20028-20039. [230]

Zhang, T. (2014), “A Kolmogorov-Smirnov Type Test for Independence
between Marks and Points of Marked Point Processes,” Electronic Journal
of Statistics, 8, 2557-2584. [218]

(2017), “On Independence and Separability between Points and
Marks of Marked Point processes,” Statistica Sinica, 27, 207-227.
[218]

Zhang, X., and Wang, J. L. (2016), “From Sparse to Dense Functional Data
and Beyond,” The Annals of Statistics, 44, 2281-2321. [217]




	Abstract
	1.  Introduction
	2.  Model Specification
	3.  Naive Estimation of the Mean and Covariance Functions
	3.1.  Bias of (·)
	3.2.  Bias of Y(·,·)

	4.  Bias-Correction and Test for Mark-Point Independence
	4.1.  Bias-Corrected Estimation of the Mean and Covariance Functions
	4.2.  Test for Mark-Point Independence

	5.  Theoretical Properties
	6.  Functional Permutation Test and Model Diagnostics
	6.1.  A Functional Permutation Test for Mark-Point Independence
	6.2.  Model Diagnostics

	7.  Simulation Studies
	7.1.  Estimation Accuracy
	7.2.  Validity of the Proposed Testing Procedures
	7.3.  Powers Against Local Alternatives

	8.  Real Data Analysis
	8.1.  EMA Smoking Data
	8.2.  Ebay Online Auction Data

	9.  Concluding Remarks
	Supplementary Materials
	Disclosure Statement
	Funding
	References


