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ABSTRACT

Mark-point dependence plays a critical role in research problems that can be otted into the general
framework ofmarked point processes. In this work, we focus on adjusting formark-point dependencewhen
estimating the mean and covariance functions of the mark process, given independent replicates of the
marked point process. We assume that themark process is a Gaussian process and the point process is a log-
Gaussian Cox process, where the mark-point dependence is generated through the dependence between
two latent Gaussian processes. Under this framework, naive local linear estimators ignoring the mark-point
dependence can be severely biased. We show that this bias can be corrected using a local linear estimator
of the cross-covariance function and establish uniform convergence rates of the bias-corrected estimators.
Furthermore,weproposea test statistic basedon local linear estimators formark-point independence,which
is shown to converge to an asymptotic normal distribution in a parametric

?

n-convergence rate. Model
diagnostics tools are developed for key model assumptions and a robust functional permutation test is
proposed for a more general class of mark-point processes. The efectiveness of the proposed methods
is demonstrated using extensive simulations and applications to two real data examples. Supplementary
materials for this article are available online.
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1. Introduction

Inmany scientioc oelds, numerical variables of interest are com-
monly observed at some random event times for a collection of
subjects. For example, Fok, Ramsay, Abrahamowicz, and Fortin
(2012) considered systemic lupus erythematosus disease activity
index (SLEDAI) scores of patients at times of nare episodes;
Gervini and Baur (2020) studied the bid prices of Palm M515
personal digital assistants on week-long eBay auctions. In these
examples, the events in turns are nare episodes and bids, while
the associated numerical variables are SLEDAI score and bid
price. The event times in each example are random and can
be viewed as a realization from a point process, whereas the
numerical variables are oven referred to as marks. The random
event times and the marks together form a so-called marked
point process (Illian et al. 2008). The marks are oven well
deoned over the entire study domain, but not just at event times.
For example, SLEDAI scores could potentially be obtained at
any time (Fok, Ramsay, Abrahamowicz, and Fortin 2012), and
it is therefore reasonable to assume a separate mark process that
generated the SLEDAI scores for each patient.

Marked point process data commonly arise in the analy-

sis of longitudinal data with irregularly scattered observation

times, where independent observations from diferent subjects

are typically available. Tools from functional data analysis have

been used to model such data by treating the mark processes

as random functions and the observed mark values as discrete
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observations on the functions (Hsing and Eubank 2015). While

there has been extensive recent literature on this topic (e.g.,

Yao, Müller, andWang 2005; Chen andMüller 2012; Zhang and

Wang 2016; Wang, Wong, and Zhang 2021), most of existing

work rely on a convenient but restrictive assumption stipulat-

ing that the marks and points are independent; we will refer

to this assumption as mark-point independence in this article.

Potential mark-point dependence is not considered except in a

few papers (e.g., Fok, Ramsay, Abrahamowicz, and Fortin 2012;

Gervini andBaur 2020). In real applications, however, themark-

point independence assumption may be invalid. For example,

the SLEDAI scores are expected to be high at times of nare

episodes (Fok, Ramsay, Abrahamowicz, and Fortin 2012) and

hence the SLEDAI scores and the nare episode times may be

correlated. Ignoring such mark-point dependence can lead to

biased estimation results for the mark process. Hence, testing

mark-point independence and correcting any biases caused by

such dependence can have a major impact on statistical practice

in this area.
In this article, we consider the problem of estimating the

mean and covariance functions of the mark process nonpara-
metrically and testing mark-point independence, when inde-
pendent replicates of the marked point process are available.
To that end, we assume that the point process in each replicate
is a log-Gaussian Cox process (LGCP; Møller, Syversveen, and
Waagepetersen 1998). Mark-point dependence can be modeled

© 2022 American Statistical Association
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through the correlation between the latent Gaussian process
deoning the LGCP and the mark process which is also assumed
to be Gaussian. Similar assumptions have also been made in
Diggle, Menezes, and Su (2010) and Gervini and Baur (2020).
Under the proposed modeling framework, we show that the
naive local linear estimators of the mean and covariance func-
tions that ignore the mark-point dependence are biased, where
the biases can be corrected by using a local linear estimator of
the cross-covariance function between themark process and the
latent Gaussian process for the point process; see Theorems 1–
2 for more details. The resulting bias-corrected estimators are
shown to be uniformly consistent for their respective population
counterparts.

Our proposed approach estimates the mean and covariance
functions via nonparametric smoothing. Unlike the likelihood-
based approaches (e.g., Fok, Ramsay, Abrahamowicz, and Fortin
2012; Gervini and Baur 2020), the proposed estimators do
not require fully specifying the data generating mechanism
of the marked point process. In particular, there is no need
to model the point process other than assuming it to be an
LGCP and requires no explicit assumption on how the mark-
point dependence is generated. In this sense, these estimators
are therefore more robust to model misspeciocations than the
existing likelihood-based methods. A second advantage of the
proposedmethod is computational since the local linear estima-
tors can be eociently computed given the selected bandwidths.
In contrast, Gervini and Baur (2020) used the Karhunen-
Loève expansion to approximate the mark process and the
Gaussian process for the point process separately with some
basis functions. The resulting model parameters are estimated
by a penalized maximum likelihood approach, which can be
computationally intensive with several tuning parameters to be
selected.

Finally, another important contribution of this work is the
introduction of a new testing procedure for mark-point inde-
pendence. To the best of our knowledge, the proposed test is
the orst formal test designed for marked point processes with
replicates. The limiting distribution of the proposed test statistic
under mark-point independence is shown to be normal with
mean 0 and a variance that can be estimated using observed
data. Surprisingly, the proposed test statistic converges to its

limiting distribution at the classical parametric rate of n1{2,
even though it is constructed based on some nonparametric
estimators; see Section 4.2 and Theorem 3 for details. Our test
relies on the assumptions that the mark process is Gaussian and
the point process is an LGCP. We describe a set of diagnostic
tools to check these assumptions, and propose a functional
permutation test for mark-point independence that does not
rely on distributional assumptions of the underlying marked-
point process. Our simulation studies demonstrate the validity
and power of the proposed functional permutation test for a
variety of mark-point process models.

We note that some methods are developed to test the mark-
point dependence (see, e.g., Schlather, Ribeiro, andDiggle 2004;
Guan andAfshartous 2007; Zhang 2014, 2017) in a single spatial
mark-point process, though the majority require the marked
point process to be stationary, which can be implausible inmany
applications. For example, both bid intensity and bid price may
increase with time during an auction (Gervini and Baur 2020);

as a result, neither themark (i.e., bid price) process nor the point
(i.e., bid time) process is stationary.

The rest of the article is organized as follows. In Section 2,
we describe our model. In Section 3, we discuss the naive mean
and covariance estimators for the mark process and their biases
in the presence ofmark-point dependence. In Section 4, we pro-
pose an estimator for the cross-covariance function between the
mark process and point processes, based on which we propose
bias-corrected estimators for themean and covariance functions
of the mark process; we also propose a testing procedure for the
mark-point independence. Asymptotic properties of the pro-
posed estimators and the test statistic are studied in Section 5. In
Section 6, we describe a functional permutation test and some
diagnostic tools to assessmodel assumptions. Numerical perfor-
mances of the proposed methods are illustrated by simulation
studies in Section 7 and two real datasets in Section 8. Finally,
some concluding remarks are provided in Section 9, and imple-
mentation details, additional numerical results, together with
technical proofs, are collected in the supplementary materials.

2. Model Speciocation

Consider a marked point process deoned over a time window
T Ă R. Let trs,Zipsqs : s P Ni, i < 1, . . . , nu denote n
independent realizations of the process, where Ni < tsij : sij P
T , j < 1, . . . , niu is the set of ni events from the ith point process
andZipsq is the associatedmark for an event at s P T .We assume
that the random event times in Ni are generated by an LGCP,
with the latent intensity function

λipsq < λ0psq exp rXipsqs , (1)

for s P T . In the above, λ0p¨q is a baseline intensity function
andXip¨q is a latent zero-mean Gaussian process with a variance
function σ 2

Xp¨q, i < 1, . . . , n. Conditional on the latent intensity
function, an LGCP is simply an inhomogeneous Poisson pro-
cess. The orst- and second-order marginal intensity functions
of the point process are therefore

ρpsq = E rλipsqs < λ0psq exp
<
σ 2
Xpsq{2

‰
, (2)

ρ2ps, tq = E rλipsqλiptqs < ρpsqρptq exp rCXps, tqs , (3)

where CXps, tq < covrX1psq,X1ptqs, s, t P T .
We assume that themark process is well deoned for all s P T .

More speciocally,

Zipsq < μpsq ` Yipsq ` eipsq, (4)

where μp¨q is some deterministic function, Yip¨q is a zero-
mean Gaussian process with a variance function σ 2

Yp¨q, and eip¨q
is a zero-mean Gaussian white noise process with a variance
function σ 2

e p¨q, i < 1, . . . , n.
Denote CYps, tq < covrY1psq,Y1ptqs and CXYps, tq <

covrX1psq,Y1ptqs, for any s, t P T . When CXYp¨, ¨q ı 0, the
mark process and the point process are not independent. We
are interested in estimating the mean function μp¨q and the
covariance function CYp¨, ¨q based on the observed data. We
remark that if the point process reduces to Poisson, that is,
CXp¨, ¨q = 0, it always holds that CXYp¨, ¨q = 0.
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3. Naive Estimation of theMean and Covariance

Functions

When the mark process and the point process are independent,
local linear estimators forμp¨q andCYp¨, ¨q are well studied (e.g.,
Yao,Müller, andWang 2005).We refer to these estimators as the
naive estimators. Deone K1,hμ

psq < h´1
μ K1ps{hμq, where K1p¨q

is a kernel function and hμ is a bandwidth. Then, the naive local

linear estimator forμpsq, s P T , is deoned as rμpsq < rβ0,μ, where
rβ0,μ is obtained by minimizing

Ln,μpβ0,μ,β1,μq <
nÿ

i“1

ÿ

uPNi

rZipuq ´ β0,μ ´ β1,μpu ´ sqs2

K1,hμ
pu ´ sq

with respect to β0,μ and β1,μ. Let φhμ
psq < p1, s{hμqJ, and

denote by ep a p-dimensional vector whose orst entry equals 1
and all other entries equal 0. Then,

rμpsq < eJ
2

=
pAn,hμ,1psq

ı´1 pAn,hμ,2psq, s P T , where (5)

pAn,hμ,1psq < 1

n

nÿ

i“1

ÿ

uPNi

K1,hμ
pu ´ sqφhμ

pu ´ sqφhμ
pu ´ sqJ,(6)

pAn,hμ,2psq < 1

n

nÿ

i“1

ÿ

uPNi

K1,hμ
pu ´ sqφhμ

pu ´ sqZipuq. (7)

Deone K2,hyps, tq < h´2
y K2ps{hy, t{hyq, where K2p¨, ¨q is a

bivariate kernel function and hy is a bandwidth. Let ĂWipu, vq <
rZipuq ´ rμpuqsrZipvq ´ rμpvqs. The naive local linear estimator

for CYps, tq, s, t P T , is deoned as rCYps, tq < rβ0,y, where rβ0,y is
obtained by minimizing

Ln,CY pβ0,y,β1,y,β2,yq <
nÿ

i“1

‰ÿ ÿ

u,vPNi=
ĂWipu, vq ´ β0,y ´ β1,ypu ´ sq ´ β2,ypv ´ tq

ı2

K2,hypu ´ s, v ´ tq

with respect to β0,y, β1,y, and β2,y. In the above, the ‰ sign

indicates u ‰ v. Letψhyps, tq < p1, s{hy, t{hyqJ. The local linear

estimator rCYps, tq can be written as

rCYps, tq < eJ
3

=
pBn,hy ,1ps, tq

ı´1 pBn,hy ,2ps, tq,
s, t P T , where (8)

pBn,hy ,1ps, tq < 1

n

nÿ

i“1

‰ÿ ÿ

u,vPNi

K2,hypu ´ s, v ´ tqψhy

pu ´ s, v ´ tqψhypu ´ s, v ´ tqJ, (9)

pBn,hy ,2ps, tq < 1

n

nÿ

i“1

‰ÿ ÿ

u,vPNi

K2,hypu ´ s, v ´ tqψhy

pu ´ s, v ´ tqĂWipu, vq. (10)

When the mark process and the point process are indepen-
dent, rμp¨q and rCYp¨, ¨q are consistent estimators for μp¨q and
CYp¨, ¨q under mild conditions (Yao, Müller, and Wang 2005;

Li and Hsing 2010). However, in the presence of mark-point
dependence, both estimators will have non-negligible biases for
their target parameters as we will show in the following two
sections. To facilitate the derivations, we orst present a technical
lemma.

Lemma 1. Let X, Y1, and Y2 be three normal random variables
with means 0, μ1 and μ2 and variances σ 2

X , σ
2
1 , and σ 2

2 , respec-
tively. Then it holds that,

E rY1 exppXqs < rμ1 ` covpX,Y1qs exppσ 2
X{2q, (11)

E
<
Y2
1 exppXq

‰
<

�
σ 2
1 ` rμ1 ` covpX,Y1qs2

(

exppσ 2
X{2q, (12)

E rY1Y2 exppXqs < tcovpY1,Y2q ` rcovpX,Y1q ` μ1s
rcovpX,Y2q ` μ2su exppσ 2

X{2q. (13)

The proof is given in the supplementary materials.

3.1. Bias of rµp¨q
To derive the bias of rμpsq, s P T , we orst note that

ÿ

uPNi

K1,hμ
pu ´ sqφhμ

pu ´ sqZipuq

<
ż

T

K1,hμ
pu ´ sqφhμ

pu ´ sqZipuqNipduq,

where Nipduq denotes the random number of events from the
ith point process in an inonitesimal time interval du at u P T .
Then, we have that for any s P T ,

Ahμ,2psq = E

=
pAn,hμ,2psq

ı

<
ż

T

K1,hμ
pu ´ sqφhμ

pu ´ sqE rZipuqNipduqs ,

where pAn,hμ,2psq is as deoned in (7). It follows from (2) and (4)
that

Ahμ,2psq <
ż

T

μpuqρpuqK1,hμ
pu ´ sqφhμ

pu ´ sqdu

`
ż

T

λ0puqE tYipuq exprXipuqsu

K1,hμ
pu ´ sqφhμ

pu ´ sqdu,

where ρp¨q is as deoned in (2). Since Xipuq and Yipuq, u P T ,
are both normal random variables, it immediately follows from
(11) that E tYipuq exprXipuqsu < CXYpu, uq exp

<
σ 2
Xpuq{2

‰
. If

μp¨q and CXYp¨, ¨q are smooth functions such that μpuq « μpsq
and CXYpu, uq « CXYps, sq for any u in a small neighborhood
around s, then Ahμ,2psq « rμpsq ` CXYps, sqs ahμ

psq, where

ahμ
psq <

ż

T

ρpuqK1,hμ
pu ´ sqφhμ

pu ´ sqdu. (14)

Note that, due to the deonition of φhμ
p¨q, ahμ

psq is the orst
column of the following matrix
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Ahμ,1psq = E

=
pAn,hμ,1psq

ı

<
ż

T

ρpuqK1,hμ
pu ´ sq

φhμ
pu ´ sqφJ

hμ
pu ´ sqdu, (15)

where pAn,hμ,1psq is as deoned in (6). By the law of large numbers,

it holds under mild conditions that |pAn,hμ,1psq ´ Ahμ,1psq| pÝÑ 0

and |pAn,hμ,2psq ´Ahμ,2psq| pÝÑ 0, as n Ñ 8, where
pÝÑ stands for

convergence in probability. It then follows from the deonition
of rμp¨q in (5) and the continuous mapping theorem that for any
s P T ,

rμpsq < eJ
2

<
Ahμ,1psq

‰´1
ahμ

psq rμpsq ` CXYps, sqs

ˆr1 ` opp1qs pÝÑ μpsq ` CXYps, sq = μ˚psq. (16)

In other words, rμp¨q is asymptotically unbiased for μ˚p¨q, but
not for μp¨q unless CXYp¨, ¨q = 0.

3.2. Bias of rCYp¨, ¨q

For ease of presentation, we replace ĂWipu, vq in (10) by
Wipu, vq < rZipuq ´ μ˚puqsrZipvq ´ μ˚pvqs. This is not of
particular concern since rμp¨q converges to μ˚p¨q uniformly
in probability; see Theorem 1 in Section 5. Now deone

N
p2q
i pdu, dvq < NipduqNipdvqIpu ‰ vq, where Ip¨q is an

indicator function. Note that for any real function f p¨, ¨q, it holds
that

‰ÿ ÿ

u,vPNi

f pu, vq <
ż

T 2
f pu, vqNp2q

i pdu, dvq.

Then, for any s, t P T , it holds that

Bhy ,2ps, tq = E

=
pBn,hy ,2ps, tq

ı

<
ż

T 2
K2,hypu ´ s, v ´ tqψhypu ´ s, v ´ tq

E

=
Wipu, vqNp2q

i pdu, dvq
ı
,

where pBn,hy ,2psq is as deoned in (10). Since for any u, v P T ,

E

=
Wipu, vqNp2q

i pdu, dvq
ı

< λ0puqλ0pvqE tWipu, vq exp rXipuq ` Xipvqsu dudv,

it follows from (3) and (13) that for any s, t P T ,

Bhy ,2ps, tq <
ż

T 2
ρ2pu, vqC˚

Ypu, vqK2,hypu ´ s, v ´ tq

ψhypu ´ s, v ´ tqdudv,

where ρ2pu, vq is as deoned in (3) and

C˚
Ypu, vq < CYpu, vq ` CXYpu, vqCXYpv, uq. (17)

If CYp¨, ¨q and CXYp¨, ¨q are both smooth functions such that
CYpu, vq « CYps, tq and CXYpu, vq « CXYps, tq for pu, vq

in a small neighborhood around ps, tq, then Bhy ,2ps, tq «
C˚
Yps, tqbhyps, tq, where

bhyps, tq <
ż

T 2
ρ2pu, vqK2,hypu´ s, v´ tqψhypu´ s, v´ tqdudv.

(18)
Note that, due to the deonition of ψhyp¨, ¨q, bhyps, tq is the orst
column of the matrix

Bhy ,1ps, tq = E

=
pBn,hy ,1ps, tq

ı

<
ż

T 2
ρ2pu, vqK2,hypu ´ s, v ´ tq

ψhypu ´ s, v ´ tqψJ
hy

pu ´ s, v ´ tqdudv, (19)

where pBn,hy ,1psq is as deoned in (9). By the law of large numbers,

under suitable conditions, |pBn,hy ,1ps, tq ´ Bhy ,1ps, tq| pÝÑ 0 and

|pBn,hy ,2ps, tq´Bhy ,2ps, tq| pÝÑ 0 asn Ñ 8. It then follows from the

deonition of rCYp¨, ¨q in (8) and the continuousmapping theorem
that

rCYps, tq < eJ
3

=
Bhy ,1ps, tq

ı´1
bhyps, tqC˚

Yps, tq

ˆr1 ` opp1qs pÝÑ C˚
Yps, tq, s, t P T . (20)

This shows that the naive covariance function estimator rCYp¨, ¨q
given in (8) is an asymptotically unbiased estimator for C˚

Yp¨, ¨q
deoned in (17), but not for CYp¨, ¨q unless CXYp¨, ¨q = 0.

4. Bias-Correction and Test for Mark-Point

Independence

In this section, we propose a local linear estimator for the cross-
covariance function CXYp¨, ¨q, based on which bias-corrected
estimators for μp¨q and CYp¨, ¨q are constructed. We also pro-
pose a formal testing procedure for mark-point independence.
The bandwidth selection procedure is detailed in Section S.1.1,
supplementary materials.

4.1. Bias-Corrected Estimation of theMean and

Covariance Functions

Following similar steps to obtain (8), the local linear estimator

for CXYps, tq, s, t P T , can be deoned as pCXYps, tq < pβ0,xy, where
pβ0,xy is obtained by minimizing

Ln,CXY pβ0,xy,β1,xy,β2,xyq

<
nÿ

i“1

‰ÿ ÿ

u,vPNi<
Zipvq ´ rμpvq ´ β0,xy ´ β1,xypu ´ sq ´ β2,xypv ´ tq

‰2

K2,hxypu ´ s, v ´ tq

with respect to β0,xy, β1,xy, and β2,xy, and hxy is a bandwidth. It
can be shown that

pCXYps, tq < eJ
3

=
pBn,hxy ,1ps, tq

ı´1 pBn,hxy ,3ps, tq, s, t P T , (21)
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where pBn,hxy ,1ps, tq is as deoned in (9) with bandwidth hxy, and

pBn,hxy ,3ps, tq < 1

n

nÿ

i“1

‰ÿ ÿ

u,vPNi

rZipvq ´ rμpvqs

K2,hxypu ´ s, v ´ tqψhxypu ´ s, v ´ tq. (22)

We will show below that pCXYps, tq is asymptotically unbiased for
CXYps, tq, despite the fact that rμp¨q is a biased estimator forμp¨q.
For ease of presentation, we replace rμp¨q in (22) by μ˚p¨q as we
did previously when studying the bias of rCYp¨, ¨q. Then,

Bhxy ,3ps, tq = E

=
pBn,hxy ,3ps, tq

ı

<
ż

T 2
K2,hxypu ´ s, v ´ tqψhypu ´ s, v ´ tq

E

!
rZipvq ´ μ˚pvqsNp2q

i pdu, dvq
)
.

Note that for any u, v P T ,

E

!
rZipvq ´ μ˚pvqsNp2q

i pdu, dvq
)

< λ0psqλ0psqE trZipvq ´ μ˚pvqs exprXipuq ` Xipvqsu dudv,

which is equal to ρ2pu, vqCXYpu, vqdudv due to (3) and (11). If
CXYp¨, ¨q is a smooth function in a small neighborhood around
ps, tq, then Bhxy ,3ps, tq « CXYps, tqbhxyps, tq, where bhxyps, tq is as
deoned in (18) with bandwidth hxy. Recall that bhxyps, tq is the
orst column of the matrix Bhxy ,1ps, tq. It then follows from the

same steps used to obtain (20) that E
=

pCXYps, tq
ı

« CXYps, tq,
that is, pCXYps, tq is an asymptotically unbiased estimator for
CXYps, tq for any s, t P T .

In light of (16) and (20) and given pCXYp¨, ¨q, it is natural to
consider the following bias corrected estimators for μpsq and
CYps, tq for any s, t P T ,

pμpsq < rμpsq ´ pCXYps, sq, (23)

pCYps, tq < rCYps, tq ´ pCXYps, tqpCXYpt, sq, (24)

where rμp¨q and rCYp¨, ¨q are as deoned in (5) and (8), respectively.
As we shall show in Section 5, pμp¨q and pCYp¨, ¨q are uniformly
consistent for μp¨q and CYp¨, ¨q, respectively.

4.2. Test forMark-Point Independence

In practice, it may be diocult to know in advance whether
there exists mark-point dependence. In this section, we pro-
pose a formal procedure to test the hypothesis of mark-point
independence, that is, H0 : CXYp¨, ¨q = 0. To motivate our
test statistic, we orst temporarily assume that μ˚psq and σ 2

Zpsq,
where σ 2

Zpsq < varrZpsqs, are both known for any s P T .
Consider the following two random sums:

Sn,1 < 1

n

nÿ

i“1

‰ÿ ÿ

u,vPNi

rZipvq ´ μ˚pvqs2 and

Sn,2 < 1

n

nÿ

i“1

‰ÿ ÿ

u,vPNi

σ 2
Zpvq.

Under H0, it is straightforward to see that EpSn,1q < EpSn,2q.
More generally, note that

EpSn,1q <
ż

T 2
λ0puqλ0pvqE

�
rZipvq ´ μ˚pvqs2 exprXipuq ` Xipvqs

(
dudv.

Recall that μ˚pvq < μpvq ` CXYpv, vq for any v P T . By the
deonition of ρ2p¨, ¨q in (3) and using (12) in Lemma 1, we can
then verify that

EpSn,1q <
ż

T 2
ρ2pu, vq

<
σ 2
Zpvq ` CXYpu, vq2

‰
dudv.

Combined with the fact that EpSn,2q <
ş
T 2 ρ2pu, vqσ 2

Zpvqdudv,
it holds that

EpSn,1q < EpSn,2q `
ż

T 2
ρ2pu, vqCXYpu, vq2dudv. (25)

Since the integral term in (25) is strictly nonnegative and equals
zero under the null, a test statistic can be formed based on the
diference between Sn,1 and Sn,2.

In practice, bothμ˚p¨q and σ 2
Zp¨q are unknown, and thus Sn,1

and Sn,2 cannot be calculated exactly. For μ˚p¨q, we estimate
it with rμp¨q as deoned in (5). For σ 2

Zp¨q, we consider its naive
local linear estimator rσ 2

Zpsq < rβ0,σ , where rβ0,σ is obtained by
minimizing

Ln,σ pβ0,σ ,β1,σ q <
nÿ

i“1

ÿ

uPNi

�
rZipuq ´ rμpuqs2 ´ β0,σ ´ β1,σ pu ´ sq

(2

K1,hσ
pu ´ sq

with respect to β0,σ and β1,σ , and hσ is a bandwidth. It imme-
diately follows from the same arguments used to obtain (5) that
for any s P T ,

rσ 2
Zpsq < eJ

2

=
pAn,hσ ,1psq

ı´1 pAn,hσ ,3psq, where

pAn,hσ ,3psq < 1

n

nÿ

i“1

ÿ

uPNi

K1,hσ
pu ´ sqφhσ

pu ´ sq

rZipuq ´ rμpuqs2. (26)

As we shall show in Section 5, rμp¨q and rσ 2
Zp¨q are uniformly

consistent for μ˚p¨q and σ 2
Zp¨q, respectively. The uniform con-

vergence of rσ 2
Zp¨q to σ 2

Zp¨q is surprising considering that rCYps, sq
is biased for CYps, sq, that is, the variance of Ypsq, for s P T ,
under mark-point dependence.

Given rμp¨q and rσ 2
Zp¨q, we propose a test statistic of the fol-

lowing form

Tn < 1

n

nÿ

i“1

‰ÿ ÿ

u,vPNi

rZipvq ´ rμpvqs2 ´ 1

n

nÿ

i“1

‰ÿ ÿ

u,vPNi

rσ 2
Zpvq. (27)

Theorem 3 in Section 5 shows that, under some conditions,
when hμ < opn´1{4q and hσ < opn´1{4q, ?

nTn converges
to Np0,�Tq in distribution under H0. The specioc form of �T

is given in Theorem 3, based on which an empirical estimator
can be derived, as given in Section S.1.2 of the supplementary
materials. See also Section S.1.1, supplementary materials for
the bandwidth selection procedure.
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5. Theoretical Properties

In this section, we investigate theoretical properties of the pro-
posed estimators and test statistic. We consider the asymptotic
framework where the time domain T is bounded while the
number of replicatesn goes to inonity. For anymatrix (or vector)
A, denote }A}max < maxi,jp|aij|q as the max norm, and λminpAq
as the smallest eigenvalues of A. We use diagtd1, . . . , dnu to
denote an n ˆ n diagonal matrix with diagonal elements

d1, . . . , dn. Finally, for a function f p¨q, we denote f pjqp¨q as its
jth derivative for some j ě 1.

The following assumptions are suocient for our theoretical
investigation.

[C1] Assume that Zpsq is well deoned for any s P T , and ρp¨q,
μp¨q, μ˚p¨q and σ 2

Zp¨q are third-order continuously dif-
ferentiable on T with bounded orst-, second-, and third-
order derivatives, and there exists a constant ρ0 ą 0 such
that ρpsq ą ρ0 for all s P T .

[C2] Assume that K1p¨q and K2p¨, ¨q have supports r´1, 1s and
r´1, 1s2, respectively.

(a) Deone σK1,φ <
ş1
´1 s

2K1psqφ1psqds and Q
tju
K1,φ

<
ş1
´1 K

j
1psqφ1psqφJ

1 psqds for j < 1, 2. Assume that

λmin

´
Q

t1u
K1,φ

¯
ą 0.

(b) Deone σK2,ψ pwq <
ş1
´1

ş1
´1

<
p1 ´ wqs2 ` wt2

‰

K2ps, tqψ1ps, tqdsdt and

Q
tju
K2,ψ

<
ż 1

´1

ż 1

´1
K
j
2ps, tqψ1ps, tqψJ

1 ps, tqdsdt,

for j < 1, 2.

Assume that λmin

´
Q

t1u
K2,ψ

¯
ą 0.

[C3] Assume that (a) hμ Ñ 0 as n Ñ 8 such that
nh2μ{rlogpnqs2 Ñ 8; (b) hσ {hμ Ñ c as n Ñ 8 for
some constant c ą 0.

[C4] Assume that ρ2p¨, ¨q, CYp¨, ¨q and CXYp¨, ¨q are third-order
continuously diferentiable on T 2 with bounded orst-,
second-, and third-order partial derivatives.

[C5] Assume that (a) hy Ñ 0 as n Ñ 8 such that
nh2y{rlogpnqs2 Ñ 8; (b) hxy Ñ 0 as n Ñ 8 such that

nh2xy{rlogpnqs2 Ñ 8; (c) h
3{2
μ {hy Ñ 0 and h

3{2
μ {hxy Ñ 0

as n Ñ 8.

Assumptions C1 and C4 impose some conditions on the
smoothness of the intensity functions and the mean, variance
and covariance functions. Assumption C2 specioes some
desirable properties of the kernel functions used for the
proposed local linear estimators and is satisoed bymany popular
kernel functions such as the Epanechnikov kernel. Assumption
C3warrants that the bandwidths hμ and hσ are of the sameorder
and neither can approach 0 at a rate faster than logpnq{?

n as
n Ñ 8. In addition, Assumption C5 requires that hy and hxy
decay at a rate slower than logpnq{?

n as n Ñ 8 and hμ cannot
be too large compared to hy or hxy. Similar conditions have
been commonly used in the existing literature, see, for example,
Yao,Müller, andWang (2005) and Li andHsing (2010). The orst
theorem investigates the uniform convergence of the three naive
estimators when there is possible mark-point dependence.

Theorem 1 (Naive estimators). Under Assumptions C1–C5, we
have that, as n Ñ 8,

(a) supsPT |rμpsq ´ μpsq ` CXYps, sq|
< Op

!
h2μ ` rlogpnq{pnhμqs1{2

)
;

(b) supsPT

ˇ̌
ˇ̌rσ 2

Zpsq ´ σ 2
Zpsq

ˇ̌
ˇ̌ < Op

!
h2σ ` rlogpnq{pnhσ qs1{2

)
;

(c) sups,tPT

ˇ̌
ˇ̌rCYps, tq ´ CYps, tq ´ CXYps, tqCXYpt, sq

ˇ̌
ˇ̌ <

Op

"
h2y `

=
logpnq{pnh2yq

ı1{2
*
.

The proof is given in the supplementary materials.
Theorem 1 suggests that when there exists mark-point

dependence (i.e., CXYps, tq ı 0), both the naive mean function
estimator rμp¨q and the naive covariance function estimator
rCYp¨, ¨q are biased for their respective targets. The uniform
convergence rates in Theorem 1 are comparable to the optimal
rates in the literature (Li and Hsing 2010), where the non-
diminishing biases caused by mark-point dependence were
not considered. A somewhat surprising observation is that
the local linear estimator rσ 2

Zp¨q is still uniformly consistent for
σ 2
Zp¨q, despite the existence of mark-point dependence. The

next theorem studies the asymptotic properties of the proposed
bias-corrected estimators.

Theorem 2 (Bias corrected estimators). Under Assumptions C1–
C5, it holds as n Ñ 8,

(a) sups,tPT

ˇ̌
ˇ̌pCXYps, tq ´ CXYps, tq

ˇ̌
ˇ̌

< Op

"
h2xy `

=
logpnq{pnh2xyq

ı1{2
*
;

(b) supsPT |pμpsq ´ μpsq| < Op

!
h2μ ` h2xy ` rlogpnq{pnhμqs1{2

`
=
logpnq{pnh2xyq

ı1{2
*
;

(c) sups,tPT

ˇ̌
ˇ̌pCYps, tq ´ CYps, tq

ˇ̌
ˇ̌

< Op

"
h2y ` h2xy `

=
logpnq{pnh2yq

ı1{2

`
=
logpnq{pnh2xyq

ı1{2
*
.

The proof is given in the supplementary materials.
The key result in Theorem 2 is part (a), which establishes

uniform consistency of the local linear estimator pCXYp¨, ¨q to
the cross-covariance function CXYp¨, ¨q between the mark pro-
cess and the point process. The proposed estimator achieves
the same uniform convergence rate as the classical local linear
estimator of the covariance function based on sparse functional
data (Li and Hsing 2010). As a result of part (a), uniform

consistency of the bias-corrected estimators pμp¨q and pCYp¨, ¨q are
subsequently established in (b) and (c). Note that the bandwidth
hxy appears in the uniform convergence rates in parts (b)–(c)

because pCXYp¨, ¨q is used for bias corrections in pμp¨q and pCYp¨, ¨q.
Finally, we give the asymptotic distribution of the test

statistic proposed in Section 4.2. Deone ρ3ps, u, vq < E rλipsq
λipuqλipvqs, ρ4ps, t, u, vq < E rλipsqλiptqλipuqλipvqs, for



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 223

s, t, u, v P T . Expressions of ρ3p¨, ¨, ¨q and ρ4p¨, ¨, ¨, ¨q can be
derived with some algebra and be expressed in terms of σ 2

Xp¨q
and CXp¨, ¨q. We omit their detailed expressions here.

Theorem 3 (Test statistic). Under Assumptions C1–C3 and
assuming nh6μ Ñ 0 and nh6σ Ñ 0 as n Ñ 8, under
H0 : CXYp¨, ¨q = 0, we have that,

?
n

„
Tn ` h2σ

ż

T

Bσ 2pvqρpvqτ pvqdv
j

dÝÑ Np0,�Tq,

where τ psq <
ş
T

ρ2pu,sqdu

ρpsq
, Bσ 2psq < pσ 2

Zqp2qpsq
2 eJ

2

=
Q

t1u
K1,φ

ı´1

σK1,φ , s P T , and

�T < 2

ż

T 4
C2
Ypt, vqρ4ps, t, u, vqdsdtdudv

`2

ż

T 3

�
σ 4
Zpvq ` r3 ´ 2τ psqsC2

Yps, vq
(
ρ3ps, u, vqdsdudv

`2

ż

T 2
r1 ´ τ puqs r1 ´ τ pvqsC2

Ypu, vqρ2pu, vqdudv

`2

ż

T

r1 ´ τ pvqs τ pvqρpvqσ 4
Zpvqdv.

Here
dÝÑ denotes convergence in distribution.

The proof is given in the supplementary materials.
We remark that the bias term in Theorem 3 is negligible if?
nh2σ Ñ 0. Theorem 3 indicates that although Tn is calculated

using local linear estimators rμp¨q and rσZp¨q, it still achieves the
parametric convergence rate n´1{2 if n1{4hσ Ñ 0 as n Ñ 8,
which is a surprising result. Such a result enables us to conduct
a valid hypothesis test for mark-point independence without
specifying the complete data generating mechanism, provided
that a consistent estimator of the variance �T can be obtained.
In practice, we estimate �T by p�Tn given in Section S.1.2 of the
supplementary materials. Validity of the resulting testing proce-
dure and its empirical power are examined through simulations
in Section 7.

6. Functional Permutation Test andModel

Diagnostics

Our methods thus far are developed under two main assump-
tions, that is, themark process is Gaussian and the point process
is an LGCP. In this section, we propose a functional permutation
test for testing themark-point independence that does not reply
on these two assumptions; we also devise diagnostic tools to
check these two assumptions.

6.1. A Functional Permutation Test forMark-Point

Independence

Using the Karhunen-Loève expansion, the mark process Zip¨q
in (4) can be approximated by

Zipsq « μpsq`
pYÿ

k“1

ξYikφ
Y
k psq`eipsq, s P T , i < 1, . . . , n, (28)

where ξYik ’s are uncorrelated random variables with mean 0 and
variance ηk, with ηk being the kth largest eigenvalue of CYp¨, ¨q,
and φY

k p¨q is the associated eigenfunction, 1 ď k ď pY .
Following similar proofs as in Section 5, we can show that under

mark-point independence, the bias-corrected estimator pCYp¨, ¨q
in (24) is uniformly consistent forCYp¨, ¨q, regardless of whether
the mark process is Gaussian or the point process is an LGCP.
Denoting the kth eigenvalue and eigenfunction of pCYp¨, ¨q by

pηk and pφY
k p¨q, respectively, the functional principal component

(FPC) scores pξYi < ppξYi1 , . . . ,pξYipY qJ for the ith process can be

obtained by

pξYi < argmin
ξ

ÿ

sPNi

!
Zipsq ´ pμpsq ´

pYÿ

k“1

ξYik
pφY
k psq

)2
, (29)

where pμp¨q is as deoned in (23). In practice, pY can be chosen
as the smallest integer such that the percentage of cumulative
variation explained by the orst k components is greater than or

equal to 95%, i.e.,
řpY

k“1 pηk{
ř8

k“1 pηk ě 0.95.
Let cp1q, . . . , cpnq be a random permutation of the sequence

1, . . . , n, and deone peipsq < Zipsq ´ pμpsq ´ řpY
k“1

pξYik pφY
k psq, s P

Ni for all i. We obtain a set of permuted mark-point pro-
cesses trs,Zc

i s, s P Niui“1,...,n calculated as Zc
i psq < pμpsq `řpY

k“1
pξY
cpiqk

pφY
k psq`peperi psq, wherepξY

cpiqk
’s are the permuted scores

and peperi psq’s are the permuted residuals. To permute the resid-
uals, we start from a concatenation of the residual vectors from
all subjects, denoted as ppeipsq, s P Ni, i < 1, . . . , nqJ, and ran-
domly permute all elements in this concatenated vector to get
permuted residuals, denoted as ppeperi psq, s P Ni, i < 1, . . . , nqJ.
We repeat the permutation for B times and obtain the p-value as

p-value < 1

B

Bÿ

b“1

I
´ˇ̌

ˇTcb
n

ˇ̌
ˇ ą |Tn|

¯
, (30)

where Tn and T
cb
n are the test statistics computed based on the

observed data and the bth permuted data, respectively.
In the test described above, the permutations are designed

to remove the mark-point dependence, if there is any, while
preserving the marginal distributional properties of the mark
process and the point process.We shall empirically demonstrate
that the proposed functional permutation test is valid for various
classes of marked point processes, and can be implemented
together with the proposed test in Section 4.2. Theoretical justi-
ocations of the functional permutation test shall be deferred to
future research. More implementation details of the functional
permutation test are given in Section S.1.3 of the supplementary
materials.

6.2. Model Diagnostics

If the mark process is Gaussian, the estimated FPC scores pξYi ’s
in (29) should approximately follow the normal distribution.

Consequently, we can check the normality of pξYi ’s using, for
example, the QQ plot, to indirectly validate that the mark pro-
cess is a Gaussian process.

To evaluate the validity of the LGCP assumption on the
point process, we orst derive nonparametric estimates of λ0p¨q
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and CXp¨, ¨q under the LGCP assumption; see Section S.1.4
of the supplementary materials for details. Given these esti-
mates, we simulate independent realizations from the LGCP
deoned by them and calculate some summary statistics from
the observed and simulated point processes. A large difer-
ence between these summary statistics indicates that the LGCP
assumption may be invalid. In this article, we consider the
empirical nearest-neighbor distance distribution function (e.g.,
Møller and Waagepetersen 2003). For the observed data, this
function can be calculated as

pGpdq < 1

n

nÿ

i“1

1

|Ni|
ÿ

uPNi

Irdipuq ď ds,

where dipuq is the distance from u P Ni to its nearest neighbor
in Ni. The same summary statistic can be calculated from each

simulated point process, and we plot pGpdq against the average of
those obtained from the simulated realizations over a range of d
values, along with the upper and lower simulation envelopes. If
the LGCP assumption holds, the plot should be roughly linear
and contained in the simulation envelopes. See Section 8 for an
illustration.

7. Simulation Studies

In this section, we evaluate the onite sample performance of
the proposed methods. The mark processes are generated from
Zipsq < μpsq ` Yipsq ` eipsq, s P r0, 1s, i < 1, . . . , n, with

μpsq < 1

2
Beta3,7psq ` 1

2
Beta7,3psq,

Yipsq <
3ÿ

k“1

ξYikφ
Y
k psq, ei „ Np0, 12q, (31)

where Betaa,bp¨q is the density function of the Beta(a,b) distri-
bution, ξYi < pξYi1 , ξYi2 , ξYi3qJ’s are iid random vectors with mean
0 and covariance matrix �Y < diagt1, 0.6, 0.4u, and

φY
1 psq <

?
2 sinp2πsq, φY

2 psq <
?
2 cosp2πsq,

φY
3 psq <

?
2 sinp4πsq. (32)

The point processes are generated from an inhomogeneous Cox
process according to (1), where Xip¨q therein has an isotropic
covariance function of the form

CXps, tq < σ 2
x exp

<
´|s ´ t|2{p2R2q

‰
,

σx ą 0,R ą 0, for any s, t P r0, 1s. (33)

For a given σx, we set λ0psq < 15
8 p15 ` 2sq exp

`
´ 1

2σ
2
x

˘
, s P

r0, 1s, such that there are on average 30 observed events for each
subject if the point process is an LGCP. The parameters σx and
R jointly control the clustering strength of the point process. We
ox R < 0.1 and vary σx in diferent scenarios. In particular,
when σx < 0, the resulting point process is an inhomogeneous
Poisson process.

By standard stochastic process theory, the Karhunen-Loève
decomposition of Xip¨q gives

Xipsq <
8ÿ

k“1

ξXikφ
X
k psq, with EξXik < 0,

varpξXikq < ηXk , for any s P r0, 1s,

where
�
ηXk ,φ

X
k p¨q

(
, k < 1, 2, . . ., are eigenvalue-eigenfunction

pairs of the covariance function CXp¨, ¨q deoned in (33). Denote
ξXi < pξXi1 , ξXi2 , ξXi3qJ such that EξXi < 0 and �X < varpξXi q <
diagtηX1 , ηX2 , ηX3 u. We let the correlation matrix between ξXi and

ξYi be of the form

�XY < corr
`
ξXi , ξ

Y
i

˘

< q ˆ

¨
˝

1 ´0.5 ´0.25
0.375 1 ´0.125
0.125 0 1

˛
‚, for 0 ď q ď 0.8,

(34)

and assume that the remaining ξXik ’s with k ě 4 are independent

of ξYi . Under such a design, Xip¨q and Yip¨q are independent
when q < 0, and the strength of correlation between Xip¨q and
Yip¨q increases as q increases. The range of q is selected such
that the variance-covariance matrix of the joint distribution of
pξXi , ξYi q is positive deonite. When q < 0.8, the correlation
between Xpsq and Zpsq ranges from ´0.16 to 0.53 for s P r0, 1s.

Finally, ξXi ’s and ξYi ’s are jointly simulated as follows

ˆ
ξXi
ξYi

˙
< R

ˆ
εXi
εYi

˙
, with

ˆ
�X �XY

�J
XY �Y

˙
< RJR, (35)

where R is an upper triangular matrix obtained through the
Cholesky decomposition, εXi and εYi are random vectors con-
sisting of iid random variables with mean 0, variance 1, and
marginal distributions PX and PY , respectively. Three types of
marginal distributions are considered for PX and PY , namely,
Np0, 1q, referred to as Gaussian, centered exponential distri-
butionwith a rate 1, referred to asExp, and scaled t-distribution
with a degrees of freedom 4, referred to as T4. When both PX

and PY are Gaussian, (35) generates data under models (1) and
(4). For ease of presentation, from now on, we shall denote,
for example, (Gaussian, Exp) for the setting when εXi ’s are
Gaussian and εYi ’s are exponential.

7.1. Estimation Accuracy

We orst compare the estimation accuracy of the proposed esti-
mators in the presence of mark-point dependence. Speciocally,
there are four functions of interest as discussed below.

1. μp¨q: the mean function of the mark process. We consider
both the naive estimator rμp¨q deoned in (5) and the bias-
corrected estimator pμp¨q deoned in (23). The estima-
tion accuracy of each estimator is evaluated through the
mean absolute deviation (MAD) deoned as MADprμq <ş1
0 |rμpsq ´ μpsq| ds, and MADppμq <

ş1
0 |pμpsq ´ μpsq| ds.

2. σ 2
Zp¨q: the variance function of the mark process. Given the

naive estimator rσ 2
Zp¨q deoned in (26), we report MADprσ 2

Zq <ş1
0

ˇ̌
rσ 2
Zpsq ´ σ 2

Zpsq
ˇ̌
ds.

3. CYp¨, ¨q: the covariance function of the mark process. The

estimation accuracy of the naive estimator rCYp¨, ¨q in (8) and
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Figure 1. Estimation accuracy of local linear estimators under the (Gaussian, Gaussian) setting.

the bias-corrected estimator pCYp¨, ¨q in (24) are compared

through MADprCYq <
ş1
0

ş1
0

ˇ̌
ˇrCYps, tq ´ CYps, tq

ˇ̌
ˇ dsdt, and

MADppCYq <
ş1
0

ş1
0

ˇ̌
ˇpCYps, tq ´ CYps, tq

ˇ̌
ˇ dsdt.

4. CXYp¨, ¨q: the cross-covariance function between the mark
process and the point process. The estimation accuracy of

the estimator pCXYp¨, ¨q deoned in (21) is evaluated through

MADppCXYq <
ş1
0

ş1
0

ˇ̌
ˇpCXYps, tq ´ CXYps, tq

ˇ̌
ˇ dsdt.

The Epanechnikov kernel is used with respective bandwidths
selected following Section S.1.1, supplementary materials for
each simulated dataset. We ox σx < 1 for the covariance func-
tion (33), and consider varying strength of correlation with q <
0.5, 0.6, 0.7, 0.8, as the sample size n varies from 100 to 600. Indi-
viduals with more than 200 time points are removed to enhance
numerical stability. Summary statistics based on 500 simula-
tion runs are illustrated in Figure 1 under the (Gaussian,
Gaussian) setting.

It is seen from Figure 1 that MADppμq and MADprσ 2
Zq are

approximately of orders Opn´1{3q and Opn´2{5q, respectively.
This agrees with our theoretical results in Theorems 1–2. Specif-
ically, by Theorem 1, the optimal bandwidth for rσ 2

Zp¨q is roughly
of the order Opn´1{5q, giving the optimal convergence rate

Opn´2{5q. Moreover, Theorem 2 indicates that the optimal con-

vergence rate of pμp¨q is approximately of order Opn´1{3q, due
to the bandwidth hxy used in the bias correction term. Hence,
the observed rates for MADppμq and MADprσ 2

Zq support our
theoretical ondings and validate the efectiveness of the band-

width selection criteria proposed in Section S.1.1, supplemen-
tary materials.

Similarly, Theorem 2 suggests that MADppCXYq and

MADppCYq are roughly of order Opn´1{3q using the optimal

bandwidths of order Opn´1{6q, and the graphic summaries
in Figure 1 strongly corroborate these conclusions and the
efectiveness of the bandwidth selection criteria proposed in
Section S.1.1, supplementary materials. When there is nomark-
point dependence (q < 0), it appears that the estimation
eociency loss caused by the unnecessary bias correction is
minimal. We, therefore, recommend always using proposed
bias corrections in practice.

Next, as expected, the naive estimator of μp¨q, that is, rμp¨q,
sufers from considerably larger estimation errors than the bias-
corrected estimators in all scenarios. To demonstrate this, in
Figure 2, we give the mean and 95% quantile bands of 500 esti-
mated functions under the (Gaussian, Gaussian) setting
in the case of q < 0.8 and n < 600, where there is a larger bias
for the naive estimator rμp¨q than the bias-corrected estimator
pμp¨q.

Figure 1 suggests that the estimation errors of the bias-

corrected estimator pCYp¨, ¨q are generally smaller than the naive

estimator rCYp¨, ¨q. The improvement is moderate when the
mark-point dependence is relatively small (e.g., when q < 0.5),
but becomes more pronounced when q is larger. To further
demonstrate this point, we summarize in Figure 2 the last two

eigenfunctions of rCYp¨, ¨q and pCYp¨, ¨q when n < 600 and
q < 0.8, and compare them with those of CYp¨, ¨q. The orst
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Figure 2. Estimation biases and 95% quantile bands for mean functions and last two eigenfunctions of CYp¨, ¨q when n “ 600 and q “ 0.8 under the (Gaussian,
Gaussian) setting.

eigenfunctions of rCYp¨, ¨q and pCYp¨, ¨q are similar and thus are

not reported. It is clearly seen that rCYp¨, ¨q results in biased
estimates of the eigenfunctions, but such biases are reduced

with pCYp¨, ¨q. Compared to the biases observed in the estimation
of μp¨q, the biases in the estimated eigenfunctions from the
naive covariance function estimator are less pronounced, even
in the case with q < 0.8. This suggests that the mark-point
dependence may afect the estimation of the mean function
μp¨q more than the covariance function of the mark process.

Finally, additional simulation results for non-GaussianXip¨q’s
and Yip¨q’s are reported in Section S.3.1 of the supplementary
materials. In such settings, the estimation bias resulted from
the mark-point dependence may not be eliminated, but it can
still be efectively reduced using the proposed bias correction
procedure.

7.2. Validity of the Proposed Testing Procedures

In this section, we demonstrate the validity of the proposed
testing procedures in Sections 4.2 and 6.1. For each simulated
dataset, the permutation test is conducted using 500 random
permutations. In our simulation settings, the null hypothesis of
mark-point independence corresponds to the case with q < 0.
We set σx < 0, 0.5, 0.7, 1 and vary the sample size n from 100
to 600. For each setting, we summarize test results based on
3000 simulated datasets. For computational eociency, we orst
perform bandwidth selection using the cross-validation criteria
in Section S.1.1, supplementary materials over 50 simulated

datasets, apply the under smoothing corrections described in
(S.1) to the average of the selected bandwidths, and hold the
bandwidths oxed for all 3000 simulated datasets.

Figures 3 and 4 give empirical rejection rates of the proposed
tests under H0 at signiocance levels 0.05 and 0.10, respectively.
Figures 3 suggest that under the (Gaussian, Gaussian)
setting, the empirical rejection rates of both tests are close to the
nominal levels in all scenarios when n is greater than 200. Under
H0, p-values from a valid test should followUniformr0, 1s. In the
middle panels of Figure 3, we provide the empirical distribution
of the p-values under the scenario n < 500 and σx < 1, which
indeed approximately resembles the desired uniform distribu-
tion. To quantify the closeness between the empirical distribu-

tion pFpp¨q of the p-values and the uniform distribution, we also

consider the Mallow’s distance dMppFpq <
ş1
0 |pF´1

p puq ´ u|du,
where a smaller value of dMppFpq indicates that pFp is closer to the
uniformdistribution. In the right panels of Figure 3, we show the

values of dMppFpq as a function of n under various case scenarios.
As we can see, when n is suociently large, dMppFpq falls into

the envelope computed by the empirical quantiles of dMppFU,k
B q,

where pFU,k
B , k < 1, . . . , 1000, are the empirical CDFs based

on B < 3000 random numbers drawn from the Uniformr0, 1s.
This result further supports the validity of the proposed testing
procedures.

Figure 4 illustrates the rejection rates of the two tests when
the mark process is not Gaussian and/or the point process is
not an LGCP. While the asymptotic test still appears to be
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Figure 3. Validity of the proposed tests under the (Gaussian, Gaussian) setting. Top row: the asymptotic test; Bottom row: the permutation test.

Figure 4. Rejection rates of two tests under mark-point independence in various distribution settings. Top row: the asymptotic test; Bottom row: the permutation test.
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Figure 5. Rejection rates of two tests at the 0.05 level under the local alternatives with varying σx (top row) and γ (bottom row).

valid so long as the mark process is Gaussian, its rejection rates
signiocantly exceed the nominal level when the mark process is
non-Gaussian. In comparison, the permutation test seems to be
close to the nominal sizes provided n is suociently large in all
settings. Additional and similar simulation results can be found
in Section S.3.2 of the supplementary materials.

7.3. Powers Against Local Alternatives

Next, we investigate the power of the proposed tests against
local alternatives, which is a popular approach to study the
test power, see, for example, Xu and Wang (2011). The
asymptotic mean of

?
nTn in (27) when CXYp¨, ¨q ı 0 is?

n
ş
T

ş
T

ρ2pu, vqCXYpu, vq2dudv. Using the simulation setup
as in (34) and deone the local alternatives by letting q2 <
n´1{2γ for some constant γ ą 0. If Theorem 3 holds, the
asymptotic mean of

?
nTn should be proportional to γ and

is independent of n. We set γ < 3.6, 5.0, 6.4, and refer to
the resulting rejection probabilities as the local power. If the
limiting distribution of the test statistic is correctly specioed,
the local power should stay constant as n increases. Data are
simulated with varying values of n, σx and γ . Figure 5 illustrates
the empirical rejection rates at the 0.05 signiocance level in
various settings based on 1000 data replicates.

The lev panel of Figure 5 suggests that under the
(Gaussian, Gaussian) setting, the rejection rates of both
tests stay roughly constant as n and γ increase. The local powers
of both tests orst increase as σx increases. This is because the
magnitude of CXYp¨, ¨q increases with σx by our simulation

design. Correspondingly, the mean of the test statistic increases
as suggested in (25), leading to a greater power. However, if σx
continues to grow, the power of the proposed test will decrease.
This can be explained by the fact that a larger σx also leads
to a more clustered point process and consequently innate
the variance of the test statistic, which ofsets the increase
in the mean of the test statistic and thus leads to a reduced
power. All these observations support our theoretical ondings
in Theorem 3 under the (Gaussian, Gaussian) setting.
In other settings shown in Figure 5, the local powers of the
permutation test are roughly constant as n increases, provided
that n is suociently large. This further supports the validity
of the proposed functional permutation test in more general
settings. Similar results are observed when the T4 distribution
is replaced by the Exp distribution; see Section S.3.2 of the
supplementary materials.

8. Real Data Analysis

8.1. EMA Smoking Data

In this section, we analyze the situational associations of smok-
ing using the ecological momentary assessment (EMA) data.
Smoking is found to be cued or suppressed by immediate sit-
uational factors, such as craving, mood, and social settings,
and innuences of these factors are modulated by gender (Todd
2004; Shifman and Rathbun 2011). The data we analyze were
collected in real-time from 302 smokers over 16 days (Shifman
et al. 2002). The participants were 43% male and 57% female.
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Figure 6. Top left: diagnostic plot for LGCP following Section 6.2; Top middle: QQ plot of the orst-FPC scores following Section 6.1; Top right and bottom panel: Estimated
daily mean functions of <restless=and <negative afect for male and female participants, respectively.

To be included in the study, a participant had to smoke at
least 10 cigarettes per day and had been smoking for at least 2
years. Before data collection, participants were trained to use an
Electronic Diary (ED) device designed to collect data in real-
time. During the study period, the participants were instructed
to record each cigarette in the ED, immediately before smoking.
On about 4–5 randomly selected smoking occasions per day,
the device administered an assessment. Each assessment pro-
vided several continuouslymeasuredmood-related ratings such
as <negative afect= and <restless,= with higher scores indicat-
ing more afective distress and stronger feelings of restlessness,
respectively. See Shifman et al. (2002) formore details about the
data.

The orst few days of monitoring were designed to allow the
participants to become familiar with the ED.We therefore focus
on days 4–16 in our analysis as suggested in Shifman et al.
(2002). In each day, the observation window for events, that is,
r0, 1s, corresponded to all waking hours and was not subject-
specioc, that is, participants were measured on a common time
interval; see Shifman et al. (2002) formore details. For each par-
ticipant, we aggregate all time points observed on diferent days
into a single day for our analysis. As only 1.56% of total smoking
events across all participants were within r0, 0.2s Ťr0.8, 1s, we
focus on the time interval r0.2, 0.8s. See Figure S.7 in the supple-
mentarymaterials for some sample trajectories.We estimate the
naive and the bias-corrected estimators of the daily mean func-
tions μp¨q and covariance functions CYp¨, ¨q for two diferent

marks (i.e., <negative afect= and <restless=) of male and female
participants, respectively; see Figure 6 and Section S.3.3 of the
supplementary materials. The bandwidths are selected follow-
ing the proposed procedures in Section S.1.1, supplementary
materials.

Following Section 6.2, for the mark <restless= of the male
group, Figure 6 shows that summary statistics from the observed
data fell within the 95% percentile envelope based on 1000 sim-
ulated point processes, suggesting that the LGCP assumption
for the point process is reasonable. The QQ plot of the orst
FPC scores of the mark process, which account for more than
95% of the total variations, is reasonably close to a straight
line, indicating themark process can be considered as Gaussian.
Additional diagnostic plots for othermarked point processes are
given in Section S.3.3 of the supplementary materials, support-
ing a similar conclusion.

It is seen from the reported p-values in Figure 6 that at the
signiocance level of 0.10, dependence between <negative afect=
and smoking times is signiocant for males, but is insigniocant
for females. This is consistent with the ondings in Shifman
and Rathbun (2011). On the other hand, <restless= and smoking
times are found to have signiocant associations for both males
and females at 0.05 signiocance level. This is an interesting
onding that, to our best knowledge, has not been discussed
before in the literature. The estimated mean functions μp¨q’s
are illustrated in Figure 6. For <negative afect,= it is seen that
females have amuch lower level of <negative afect= compared to
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Figure 7. Model diagnostics and estimation for the auction data.

males. For males, there is a notable diference between the naive
estimator and the bias-corrected estimator; this is expected as
the small p-value indicates signiocant mark-point dependence.

For <restless,= there are notable diferences between the naive
and bias-corrected estimators for bothmales and females. In the
bias-corrected estimates, male participants are seen to exhibit a
steady level of restlessness and then an increasing trend starting
around 0.7, while female participants have an increasing level of
restlessness throughout the day.

From the naive and bias-corrected estimates of the covari-
ance function CYp¨, ¨q, we see that the orst eigenfunction is nat
for both marks and both genders (not plotted). Interestingly,
the orst eigenfunction accounts for more than 93% of the vari-
ability for both marks and both genders. This suggests that the
dominantmode of variation for <negative efect= and <restless= is
the overall magnitude, and this holds for both male and female
participants.

8.2. Ebay Online Auction Data

In this section, we analyze the bid prices of PalmM515 Personal
Digital Assistants (PDA) on week-long eBay auctions that took
place between March and May of 2003. This dataset contains
the bid times and prices of 194 PDA auctions, which has been
analyzed bymany authors. See Figure S.10 of the supplementary
materials for sample trajectories. Earlier analyses (Jank and
Shmueli 2006) focused on dynamics of the bid price curves;
Wu, Müller, and Zhang (2013) studied the bid times as point
processes; Gervini and Baur (2020) modeled the bid times and
bid prices jointly, since it was expected that items with lower
prices tended to experience <bid sniping= (i.e., concentrated
bidding activity close to the end of the auction), but they did
not formally test for the mark-point independence.

Our analysis focuses on the last day of the seven-day auction
period, which is rescaled to r0, 1s. We remove subjects with
fewer than 2 bids in the last day, resulting in a total sample size
of n < 174. The bid prices are log-transformed as the mark
process. We plot the diagnostic plots described in Section 6.2,
and apply the testing procedures for mark-point independence
in Sections 4.2 and 6.1. The diagnostic plots in Figure 7(a)
and (b) suggest that the point process may not be an LGCP,
as the observed nearest-neighbor distance distribution is not

contained in the simulation envelope, and the mark process
may not be Gaussian, as some departure from normality is
seen in the QQ plot. From Figure 7(c), both the asymptotic
and permutation tests reject the mark-point independence at
the 0.05 level. The validity of the asymptotic test is sensitive to
modelmisspeciocation, but the permutation test is more robust,
as numerically demonstrated in our simulation. On one hand,
the agreement between the asymptotic test and the permuta-
tion test suggests that one can probably reject the mark-point
independence at the 0.05 level, supporting the well-recognized
<bid sniping= efects toward the end of an auction. On the other
hand, as demonstrated in Section S.3.1 of the supplementary
materials, when the point process is not an LGCP and/or the
mark process is not Gaussian, the proposed bias correction
technique may not be able to eliminate the bias caused by the
mark-point dependence and thus one needs to be cautiouswhen
interpreting the bias-corrected mean function.

9. Concluding Remarks

In this article, we propose a computationally eocient moment-
based bias-correction procedure for estimating the mean and
covariance functions of the mark process when there is mark-
point dependence. We also propose two inferential procedures,
including an asymptotic test and a functional permutation test,
for testing the mark-point independence assumption.

While we focus on detecting mark-point dependence and
correcting estimation bias caused by potential mark-point
dependence, our work opens doors to a series of meaningful
research directions such as bias-corrected statistical inference
of functional principal component scores and bias-corrected
testing of the mean functions of two or more groups (e.g.,
treatment vs. control, male vs. female). It is also of interest to
extend the current methods to mark-point process data with
more complicated structures, see, for example, Xu et al. (2020)
and Yin et al. (2021).

Moreover, although ourwork has focused on temporalmark-
point processes, it can be readily extended to model spatial
mark-point processes if independent replicates are available,
which requires using multi-dimensional kernel or product ker-
nel functions. For future research, it is also of interest to consider
the case where the marks are non-Gaussian (e.g., Poisson, Bino-
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mial). In the case of Poisson marks, we can assume that

Zpsq „ Poisson pexp rμpsq ` Ypsqsq , s P T , (36)

where μp¨q and Yp¨q are deoned similarly as those in (4). Our
proposed framework can be extended to derive unbiased esti-
mators for μp¨q and CYp¨, ¨q, that is, the covariance function of
Yp¨q in (36). See Section S.2 of the supplementary materials for
more details. It is also of great interest to theoretically justify
the functional permutation test for mark-point independence
proposed in Section 6.1. We plan to investigate such directions
in our future research.

Supplementary Materials

The supplementary material contains method implementation details,
additional numerical results, and technical proofs.
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