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An expression quantitative trait locus (eQTL) is a chromosomal region where genetic variants are associated
with the expression levels of specific genes that can be both nearby or distant. The identifications of eQTLs
for different tissues, cell types, and contexts have led to a better understanding of the dynamic regulations
of gene expressions and implications of functional genes and variants for complex traits and diseases.
Although most eQTL studies have been performed on data collected from bulk tissues, recent studies have
demonstrated the importance of cell-type-specific and context-dependent gene regulations in biological
Keywords: processes and disease mechanisms. In this review, we discuss statistical methods that have been
eQTL developed to enable the detection of cell-type-specific and context-dependent eQTLs from bulk tissues,
purified cell types, and single cells. We also discuss the limitations of the current methods and future
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Introduction

Recent years have seen significant progress in identifying
genomic regions associated with complex traits and diseases
through genome-wide association studies (GWAS), where tens of
thousands of genomic regions have been associated with thousands
of traits, including many complex diseases (see the curated GWAS
results at https://www.ebi.ac.uk/gwas/). One challenge of interpret-
ing GWAS findings is that most of associated genetic variants, for
example, single nucleotide polymorphisms (SNPs), are in intergenic
regions, making it difficult to infer functional genes and variants in
these regions. Many efforts have been made to annotate the human
genome through experimental studies, e.g., ENCODE Project (The
ENCODE Project Consortium et al., 2020), Roadmap Epigenomics
Project (Roadmap Epigenomics et al., 2015), and psychENCODE
(PsychENCODE Consortium et al., 2015), and computational ap-
proaches, e.g., CADD (Kircher et al., 2014), GWAVA (Ritchie et
al.,2014), GenoCanyon (Lu et al., 2015), GenoSkyline (Lu et al,
2016), EIGEN (lonita-Laza et al., 2016), GenoSkyline-Plus (Lu et al.,
2017), and STARR (Li et al., 2022) to infer the functional roles of
different SNPs and other variants, including expression quantitative
trait locus (eQTL) studies (The GTEx Consortium, 2020), where the
goal is to infer genetic variants affecting genetic regulation by
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associating genotypes with gene expression levels across a sample
of individuals. Because eQTL studies measure expression levels of all
the genes in the genome, they provide an unbiased view of the
regulation of gene expression. Using results from eQTL studies in
lymphoblastoid cell lines from HapMap samples, it was shown that
SNPs associated with complex traits are significantly more likely to be
eQTLs identified than minor-allele-frequency-matched SNPs
(Nicolae et al., 2010). Another study assessed the enrichment and
depletion of variants in different annotation classes (Kindt et al.,
2013), including genic regions, regulatory features, measures of
conservation, and patterns of histone modifications. It was found that
annotations associated with chromatin state and eQTLs were the
most enriched groups. These early results stimulated many large
community efforts to collect gene expression and genotype data for
eQTL studies, and the accumulation of eQTL results parallels the
great success of GWAS. Assume an SNP is associated with a com-
plex trait as well as the expression level of a specific gene. In that
case, this gene may be implicated as a possible candidate gene for
the trait. Several methods have been developed to formalize this idea
for colocalization analysis that aims to find the SNPs that are asso-
ciated with both expression and complex traits (Hormozdiari et al.,
2016; Wen et al, 2016; Giambartolomei et al., 2018).
Transcriptome-wide association analysis methods have been
developed to use eQTL data to predict the expression levels and
associate the predicted (imputed) expression levels with the
observed complex traits (Gamazon et al., 2015; Gusev et al., 2016; Hu
et al., 2019). Mendelian randomization methods have also been
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Table 1
Representative resources for eQTL studies.
Resource Sample types Sample sizes Link
GTEx Bulk tissues 73 to 706 across 49 tissues https://gtexportal.org/home/
eQTL catalog Bulk tissues from 29 studies 73 to 838 across studies https://www.ebi.ac.uk/eqtl/
eQTLGen Blood 31,684 across 37 datasets https://www.eqtlgen.org
OneK1K Single cells from PBMC 1.27 million cells from 982 donors https://onek1k.org
Table 2
Representative statistical methods for detecting cell-type-specific and context-dependent eQTLs.
Samples Methods Key ideas Pros Cons
Bulk Westra et al. (2015) Detect interactions effects between Applicable to large collection of Limited resolution for cell types
Zhernakova et al. (2017) candidate eQTL genotypes and cell- eQTL studies based on bulk samples and dependence on informative
Avila Cobos et al. (2020) type-specific proxy markers (e.g., and robust cell-type-specific
Aguirre-Gamboa et al. (2020) cell type proportions) on gene proxy markers
expression levels in bulk tissues
Single cells Cuomo et al. (2022) Detect differential effects of High-resolution cell types and Limited number of subjects

Strober et al. (2022)

candidate eQTL genotypes on gene
expression levels for different cell
types and/or contexts inferred from
single-cell expression data

different molecular contexts

available and sparsity in single-
cell gene expression data

proposed to investigate whether the expression trait is a causal factor
for a complex trait of interest (Richardson et al., 2020; Yuan et al.,
2020; Zhou et al., 2020; Liu et al., 2021) (Tables 1 and 2).

The most well-known eQTL study is the Genotype-Tissue
Expression (GTEX) project where dozens of tissues from hundreds of
individuals were analyzed to identify tissue-specific eQTLs (The
GTEx Consortium, 2020). The GTEx project has proved to be a
valuable resource for the research community. Version 8 of the GTEx
analyzed 15,201 RNA-sequencing samples from 49 tissues of 838
postmortem donors. It was found that cis-eQTLs showed 1.46-fold
enrichment in the GWAS catalog (https://www.ebi.ac.uk/gwas/)
where significant GWAS association results are collected. The cross-
tissue eQTL similarities were consistent with tissue relatedness, with
tissues from the brain region forming one cluster, and other organs
being more similar to each other, with the exceptions of testis, lym-
phoblastoid cell lines, whole blood, and liver that are distinct from
other tissues. BLUEPRINT collects genetic, epigenetic, and tran-
scriptomic profiling in three immune cell types to investigate the
contributions of different factors in gene expression (Chen et al,
2016). eQTL catalog is a resource developed by reprocessing data
from dozens of studies with more than 30,000 samples, where
summary statistics are available for many cell types and tissues
(Kerimov et al., 2021). The results from these studies and resources
thus generated have demonstrated the values of eQTL information in
inferring causal genes and variants at GWAS loci.

Most eQTL studies to date have been performed on bulk samples,
where the estimated effect size of an SNP represents the average
effect across different cell types, and the cell-type origin (origins) of
the inferred eQTLs is (are) often unknown for a bulk sample con-
sisting of distinct cell types. Despite some successes in using eQTL
results to infer disease-causing genes and variants, recent studies
based on both modeling (Yao et al., 2020) and carefully chosen gene-
trait pairs (Connally et al., 2022) have shown that the known eQTLs,
which are mostly derived from the analysis of bulk tissues, only
explain a very small proportion of the GWAS signals, where GWAS
hits colocalize with eQTL SNPs. There is growing evidence (as
summarized below) that eQTL effects are often cell-type-specific
and/or context-dependent, and many of the eQTLs uniquely identi-
fied through cell-type-specific and context-dependent analysis
(either experimentally or computationally) colocalize with GWAS re-
sults (Aguirre-Gamboa et al., 2020; Donovan et al., 2020; Patel et al.,
2021), suggesting the importance of cell-type-specific and context-
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dependent eQTLs for interpreting and understanding GWAS sig-
nals. Therefore, there is a great need to identify these additional
eQTLs missed from tissue-based analysis to expand the space of
eQTLs and make more informed inferences on disease-causing
genes and variants.

To facilitate the identifications of cell-type-specific and context-
dependent eQTLs, statistical methods have been developed for
both bulk samples through digital deconvolution analysis, and for
single-cell data, which offer finer cell-type resolutions and can
capture dynamic effects of eQTLs. We illustrate three different data
types that can be used for inferring cell-type-specific and context-
dependent eQTLs (Fig. 1). In this review, we discuss existing sta-
tistical methods that use bulk tissues and single-cell data to identify
cell-type-specific and context-dependent eQTLs, showing high-
level analysis pipelines for bulk tissues consisting of distinct cell
types and single cells (Fig. 2), with details in the next section. We
then summarize results from empirical studies using bulk samples,
purified cells, and single-cell data. We conclude with the limitations
of the existing computational methods and future methodological
needs.

Analytical approaches for cell-type-specific and context-
dependent eQTL inference

eQTL inference using bulk samples

Early eQTL studies collected gene expression data using micro-
arrays, where gene expression levels need to be normalized to
remove batch effects, and the normalized data are analyzed to
identify eQTLs. Consider a study with N subjects, S SNPs, and G
genes. For the nth subject, y,q denotes the expression level of the gth
gene, and x,s denotes the genotype of the sth SNP. For a SNP with
two alleles, say A and a, its three genotypes AA, Aa, and aa can be
coded as 2, 1, and 0, respectively. We can study the relationship
between the observed gene expression level ypg and genotype xng
through the following regression model

Yng = 5g + 6gsxns + €ngs; (1)

where (4 is the intercept, (4 is the effect of the sth SNP on the
expression of the gth gene, and «pgys is the error term, often assumed
to follow a normal distribution. A more comprehensive model may
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Fig. 1. lllustration of eQTL analysis at different resolutions: single cells, purified cells, and bulk samples. Shown are data from three individuals with genotypes of AA, AG, and GG,
respectively. Two cell types make up the bulk samples, the oval-shaped cells, and the triangle-shaped cells. For single-cell data, we can observe expression level at the single-cell level.
For example, for the first individual with genotype AA, there are four oval-shaped cells with expression levels of 0.9, 1.1, 0.8, and 1.2, and two triangle-shaped cells with expression levels
of 3.2 and 2.8, respectively. eQTL analysis can be performed for two cell types separately using single cells across these three individuals to correlate genotypes with observed single-
cell level gene expression data. For data from purified cells, we observe aggregated gene expression levels for different cell types but without individual cell level measurements. The
average expression level for the oval-shaped cells is 1, 2, and 3, respectively, for the three individuals. For data from bulk samples, we can no longer distinguish contributions from two
distinct cell types. The average expression level for the three individuals is 1.7, 2.0, and 1.7, respectively. For single-cell data, not only we can study the association between genotypes
and cell-type-specific expressions, but also we can correlate genotypes with cell-type proportions. Through deconvolution methods, the bulk samples may be deconvoluted to different
cell types to allow cell-type-specific eQTL analysis with estimated cell type proportions from different individuals.

(A) Bulk samples

Collect bulk expression and
genotype information

|

Quality control for expression and
genotype data

|

Infer cell-type-specific/context-
dependent proxies

!

Identify cell-type-specific/context-
dependent eQTLs through
detecting interaction effects

(B) Single cells

Collect single cell and
genotype information

|

Quiality control for single cell and
genotype data

|

Infer cell types and molecular
contexts for each cell

'

Identify cell-type-specific/context-
dependent eQTLs through
regression analysis

Fig. 2. General pipeline for (A) bulk-sample-based and (B) single-cell-based analysis to identify cell-type-specific and context-dependent eQTLs.

also include other covariates, such as age and sex. Testing the null
hypothesis that the sth SNP does not affect the expression level of
the gth gene is equivalent to testing 695 = 0. A typical eQTL study
considers more than 20,000 genes and up to millions of SNPs.
Because of the large number of SNPs to be tested, researchers often
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focus on cis-eQTLs for a given gene, which are SNPs in close
physical proximity, say within one million base pairs of the candidate
gene. In contrast, trans-sQTLs correspond to SNPs that are on
different chromosomes or further away from the gene of interest on
the same chromosome. Most eQTL findings have been for cis-eQTLs
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largely due to statistical power differences in detecting cis-eQTLs
and trans-eQTLs. With a few hundred samples, which is the typical
size of an eQTL study, there is limited power to do a genome-wide
association study required to identify trans-eQTLs, which often
have smaller effect sizes than cis-eQTLs. Even for cis-eQTL analysis,
hundreds or thousands of SNPs often need to be considered, and
multiple comparison adjustments must be done to appropriately
control false-positive findings. Several computational tools have
been developed and commonly used for eQTL analysis in bulk
samples, such as MatrixEQTL (Shabalin, 2012) and FastQTL (Ongen
et al., 2016).

The regression setting in (1), where the errors are assumed to be
Gaussian, is reasonable for microarray-based gene expression
measurements. However, with gene expression data collected
through RNAsequencing, such as those from the GTEx project, the
measured gene expression level is the total number of sequence
reads mapped to a specific gene, which needs to be adjusted for
total sequencing depth and other factors. These data may be better
modeled by other distributions, for example, negative binomial, while
accounting for factors that may impact the observed sequencing
reads. In this case, a generalized linear regression model may be
more appropriate than (1) and may also have better statistical power,
although it may be computationally more expensive.

For RNA sequencing, there is added benefit of observing alter-
native splicing and allele-specific expression. In the case of allele-
specific expression, consider the presence of a SNP in the tran-
scribed region of a gene with two alleles B and b, and the simple
scenario that all the sequence reads contain this SNP. For hetero-
zygous individuals with genotype Bb, a sequence read covering this
SNP may either have B or b. In one extreme case, all the sequence
reads may only contain B but not b. Even in the absence of measured
total gene expression levels for homozygous individuals with geno-
types BB and bb, the imbalance between the mapped sequence
reads having B and b suggests the presence of cis-eQTLs, either the
SNP with alleles B and b itself or some SNP with perfect dependence
with this SNP, that regulates the expression level of this gene. Sta-
tistical models have been proposed to explicitly incorporate this
allelic-specific expression to identify cis-eQTLs, including TReCASE
(Sun, 2012), RASQUAL (Kumasaka et al., 2016), and mixQTL (Liang
et al., 2021). It was found that considering allelic-specific expres-
sion could identify 20%—100% more genes with eQTLs across 28
tissues in the GTEx project than only considering total expression
levels using TreCASE (Zhabotynsky et al., 2022), and the power gain
of mixQTL was equivalent to a 29% increase in sample size for genes
with sufficient allele-specific read coverage (Liang et al., 2021).

The analysis of tissue-level data also allows for the investigation of
context-dependent eQTLs if the context can be well defined. For
example, 369 sex-biased eQTLs were inferred through separate
analyses of male and female GTEx samples (The GTEx Consortium,
2020), where the sex of an individual may be considered a context.
Furthermore, 178 population-biased eQTLs were also implicated,
where population origin may be regarded as another context. Other
context-dependent effects can be considered by including an inter-
action term between the context variable and the SNP genotype in
the regression model (1).

Cell-type-specific eQTL inference using bulk samples

Several studies have been published that used purified cells of
different cell types to infer cell-type-specific eQTLs (ct-eQTLs). As
the gene expression data in these samples are collected in the same
manner as bulk tissue samples, the same statistical methods for bulk
samples can be applied to infer ct-eQTLs from these data. However,
the sample size tends to be smaller, and the measurement noises
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may be higher. In addition, the purified cell types may be contami-
nated with other cell types.

Without collecting data from purified cell types, Westra et al.
(2015) proposed identifying ct-eQTLs by investigating whether
there is an interaction effect between the surrogate score for a cell
type and candidate SNP’s genotype on bulk gene expression levels
from the collected samples. More formally, this model can be written
as
}’ng = 6g + 6ngnS + ﬁgmmn + 6g,sm (an X mn) + €ngs, (2)
with two additional terms Bg,mn and fg sm(xns xmp) compared to
model (1), where m, is a proxy marker for the cell type of interest in
the nth individual, 6gm is the effect of the proxy marker on the
expression level of the gth gene, and 695,,, is the interaction effect
between genotype x,s and proxy marker m. A significant interaction
effect, that is, ﬁg_sm #0, is interpreted as the cell-type-specific effect
of SNP s on expression of gene g. The same approach was used to
study context-dependent eQTLs by Zhernakova et al. (2017).

Instead of deriving cell-type-specific proxy markers or enrichment
scores, the estimated cell type proportions can also be used as a
proxy for a given cell type. Recent years have seen the developments
of many methods to deconvolute bulk RNA-seq samples to infer
proportions of different cell types and cell-type-specific expression
levels (Avila Cobos et al., 2020). For the nth subject, 7, denotes the
estimated proportion of the kth cell type for this individual, where
there is a total of K cell types. We can use the following regression
model to detect ct-eQTLs for the kth cell type.

(©)

In this model, ﬁgk is the cell type proportion effect from the kth cell
type, and (4 ¢ is the interaction effect between the sth SNP and the
proportion of kth cell type. A non-zero 5915,( suggests a cell-type-
specific effect for the sth SNP.

The formulations in (2) and (3) consider one cell type at a time and
ignore the contributions of possible cell-type-specific effects from
other cell types, both in terms of proportions and expression profiles,
leading to a potential loss of information. Moreover, models (2) and
(3) only consider a tissue and cell type pair at a time and may not
attribute a non-zero ﬁg,sk to the correct cell type. For example,
consider the case of two cell types, where k =1 or 2. If ﬁg,s1 >0, then
69_32 <0 due to the constraint that 7,y + 7,2 = 1. Furthermore, the
power differs across cell types, with a higher statistical power in
detecting ct-eQTLs for more abundant cell types. A more compre-
hensive model that takes into account all cell types simultaneously
can be formulated as

Yng = Bg + BgsXns + BgkTnk + Bg sk Xns X Tnk) + €ngs-

K K
Yng = Bg + BgsXns + Zk=1 Bk Trk +Xns (Zk=1 Bg.sk x 7Tnk> + éng,

4)

subject to the constraint that Y, m, = 1. Correspondingly, the
sth SNP is a ct-eQTL for the kth cell type if 5g,sk¢0- Another way to
parametrize this model is in the form of

©)

Note that the 8 + g sk X Xnk term in model (5) is essentially the
cell-type-specific gene expression for the kth cell type in sample n,
essentially the same model considered in Decon-eQTL (Aguirre-
Gamboa et al., 2020).

In practice, ct-eQTL analysis based on the above models often
uses transformed gene expression data instead of read counts. This

K
Yng = Zk:1 (5gk + ﬁg,sk X Xnk)ﬂ'nk + éng.



J. Zhang and H. Zhao

may distort the association between the observed gene expression
level and cell type compositions, leading to reduced power and
inflated false positives. Recently, Little et al. (2022) proposed ct-
eQTL to jointly model total read counts and allele-specific counts by
a negative binomial (or Poisson) and a beta-binomial (or binomial)
distribution with the consideration of covariates, cell type composi-
tion, and SNP genotype. ct-eQTL also includes an allele-specific
expression to further increase the power to detect cell type-
specific eQTLs. Empirical studies showed higher power of ct-eQTL
than linear model-based methods. DeCAF is a linear model-based
method that considers both total expression levels and allele-
specific expression (Kalita and Gusev, 2022).

Although the above approaches are intuitive, applying them to
infer ct-eQTLs in practice has challenges. First, there are un-
certainties in the estimated proxy markers and cell type proportions,
and these need to be appropriately incorporated into the analysis.
However, this issue has only recently been studied (Xie and Wang,
2022), and the impact of incorporating these uncertainty estimates
in ct-eQTL inference needs to be explored. Second, although ct-
eQTLs may be inferred for all cell types in principle, it would be
relatively easier for more abundant cell types than for less abundant
or rare cell types. Third, there have to be sufficient variations in cell
type compositions across subjects to allow ct-eQTL inference. For
example, in the extreme case that all the subjects have identical cell
type proportions, the parameters in the above models are not iden-
tifiable. Fourth, the above formulation does not consider similarity
among some cell types, although methods have been proposed to
consider cell lineage (Yankovitz et al., 2021).

Cell-type-specific eQTLs from single-cell data

In addition to bulk data, single-cell data are increasingly used for
ct-eQTL inference (Jonkers and Wijmenga, 2017; van der Wijst et al.,
2018; Liu et al., 2021; Neavin et al., 2021). Most published single-cell-
based ct-eQTL analyses are performed by analyzing pseudo-bulk
RNA-seq data for different cell types, where the single-cell data are
first annotated to distinct cell types, and the cells annotated to the
same cell types from a specific subject are combined to derive cell-
type-specific gene expression levels. eQTL methods for bulk sam-
ples can then be applied to detect ct-eQTLs. For example, Yazar
et al. (2022) grouped cells of the same type for each individual and
adjusted for covariate effects before performing Spearman rank
correlation analysis. However, the sample size is still much more
limited for single-cell data compared to that of bulk samples, and
there are many ongoing efforts for single-cell-based genetic asso-
ciation analysis, for example, the single-cell eQTLGen consortium
(van der Wijst et al., 2018) and the OneK1K cohort (Yazar et al., 2022).

Instead of aggregating all the cells in a given individual, Nathan
et al. (2022) used Poisson mixed effects regression to model the
effects of SNPs, cell states (which can be both discrete and contin-
uous), batch structure, and other covariates (such as sex, age, ge-
notype principal components and gene expression principal
components, and percentage of mitochondrial unique molecular
identifiers [UMIs]) on the observed gene expression level measured
by UMI counts at the single-cell level. The effect of an SNP is
modeled as a fixed effect in the analysis. When the Poisson mixed
effects model was compared with the computationally more
expensive negative binomial mixed effects model, it was found that
the Poisson model was adequate for the single-cell data analyzed.

Although single cells can be grouped into pre-defined cell types
for ct-eQTL analysis, the very high resolution at the single-cell level
offers the opportunity for more refined analysis, where the individual
cells can be characterized by a vector of continuous contexts. For
example, principal component analysis can be performed for the
highly variable genes across all the cells based on normalized gene
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expression data, and the top principal components for a single cell
may be taken as the cellular states for this cell. After the cellular
states are defined for a single cell, the effects of an SNP on gene
expression may be studied in the context of these cellular states to
see whether the effects may vary depending on different states.
Assuming we have N subjects, with m, cells collected from the nth
subject, and a total of C different cellular contexts are defined for
each cell. Let the states of ith cell for the nth subject be denoted by a
vector of contexts (hpj7, hni2, ..., hnic) of dimension C. Cuomo et al.
(2022) proposed a cellular regulatory map model, called CellReg-
Map, as

Yngi = Bg + BgsXns + Bg,siXns -+ Ung + Cngi + €ngi, (6)
where ypg; represents the measured expression level of the gth gene
in the ith cell of the nth subject, x,s is the genotype of the sth SNP of
the nth individual, ﬁg is the baseline expression level, ﬁgs represents
the persistent effect of the sth SNP across all the cells in different
subjects, 6975, is the cell-specific effect on the gth expression level,
upg accounts for the fact that the mj, cells are from the same subject,
Cngi @ccounts for the cell context effects, and &y, is the error term.
CellRegMap adopts an overall random effects model approach
where g5 ~ N(0, 0%, o), Ung ~ N(0, 03%), Cpgi ~ N(0, 023), and
Engi ~ N(O,ag). The matrix X is defined by the cellular context vectors
¥ = HH'. CellRegMap uses a score test to investigate whether an
SNP has a context-dependent effect on gene expression level with
the null hypothesis ﬂg‘s,- = 0. This model can also be used to test the
main effect and estimate the allelic effects of single cells for each
gene-SNP pairs based on the best linear unbiased predictor. In
practice, it is important to define cellular contexts, and CellRegMap
used MOFA to define cellular states (Argelaguet et al., 2018), where
latent factors are inferred from single-cell data that explain variation
in gene expression in the data. Because of the computational issues
and the assumption of normal errors, the single cells were aggre-
gated into meta cells because of the sparsity in single-cell data in real
data analysis. In addition, only specific gene-SNP pairs were
considered due to statistical power concerns.

Strober et al. (2022) proposed a similar approach, called single-
cell unsupervised regulation of gene expression (SURGE), where a
continuous representation of the cell contexts is learned through a
probabilistic model with matrix factorization. The model has a form
similar to that of CellRegMap as follows:

c

Yngi = Bg + BgsZns + Zc:1hnicﬁgsczns + Ung + €ngi, @)
where y,; is standardized gene expression level for the gth gene in
the ith cell of the nth subject, and z,s is the standardized genotype for
the sth SNP of the nth individual. The other parameters have the
same meaning as the CellRegMap model, but the context vector hp;c
is latent and learned from the model instead of prespecified. SURGE
has the following assumptions about the model parameters:
5gs ~ N(0,1), hpic ~ N(0, ‘73): ﬁgsc ~N(0,1), 1/0% ~ Gamm(ao, Bo),
Ung ~ N(O,¥55),  engi ~N(0,02,), 1/ ~ Gamm(ag, o), and
1/%2;5 ~ Gamm(ag, p). SURGE approximates the posterior distri-
bution of all latent variables using mean-field variational inference.
Similar to CellRegMap, only eQTLs identified in previous studies
were used for analysis due to statistical power concerns, and the
reliance on the normal distribution assumption of the error terms
limits its direct application to single-cell data. As a result, single cells
have to be aggregated to meta cells before the model is applied.
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Empirical results on cell-type-specific and context-dependent
eQTL analyses

This section reviews the growing evidence of cell-type-specific
and context-dependent eQTLs using bulk samples, purified cells,
and single cells.

Tissue analysis

Whole blood

Among the first analysis of cis-eQTLs using bulk samples, Westra
et al. (2015) analyzed whole blood gene expression data of 5683
individuals from seven cohorts to infer cell-type-specific cis-eQTLs.
A total of 1115 cis-eQTLs (8.5% of the significant cis-eQTLs from
prior eQTL analysis for the whole tissue) were found to have signifi-
cant interaction effects with neutrophil proxy. The results were
replicated in six individual purified cell-type eQTL datasets. More
importantly, the authors showed SNPs associated with Crohn’s
disease preferentially affect gene expression within neutrophils,
demonstrating the insights gained from cell-type-specific eQTL
analysis. Zhernakova et al. (2017) performed eQTL and context-
dependent eQTL analysis on RNA-seq data of peripheral blood
from 2116 unrelated individuals, identifying 23,060 genes with
eQTLs, among which 2743 (12%) showed context-dependent
effects.

GTEx data

Cell-type-specific analysis was performed on the GTEx data (Kim-
Hellmuth et al., 2020). The authors estimated cell type enrichment for
seven cell types (adipocytes, epithelial cells, hepatocytes, keratino-
cytes, myocytes, neurons, and neutrophils) across 35 tissues. Be-
tween 43 pairs of tissues and cell types, they identified eQTLs
specific to at least one cell type by testing for interaction effects
between SNP and cell type enrichment on the observed expression
levels. They found that these cell-type-interaction QTLs, called
ieQTLs, are enriched for genes with tissue-specific eQTLs and
generally not shared across unrelated tissues. Furthermore, these
ieQTLs are enriched for complex trait associations and had coloc-
alization signals for hundreds of undetected loci in bulk tissue.

Cultured and purified cells

Brain cells

Aygun et al. (2021) used a cell-type-specific in vitro model system
including 85 neural progenitors and 74 virally labeled and sorted
neuronal progeny for eQTL analysis. They identified 2079 and 872
eQTLs in progenitors and neurons, respectively, with 66% and 47%
of these eQTLs not identified in fetal bulk brain eQTLs from a largely
overlapping sample or in adult data from GTEx. These eQTLs had
cell-type-specific colocalizations with GWAS hits for neuropsychi-
atric disorders and other brain-related traits.

Microglia in the brain play critical roles in immune defense and
development and are implicated in neurodegenerative disorders.
Young et al. (2021) gathered gene expression profiles in primary
microglia isolated from 141 patients undergoing neurosurgery. A total
of 585 microglia eQTLs were identified. Through joint analysis with
monocytes and IPSDMac, 855 microglia eQTLs were inferred, with
108 microglia specific, and 449 shared across three cell types. For
colocalization with GWAS hits, there was an excess of colocalized
microglial eQTLs for Alzheimer’s disease, Parkinson’s disease, and
inflammatory bowel disease.

Melanocyte cultures
Because melanocytes give rise to melanoma but account for less
than 5% of human skin biopsies, Zhang et al. (2018) performed eQTL
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analysis in primary melanocyte cultures from 106 newborn males to
identify eQTLs in melanocytes. The identified melanocyte eQTLs
differed considerably from those from the GTEX tissues, including the
skin. Novel risk genes for melanoma were implicated using the
transcriptome-wide association study based on this dataset.

Immune cells

The DICE project isolated 13 immune cell types from 106 leuka-
pheresis samples of 91 healthy subjects (Schmiedel et al., 2018). It
was found that eQTLs are highly cell-type specific, and sex has a
major effect on gene expression. In the ImmuNexUT study, with
samples from 79 healthy controls and 337 patients diagnosed with
different immune-mediated diseases, Ota et al. (2021) purified 28
immune cell types from these individuals with a total of 9852 samples
and performed cell-type-specific eQTL analysis. They identified a
median of 7092 genes with eQTLs in each cell type, 2.2-fold more
than that identified in the DICE study (Schmiedel et al., 2018). They
further identified eQTLs that were only present in patients.

Single-cell analysis

Peripheral blood mononuclear cells (PBMC)

In a proof-of-concept study, van der Wijst et al. (2018) analyzed
25,000 single-cell RNA-seq data from 45 donors. They identified 379
unique cis-eQTLs involving 287 unique eGenes across six cell types.
A total of 48 cis-eQTLs were only identified from cell-type-specific
analysis. The authors also demonstrated the benefit of performing
cell subtype analysis for cMonocytes and ncMonocytes.

Oelen et al. (2022) exposed Peripheral blood mononuclear cells
(PBMC) samples from 120 individuals to three pathogens. They
sequenced these samples in an unstimulated condition and after 3 h
and 24 h in vitro stimulation for the three pathogens. They identified
cell-type-specific eQTLs, with the number of such eQTLs correlated
with the cell-type abundance. Furthermore, the effects of eQTLs
differed across pathogen stimulations, and the strongest enrichment
for GWAS signals was observed for eQTLs that were identified from
stimulation experiments.

The investigators of the OneK1K cohort analyzed 1.27 million
PBMC single-cell RNA-seq data from 982 donors of Northern Euro-
pean ancestry and performed eQTL analyses on 14 immune cell
types (Yazar et al., 2022). A total of 26,597 cis-eQTLs were identified,
with most having cell-type-specific effects. Dynamic effects were
also observed based on the pseudo-time trajectory for the B cell
landscape. In addition to cis-eQTLs, 990 trans-eQTLs were identi-
fied, with most genes regulated by trans-eQTLs being specific for a
single-cell type, and none were ubiquitous across cell types.
Colocalization analysis between eQTLs and GWAS signals sug-
gested that 60% of colocalizing genes were detected upon activa-
tion, and colocalization is very cell type-specific.

Induced pluripotent stem cells (iPSCs)

Neavin et al. (2021) gathered single-cell RNA-seq data from
64,018 fibroblasts of 79 donors and performed single-cell eQTL
analysis. For the six types of fibroblasts and four types of induced
pluripotent stem cells (iPSCs), most of the detected eQTLs in fibro-
blasts were specific to one cell type. Only 41% of the 45,503 eQTLs
identified in the six fibroblast types were significant in GTEx.

Using 125 iPSC lines derived from 125 donors, Cuomo et al.
(2020) collected single-cell gene expression data from 36,044 cells
at four differentiation time points using full-length RNA-sequencing
and the expression levels of selected cell surface markers through
cell sorting. Substantial regulatory changes were observed, with over
30% of eQTLs being specific to a single stage. Hundreds of eQTLs at
the mesendo and defendo stages were new. This study also tested
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for associations between pseudo-time and the genetic effect size
using a linear model, as well as identified 899 time-dynamic eQTLs.

T cells

Soskic et al. (2022) analyzed 655,349 CD4" T cells from 119
healthy donors, both for unstimulated cells and at three time points
after cell activation. Different numbers of genes showing eQTL ef-
fects were detected at different time points with hundreds of them
only detected at specific cell states. Using pseudo-time trajectory
information, 2265 genes were found to have dynamic eQTL effects,
representing about one-third of the genes. Colocalized genes with
GWAS signals were enriched in time-dependent eQTLs.

With 89 healthy donors, Schmiedel et al. (2022) performed eQTL
analysis for more than one million activated CD4" T cells classified
into 19 distinct CD4™" T cell subsets. The effects of many eQTLs were
strongly manifested only in specific cell types in an activation-
dependent manner, and significant sex effects were also observed.

Nathan et al. (2022) performed single-cell eQTL analysis using
gene expression data from more than 500,000 unstimulated memory
T cells from 259 Peruvian individuals. They found that the effects of
one-third of cis-eQTLs were mediated by continuous multimodally
defined cell states, with independent eQTLs at some loci having
opposing cell-state relationships.

Brain cortex

In a recent study using single-cell data from the prefrontal cortex,
temporal cortex, and deep white matter from 192 individuals, a total
of 7607 genes were found to have eQTLs from eight cell types (Bryois
et al., 2022). A majority of cell-type-specific eQTLs were replicated in
tissue-level eQTLs for cortical tissue, with eQTLs for more abundant
cell types more likely replicated in the tissue results. It was also found
that the effect sizes estimated from tissue tend to be lower than those
estimated from cell-type-specific analysis. As expected, the number
of cis-eQTLs identified in a cell type was strongly correlated with the
number of cells available for the corresponding cell type. The effect
sizes were more similar for similar cell types with microglia being
most different from others. Colocalization analysis suggests that
disease risk at a given GWAS locus is usually mediated by a single
gene acting in a specific cell type.

Dopaminergic neuron differentiation

Jerber et al. (2021) differentiated 215 human iPSC lines to profile
over 1 million cells across four conditions, including three differenti-
ation stages (progenitor-like, young neurons, and more mature
neurons) and cells exposed to a chemical stressor. eQTL analysis
was performed for 14 cell types, identifying 4828 genes with eQTLs.
Compared to eQTLs identified from GTEx brain tissues, this study
identified 2366 new eQTLs. As for colocalization analysis, 1284
eQTLs were colocalized, with 597 being new, and 67% of these new
colocalizations were associated with eQTLs detected in later differ-
entiation stages or upon stimulation. A colocalization using aggre-
gated data from different cell types yielded a much smaller number of
colocalizations, suggesting the importance of considering cell type
specificity.

Discussion

A main driving force for many eQTL studies in recent years is their
potential to offer insights into the GWAS signals, which mostly fall
into non-coding regions of the human genome. Because of the
importance of cell-type-specific and context-dependent eQTLs, a
growing number of studies are collecting and analyzing data to
facilitate such analyses. Coupled with the rise of rich data that offer
cell-type-specific and context-dependent gene regulation informa-
tion, there is also a need for more statistically robust and
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computationally efficient methods for these analyses. In this paper,
we have reviewed statistical methods that have been developed and
applied to analyze different types of data for cell-type-specific and
context-dependent eQTL inference, including bulk samples, purified
cells, and single cells.

Despite these progresses, many issues remain to be resolved,
especially in anticipation of the many population-level single-cell data
to be gathered in the near future that will involve tens of thousands of
individuals and tens of millions of single cells across different tissues.
For example, to fully respect the nature of the single-cell data, the
single data are more appropriately modeled as Poisson or negative
binomial distribution. Yet, most published studies have adopted
linear regression models and often aggregated multiple cells to
address the sparsity of the observed single-cell data. For bulk
samples using RNA sequencing, efforts have been made to use
allele-specific expression to improve statistical power for identifying
eQTLs, and limited work has been done for single-cell data to capi-
talize on allele-specific expression information. There are challenges
in appropriately defining cell types and contexts for cell-type-specific
and context-dependent eQTL analysis. Cuomo et al. (2022) and
Strober et al. (2022) represent some initial efforts and more needs to
be done to fully capture and utilize the cell state information for eQTL
discoveries, including non-linear transcription programs (Wang and
Zhao, 2022). In addition, as more than one SNP may jointly affect
expression levels (The GTEx Consortium, 2020; Abell et al., 2022),
methods that include joint effects are likely to be more powerful and
can better characterize the relationship between gene expression
levels and SNPs.

With many studies performed on bulk tissues, and the availability
of several methods to use bulk tissue samples for cell-type-specific
eQTL analysis, there is a need to effectively integrate the results
from single-cell data and bulk tissue data. Furthermore, as different
tissues may share cells of similar cell types and states, there is also a
need to better integrate results across tissues and studies (Flutre
et al., 2013; Urbut et al., 2019).

As for all genetic studies, study design is important, such as the
number of samples to be collected, and, in the case of single cells,
the number of cells per subject and the sequencing depth of each
cell. Several software and tools have been developed to facilitate this
analysis under relatively simple statistical models for data analysis
(Mandric et al., 2020; Dong et al., 2021). Further developments are
needed to incorporate more comprehensive statistical models for
analysis, and the consideration of other information, for example,
alleles-specific expression, in inferring eQTLs. Due to the limited
statistical power, most studies have focused on cis-eQTLs. For
example, fewer than 150 genes were found to be affected by trans-
eQTLs in the GTEx project (The GTEx Consortium, 2020). There is
a critical need to design statistical methods to identify trans-eQTLs,
both for bulk tissues and cell-type-specific and context-dependent
effects.

We have focused on the inference of eQTLs in this paper. There
are many downstream applications of eQTL analysis. For example,
methods need to perform colocalization analysis with cell-type-
specific and context-dependent eQTL results without focusing on a
specific set of SNPs through simple thresholding of statistical sig-
nificance, while accounting for the linkage disequilibrium information
across the SNPs in a region. Cell-type-specific and context-
dependent eQTLs also offer the opportunity to improve the identifi-
cations of candidate genes through transcriptome-wide association
studies at the cell-type and context-dependent level, and the recently
developed methods (Okamoto et al., 2023; Song et al., 2023) for bulk
samples can be extended for cell-type-specific and context-
dependent analyses. There is also the need for Mendelian randomi-
zation methods to infer the causal relationship between transcript
levels and complex traits and diseases (Liu et al., 2021). In this
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setting, the existing methods for bulk samples may not be adequate
to deal with the count nature of the single-cell data, data sparsity, and
the need to integrate information from multiple data sources for more
informed analysis and decisions. In addition to eQTLs that affect
gene expression levels, genetic variants can also affect gene
expression variances and co-variances (Hulse and Cai, 2013; Ek
et al.,, 2018; Sarkar et al., 2019; Marderstein et al., 2021).
Compared to eQTL analysis, more needs to be done to identify such
variants. Even less has been explored at the cell type level, where
cell-type-specific co-expressions may be inferred using either bulk
samples (Su et al., 2022b) or single-cell data (Su et al., 2022a). A
comprehensive catalog of eQTLs with cell-type-specific and context-
dependent effects on gene expression variance and co-variance will
better characterize the gene regulation of expressions and interpret
GWAS results.

Although gene expression has been the focus of cell-type-
specific and context-dependent analysis, other data types are be-
ing increasingly collected for similar analysis, such as methylation,
chromatin accessibility, and proteomics, based on single-cell data
(Wang et al., 2022). The methods and tools developed for bulk and
single-cell RNA-seq data may also apply to other data types, such as
recently published methylation data from the GTEx subjects (Oliva
et al., 2023) and a meQTL dataset derived from primary melano-
cytes of 106 individuals (Zhang et al., 2021). More importantly, as
different data types reflect different aspects of the same biological
process, there is a need to integrate data from different modalities to
assess the genetic effects of SNPs on gene expression, methylation,
chromatin accessibility, protein expression, and other molecular
phenotypes. Such integrated analysis will likely yield more informa-
tive annotations of the SNPs to facilitate the interpretation of the
GWAS results (Hormozdiari et al., 2018).
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