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A B S T R A C T

An expression quantitative trait locus (eQTL) is a chromosomal region where genetic variants are associated

with the expression levels of specific genes that can be both nearby or distant. The identifications of eQTLs

for different tissues, cell types, and contexts have led to a better understanding of the dynamic regulations

of gene expressions and implications of functional genes and variants for complex traits and diseases.

Although most eQTL studies have been performed on data collected from bulk tissues, recent studies have

demonstrated the importance of cell-type-specific and context-dependent gene regulations in biological

processes and disease mechanisms. In this review, we discuss statistical methods that have been

developed to enable the detection of cell-type-specific and context-dependent eQTLs from bulk tissues,

purified cell types, and single cells. We also discuss the limitations of the current methods and future

research opportunities.

Copyright © 2023, The Authors. Institute of Genetics and Developmental Biology, Chinese Academy of

Sciences, and Genetics Society of China. Published by Elsevier Limited and Science Press. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Recent years have seen significant progress in identifying

genomic regions associated with complex traits and diseases

through genome-wide association studies (GWAS), where tens of

thousands of genomic regions have been associated with thousands

of traits, including many complex diseases (see the curated GWAS

results at https://www.ebi.ac.uk/gwas/). One challenge of interpret-

ing GWAS findings is that most of associated genetic variants, for

example, single nucleotide polymorphisms (SNPs), are in intergenic

regions, making it difficult to infer functional genes and variants in

these regions. Many efforts have been made to annotate the human

genome through experimental studies, e.g., ENCODE Project (The

ENCODE Project Consortium et al., 2020), Roadmap Epigenomics

Project (Roadmap Epigenomics et al., 2015), and psychENCODE

(PsychENCODE Consortium et al., 2015), and computational ap-

proaches, e.g., CADD (Kircher et al., 2014), GWAVA (Ritchie et

al.,2014), GenoCanyon (Lu et al., 2015), GenoSkyline (Lu et al.,

2016), EIGEN (Ionita-Laza et al., 2016), GenoSkyline-Plus (Lu et al.,

2017), and STARR (Li et al., 2022) to infer the functional roles of

different SNPs and other variants, including expression quantitative

trait locus (eQTL) studies (The GTEx Consortium, 2020), where the

goal is to infer genetic variants affecting genetic regulation by

associating genotypes with gene expression levels across a sample

of individuals. Because eQTL studiesmeasure expression levels of all

the genes in the genome, they provide an unbiased view of the

regulation of gene expression. Using results from eQTL studies in

lymphoblastoid cell lines from HapMap samples, it was shown that

SNPs associatedwith complex traits are significantlymore likely to be

eQTLs identified than minor-allele-frequency-matched SNPs

(Nicolae et al., 2010). Another study assessed the enrichment and

depletion of variants in different annotation classes (Kindt et al.,

2013), including genic regions, regulatory features, measures of

conservation, and patterns of histonemodifications. It was found that

annotations associated with chromatin state and eQTLs were the

most enriched groups. These early results stimulated many large

community efforts to collect gene expression and genotype data for

eQTL studies, and the accumulation of eQTL results parallels the

great success of GWAS. Assume an SNP is associated with a com-

plex trait as well as the expression level of a specific gene. In that

case, this gene may be implicated as a possible candidate gene for

the trait. Several methods have been developed to formalize this idea

for colocalization analysis that aims to find the SNPs that are asso-

ciated with both expression and complex traits (Hormozdiari et al.,

2016; Wen et al., 2016; Giambartolomei et al., 2018).

Transcriptome-wide association analysis methods have been

developed to use eQTL data to predict the expression levels and

associate the predicted (imputed) expression levels with the

observed complex traits (Gamazon et al., 2015; Gusev et al., 2016; Hu

et al., 2019). Mendelian randomization methods have also been
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proposed to investigate whether the expression trait is a causal factor

for a complex trait of interest (Richardson et al., 2020; Yuan et al.,

2020; Zhou et al., 2020; Liu et al., 2021) (Tables 1 and 2).

The most well-known eQTL study is the Genotype-Tissue

Expression (GTEx) project where dozens of tissues from hundreds of

individuals were analyzed to identify tissue-specific eQTLs (The

GTEx Consortium, 2020). The GTEx project has proved to be a

valuable resource for the research community. Version 8 of the GTEx

analyzed 15,201 RNA-sequencing samples from 49 tissues of 838

postmortem donors. It was found that cis-eQTLs showed 1.46-fold

enrichment in the GWAS catalog (https://www.ebi.ac.uk/gwas/)

where significant GWAS association results are collected. The cross-

tissue eQTL similarities were consistent with tissue relatedness, with

tissues from the brain region forming one cluster, and other organs

being more similar to each other, with the exceptions of testis, lym-

phoblastoid cell lines, whole blood, and liver that are distinct from

other tissues. BLUEPRINT collects genetic, epigenetic, and tran-

scriptomic profiling in three immune cell types to investigate the

contributions of different factors in gene expression (Chen et al.,

2016). eQTL catalog is a resource developed by reprocessing data

from dozens of studies with more than 30,000 samples, where

summary statistics are available for many cell types and tissues

(Kerimov et al., 2021). The results from these studies and resources

thus generated have demonstrated the values of eQTL information in

inferring causal genes and variants at GWAS loci.

Most eQTL studies to date have been performed on bulk samples,

where the estimated effect size of an SNP represents the average

effect across different cell types, and the cell-type origin (origins) of

the inferred eQTLs is (are) often unknown for a bulk sample con-

sisting of distinct cell types. Despite some successes in using eQTL

results to infer disease-causing genes and variants, recent studies

based on both modeling (Yao et al., 2020) and carefully chosen gene-

trait pairs (Connally et al., 2022) have shown that the known eQTLs,

which are mostly derived from the analysis of bulk tissues, only

explain a very small proportion of the GWAS signals, where GWAS

hits colocalize with eQTL SNPs. There is growing evidence (as

summarized below) that eQTL effects are often cell-type-specific

and/or context-dependent, and many of the eQTLs uniquely identi-

fied through cell-type-specific and context-dependent analysis

(either experimentally or computationally) colocalize with GWAS re-

sults (Aguirre-Gamboa et al., 2020; Donovan et al., 2020; Patel et al.,

2021), suggesting the importance of cell-type-specific and context-

dependent eQTLs for interpreting and understanding GWAS sig-

nals. Therefore, there is a great need to identify these additional

eQTLs missed from tissue-based analysis to expand the space of

eQTLs and make more informed inferences on disease-causing

genes and variants.

To facilitate the identifications of cell-type-specific and context-

dependent eQTLs, statistical methods have been developed for

both bulk samples through digital deconvolution analysis, and for

single-cell data, which offer finer cell-type resolutions and can

capture dynamic effects of eQTLs. We illustrate three different data

types that can be used for inferring cell-type-specific and context-

dependent eQTLs (Fig. 1). In this review, we discuss existing sta-

tistical methods that use bulk tissues and single-cell data to identify

cell-type-specific and context-dependent eQTLs, showing high-

level analysis pipelines for bulk tissues consisting of distinct cell

types and single cells (Fig. 2), with details in the next section. We

then summarize results from empirical studies using bulk samples,

purified cells, and single-cell data. We conclude with the limitations

of the existing computational methods and future methodological

needs.

Analytical approaches for cell-type-specific and context-

dependent eQTL inference

eQTL inference using bulk samples

Early eQTL studies collected gene expression data using micro-

arrays, where gene expression levels need to be normalized to

remove batch effects, and the normalized data are analyzed to

identify eQTLs. Consider a study with N subjects, S SNPs, and G

genes. For the nth subject, yng denotes the expression level of the gth

gene, and xns denotes the genotype of the sth SNP. For a SNP with

two alleles, say A and a, its three genotypes AA, Aa, and aa can be

coded as 2, 1, and 0, respectively. We can study the relationship

between the observed gene expression level yng and genotype xng
through the following regression model

yng¼ bg þ bgsxns þ εngs; (1)

where bg is the intercept, bgs is the effect of the sth SNP on the

expression of the gth gene, and εngs is the error term, often assumed

to follow a normal distribution. A more comprehensive model may

Table 2

Representative statistical methods for detecting cell-type-specific and context-dependent eQTLs.

Samples Methods Key ideas Pros Cons

Bulk Westra et al. (2015)

Zhernakova et al. (2017)

Avila Cobos et al. (2020)

Aguirre-Gamboa et al. (2020)

Detect interactions effects between

candidate eQTL genotypes and cell-

type-specific proxy markers (e.g.,

cell type proportions) on gene

expression levels in bulk tissues

Applicable to large collection of

eQTL studies based on bulk samples

Limited resolution for cell types

and dependence on informative

and robust cell-type-specific

proxy markers

Single cells Cuomo et al. (2022)

Strober et al. (2022)

Detect differential effects of

candidate eQTL genotypes on gene

expression levels for different cell

types and/or contexts inferred from

single-cell expression data

High-resolution cell types and

different molecular contexts

Limited number of subjects

available and sparsity in single-

cell gene expression data

Table 1

Representative resources for eQTL studies.

Resource Sample types Sample sizes Link

GTEx Bulk tissues 73 to 706 across 49 tissues https://gtexportal.org/home/

eQTL catalog Bulk tissues from 29 studies 73 to 838 across studies https://www.ebi.ac.uk/eqtl/

eQTLGen Blood 31,684 across 37 datasets https://www.eqtlgen.org

OneK1K Single cells from PBMC 1.27 million cells from 982 donors https://onek1k.org
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also include other covariates, such as age and sex. Testing the null

hypothesis that the sth SNP does not affect the expression level of

the gth gene is equivalent to testing bgs ¼ 0: A typical eQTL study

considers more than 20,000 genes and up to millions of SNPs.

Because of the large number of SNPs to be tested, researchers often

focus on cis-eQTLs for a given gene, which are SNPs in close

physical proximity, say within one million base pairs of the candidate

gene. In contrast, trans-sQTLs correspond to SNPs that are on

different chromosomes or further away from the gene of interest on

the same chromosome. Most eQTL findings have been for cis-eQTLs
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Fig. 1. Illustration of eQTL analysis at different resolutions: single cells, purified cells, and bulk samples. Shown are data from three individuals with genotypes of AA, AG, and GG,

respectively. Two cell types make up the bulk samples, the oval-shaped cells, and the triangle-shaped cells. For single-cell data, we can observe expression level at the single-cell level.

For example, for the first individual with genotype AA, there are four oval-shaped cells with expression levels of 0.9, 1.1, 0.8, and 1.2, and two triangle-shaped cells with expression levels

of 3.2 and 2.8, respectively. eQTL analysis can be performed for two cell types separately using single cells across these three individuals to correlate genotypes with observed single-

cell level gene expression data. For data from purified cells, we observe aggregated gene expression levels for different cell types but without individual cell level measurements. The

average expression level for the oval-shaped cells is 1, 2, and 3, respectively, for the three individuals. For data from bulk samples, we can no longer distinguish contributions from two

distinct cell types. The average expression level for the three individuals is 1.7, 2.0, and 1.7, respectively. For single-cell data, not only we can study the association between genotypes

and cell-type-specific expressions, but also we can correlate genotypes with cell-type proportions. Through deconvolution methods, the bulk samples may be deconvoluted to different

cell types to allow cell-type-specific eQTL analysis with estimated cell type proportions from different individuals.

Fig. 2. General pipeline for (A) bulk-sample-based and (B) single-cell-based analysis to identify cell-type-specific and context-dependent eQTLs.
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largely due to statistical power differences in detecting cis-eQTLs

and trans-eQTLs. With a few hundred samples, which is the typical

size of an eQTL study, there is limited power to do a genome-wide

association study required to identify trans-eQTLs, which often

have smaller effect sizes than cis-eQTLs. Even for cis-eQTL analysis,

hundreds or thousands of SNPs often need to be considered, and

multiple comparison adjustments must be done to appropriately

control false-positive findings. Several computational tools have

been developed and commonly used for eQTL analysis in bulk

samples, such as MatrixEQTL (Shabalin, 2012) and FastQTL (Ongen

et al., 2016).

The regression setting in (1), where the errors are assumed to be

Gaussian, is reasonable for microarray-based gene expression

measurements. However, with gene expression data collected

through RNAsequencing, such as those from the GTEx project, the

measured gene expression level is the total number of sequence

reads mapped to a specific gene, which needs to be adjusted for

total sequencing depth and other factors. These data may be better

modeled by other distributions, for example, negative binomial, while

accounting for factors that may impact the observed sequencing

reads. In this case, a generalized linear regression model may be

more appropriate than (1) and may also have better statistical power,

although it may be computationally more expensive.

For RNA sequencing, there is added benefit of observing alter-

native splicing and allele-specific expression. In the case of allele-

specific expression, consider the presence of a SNP in the tran-

scribed region of a gene with two alleles B and b, and the simple

scenario that all the sequence reads contain this SNP. For hetero-

zygous individuals with genotype Bb, a sequence read covering this

SNP may either have B or b. In one extreme case, all the sequence

reads may only contain B but not b. Even in the absence of measured

total gene expression levels for homozygous individuals with geno-

types BB and bb, the imbalance between the mapped sequence

reads having B and b suggests the presence of cis-eQTLs, either the

SNP with alleles B and b itself or some SNP with perfect dependence

with this SNP, that regulates the expression level of this gene. Sta-

tistical models have been proposed to explicitly incorporate this

allelic-specific expression to identify cis-eQTLs, including TReCASE

(Sun, 2012), RASQUAL (Kumasaka et al., 2016), and mixQTL (Liang

et al., 2021). It was found that considering allelic-specific expres-

sion could identify 20%e100% more genes with eQTLs across 28

tissues in the GTEx project than only considering total expression

levels using TreCASE (Zhabotynsky et al., 2022), and the power gain

of mixQTL was equivalent to a 29% increase in sample size for genes

with sufficient allele-specific read coverage (Liang et al., 2021).

The analysis of tissue-level data also allows for the investigation of

context-dependent eQTLs if the context can be well defined. For

example, 369 sex-biased eQTLs were inferred through separate

analyses of male and female GTEx samples (The GTEx Consortium,

2020), where the sex of an individual may be considered a context.

Furthermore, 178 population-biased eQTLs were also implicated,

where population origin may be regarded as another context. Other

context-dependent effects can be considered by including an inter-

action term between the context variable and the SNP genotype in

the regression model (1).

Cell-type-specific eQTL inference using bulk samples

Several studies have been published that used purified cells of

different cell types to infer cell-type-specific eQTLs (ct-eQTLs). As

the gene expression data in these samples are collected in the same

manner as bulk tissue samples, the same statistical methods for bulk

samples can be applied to infer ct-eQTLs from these data. However,

the sample size tends to be smaller, and the measurement noises

may be higher. In addition, the purified cell types may be contami-

nated with other cell types.

Without collecting data from purified cell types, Westra et al.

(2015) proposed identifying ct-eQTLs by investigating whether

there is an interaction effect between the surrogate score for a cell

type and candidate SNP’s genotype on bulk gene expression levels

from the collected samples. More formally, this model can be written

as

yng ¼ bg þbgsxns þbgmmn þ bg;smðxns �mnÞ þ εngs; (2)

with two additional terms bgmmn and bg;smðxns �mnÞ compared to

model (1), where mn is a proxy marker for the cell type of interest in

the nth individual, bgm is the effect of the proxy marker on the

expression level of the gth gene, and bg;sm is the interaction effect

between genotype xns and proxy marker m. A significant interaction

effect, that is, bg;sms0, is interpreted as the cell-type-specific effect

of SNP s on expression of gene g. The same approach was used to

study context-dependent eQTLs by Zhernakova et al. (2017).

Instead of deriving cell-type-specific proxy markers or enrichment

scores, the estimated cell type proportions can also be used as a

proxy for a given cell type. Recent years have seen the developments

of many methods to deconvolute bulk RNA-seq samples to infer

proportions of different cell types and cell-type-specific expression

levels (Avila Cobos et al., 2020). For the nth subject, pnk denotes the

estimated proportion of the kth cell type for this individual, where

there is a total of K cell types. We can use the following regression

model to detect ct-eQTLs for the kth cell type.

yng ¼ bg þbgsxns þbgkpnk þ bg;skðxns �pnkÞ þ εngs: (3)

In this model, bgk is the cell type proportion effect from the kth cell

type, and bg;sk is the interaction effect between the sth SNP and the

proportion of kth cell type. A non-zero bg;sk suggests a cell-type-

specific effect for the sth SNP.

The formulations in (2) and (3) consider one cell type at a time and

ignore the contributions of possible cell-type-specific effects from

other cell types, both in terms of proportions and expression profiles,

leading to a potential loss of information. Moreover, models (2) and

(3) only consider a tissue and cell type pair at a time and may not

attribute a non-zero bg;sk to the correct cell type. For example,

consider the case of two cell types, where k ¼ 1 or 2. If bg;s1 >0, then

bg;s2 <0 due to the constraint that pn1 þ pn2 ¼ 1. Furthermore, the

power differs across cell types, with a higher statistical power in

detecting ct-eQTLs for more abundant cell types. A more compre-

hensive model that takes into account all cell types simultaneously

can be formulated as

yng ¼bg þbgsxns þ
XK

k¼1
bgkpnk þ xns

 

XK

k¼1
bg;sk �pnk

!

þ εng;

(4)

subject to the constraint that
P

kpnk ¼ 1. Correspondingly, the

sth SNP is a ct-eQTL for the kth cell type if bg;sks0. Another way to

parametrize this model is in the form of

yng ¼
XK

k¼1

�

bgk þ bg;sk � xnk
�

pnk þ εng: (5)

Note that the bgk þ bg;sk � xnk term in model (5) is essentially the

cell-type-specific gene expression for the kth cell type in sample n,

essentially the same model considered in Decon-eQTL (Aguirre-

Gamboa et al., 2020).

In practice, ct-eQTL analysis based on the above models often

uses transformed gene expression data instead of read counts. This
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may distort the association between the observed gene expression

level and cell type compositions, leading to reduced power and

inflated false positives. Recently, Little et al. (2022) proposed ct-

eQTL to jointly model total read counts and allele-specific counts by

a negative binomial (or Poisson) and a beta-binomial (or binomial)

distribution with the consideration of covariates, cell type composi-

tion, and SNP genotype. ct-eQTL also includes an allele-specific

expression to further increase the power to detect cell type-

specific eQTLs. Empirical studies showed higher power of ct-eQTL

than linear model-based methods. DeCAF is a linear model-based

method that considers both total expression levels and allele-

specific expression (Kalita and Gusev, 2022).

Although the above approaches are intuitive, applying them to

infer ct-eQTLs in practice has challenges. First, there are un-

certainties in the estimated proxy markers and cell type proportions,

and these need to be appropriately incorporated into the analysis.

However, this issue has only recently been studied (Xie and Wang,

2022), and the impact of incorporating these uncertainty estimates

in ct-eQTL inference needs to be explored. Second, although ct-

eQTLs may be inferred for all cell types in principle, it would be

relatively easier for more abundant cell types than for less abundant

or rare cell types. Third, there have to be sufficient variations in cell

type compositions across subjects to allow ct-eQTL inference. For

example, in the extreme case that all the subjects have identical cell

type proportions, the parameters in the above models are not iden-

tifiable. Fourth, the above formulation does not consider similarity

among some cell types, although methods have been proposed to

consider cell lineage (Yankovitz et al., 2021).

Cell-type-specific eQTLs from single-cell data

In addition to bulk data, single-cell data are increasingly used for

ct-eQTL inference (Jonkers and Wijmenga, 2017; van der Wijst et al.,

2018; Liu et al., 2021; Neavin et al., 2021). Most published single-cell-

based ct-eQTL analyses are performed by analyzing pseudo-bulk

RNA-seq data for different cell types, where the single-cell data are

first annotated to distinct cell types, and the cells annotated to the

same cell types from a specific subject are combined to derive cell-

type-specific gene expression levels. eQTL methods for bulk sam-

ples can then be applied to detect ct-eQTLs. For example, Yazar

et al. (2022) grouped cells of the same type for each individual and

adjusted for covariate effects before performing Spearman rank

correlation analysis. However, the sample size is still much more

limited for single-cell data compared to that of bulk samples, and

there are many ongoing efforts for single-cell-based genetic asso-

ciation analysis, for example, the single-cell eQTLGen consortium

(van der Wijst et al., 2018) and the OneK1K cohort (Yazar et al., 2022).

Instead of aggregating all the cells in a given individual, Nathan

et al. (2022) used Poisson mixed effects regression to model the

effects of SNPs, cell states (which can be both discrete and contin-

uous), batch structure, and other covariates (such as sex, age, ge-

notype principal components and gene expression principal

components, and percentage of mitochondrial unique molecular

identifiers [UMIs]) on the observed gene expression level measured

by UMI counts at the single-cell level. The effect of an SNP is

modeled as a fixed effect in the analysis. When the Poisson mixed

effects model was compared with the computationally more

expensive negative binomial mixed effects model, it was found that

the Poisson model was adequate for the single-cell data analyzed.

Although single cells can be grouped into pre-defined cell types

for ct-eQTL analysis, the very high resolution at the single-cell level

offers the opportunity for more refined analysis, where the individual

cells can be characterized by a vector of continuous contexts. For

example, principal component analysis can be performed for the

highly variable genes across all the cells based on normalized gene

expression data, and the top principal components for a single cell

may be taken as the cellular states for this cell. After the cellular

states are defined for a single cell, the effects of an SNP on gene

expression may be studied in the context of these cellular states to

see whether the effects may vary depending on different states.

Assuming we have N subjects, with mn cells collected from the nth

subject, and a total of C different cellular contexts are defined for

each cell. Let the states of ith cell for the nth subject be denoted by a

vector of contexts (hni1, hni2, …, hniC) of dimension C. Cuomo et al.

(2022) proposed a cellular regulatory map model, called CellReg-

Map, as

yngi ¼ bg þ bgsxns þ bg;sixns þ ung þ cngi þ εngi; (6)

where yngi represents the measured expression level of the gth gene

in the ith cell of the nth subject, xns is the genotype of the sth SNP of

the nth individual, bg is the baseline expression level, bgs represents

the persistent effect of the sth SNP across all the cells in different

subjects, bg;si is the cell-specific effect on the gth expression level,

ung accounts for the fact that themn cells are from the same subject,

cngi accounts for the cell context effects, and εngi is the error term.

CellRegMap adopts an overall random effects model approach

where bg;si � Nð0; s2S�CSÞ, ung ~ Nð0; s2RSÞ, cngi � Nð0; s2CSÞ, and

εngi � Nð0;s2eÞ. The matrix S is defined by the cellular context vectors

S ¼ HHT : CellRegMap uses a score test to investigate whether an

SNP has a context-dependent effect on gene expression level with

the null hypothesis bg;si ¼ 0: This model can also be used to test the

main effect and estimate the allelic effects of single cells for each

gene-SNP pairs based on the best linear unbiased predictor. In

practice, it is important to define cellular contexts, and CellRegMap

used MOFA to define cellular states (Argelaguet et al., 2018), where

latent factors are inferred from single-cell data that explain variation

in gene expression in the data. Because of the computational issues

and the assumption of normal errors, the single cells were aggre-

gated into meta cells because of the sparsity in single-cell data in real

data analysis. In addition, only specific gene-SNP pairs were

considered due to statistical power concerns.

Strober et al. (2022) proposed a similar approach, called single-

cell unsupervised regulation of gene expression (SURGE), where a

continuous representation of the cell contexts is learned through a

probabilistic model with matrix factorization. The model has a form

similar to that of CellRegMap as follows:

yngi ¼ bg þ bgszns þ
XC

c¼1
hnicbgsczns þ ung þ εngi; (7)

where yngi is standardized gene expression level for the gth gene in

the ith cell of the nth subject, and zns is the standardized genotype for

the sth SNP of the nth individual. The other parameters have the

same meaning as the CellRegMap model, but the context vector hnic
is latent and learned from the model instead of prespecified. SURGE

has the following assumptions about the model parameters:

bgs � Nð0; 1Þ, hnic � Nð0; s2cÞ; bgsc � Nð0; 1Þ, 1/s2c � Gammða0; b0Þ,

ung � Nð0;j2
gsÞ; εngi � Nð0; s2gsÞ; 1/j2

gs � Gammða0; b0Þ, and

1=s2gs � Gammða0; b0Þ. SURGE approximates the posterior distri-

bution of all latent variables using mean-field variational inference.

Similar to CellRegMap, only eQTLs identified in previous studies

were used for analysis due to statistical power concerns, and the

reliance on the normal distribution assumption of the error terms

limits its direct application to single-cell data. As a result, single cells

have to be aggregated to meta cells before the model is applied.
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Empirical results on cell-type-specific and context-dependent

eQTL analyses

This section reviews the growing evidence of cell-type-specific

and context-dependent eQTLs using bulk samples, purified cells,

and single cells.

Tissue analysis

Whole blood

Among the first analysis of cis-eQTLs using bulk samples, Westra

et al. (2015) analyzed whole blood gene expression data of 5683

individuals from seven cohorts to infer cell-type-specific cis-eQTLs.

A total of 1115 cis-eQTLs (8.5% of the significant cis-eQTLs from

prior eQTL analysis for the whole tissue) were found to have signifi-

cant interaction effects with neutrophil proxy. The results were

replicated in six individual purified cell-type eQTL datasets. More

importantly, the authors showed SNPs associated with Crohn’s

disease preferentially affect gene expression within neutrophils,

demonstrating the insights gained from cell-type-specific eQTL

analysis. Zhernakova et al. (2017) performed eQTL and context-

dependent eQTL analysis on RNA-seq data of peripheral blood

from 2116 unrelated individuals, identifying 23,060 genes with

eQTLs, among which 2743 (12%) showed context-dependent

effects.

GTEx data

Cell-type-specific analysis was performed on the GTEx data (Kim-

Hellmuth et al., 2020). The authors estimated cell type enrichment for

seven cell types (adipocytes, epithelial cells, hepatocytes, keratino-

cytes, myocytes, neurons, and neutrophils) across 35 tissues. Be-

tween 43 pairs of tissues and cell types, they identified eQTLs

specific to at least one cell type by testing for interaction effects

between SNP and cell type enrichment on the observed expression

levels. They found that these cell-type-interaction QTLs, called

ieQTLs, are enriched for genes with tissue-specific eQTLs and

generally not shared across unrelated tissues. Furthermore, these

ieQTLs are enriched for complex trait associations and had coloc-

alization signals for hundreds of undetected loci in bulk tissue.

Cultured and purified cells

Brain cells

Aygun et al. (2021) used a cell-type-specific in vitro model system

including 85 neural progenitors and 74 virally labeled and sorted

neuronal progeny for eQTL analysis. They identified 2079 and 872

eQTLs in progenitors and neurons, respectively, with 66% and 47%

of these eQTLs not identified in fetal bulk brain eQTLs from a largely

overlapping sample or in adult data from GTEx. These eQTLs had

cell-type-specific colocalizations with GWAS hits for neuropsychi-

atric disorders and other brain-related traits.

Microglia in the brain play critical roles in immune defense and

development and are implicated in neurodegenerative disorders.

Young et al. (2021) gathered gene expression profiles in primary

microglia isolated from 141 patients undergoing neurosurgery. A total

of 585 microglia eQTLs were identified. Through joint analysis with

monocytes and IPSDMac, 855 microglia eQTLs were inferred, with

108 microglia specific, and 449 shared across three cell types. For

colocalization with GWAS hits, there was an excess of colocalized

microglial eQTLs for Alzheimer’s disease, Parkinson’s disease, and

inflammatory bowel disease.

Melanocyte cultures

Because melanocytes give rise to melanoma but account for less

than 5% of human skin biopsies, Zhang et al. (2018) performed eQTL

analysis in primary melanocyte cultures from 106 newborn males to

identify eQTLs in melanocytes. The identified melanocyte eQTLs

differed considerably from those from the GTEx tissues, including the

skin. Novel risk genes for melanoma were implicated using the

transcriptome-wide association study based on this dataset.

Immune cells

The DICE project isolated 13 immune cell types from 106 leuka-

pheresis samples of 91 healthy subjects (Schmiedel et al., 2018). It

was found that eQTLs are highly cell-type specific, and sex has a

major effect on gene expression. In the ImmuNexUT study, with

samples from 79 healthy controls and 337 patients diagnosed with

different immune-mediated diseases, Ota et al. (2021) purified 28

immune cell types from these individuals with a total of 9852 samples

and performed cell-type-specific eQTL analysis. They identified a

median of 7092 genes with eQTLs in each cell type, 2.2-fold more

than that identified in the DICE study (Schmiedel et al., 2018). They

further identified eQTLs that were only present in patients.

Single-cell analysis

Peripheral blood mononuclear cells (PBMC)

In a proof-of-concept study, van der Wijst et al. (2018) analyzed

25,000 single-cell RNA-seq data from 45 donors. They identified 379

unique cis-eQTLs involving 287 unique eGenes across six cell types.

A total of 48 cis-eQTLs were only identified from cell-type-specific

analysis. The authors also demonstrated the benefit of performing

cell subtype analysis for cMonocytes and ncMonocytes.

Oelen et al. (2022) exposed Peripheral blood mononuclear cells

(PBMC) samples from 120 individuals to three pathogens. They

sequenced these samples in an unstimulated condition and after 3 h

and 24 h in vitro stimulation for the three pathogens. They identified

cell-type-specific eQTLs, with the number of such eQTLs correlated

with the cell-type abundance. Furthermore, the effects of eQTLs

differed across pathogen stimulations, and the strongest enrichment

for GWAS signals was observed for eQTLs that were identified from

stimulation experiments.

The investigators of the OneK1K cohort analyzed 1.27 million

PBMC single-cell RNA-seq data from 982 donors of Northern Euro-

pean ancestry and performed eQTL analyses on 14 immune cell

types (Yazar et al., 2022). A total of 26,597 cis-eQTLs were identified,

with most having cell-type-specific effects. Dynamic effects were

also observed based on the pseudo-time trajectory for the B cell

landscape. In addition to cis-eQTLs, 990 trans-eQTLs were identi-

fied, with most genes regulated by trans-eQTLs being specific for a

single-cell type, and none were ubiquitous across cell types.

Colocalization analysis between eQTLs and GWAS signals sug-

gested that 60% of colocalizing genes were detected upon activa-

tion, and colocalization is very cell type-specific.

Induced pluripotent stem cells (iPSCs)

Neavin et al. (2021) gathered single-cell RNA-seq data from

64,018 fibroblasts of 79 donors and performed single-cell eQTL

analysis. For the six types of fibroblasts and four types of induced

pluripotent stem cells (iPSCs), most of the detected eQTLs in fibro-

blasts were specific to one cell type. Only 41% of the 45,503 eQTLs

identified in the six fibroblast types were significant in GTEx.

Using 125 iPSC lines derived from 125 donors, Cuomo et al.

(2020) collected single-cell gene expression data from 36,044 cells

at four differentiation time points using full-length RNA-sequencing

and the expression levels of selected cell surface markers through

cell sorting. Substantial regulatory changes were observed, with over

30% of eQTLs being specific to a single stage. Hundreds of eQTLs at

the mesendo and defendo stages were new. This study also tested
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for associations between pseudo-time and the genetic effect size

using a linear model, as well as identified 899 time-dynamic eQTLs.

T cells

Soskic et al. (2022) analyzed 655,349 CD4þ T cells from 119

healthy donors, both for unstimulated cells and at three time points

after cell activation. Different numbers of genes showing eQTL ef-

fects were detected at different time points with hundreds of them

only detected at specific cell states. Using pseudo-time trajectory

information, 2265 genes were found to have dynamic eQTL effects,

representing about one-third of the genes. Colocalized genes with

GWAS signals were enriched in time-dependent eQTLs.

With 89 healthy donors, Schmiedel et al. (2022) performed eQTL

analysis for more than one million activated CD4þ T cells classified

into 19 distinct CD4þ T cell subsets. The effects of many eQTLs were

strongly manifested only in specific cell types in an activation-

dependent manner, and significant sex effects were also observed.

Nathan et al. (2022) performed single-cell eQTL analysis using

gene expression data from more than 500,000 unstimulated memory

T cells from 259 Peruvian individuals. They found that the effects of

one-third of cis-eQTLs were mediated by continuous multimodally

defined cell states, with independent eQTLs at some loci having

opposing cell-state relationships.

Brain cortex

In a recent study using single-cell data from the prefrontal cortex,

temporal cortex, and deep white matter from 192 individuals, a total

of 7607 genes were found to have eQTLs from eight cell types (Bryois

et al., 2022). A majority of cell-type-specific eQTLs were replicated in

tissue-level eQTLs for cortical tissue, with eQTLs for more abundant

cell types more likely replicated in the tissue results. It was also found

that the effect sizes estimated from tissue tend to be lower than those

estimated from cell-type-specific analysis. As expected, the number

of cis-eQTLs identified in a cell type was strongly correlated with the

number of cells available for the corresponding cell type. The effect

sizes were more similar for similar cell types with microglia being

most different from others. Colocalization analysis suggests that

disease risk at a given GWAS locus is usually mediated by a single

gene acting in a specific cell type.

Dopaminergic neuron differentiation

Jerber et al. (2021) differentiated 215 human iPSC lines to profile

over 1 million cells across four conditions, including three differenti-

ation stages (progenitor-like, young neurons, and more mature

neurons) and cells exposed to a chemical stressor. eQTL analysis

was performed for 14 cell types, identifying 4828 genes with eQTLs.

Compared to eQTLs identified from GTEx brain tissues, this study

identified 2366 new eQTLs. As for colocalization analysis, 1284

eQTLs were colocalized, with 597 being new, and 67% of these new

colocalizations were associated with eQTLs detected in later differ-

entiation stages or upon stimulation. A colocalization using aggre-

gated data from different cell types yielded a much smaller number of

colocalizations, suggesting the importance of considering cell type

specificity.

Discussion

A main driving force for many eQTL studies in recent years is their

potential to offer insights into the GWAS signals, which mostly fall

into non-coding regions of the human genome. Because of the

importance of cell-type-specific and context-dependent eQTLs, a

growing number of studies are collecting and analyzing data to

facilitate such analyses. Coupled with the rise of rich data that offer

cell-type-specific and context-dependent gene regulation informa-

tion, there is also a need for more statistically robust and

computationally efficient methods for these analyses. In this paper,

we have reviewed statistical methods that have been developed and

applied to analyze different types of data for cell-type-specific and

context-dependent eQTL inference, including bulk samples, purified

cells, and single cells.

Despite these progresses, many issues remain to be resolved,

especially in anticipation of themany population-level single-cell data

to be gathered in the near future that will involve tens of thousands of

individuals and tens of millions of single cells across different tissues.

For example, to fully respect the nature of the single-cell data, the

single data are more appropriately modeled as Poisson or negative

binomial distribution. Yet, most published studies have adopted

linear regression models and often aggregated multiple cells to

address the sparsity of the observed single-cell data. For bulk

samples using RNA sequencing, efforts have been made to use

allele-specific expression to improve statistical power for identifying

eQTLs, and limited work has been done for single-cell data to capi-

talize on allele-specific expression information. There are challenges

in appropriately defining cell types and contexts for cell-type-specific

and context-dependent eQTL analysis. Cuomo et al. (2022) and

Strober et al. (2022) represent some initial efforts and more needs to

be done to fully capture and utilize the cell state information for eQTL

discoveries, including non-linear transcription programs (Wang and

Zhao, 2022). In addition, as more than one SNP may jointly affect

expression levels (The GTEx Consortium, 2020; Abell et al., 2022),

methods that include joint effects are likely to be more powerful and

can better characterize the relationship between gene expression

levels and SNPs.

With many studies performed on bulk tissues, and the availability

of several methods to use bulk tissue samples for cell-type-specific

eQTL analysis, there is a need to effectively integrate the results

from single-cell data and bulk tissue data. Furthermore, as different

tissues may share cells of similar cell types and states, there is also a

need to better integrate results across tissues and studies (Flutre

et al., 2013; Urbut et al., 2019).

As for all genetic studies, study design is important, such as the

number of samples to be collected, and, in the case of single cells,

the number of cells per subject and the sequencing depth of each

cell. Several software and tools have been developed to facilitate this

analysis under relatively simple statistical models for data analysis

(Mandric et al., 2020; Dong et al., 2021). Further developments are

needed to incorporate more comprehensive statistical models for

analysis, and the consideration of other information, for example,

alleles-specific expression, in inferring eQTLs. Due to the limited

statistical power, most studies have focused on cis-eQTLs. For

example, fewer than 150 genes were found to be affected by trans-

eQTLs in the GTEx project (The GTEx Consortium, 2020). There is

a critical need to design statistical methods to identify trans-eQTLs,

both for bulk tissues and cell-type-specific and context-dependent

effects.

We have focused on the inference of eQTLs in this paper. There

are many downstream applications of eQTL analysis. For example,

methods need to perform colocalization analysis with cell-type-

specific and context-dependent eQTL results without focusing on a

specific set of SNPs through simple thresholding of statistical sig-

nificance, while accounting for the linkage disequilibrium information

across the SNPs in a region. Cell-type-specific and context-

dependent eQTLs also offer the opportunity to improve the identifi-

cations of candidate genes through transcriptome-wide association

studies at the cell-type and context-dependent level, and the recently

developed methods (Okamoto et al., 2023; Song et al., 2023) for bulk

samples can be extended for cell-type-specific and context-

dependent analyses. There is also the need for Mendelian randomi-

zation methods to infer the causal relationship between transcript

levels and complex traits and diseases (Liu et al., 2021). In this
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setting, the existing methods for bulk samples may not be adequate

to deal with the count nature of the single-cell data, data sparsity, and

the need to integrate information frommultiple data sources for more

informed analysis and decisions. In addition to eQTLs that affect

gene expression levels, genetic variants can also affect gene

expression variances and co-variances (Hulse and Cai, 2013; Ek

et al., 2018; Sarkar et al., 2019; Marderstein et al., 2021).

Compared to eQTL analysis, more needs to be done to identify such

variants. Even less has been explored at the cell type level, where

cell-type-specific co-expressions may be inferred using either bulk

samples (Su et al., 2022b) or single-cell data (Su et al., 2022a). A

comprehensive catalog of eQTLs with cell-type-specific and context-

dependent effects on gene expression variance and co-variance will

better characterize the gene regulation of expressions and interpret

GWAS results.

Although gene expression has been the focus of cell-type-

specific and context-dependent analysis, other data types are be-

ing increasingly collected for similar analysis, such as methylation,

chromatin accessibility, and proteomics, based on single-cell data

(Wang et al., 2022). The methods and tools developed for bulk and

single-cell RNA-seq data may also apply to other data types, such as

recently published methylation data from the GTEx subjects (Oliva

et al., 2023) and a meQTL dataset derived from primary melano-

cytes of 106 individuals (Zhang et al., 2021). More importantly, as

different data types reflect different aspects of the same biological

process, there is a need to integrate data from different modalities to

assess the genetic effects of SNPs on gene expression, methylation,

chromatin accessibility, protein expression, and other molecular

phenotypes. Such integrated analysis will likely yield more informa-

tive annotations of the SNPs to facilitate the interpretation of the

GWAS results (Hormozdiari et al., 2018).

Conflict of interest

The authors declare no conflict of interest.

Acknowledgments

Zhang’s research is supported by NSF DMS-2015190 and DMS-

2210469. Zhao’s research is supported in part by NIH R01

GM134005 and R56 AG074015.

References

Abell, N.S., DeGorter, M.K., Gloudemans, M.J., Greenwald, E., Smith, K.S., He, Z.,

Montgomery, S.B., 2022. Multiple causal variants underlie genetic associations in

humans. Science 375, 1247e1254.

Aguirre-Gamboa, R., de Klein, N., di Tommaso, J., Claringbould, A., van der

Wijst, M.G., de Vries, D., Brugge, H., Oelen, R., Vosa, U., Zorro, M.M., et al., 2020.

Deconvolution of bulk blood eQTL effects into immune cell subpopulations. BMC

Bioinform. 21, 243.

Argelaguet, R., Velten, B., Arnol, D., Dietrich, S., Zenz, T., Marioni, J.C., Buettner, F.,

Huber, W., Stegle, O., 2018. Multi-omics factor analysis-a framework for unsu-

pervised integration of multi-omics data sets. Mol. Syst. Biol. 14, e8124.

Avila Cobos, F., Alquicira-Hernandez, J., Powell, J.E., Mestdagh, P., De Preter, K.,

2020. Benchmarking of cell type deconvolution pipelines for transcriptomics data.

Nat. Commun. 11, 5650.

Aygun, N., Elwell, A.L., Liang, D., Lafferty, M.J., Cheek, K.E., Courtney, K.P., Mory, J.,

Hadden-Ford, E., Krupa, O., de la Torre-Ubieta, L., et al., 2021. Brain-trait-

associated variants impact cell-type-specific gene regulation during neuro-

genesis. Am. J. Hum. Genet. 108, 1647e1668.

Bryois, J., Calini, D., Macnair, W., Foo, L., Urich, E., Ortmann, W., Iglesias, V.A.,

Selvaraj, S., Nutma, E., Marzin, M., et al., 2022. Cell-type-specific cis-eQTLs in

eight human brain cell types identify novel risk genes for psychiatric and neuro-

logical disorders. Nat. Neurosci. 25, 1104e1112.

Chen, L., Ge, B., Casale, F.P., Vasquez, L., Kwan, T., Garrido-Martin, D., Watt, S.,

Yan, Y., Kundu, K., Ecker, S., et al., 2016. Genetic drivers of epigenetic and

transcriptional variation in human immune cells. Cell 167, 1398e1414.

Connally, N.J., Nazeen, S., Lee, D., Shi, H., Stamatoyannopoulos, J., Chun, S.,

Cotsapas, C., Cassa, C.A., Sunyaev, S.R., 2022. The missing link between ge-

netic association and regulatory function. Elife 11, e74970.

Cuomo, A.S.E., Heinen, T., Vagiaki, D., Horta, D., Marioni, J.C., Stegle, O., 2022.

CellRegMap: a statistical framework for mapping context-specific regulatory

variants using scRNA-seq. Mol. Syst. Biol. 18, e10663.

Cuomo, A.S.E., Seaton, D.D., McCarthy, D.J., Martinez, I., Bonder, M.J., Garcia-

Bernardo, J., Amatya, S., Madrigal, P., Isaacson, A., Buettner, F., et al., 2020.

Publisher Correction: single-cell RNA-sequencing of differentiating iPS cells re-

veals dynamic genetic effects on gene expression. Nat. Commun. 11, 1572.

Dong, X., Li, X., Chang, T.W., Scherzer, C.R., Weiss, S.T., Qiu, W., 2021. powerEQTL:

an R package and shiny application for sample size and power calculation of bulk

tissue and single-cell eQTL analysis. Bioinformatics 37, 4269e4271.

Donovan, M.K.R., D’Antonio-Chronowska, A., D’Antonio, M., Frazer, K.A., 2020.

Cellular deconvolution of GTEx tissues powers discovery of disease and cell-type

associated regulatory variants. Nat. Commun. 11, 955.

Ek, W.E., Rask-Andersen, M., Karlsson, T., Enroth, S., Gyllensten, U., Johansson, A.,

2018. Genetic variants influencing phenotypic variance heterogeneity. Hum. Mol.

Genet. 27, 799e810.

Flutre, T., Wen, X., Pritchard, J., Stephens, M., 2013. A statistical framework for joint

eQTL analysis in multiple tissues. PLoS Genet. 9, e1003486.

Gamazon, E.R., Wheeler, H.E., Shah, K.P., Mozaffari, S.V., Aquino-Michaels, K.,

Carroll, R.J., Eyler, A.E., Denny, J.C., GTEx Consortium, Nicolae, D.L., et al.,

2015. A gene-based association method for mapping traits using reference

transcriptome data. Nat. Genet. 47, 1091e1098.

Giambartolomei, C., Zhenli Liu, J., Zhang, W., Hauberg, M., Shi, H., Boocock, J.,

Pickrell, J., Jaffe, A.E., CommonMind, C., Pasaniuc, B., et al., 2018. A Bayesian

framework for multiple trait colocalization from summary association statistics.

Bioinformatics 34, 2538e2545.

Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B.W., Jansen, R., de

Geus, E.J., Boomsma, D.I., Wright, F.A., et al., 2016. Integrative approaches

for large-scale transcriptome-wide association studies. Nat. Genet. 48,

245e252.

Hormozdiari, F., Gazal, S., van de Geijn, B., Finucane, H.K., Ju, C.J., Loh, P.R.,

Schoech, A., Reshef, Y., Liu, X., O’Connor, L., et al., 2018. Leveraging molecular

quantitative trait loci to understand the genetic architecture of diseases and

complex traits. Nat. Genet. 50, 1041e1047.

Hormozdiari, F., van de Bunt, M., Segre, A.V., Li, X., Joo, J.W.J., Bilow, M., Sul, J.H.,

Sankararaman, S., Pasaniuc, B., Eskin, E., 2016. Colocalization of GWAS and

eQTL signals detects target genes. Am. J. Hum. Genet. 99, 1245e1260.

Hu, Y., Li, M., Lu, Q., Weng, H., Wang, J., Zekavat, S.M., Yu, Z., Li, B., Gu, J.,

Muchnik, S., et al., 2019. A statistical framework for cross-tissue transcriptome-

wide association analysis. Nat. Genet. 51, 568e576.

Hulse, A.M., Cai, J.J., 2013. Genetic variants contribute to gene expression variability

in humans. Genetics 193, 95e108.

Ionita-Laza, I., McCallum, K., Xu, B., Buxbaum, J.D., 2016. A spectral approach

integrating functional genomic annotations for coding and noncoding variants.

Nat. Genet. 48, 214e220.

Jerber, J., Seaton, D.D., Cuomo, A.S.E., Kumasaka, N., Haldane, J., Steer, J.,

Patel, M., Pearce, D., Andersson, M., Bonder, M.J., et al., 2021. Population-scale

single-cell RNA-seq profiling across dopaminergic neuron differentiation. Nat.

Genet. 53, 304e312.

Jonkers, I.H., Wijmenga, C., 2017. Context-specific effects of genetic variants

associated with autoimmune disease. Hum. Mol. Genet. 26, R185eR192.

Kalita, C.A., Gusev, A., 2022. DeCAF: a novel method to identify cell-type specific

regulatory variants and their role in cancer risk. Genome Biol. 23, 152.

Kerimov, N., Hayhurst, J.D., Peikova, K., Manning, J.R., Walter, P., Kolberg, L.,

Samovica, M., Sakthivel, M.P., Kuzmin, I., Trevanion, S.J., et al., 2021.

A compendium of uniformly processed human gene expression and splicing

quantitative trait loci. Nat. Genet. 53, 1290e1299.

Kim-Hellmuth, S., Aguet, F., Oliva, M., Munoz-Aguirre, M., Kasela, S., Wucher, V.,

Castel, S.E., Hamel, A.R., Vinuela, A., Roberts, A.L., et al., 2020. Cell type-spe-

cific genetic regulation of gene expression across human tissues. Science 369,

eaaz8528.

Kindt, A.S., Navarro, P., Semple, C.A., Haley, C.S., 2013. The genomic signature of

trait-associated variants. BMC Genom. 14, 108.

Kircher, M., Witten, D.M., Jain, P., O’Roak, B.J., Cooper, G.M., Shendure, J., 2014.

A general framework for estimating the relative pathogenicity of human genetic

variants. Nat. Genet. 46, 310e315.

Kumasaka, N., Knights, A.J., Gaffney, D.J., 2016. Fine-mapping cellular QTLs with

RASQUAL and ATAC-seq. Nat. Genet. 48, 206e213.

Li, Z., Li, X., Zhou, H., Gaynor, S.M., Selvaraj, M.S., Arapoglou, T., Quick, C., Liu, Y.,

Chen, H., Sun, R., et al., 2022. A framework for detecting noncoding rare-variant

associations of large-scale whole-genome sequencing studies. Nat. Methods 19,

1599e1611.

Liang, Y., Aguet, F., Barbeira, A.N., Ardlie, K., Im, H.K., 2021. A scalable unified

framework of total and allele-specific counts for cis-QTL, fine-mapping, and

prediction. Nat. Commun. 12, 1424.

Little, P., Zhabotynsky, V., Li, Y., Lin, D., Sun, W., 2022. Cell type-specific expression

quantitative trait loci. bioRxiv. https://doi.org/10.1101/2022.03.31.486605.

Liu, L., Zeng, P., Xue, F., Yuan, Z., Zhou, X., 2021. Multi-trait transcriptome-wide

association studies with probabilistic mendelian randomization. Am. J. Hum.

Genet. 108, 240e256.

Lu, Q., Hu, Y., Sun, J., Cheng, Y., Cheung, K.H., Zhao, H., 2015. A statistical

framework to predict functional non-coding regions in the human genome

through integrated analysis of annotation data. Sci. Rep. 5, 10576.

Lu, Q., Powles, R.L., Abdallah, S., Ou, D., Wang, Q., Hu, Y., Lu, Y., Liu, W., Li, B.,

Mukherjee, S., et al., 2017. Systematic tissue-specific functional annotation of the

J. Zhang and H. Zhao Journal of Genetics and Genomics 50 (2023) 925e933

932



human genome highlights immune-related DNA elements for late-

onset Alzheimer’s disease. PLoS Genet. 13, e1006933.

Lu, Q., Powles, R.L., Wang, Q., He, B.J., Zhao, H., 2016. Integrative tissue-specific

functional annotations in the human genome provide novel insights on many

complex traits and improve signal prioritization in genome wide association

studies. PLoS Genet. 12, e1005947.

Mandric, I., Schwarz, T., Majumdar, A., Hou, K., Briscoe, L., Perez, R.,

Subramaniam, M., Hafemeister, C., Satija, R., Ye, C.J., et al., 2020. Optimized

design of single-cell RNA sequencing experiments for cell-type-specific eQTL

analysis. Nat. Commun. 11, 5504.

Marderstein, A.R., Davenport, E.R., Kulm, S., Van Hout, C.V., Elemento, O.,

Clark, A.G., 2021. Leveraging phenotypic variability to identify genetic in-

teractions in human phenotypes. Am. J. Hum. Genet. 108, 49e67.

Nathan, A., Asgari, S., Ishigaki, K., Valencia, C., Amariuta, T., Luo, Y., Beynor, J.I.,

Baglaenko, Y., Suliman, S., Price, A.L., et al., 2022. Single-cell eQTL models

reveal dynamic T cell state dependence of disease loci. Nature 606, 120e128.

Neavin, D., Nguyen, Q., Daniszewski, M.S., Liang, H.H., Chiu, H.S., Wee, Y.K.,

Senabouth, A., Lukowski, S.W., Crombie, D.E., Lidgerwood, G.E., et al., 2021.

Single cell eQTL analysis identifies cell type-specific genetic control of gene

expression in fibroblasts and reprogrammed induced pluripotent stem cells.

Genome Biol. 22, 76.

Nicolae, D.L., Gamazon, E., Zhang, W., Duan, S., Dolan, M.E., Cox, N.J., 2010. Trait-

associated SNPs are more likely to be eQTLs: annotation to enhance discovery

from GWAS. PLoS Genet. 6, e1000888.

Oelen, R., de Vries, D.H., Brugge, H., Gordon, M.G., Vochteloo, M., single-cell

eQTLGen consortium, BIOS Consortium, Ye, C.J., Westra, H.J., Franke, L., et al.,

2022. Single-cell RNA-sequencing of peripheral blood mononuclear cells reveals

widespread, context-specific gene expression regulation upon pathogenic expo-

sure. Nat. Commun. 13, 3267.

Okamoto, J., Wang, L., Yin, X., Luca, F., Pique-Regi, R., Helms, A., Im, H.K.,

Morrison, J., Wen, X., 2023. Probabilistic integration of transcriptome-wide as-

sociation studies and colocalization analysis identifies key molecular pathways of

complex traits. Am. J. Hum. Genet. 110, 44e57.

Oliva, M., Demanelis, K., Lu, Y., Chernoff, M., Jasmine, F., Ahsan, H., Kibriya, M.G.,

Chen, L.S., Pierce, B.L., 2023. DNA methylation QTL mapping across diverse

human tissues provides molecular links between genetic variation and complex

traits. Nat. Genet. 55, 112e122.

Ongen, H., Buil, A., Brown, A.A., Dermitzakis, E.T., Delaneau, O., 2016. Fast and

efficient QTL mapper for thousands of molecular phenotypes. Bioinformatics 32,

1479e1485.

Ota, M., Nagafuchi, Y., Hatano, H., Ishigaki, K., Terao, C., Takeshima, Y.,

Yanaoka, H., Kobayashi, S., Okubo, M., Shirai, H., et al., 2021. Dynamic land-

scape of immune cell-specific gene regulation in immune-mediated diseases.

Cell 184, 3006e3021.

Patel, D., Zhang, X., Farrell, J.J., Chung, J., Stein, T.D., Lunetta, K.L., Farrer, L.A.,

2021. Cell-type-specific expression quantitative trait loci associated with Alz-

heimer disease in blood and brain tissue. Transl. Psychiatry 11, 250.

PsychENCODE Consortium, Akbarian, S., Liu, C., Knowles, J.A., Vaccarino, F.M.,

Farnham, P.J., Crawford, G.E., Jaffe, A.E., Pinto, D., Dracheva, S., et al., 2015.

The PsychENCODE project. Nat. Neurosci. 18, 1707e1712.

Richardson, T.G., Hemani, G., Gaunt, T.R., Relton, C.L., Davey Smith, G., 2020.

A transcriptome-wide Mendelian randomization study to uncover tissue-dependent

regulatory mechanisms across the human phenome. Nat. Commun. 11, 185.

Ritchie, G.R., Dunham, I., Zeggini, E., Flicek, P., 2014. Functional annotation of

noncoding sequence variants. Nat. Methods 11, 294e296.

Roadmap Epigenomics, C., Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M.,

Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J., et al., 2015.

Integrative analysis of 111 reference human epigenomes. Nature 518, 317e330.

Sarkar, A.K., Tung, P.Y., Blischak, J.D., Burnett, J.E., Li, Y.I., Stephens, M., Gilad, Y.,

2019. Discovery and characterization of variance QTLs in human induced

pluripotent stem cells. PLoS Genet. 15, e1008045.

Schmiedel, B.J., Gonzalez-Colin, C., Fajardo, V., Rocha, J., Madrigal, A., Ramirez-

Suastegui, C., Bhattacharyya, S., Simon, H., Greenbaum, J.A., Peters, B., et al.,

2022. Single-cell eQTL analysis of activated T cell subsets reveals activation and

cell type-dependent effects of disease-risk variants. Sci Immunol 7, eabm2508.

Schmiedel, B.J., Singh, D., Madrigal, A., Valdovino-Gonzalez, A.G., White, B.M.,

Zapardiel-Gonzalo, J., Ha, B., Altay, G., Greenbaum, J.A., McVicker, G., et al.,

2018. Impact of genetic polymorphisms on human immune cell gene expression.

Cell 175, 1701e1715.

Shabalin, A.A., 2012. Matrix eQTL: ultra fast eQTL analysis via large matrix opera-

tions. Bioinformatics 28, 1353e1358.

Song, X., Ji, J., Rothstein, J.H., Alexeeff, S.E., Sakoda, L.C., Sistig, A., Achacoso, N.,

Jorgenson, E., Whittemore, A.S., Klein, R.J., et al., 2023. MiXcan: a framework for

cell-type-aware transcriptome-wide association studies with an application to

breast cancer. Nat. Commun. 14, 377.

Soskic, B., Cano-Gamez, E., Smyth, D.J., Ambridge, K., Ke, Z., Matte, J.C., Bossini-

Castillo, L., Kaplanis, J., Ramirez-Navarro, L., Lorenc, A., et al., 2022. Immune

disease risk variants regulate gene expression dynamics during CD4þ T cell

activation. Nat. Genet. 54, 817e826.

Strober, B.J., Tayeb, K., Popp, J., Qi, G., Gordon, M.G., Perez, R., Ye, C.J., Battle, A.,

2022. Uncovering context-specific genetic-regulation of gene expression from

single-cell rnasequencing using latent-factor models. bioRxiv. https://doi.org/

10.1101/2022.12.22.521678.

Su, C., Xu, Z., Shan, X., Cai, B., Zhao, H., Zhang, J., 2022a. Cell-type-specific co-

expression inference from single cell RNA-sequencing data. Nat. Commun 14,

4846.

Su, C., Zhang, J., Zhao, H., 2022b. CSNet: Estimating cell-type-specific gene co-

expression networks from bulk gene expression data. bioRxiv. https://doi.org/

10.1101/2021.12.21.473558.

Sun, W., 2012. A statistical framework for eQTL mapping using RNA-seq data. Bio-

metrics 68, 1e11.

The ENCODE Project Consortium, Moore, J.E., Purcaro, M.J., Pratt, H.E.,

Epstein, C.B., Shoresh, N., Adrian, J., Kawli, T., Davis, C.A., Dobin, A., et al.,

2020. Expanded encyclopaedias of DNA elements in the human and mouse

genomes. Nature 583, 699e710.

The GTEx Consortium, 2020. The GTEx consortium atlas of genetic regulatory effects

across human tissues. Science 369, 1318e1330.

Urbut, S.M., Wang, G., Carbonetto, P., Stephens, M., 2019. Flexible statistical

methods for estimating and testing effects in genomic studies with multiple

conditions. Nat. Genet. 51, 187e195.

van der Wijst, M.G.P., Brugge, H., de Vries, D.H., Deelen, P., Swertz, M.A., Life-

Lines Cohort Study, BIOS Consortium, Franke, L., 2018. Single-cell RNA

sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs.

Nat. Genet. 50, 493e497.

Wang, S.K., Nair, S., Li, R., Kraft, K., Pampari, A., Patel, A., Kang, J.B., Luong, C.,

Kundaje, A., Chang, H.Y., 2022. Single-cell multiome of the human retina and

deep learning nominate causal variants in complex eye diseases. Cell Genom. 2,

100164.

Wang, Y., Zhao, H., 2022. Non-linear archetypal analysis of single-cell RNA-seq data

by deep autoencoders. PLoS Comput. Biol. 18, e1010025.

Wen, X., Lee, Y., Luca, F., Pique-Regi, R., 2016. Efficient integrative muti-SNP as-

sociation analysis via deterministic approximation of posteriors. Am. J. Hum.

Genet. 98, 1114e1129.

Westra, H.J., Arends, D., Esko, T., Peters, M.J., Schurmann, C., Schramm, K.,

Kettunen, J., Yaghootkar, H., Fairfax, B.P., Andiappan, A.K., et al., 2015. Cell

specific eQTL analysis without sorting cells. PLoS Genet. 11, e1005223.

Xie, D., Wang, J., 2022. Robust statistical inference for cell type deconvolution. arXiv:

2202.06420.

Yankovitz, G., Cohn, O., Bacharach, E., Peshes-Yaloz, N., Steuerman, Y., Iraqi, F.A.,

Gat-Viks, I., 2021. Leveraging the cell lineage to predict cell-type specificity of

regulatory variation from bulk genomics. Genetics 217, iyab016.

Yao, D.W., O’Connor, L.J., Price, A.L., Gusev, A., 2020. Quantifying genetic effects

on disease mediated by assayed gene expression levels. Nat. Genet. 52,

626e633.

Yazar, S., Alquicira-Hernandez, J., Wing, K., Senabouth, A., Gordon, M.G.,

Andersen, S., Lu, Q., Rowson, A., Taylor, T.R.P., Clarke, L., et al., 2022. Single-

cell eQTL mapping identifies cell type-specific genetic control of autoimmune

disease. Science 376, eabf3041.

Young, A.M.H., Kumasaka, N., Calvert, F., Hammond, T.R., Knights, A., Panousis, N.,

Park, J.S., Schwartzentruber, J., Liu, J., Kundu, K., et al., 2021. A map of tran-

scriptional heterogeneity and regulatory variation in human microglia. Nat. Genet.

53, 861e868.

Yuan, Z., Zhu, H., Zeng, P., Yang, S., Sun, S., Yang, C., Liu, J., Zhou, X., 2020. Testing

and controlling for horizontal pleiotropy with probabilistic Mendelian randomization

in transcriptome-wide association studies. Nat. Commun. 11, 3861.

Zhabotynsky, V., Huang, L., Little, P., Hu, Y.J., Pardo-Manuel de Villena, F., Zou, F.,

Sun, W., 2022. eQTL mapping using allele-specific count data is computationally

feasible, powerful, and provides individual-specific estimates of genetic effects.

PLoS Genet. 18, e1010076.

Zhang, T., Choi, J., Dilshat, R., Einarsdottir, B.O., Kovacs, M.A., Xu, M., Malasky, M.,

Chowdhury, S., Jones, K., Bishop, D.T., et al., 2021. Cell-type-specific meQTLs

extend melanoma GWAS annotation beyond eQTLs and inform melanocyte

gene-regulatory mechanisms. Am. J. Hum. Genet. 108, 1631e1646.

Zhang, T., Choi, J., Kovacs, M.A., Shi, J., Xu, M., , Program, N.C.S., Melanoma Meta-

Analysis, Goldstein, A.M., Trower, A.J., Bishop, D.T., et al., 2018. Cell-type-

specific eQTL of primary melanocytes facilitates identification of melanoma

susceptibility genes. Genome Res. 28, 1621e1635.

Zhernakova, D.V., Deelen, P., Vermaat, M., van Iterson, M., van Galen, M.,

Arindrarto, W., van ’t Hof, P., Mei, H., van Dijk, F., Westra, H.J., et al., 2017.

Identification of context-dependent expression quantitative trait loci in whole

blood. Nat. Genet. 49, 139e145.

Zhou, D., Jiang, Y., Zhong, X., Cox, N.J., Liu, C., Gamazon, E.R., 2020. A unified

framework for joint-tissue transcriptome-wide association and Mendelian

randomization analysis. Nat. Genet. 52, 1239e1246.

J. Zhang and H. Zhao Journal of Genetics and Genomics 50 (2023) 925e933

933


	eQTL studies: from bulk tissues to single cells
	Introduction
	Analytical approaches for cell-type-specific and context-dependent eQTL inference
	eQTL inference using bulk samples
	Cell-type-specific eQTL inference using bulk samples
	Cell-type-specific eQTLs from single-cell data

	Empirical results on cell-type-specific and context-dependent eQTL analyses
	Tissue analysis
	Whole blood
	GTEx data

	Cultured and purified cells
	Brain cells
	Melanocyte cultures
	Immune cells

	Single-cell analysis
	Peripheral blood mononuclear cells (PBMC)
	Induced pluripotent stem cells (iPSCs)
	T cells
	Brain cortex
	Dopaminergic neuron differentiation

	Discussion
	Conflict of interest
	Acknowledgments
	References



