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ABSTRACT 
Characterizing the mechanical properties of viscoelastic 

materials is critical in biomedical applications such as detecting 

breast cancer, skin diseases, myocardial diseases, and hepatic 

fibrosis. Current methods lack the consideration of dispersion 

curves that depend on material properties and shear wave 

frequency. This paper presents a novel method that combines 

noncontact shear wave sensing and dispersion analysis to 

characterize the mechanical properties of viscoelastic materials. 

Our shear wave sensing system uses a piezoelectric stack (PZT 

stack) to generate shear waves and a laser Doppler vibrometer 

(LDV) integrated with a 3D robotic stage to acquire time-space 

wavefields. Next, an inverse method is employed for the 

wavefield analysis. This method leverages multidimensional 

Fourier transform and frequency-wavenumber dispersion curve 

regression. Through proof-of-concept experiments, our sensing 

system successfully generated shear waves and acquired its time-

space wavefield in a customized viscoelastic phantom. After 

dispersion curve analysis, we successfully characterized two 

material properties (shear elasticity and shear viscosity) and 

measured shear wave velocities at different frequencies.  

Keywords: Laser Doppler vibrometer, Piezoelectric stack, 

Material property measurement, Dispersion curve analysis, 

Shear wave elastography 

 

1. INTRODUCTION 
Biological soft tissues generally have viscoelastic behavior. 

In recent decades, methods have been continuously developed to 

characterize the mechanical properties of viscoelastic materials 

[1]. Among them, ultrasound shear wave elastography is broadly 

used for the pathological analysis of viscoelastic soft tissues due 

to its non-invasive and quantitative characteristics. One of the 

most common methods is the shear wave dispersion curve 

analysis[2, 3, 4]. The reason is that the velocities of shear waves 

in viscoelastic materials are highly dependent on frequencies[5]. 

Shear wave generation and sensing are critical for the shear wave 

dispersion analysis. In previous studies, different shear wave 

generation and sensing methods were used. The most common 

method for generating shear waves in viscoelastic materials is 

using acoustic radiation force (ARF) generated by phased-array 

transducer probes [6, 7]. However, phased-array transducer 

probes are large and require a large contact area on the sample, 

in order to acquire strong signals. This limits their applications 

in small samples[8, 9]. In addition, electromechanical shakers or 

magnetic coils are also common shear wave generation 

devices[10, 11]. However, similar to ARF, they are large. In 

addition, they generate unstable displacement amplitudes, which 

may cause damage to fragile soft tissues. Therefore, it is 

necessary to develop a new shear wave sensing system that can 

generate accurate displacements for small, fragile samples. 

This study develops a new piezo stack-LDV shear wave 

sensing system together with a set of wavefield analysis methods 

to characterize the mechanical properties of viscoelastic 

materials. Compared with other methods of shear wave 

excitation, the piezo stack has smaller dimensions, more accurate 

displacement outputs, and negligible thermal effect on the 

sample. Our sensing system generates shear waves and collects 

time-space wavefields on viscoelastic testing phantoms. Unlike 

a phased array transducer probe, the LDV can acquire the time-

space wavefield with features including contact-free and higher 
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spatial sampling resolution[12]. The wavefield analysis methods 

can obtain the material's mechanical properties from the 

measured time-space wavefield.  

In this paper, Section 2 briefly describes the shear wave 

generation and acquisition system. Section 3 presents the 

wavefield processing methods, and Section 4 presents a proof-

of-concept experimental study for characterizing the mechanical 

properties of viscoelastic materials. 

 

2. MECHANISM AND DESIGN OF A PIEZO STACK – 
LDV SHEAR WAVE SENSING SYSTEM 
The piezo stack-LDV shear wave sensing system (Fig. 1a) 

is composed of a shear wave generating module and a wavefield 

acquisition module. For the shear wave generation, the top end 

of a piezo stack is installed on a customized 3D-printed fixture, 

a 3D-printed hemisphere tip is attached on the bottom end, and 

the piezo stack is pushed against the test sample (e.g., a 

viscoelastic phantom). For the shear wave acquisition, a 

noncontact laser Doppler vibrometer (LDV) with a laser beam 

normal to the top surface of the viscoelastic phantom is used to 

acquire the out-of-plane velocities/displacements of shear waves 

propagating the sample based on the Doppler effect.  

In our sensing system, the two modules work together and 

are controlled by customized codes. To generate shear waves, an 

excitation signal generated by a function generator and further 

amplified by a voltage amplifier is sent to the piezo stack to 

generate shear waves in the phantom. We perform a point-by-

point measurement along a user-defined scanning line to obtain 

the waveform at each scanning point by using the LDV (Fig. 1b). 

Then, the acquired signals are fused to obtain the 1D wavefield 

u(t, x), which is a function of the acquired shear wave amplitude 

versus time t and position x (Fig. 1c). 

In order to correctly obtain the frequency and wavenumber 

information of the shear wave, the Shannon sampling theorem 

should be followed. For the sampling in time, the theorem also 

works, i.e., the sampling frequency should be at least twice the 

maximum wave frequency being used. Similarly, the spatial 

sampling resolution should be smaller than a half wavelength. 

 
FIGURE 1: ILLUSTRATION OF The PIEZO STACK – LDV 

SHEAR WAVE SENSING SYSTEM 

3. TIME-SPACE WAVEFIELD PROCESSING 
To characterize a material’s viscoelastic properties, we can 

measure the velocities or wavenumbers of shear waves at 

different frequencies and then analyze the dispersion relation. 

The wavefield measured by our system contains the dispersion 

information of shear waves in viscoelastic materials, and this 

information needs to be extracted through wavefield analysis. 

Here, a dispersion curve regression-assisted wavenumber 

analysis method is presented. Fig. 2 shows a diagram of this 

analysis method. The time-space wavefield acquired through our 

piezo stack-LDV sensing system is firstly processed by the 

multi-dimensional Fourier transform to obtain a frequency-

wavenumber spectrum (Fig. 2a). This spectrum contains the 

frequency-wavenumber relation of shear waves propagating 

along the scanning line. This spectrum is compared to a series of 

theoretical dispersion curves derived from the Kelvin-Voigt 

model. Then, the theoretical curve that best matches the 

experimental spectrum is found through a regression process 

(Fig. 2b), and the material properties for deriving that dispersion 

curve are recorded. These material properties are considered to 

be the properties measured by our approach that fuses the piezo 

stack-LDV shear wave sensing system and the aforementioned 

wavefield analysis method. 

 

 
FIGURE 2: DIAGRAM OF THE DISPERSION CURVE 

REGRESSION-ASSISTED WAVENUMBER ANALYSIS METHOD. 
 

3.1 Frequency-wavenumber processing 
The space-time wavefield u (t, x) (shown in Fig. 1c) 

obtained by the LDV is a function of the time variable t and the 

position x. In order to obtain the wave number information from 

the space-time wavefield, it is necessary to perform a 

multidimensional Fourier transform on u (t, x) to obtain the 

frequency-wave number representation U (f, k)[13]:  

𝑈(𝑓, 𝒌) = ∫  
∞

−∞

∫  
∞

−∞

𝑢(𝑡, 𝒙)𝑒−𝑗(2𝜋𝑓𝑡−𝒌⋅𝒙)𝑑𝑡𝑑𝒙, (1) 

where the x is the space vector and k is the wavenumber vector. 

In this paper, we used the LDV to scan the wavefield along 

a straight line. Therefore, the space vector x should be reduced 

to x. The wavefield u(t, x) should be reduced to u(t, x), and the 

two-dimensional Fourier transform should be used [14]: 
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 𝑈(𝑓, 𝑘𝑥) = ∫  
∞

−∞

∫  
∞

−∞

𝑢(𝑡, 𝑥)𝑒−𝑗(2𝜋𝑓𝑡−𝑘𝑥𝑥)𝑑𝑡𝑑𝑥. (2) 

3.2 Dispersion curve regression for mechanical 
property characterization 
In viscoelastic materials, the frequency-wavenumber 

dispersion relation of shear waves changes with the mechanical 

property. This relation can be derived by using the Kelvin-Voigt 

model [5, 6, 16] and the material properties including elasticity 

and viscosity coefficient. We assume that the viscoelastic 

materials in our study fit the Kelvin-Voigt viscoelastic model, 

which consists of a dashpot (provide shear viscosity 𝜇1) and a 

spring (provide shear elasticity 𝜇2) in parallel. (Fig. 3 top right). 

For the Kelvin-Voigt model, the stress-strain relation can be 

expressed as 

𝜎 = (𝜇1 − 𝜇2

𝜕

𝜕𝑡
) 𝜀, (3) 

where 𝜎  is shear stress, 𝜀  is the shear strain, 𝜇1  is the shear 

elasticity, and 𝜇2  is the shear viscosity. By combining this 

equation (3) with the strain-displacement relation and the 

equation of motion, the shear wave equation can be derived, 

𝜇1

𝜕2𝑢𝑧

𝜕𝑥2
− 𝜇2

𝜕3𝑢𝑧

𝜕𝑥2𝜕𝑡
= 𝜌

𝜕2𝑢𝑧

𝜕𝑡2
. (4) 

By substituting the wave displacement 𝑢𝑧 = 𝑈𝑧(𝜔)𝑒𝑖(𝜔𝑡−𝑘𝑥) 

into equation (4), we can derive  

(−𝜇1𝑘2 + 𝑖𝜔𝜇2𝑘2 + 𝜌𝜔2)𝑈𝑧(𝜔) = 0. (5) 

Because 𝑈𝑧(𝜔)  is a nonzero term, the expression in the 

parathesis needs to be zero. Thus we can obtain the frequency-

wavenumber relation, 

𝑘 = √
𝜌𝜔2

𝜇1 + 𝑖𝜔𝜇2

= 𝑅𝑒{𝑘} − 𝑖𝐼𝑚{𝑘}, (6) 

𝑅𝑒{𝑘} = √
𝜌𝜔2 (√𝜇1

2 + 𝜔2𝜇2
2 + 𝜇1)

2(𝜇1
2 + 𝜔2𝜇2

2)
 , (7) 

𝐼𝑚{𝑘} = √
𝜌𝜔2 (√𝜇1

2 + 𝜔2𝜇2
2 − 𝜇1)

2(𝜇1
2 + 𝜔2𝜇2

2)
 . (8) 

Re{k} and Im{k} represent the real and imaginary parts of the 

wavenumber k, respectively. With the wavenumber, the shear 

wave velocity CT and the attenuation αT can further be derived as 

𝐶𝑇 =
𝜔

𝑅𝑒{𝑘}
, (9) 

𝛼𝑇 =  𝐼𝑚{𝑘}, (10) 

For viscoelastic materials, the frequency of shear waves 

generally does not exceed 1000 Hz [6, 18, 19]. Assuming the 

shear wave frequency ranges from 1 to 1000Hz, a MATLAB 

code is developed to draw a series of theoretical wavenumber-

frequency dispersion curves for different viscoelastic properties 

(e.g., 𝜇1  and 𝜇2 ), in order to investigate their effects on 

dispersion curves. As shown in Fig. 3, the wavenumber of the 

viscoelastic material changes with the frequency f, 𝜇1, and 𝜇2. 

It can be found that μ1 dominatly affects the low-frequency (e.g., 

0-500Hz) wavenumber, while μ2 dominatly affects the high-

frequency (e.g., 500-1000Hz) wavenumber. In other words, the 

wavenumbers in low and high frequencies are more sensitive to 

the changes of μ1 and μ2, respectively. 

With the theoretical shear wave frequency-wavenumber 

dispersion curves corresponding to different material properties, 

we can compare these curves to the experimentally acquired 

frequency-wavenumber spectrum. Through comparison, the 

theoretical shear wave dispersion curve that best matches the 

spectrum data can be further found through least square curve 

regression. The 𝜇1  and 𝜇2  values corresponding to the best-

fitting theoretical dispersion curve are considered as the 

measured viscoelastic properties of the test sample.  

 

 
FIGURE 3: THEORETICAL SHEAR WAVE DISPERSION 

CURVES for VISCOELASTIC MATERIALS WITH DIFFERENT 

SHEAR ELASTICITY AND SHEAR VISCOSITY 
 

4. EXPERIMENT VALIDATION 
To validate our method, we fabricated a viscoelastic 

phantom using synthetic gelatin. With the fabricated sample, an 

experiment is performed using the piezo stack-LDV sensing 

system established in this study. With the acquired experimental 

data, we performed frequency-wavenumber analysis and 
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dispersion curve regression to characterize the phantom’s 

viscoelastic material properties. The experimental results show 

that our method can successfully generate shear waves in 

viscoelastic materials and characterize the phantom's 

viscoelastic properties (i.e., shear elasticity and shear viscosity). 

 
FIGURE 4: EXPERIMENTAL SETUP FOR CHARACTERIZING 

THE MECHANICAL PROPERTIES OF THE VISCOELASTIC 

PHANTOM 
 

4.1 Experiments with a viscoelastic phantom 
The test sample is a customized phantom (see Fig. 4b) made 

of synthetic gelatin (Clear Ballistics, USA) with dimensions of 

180 × 120 × 30 mm, density of 850 kg/m3, and longitudinal wave 

speed of 1560 m/s. A photo of the experimental setup, a zoomed 

view of the test sample with the piezo stack actuator, and a 

schematic of the sensing layout with dimensions are given in Fig. 

4a, b, and c, respectively. For shear wave generation, a 3D 

printed hemisphere tip (radius: 5 mm) is attached to the bottom 

surface of the piezo stack actuator with dimensions of 5×5×10 

mm (SMPAK155510D10 by Steminc), and the piezo stack’s 

bottom side is installed on a customized 3D-printed fixture. The 

piezo stack actuator is pressed on the phantom surface to excite 

shear waves. The center of the piezo stack actuator is set as the 

coordinate origin. An arbitrary waveform function generator 

(Tektronix AFG3052C) is used to generate the excitation signal 

(a 5-cycle 400 Hz tone burst), which is amplified to 50 Vpp by a 

voltage amplifier (model: Krohn-Hite 7500). The waveform and 

frequency spectrum of the excitation are given in Fig. 4d and 4e, 

respectively. An LDV (model: Polytec OFV-505) is used to 

measure the out-of-plane displacement components of shear 

waves and acquire the time-space wavefield along a predefined 

scanning line with a length of 45mm starting from a point at (40, 

0) mm. The spatial sensing resolution is 0.2 mm. The sampling 

frequency is set to 2.60 kHz. 

4.2 LDV Scanning Result and Wavefield-based shear 
wave velocity determination 
The time-space wavefield of shear waves, generated by the 

piezo stack, is acquired by using the LDV in a point-by-point 

manner. With the acquired time-space wavefield (Fig. 5), the 

traditional slope-based method is used to evaluate the shear wave 

velocity of the phantom. All the wavefield analysis steps in this 

article are performed using customized codes written in 

MATLAB (MATLAB 2021a, MathWorks, Inc.).  

 
FIGURE 5: ACQUIRED TIME-SPACE WAVEFIELD OF 

THE SHEAR WAVES AND A SCHEMATIC ILLUSTRATING THE 

METHOD FOR WAVE VELOCITY DETERMINATION 

 
FIGURE 6: MEASURED SHEAR WAVE VELOCITY FOR 

DIFFERENT MEASUREMENT GROUPS. 
Based on the distance from the origin, we sampled and 

marked the valley positions (with an interval of 1 mm) in the 

acquired time-space wavefield, as shown in Fig. 5a, and then 

divided all the sample points into four groups according to the 

number of valleys. Then, for each group, we calculated the time 

difference (Δtn) as illustrated in Fig. 5b. Through the time and 
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the position information, the shear wave velocity can be 

calculated by the slope formula CT = Δxn /Δtn.  

The average velocity of the shear wave in each group is 

calculated and plotted in Fig. 6. From the statistical result, it can 

be found that the average velocities of group 1 to 4 are: 7.61 m/s, 

7.66 m/s, 7.68 m/s, and 7.67 m/s, respectively. Their average is 

7.66 m/s, which is close to the theoretical velocity of 7.71 m/s 

calculated by equation (9). 

4.3 Results by dispersion curve regression 

The determination of the shear wave velocity verifies the 

effectiveness of our piezo stack-LDV shear wave sensing 

system. The next step is to characterize the material properties of 

the viscoelastic phantom. Using the method presented in Section 

3, both frequency-wavenumber analysis and dispersion curve 

regression are performed on the acquired wavefield (Fig. 5a). 

Fig. 7 gives the experimental frequency-wavenumber spectrum, 

where the highest amplitude points for different frequencies are 

marked with ‘x’. Noticeably, in addition to the shear waves at 

400 Hz, the frequency-wavenumber spectrum shows low- and 

high-frequency components around 200 and 800 Hz 

respectively. These frequencies match the sub and 2nd harmonic 

frequencies, which could be induced by the nonlinearity of the 

piezo stack-based wave generation method. Through the 

dispersion curve regression processing, the dispersion curve 

(solid line) that best matches the experimental data is obtained 

using the method presented in Section 3.2. The dashed lines 

above and below the solid line in Fig. 7 are the upper and lower 

boundaries of the 95% confidence interval. The materials 

properties for the best matching curve are μ1 of 50kPa and μ2 of 

2.5 Pa·s. Our experimental results, therefore, show that our 

analysis method is able to characterize the mechanical properties 

of viscoelastic material. 

 
FIGURE 7: EXPERIMENTAL FREQUENCY-WAVENUMBER 

SPECTRUM OVERLAYED WITH THE DISPERSION CURVE 

REGRESSION RESULT. 

 

5. CONCLUSION 
This paper presents a novel piezo stack – LDV shear wave 

sensing system, which is able to excite shear waves in 

viscoelastic materials and measure the time-space wavefields in 

a contactless and high-resolution manner. To validate our 

sensing system, we fabricated a viscoelastic synthetic gelatin 

phantom and designed an experiment. The experimental results 

show that our method can successfully excite shear waves in the 

viscoelastic phantom using a piezo stack with a customized ball 

head and acquire the space-time wavefield of the generated shear 

waves using the noncontact LDV. By using frequency-

wavenumber analysis and dispersion curve regression to process 

the acquired time-space wavefield, we demonstrated the 

capability of our method for characterizing the mechanical 

properties (such as shear elasticity and viscosity) of viscoelastic 

materials. We expect this research to lead to a noncontact and 

efficient method for characterizing soft materials, even human 

tissues, and monitoring their property changes. 

 
ACKNOWLEDGEMENTS 

The authors would like to thank the financial supports from 

Mississippi State University, National Institute of General 

Medical Sciences of the National Institutes of Health 

(7R01GM144417), National Science Foundation (CMMI-

2243771), and DOE Office of Nuclear Energy's Nuclear Energy 

University Programs (DE-NE0009187). 
 
REFERENCES 

[1] A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. 

R. Aglyamov, B. S. Garra, An Overview of 

Elastography-An Emerging Branch of Medical 

Imaging, Current Medical Imaging Reviews 7 (2011) 

255–282. 

[2] M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J.L. 

Gennisson, G. Montaldo, M. Muller, A. Tardivon, M. 

Fink, Quantitative Assessment of Breast Lesion 

Viscoelasticity: Initial Clinical Results Using 

Supersonic Shear Imaging, Ultrasound in Medicine & 

Biology 34 (2008) 1373–1386. 

[3] T. Deffieux, G. Montaldo, M. Tanter, M. Fink, Shear 

wave spectroscopy for in vivo quantification of human 

soft tissues visco-elasticity, IEEE Transactions on 

Medical Imaging 28 (2009) 313–322. 

[4] C. Amador, M.W. Urban, S. Chen, J.F. Greenleaf, 

Shearwave dispersion ultrasound vibrometry (SDUV) 

on swine kidney, IEEE Transactions on Ultrasonics, 

Ferroelectrics, and Frequency Control 58 (2011) 2608–

2619. 

[5] N.C. Rouze, Y. Deng, C.A. Trutna, M.L. Palmeri, K.R. 

Nightingale, Characterization of Viscoelastic Materials 

Using Group Shear Wave Speeds, IEEE Transactions 

on Ultrasonics, Ferroelectrics, and Frequency Control 

65 (2018) 780–794. 

[6] P. Kijanka, M.W. Urban, Local Phase Velocity Based 

Imaging (LPVI) of Viscoelastic Phantoms and Tissues, 

IEEE Transactions on Ultrasonics, Ferroelectrics, and 

Frequency Control 68 (2021) 389. 

[7] J.A. Martin, D.G. Schmitz, A.C. Ehlers, M.S. Allen, 

D.G. Thelen, Calibration of the shear wave speed-stress 

relationship in ex vivo tendons, Journal of 

Biomechanics 90 (2019) 9–15. 



 6 © 2023 by ASME 

[8] T.W.J. Almeida, D.R.T. Sampaio, A.C. Bruno, T.Z. 

Pavan, A.A.O. Carneiro, Comparison between shear 

wave dispersion magneto motive ultrasound and 

transient elastography for measuring tissue-mimicking 

phantom viscoelasticity, IEEE Transactions on 

Ultrasonics, Ferroelectrics, and Frequency Control 62 

(2015) 2138–2145. 

[9] E.G. Simon, S. Callé, F. Perrotin, J.P. Remenieras, 

Measurement of shear wave speed dispersion in the 

placenta by transient elastography: A preliminary ex 

vivo study, PLOS ONE 13 (2018) e0194309. 

[10] X. Wang, Y. Geng, D. Han, M. Lu, R. Li, Y. Li, Q. 

Zhang, M. Wan, Viscoelastic characterization of HIFU 

ablation with shear wave by using K-space analysis 

combined with model-fitting correction method, 

Ultrasonics 108 (2020) 106179. 

[11] S. Chen, M. Fatemi, J.F. Greenleaf, Quantifying 

elasticity and viscosity from measurement of shear 

wave speed dispersion, Citation: The Journal of the 

Acoustical Society of America 115 (2004) 2781. 

[12] P. Castellini, M. Martarelli, E.P. Tomasini, Laser 

Doppler Vibrometry: Development of advanced 

solutions answering to technology’s needs, Mechanical 

Systems and Signal Processing 20 (2006) 1265–1285. 

[13] D.H. Johnson, D.E. Dudgeon, Signals in Space and 

Time, Array Signal Processing: Concepts and 

Techniques (1992) 533. 

[14] Z. Tian, L. Yu, Lamb wave frequency-wavenumber 

analysis and decomposition, Journal of Intelligent 

Material Systems and Structures 25 (2014) 1107–1123. 

[15] Z. Tian, W. Xiao, Z. Ma, L. Yu, Dispersion curve 

regression – assisted wideband local wavenumber 

analysis for characterizing three-dimensional (3D) 

profile of hidden corrosion damage, Mechanical 

Systems and Signal Processing 150 (2021) 107347. 

[16] S. Catheline, J.-L. Gennisson, G. Delon, M. Fink, R. 

Sinkus, S. Abouelkaram, J. Culioli, Measurement of 

viscoelastic properties of homogeneous soft solid using 

transient elastography: An inverse problem approach, 

The Journal of the Acoustical Society of America 116 

(2004) 3734. 

[17] V. Giurgiutiu, Structural health monitoring with 

piezoelectric wafer active sensors, Elsevier/Academic 

Press, 2008. 

[18] S. Chen, W. Sanchez, M.R. Callstrom, B. Gorman, J.T. 

Lewis, S.O. Sanderson, J.F. Greenleaf, H. Xie, Y. Shi, 

M. Pashley, V. Shamdasani, M. Lachman, S. Metz, 

Assessment of liver viscoelasticity by using shear 

waves induced by ultrasound radiation force, Radiology 

266 (2013) 964–970. 

[19] R.J.G. Van Sloun, R.R. Wildeboer, H. Wijkstra, M. 

Mischi, Viscoelasticity Mapping by Identification of 

Local Shear Wave Dynamics, IEEE Transactions on 

Ultrasonics, Ferroelectrics, and Frequency Control 64 

(2017) 1666–1673. 

 


