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Highlights 

 Plasticity of CP-Ti is characterized with respect to strain rate and temperature

 ANNs can accurately describe strain hardening and plastic anisotropy of CP-

Ti

 Differential hardening description enhances the ductile fracture predictions

 Ductile fracture models are calibrated with hybrid experiments and ANNs 

predictions
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Abstract 

This study primarily aims to develop a robust modelling approach to capture complex 

material behavior of CP-Ti, appeared by high anisotropy, differential hardening due 

to anisotropy evolution, and flow behavior sensitive to strain rate and temperature, 

using artificial neural networks (ANNs). Plasticity is characterized by uniaxial tension 

and in-plane biaxial tension tests at temperatures of 0°C and 20°C with strain rates 

of 0.001 /s and 0.01 /s, and the results are used to calibrate the non-quadratic 

anisotropic Yld2000-3d yield function with respect to the plastic work. In order to 

predict the intricate plastic deformation with the temperature and strain rate effects, 

two distinct ANN models are developed; one is to capture the strain hardening 

behavior and the other to predict the anisotropic parameters in the chosen yield 

function. The developed ANN models predict an unseen dataset well, which is 

intermediate testing conditions at a temperature of 10°C and strain rate of 0.005 /s. 

The ANN models, being computationally stable and adhering to conventional 

constitutive equations, are implemented into a user material subroutine for the 

ductile fracture characterization of CP-Ti sheet using the hybrid experimental-

numerical analysis. The favorable agreement between experimental data and 

numerical predictions, particularly using the ANN models with evolving anisotropic 

material parameters for the Yld2000-3d yield function, underscores the significance 

of differential hardening effect on the ductile fracture behavior and highlights the 

capabilities of ANN models to capture the complex plastic behavior of CP-Ti. The key 

parameters including stress triaxiality, Lode angle parameter, and equivalent plastic 

strain at the fracture location are extracted from the simulations, enabling the 

calibration of ductile fracture models, namely Johnson-Cook, Hosford-Coulomb, and 

Lou-2014, and construction of fracture envelopes. 

Keywords: Fracture (A), Anisotropic material (B), Constitutive behavior (B), Finite 

elements (C), Artificial neural networks. 
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1. Introduction 

Commercially pure titanium (CP-Ti) has gained immense use across diverse 

industries, such as aerospace, biomedical, and chemical, owing to its exceptional 

properties and performance. For example, in proton exchange membrane fuel cells 

(PEMFCs), the substitution of conventional graphite bipolar plates with CP-Ti has 

emerged as a compelling alternative, primarily attributable to its low weight, 

exceptional corrosion resistance, excellent electrical conductivity, and cost-effective 

manufacturability (Meng et al., 2022). Due to its hexagonal close-packed (HCP) 

crystal structure, alpha titanium exhibits low crystal symmetry, resulting in a limited 

number of slip systems and reduced strain hardening ability. These distinct features 

of titanium require special attention to avoid undesired failure during forming 

applications. Thus, extensive understanding on the material plastic behavior leading 

to failure is needed.  

In micromechanics, the damage, which eventually leads to fracture, is often 

explained by the void evolution in three stages: micro-voids nucleate at vulnerable 

sites (e.g., second phase particles), grow or coalesce, and then ultimately lead to 

localized failure across a sheet of micro-voids (Hayden and Floreen, 1969; Gurland, 

1972; Thomason, 1990). Based on the micromechanical approach, Gurson (1977) 

proposed a porous plasticity model, considering the void volume fraction as a 

damage indicator. Subsequently, the original Gurson model has been extended to

consider factors, such as void nucleation and coalescence (Chu and Needleman, 

1980; Tvergaard and Needleman, 1984), void shape and size effects (Gologanu et 

al., 1993; Pardoen and Hutchinson, 2000; Wen et al., 2005), strain hardening 

(Leblond et al., 1995) and plastic anisotropy (Liao et al., 1997; Grange et al., 2000; 

Benzerga et al., 2001; Benzerga and Besson, 2001). These models are classified as 

coupled fracture models as they integrate the damage parameter with the 

elastoplastic behavior of the material. 

Alternatively, several fracture criteria have been developed to predict ductile fracture 

without explicitly modeling the void nucleation and growth, known as uncoupled 

ductile fracture models. These criteria propose that the fracture takes place at a point 

within a body when the weighted measure of damage indicator, e.g., accumulated 

plastic strain, reaches a critical value (Clift et al., 1990; Le Roy et al., 1981; 

al., 1993; Pardoen and Hutchinson, 2000; Wen et al., 2005), strain hardening 

(Leblond et al., 1995) 
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McClintock, 1968; Oh et al., 1979; Rice and Tracey, 1969). The Johnson-Cook 

model (Johnson and Cook, 1985), which revealed a significant influence of stress 

triaxiality 𝜂 on the initiation of fracture, has been widely utilized in various studies 

owing to its straightforward formulation. However, classical ductile fracture models 

lack the flexibility in describing fracture across a wide range of stress triaxialities 𝜂

(Bao and Wierzbicki, 2004a). 

Subsequently, ductile fracture models that incorporate the Lode angle parameter 𝜃̅, 

which is a function of second and third invariants of the deviatoric stress tensor, have

been introduced (Bai and Wierzbicki, 2008; Brünig et al., 2013, 2008; Lou and Yoon, 

2017; Mirone and Corallo, 2010; Roth and Mohr, 2016; Wierzbicki et al., 2005). Bai 

and Wierzbicki, (2010) proposed a ductile fracture criterion for metals, known as 

modified the Mohr-Coulomb (MMC) model, by transforming the Mohr-Coulomb (MC) 

criterion into the space of equivalent plastic strain 𝜀𝑓̅, stress triaxiality 𝜂, and Lode 

angle parameter 𝜃̅. Mohr and Marcadet (2015) made further advancements to the 

MMC model by substituting the Tresca equivalent stress for the Hosford equivalent 

stress, resulting in the development of the Hosford-Coulomb (HC) fracture model. 

Lou et al. (2014) also introduced a novel criterion utilizing a proposed changeable 

cut-off value function for the stress triaxiality 𝜂. Recently, Baral et al. (2024) proposed 

a new ductile fracture criterion that is capable of capturing fracture anisotropy by 

coupling DF2016 criterion with the non-quadratic Yld91 yield function. Additionally, 

various uncoupled fracture criteria have been developed, considering the influence 

of plastic work and elastic work (Khan and Liu, 2012a), strain rate and temperature 

(Khan and Liu, 2012b), volume change work and distortion work (Peng et al., 2021), 

as well as various void deformation modes (Zheng et al., 2023). 

To characterize the fracture for various stress states, several experimental methods, 

such as notched tension, center hole, shear, punch, plane strain bending, in-plane 

biaxial tension, etc., have been implemented (Ha et al., 2019a; Habib et al., 2019). 

However, measuring damage parameters through experiments is challenging due to 

the three-dimensional stress states and inhomogeneous deformation fields near the 

fracture zones, as well as the difficulty in detecting crack initiation at the midplane 

through the sheet thickness. To overcome these limitations, researchers have 

adopted a hybrid experimental-numerical approach for ductile fracture analyses (Bai 

(Khan and Liu, 2012b)

as well as various void deformation modes (Zheng et al., 2023). 
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and Wierzbicki, 2008; Baral et al., 2019; Dunand and Mohr, 2010; Ha et al., 2018, 

2019a; Luo et al., 2012; Mohr and Henn, 2007; Mu et al., 2020), where relevant 

variables are determined through numerical simulations. However, it is important to 

choose a suitable constitutive model to capture the anisotropy of plasticity leading to 

failure (Ha et al., 2020; Ha and Korkolis, 2021) in order to minimize the uncertainties 

from the finite element (FE) simulations and to achieve accurate prediction of critical 

parameters for the fracture model calibration, e.g., von Mises istropic yield function 

(Bao and Wierzbicki, 2004b; Li et al., 2010; Li and Wierzbicki, 2010) for isotropic 

materials and Hill 1948 anisotropic yield function (Beese et al., 2010; Dunand and 

Mohr, 2010; Wang et al., 2014) and Yld2004-18p (Ha et al., 2018, 2019a) for 

anisotropic materials. However, the Hill 1948 model falls short in providing 

satisfactory descriptions for both stress and r-value simultaneously, necessitating the 

non-associated flow rule. Advanced plastic anisotropy models, such as Yld2000-2d 

(Barlat et al., 2003), Yld2004-18p (Barlat et al., 2005), Banabic (Banabic, 2010), etc. 

have been introduced for advanced characterization of plastic anisotropy. The 

constitutive modelling of CP-Ti is considered challenging due to its complex 

behavior, including the significant anisotropy of flow stress and r-values, differential 

hardening, and tension and compression asymmetry, so called strength differential 

(SD) effect. Anisotropy in CP-Ti even shows strong evolution with respect to the 

strain, which is much severe than steel (Feng et al., 2021; Lee et al., 2016; Mamros 

et al., 2022) and aluminum alloys (Ha et al., 2018). Zhai et al. (2016) utilized the 

asymmetric CPB-06 yield function (Cazacu et al., 2006) for ductile fracture 

investigation of CP-Ti, whereas Baral et al. (2018) yielded the best prediction of 

experimental results for CP-Ti using KYL-12 (Khan et al., 2012) and CPB-06 yield 

functions. Additionally, Nagano et al. (2018) have successfully captured the plastic 

deformation behavior of CP-Ti using the Yld2000-2d model while Peters et al. (2014) 

incorporated the equivalent plastic strain and strain rate dependency to Yld2000-2d 

and validation with  FE simulation of deep drawing process demonstrated significant 

improvement in the prediction accuracy. Complex plastic behavior of CP-Ti often 

requires intricate meso-scale modeling approach such as crystal plasticity and visco-

plastic self-consistent formulation (Jeon et al., 2024; Tang et al., 2023; Wronski et al., 

2018; Wroński et al., 2022, Lebensohn et al., 2007; Lebensohn and Tomé, 1993; 
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Wang et al., 2013), to study the deformation mechanisms with twinning, texture 

evolution, and associated behavior of CP-Ti. 

Recently, machine learning based material modeling has emerged as a promising 

alternative to traditional physics based constitutive models. There are several 

attempts to develop machine learning based constitutive models that entirely replace 

the conventional mathematical framework (Bonatti and Mohr, 2022, 2021; Gorji et al., 

2020; Kim et al., 2024; Mozaffar et al., 2019; Muhammad et al., 2021; Tasdemir et 

al., 2023; Zhang and Mohr, 2020), but some have also been exploring hybrid 

models, where neural network algorithms are integrated into existing physics based 

plasticity models (Fazily and Yoon, 2023; Jang et al., 2021; Jordan et al., 2020; Li et 

al., 2023, 2019; Liu et al., 2023; Pandya et al., 2020; Weber et al., 2023). Mozaffar et 

al. (2019) proposed a recurrent neural network (RNN) to capture plasticity behavior 

of a material. The model predicted complex phenomena, such as yield locus 

evolution with distortional hardening under 0.5% scaled mean absolute error 

(SMAE). Similarly, Zhang and Mohr (2020) developed a fully connected feedforward 

neural network to capture elasto-plastic response of a von Mises material and 

implemented within a FE framework for notched tension test. Additionally, Schmidt 

and Hartmaier (2023) presents a new texture descriptor for machine learning based 

constitutive modeling that effectively captures the structure-property relationship 

between texture and anisotropic plastic behavior. Moreover, Muhammad et al. (2021) 

proposed a machine learning framework that integrates additive manufacturing 

methods and artificial intelligence to predict the heterogeneous local strain observed 

during the plastic deformation of an additively manufactured aluminum alloy. 

However, the prediction accuracy and success of such data-driven approaches 

heavily relies on the quality and quantity of training data. Challenges arise if they do 

not adequately represent material behavior due to uncertainties or inaccuracies in 

physics based constitutive laws during the training (Bessa et al., 2017; Bessa and 

Pellegrino, 2018). 

On the other hand, several researchers have adopted neural networks to effectively 

describe the temperature and strain rate dependency of material behaviors such as 

stress-strain response, strain aging, and fracture initiation. For instance, Li et al. 

(2019) modified the Johnson-Cook plasticity model by incorporating the effect of 

temperature and strain rate on the hardening of DP800 steel using a neural network 

during the plastic deformation of 
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through a hybrid experimental-numerical method. In a similar study, Jordan et al. 

(2020) was able to describe the temperature and strain rate dependent large strain 

response of a non-metallic material, i.e., polypropylene, using a shallow neural 

network with just one hidden layer. Li et al. (2022) introduced a counter example 

guided neural network with a state variable called effective aging time to separate 

the positive rate effects on viscous flow and negative rate effects on dynamic strain 

aging. Furthermore, by employing physics based assumptions and leveraging 

experimental data on fracture, Pandya et al. (2020) developed a neural network 

based fracture initiation model to address the significant influences of temperature, 

strain rate, and stress state on the failure behavior of aluminum 7075 during hot 

forming. However, the model was trained using a Hosford-Coulomb fracture model 

that did not account for varying temperature and strain rate. To address this 

limitation, Li et al. (2023) employed a neural network to extend the Hosford-Coulomb 

fracture criterion into the domain of strain rate and temperature.  

This study primarily aims to develop a robust modelling approach to capture complex 

material behavior of CP-Ti, appeared by high anisotropy, differential hardening due 

to anisotropy evolution, and flow behavior sensitive to strain rate and temperature, 

using artificial neural networks (ANNs). Many past works on machine learning-based 

material modeling employ purely data-driven, statistical approaches. As a result, they 

do not strictly follow plasticity theories and may compromise computational stability 

when used for FE simulations. In contrast, hybrid approaches combine the machine 

learning algorithm with constitutive models developed within plasticity theory 

framework, e.g., hardening laws, yield function. This allows them to leverage the 

strengths of both machine learning and plasticity theory based models, such as 

robustness of machine learning, compatibility and numerical stability with FE 

simulations of plasticity theory based models. In addition, present work proposes an 

approach that is highly flexible for use with any plasticity models, chosen depending 

on material characteristics, (e.g., Bauschinger effect, strength differential effect, 

plastic anisotropy, etc.), and applications of interest, (e.g., springback with cyclic 

loading (Lee et al., 2018, 2012), ductile fracture (Ha et al., 2019b), hole flangeability 

(Ha and Korkolis, 2021)), etc. 
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experimentally generated data from uniaxial tension and biaxial tension tests to 

framework, e.g., hardening laws, yield function. This allows them to leverage the 

strengths of both machine learning and plasticity theory based models, such as 

robustness of machine learning, compatibility and numerical stability with FE 

framework, e.g., hardening laws, yield function. This allows them to leverage the 

strengths of both machine learning and plasticity theory based models, such as 

learning algorithm with constitutive models developed within plasticity theory 

framework, e.g., hardening laws, yield function. This allows them to leverage the 

when used for FE simulations. In contrast, hybrid approaches combine the machine 

learning algorithm with constitutive models developed within plasticity theory 

do not strictly follow plasticity theories and may compromise computational stabilit

when used for FE simulations. In contrast, hybrid approaches combine the machine 

material modeling employ purely data-driven, statistical approaches. As a result, they 

do not strictly follow plasticity theories and may compromise computational stabilit

using artificial neural networks (ANNs). Many past works on machine learning-based 

material modeling employ purely data-driven, statistical approaches. As a result, they 

to anisotropy evolution, and flow behavior sensitive to strain rate and temperature, 

using artificial neural networks (ANNs). Many past works on machine learning-based 

material behavior of CP-Ti, appeared by high anisotropy, differential hardening due 

to anisotropy evolution, and flow behavior sensitive to strain rate and temperature, 

material behavior of CP-Ti, appeared by high anisotropy, differential hardening due 

to anisotropy evolution, and flow behavior sensitive to strain rate and temperature, 

This study primarily aims to develop a robust modelling approach to capture complex 

fracture criterion into the domain of strain rate and temperature.  

This study primarily aims to develop a robust modelling approach to capture complex 

fracture criterion into the domain of strain rate and temperature.  

limitation, Li et al. (2023) employed a neural network to extend the Hosford-Coulomb 

fracture criterion into the domain of strain rate and temperature.  

that did not account for varying temperature and strain rate. To address this 

 extend the Hosford-Coulomb 

Hosford-Coulomb fracture model 

that did not account for varying temperature and strain rate. To address this 



9

capture the strain hardening and plastic anisotropy of the material at various 

temperatures, strain rates, and plastic deformation levels. The ductile fracture of CP-

Ti (grade 1) is investigated within the positive triaxiality range by a hybrid 

experimental-numerical approach, where the ANN models proposed for capturing the 

plasticity is incorporated with the uncoupled ductile fracture models. This also 

provides a validation for the proposed ANNs at an unseen temperature and strain 

rate condition. The strain to fracture is assessed experimentally for uniaxial tension, 

biaxial tension, plane strain tension, and shear conditions using specific specimen 

geometries suggested in the literature. The FE simulations of fracture experiments 

are performed using Abaqus/Implicit with ANN models incorporated into a user 

material (UMAT) subroutine and validated against the fracture experiments. Using 

the parameters obtained from the FE simulations, Johnson-Cook, Hosford-Coulomb, 

and Lou-2014 fracture initiation criteria are calibrated, and the fracture envelopes are 

constructed accordingly. 

2. Plasticity Characterization 

The material used in this study is commercially pure titanium (CP-Ti) in grade 1 

received as 0.9 mm thick sheets of size 1.5 m x 1.2 m. The plasticity of material is 

characterized by uniaxial tension and biaxial tension tests to calibrate the Swift-Voce 

hardening model and Yld2000-3d yield function parameters (Dunand et al., 2012). 

2.1 Uniaxial tension 

The study employs ASTM E8 standard specimens machined using an abrasive water 

jet with orientations along the rolling direction (RD), 45° to the RD (referred to as 

diagonal direction, DD), and transverse direction (TD) as shown in Figure 1a. The 

tests are performed on a 250kN MTS landmark 370 servo-hydraulic universal testing 

machine with crosshead speeds set at 0.1 mm/s and 1 mm/s to achieve strain rates 

of approximately 0.001 /s and 0.01 /s, respectively, in the gauge section. For each 

strain rate case, the tests are carried out at two different temperatures, 20°C and 

0°C. At least 3 samples are tested for each condition for repeatability. To ensure 

uniform temperature across the gage area during the tests, a cooling plate of 150 
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The study employs
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hardening model and Yld2000-3d yield function parameters (Dunand et al., 2012). 
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and Lou-2014 fracture initiation criteria are calibrated, and the fracture envelopes are 

material (UMAT) subroutine and validated against the fracture experiments. Using 

the parameters obtained from the FE simulations, Johnson-Cook, Hosford-Coulomb, 
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mm × 200 mm is affixed to the specimens from the rear side. A silicon based thermal 

paste with thermal conductivity of 0.735 W/mK is applied to the specimen and 

cooling plate interface for effective heat transfer between them.  

Figure 1 a) ASTM E8 specimen along RD, DD, and TD and b) experimental setup in 

MTS with stereo-DIC, IR camera, and cooling plate for temperature controlled 

uniaxial tension test. 

A random black speckle on a white background is spray painted onto the sample 

surfaces to capture the strain field using a stereo type digital image correlation (DIC) 

system. The stereo-DIC system consists of two 9 MP cameras (Grasshopper3 

89S6M) and a light source for the full strain field measurement and an infrared (IR, 

FLIR SC645) camera for the temperature field (see Figure 1b). The images are 

captured at acquisition rates of 12.5 Hz and 2 Hz for tests conducted at strain rates 

of 0.01 /s and 0.001 /s, respectively. The stereo-DIC system is synchronized with the 

MTS load cell to ensure accurate correlation between load and strain data. The DIC 

images have a resolution close to 0.035 mm/pixel. Post-processing of the captured 

images is performed using VIC-3D software, with a filter size of 5, subset of 29 

pixels, and step size of 7 pixels for strain and temperature distribution analysis. 
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MTS with stereo-DIC, IR camera, and cooling plate for temperature controlled 

Figure 1 a) ASTM E8 specimen along RD, DD, and TD and b) experimental setup in 
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2.2 Biaxial tension 

The in-plane biaxial tension tests are performed using cruciform samples fabricated 

using the abrasive water jet. The specimen arms are aligned in the RD and TD of the 

material and contain 5 equally spaced slits as shown in Figure 2a. The center of the 

specimen is carefully machined down to 0.4 mm thickness using an end mill on both 

sides of the sample. The tests are carried out using a displacement control tabletop 

biaxial loading frame developed at the University of New Hampshire (UNH) as 

shown in Figure 2b (Wilson et al., 2013). Hydraulic cylinders with a stroke of 12.7 

mm and tensile force capacity of 25.8 kN load the samples. An equibiaxial 

displacement path (𝛿𝑥: 𝛿𝑦 = 1: 1) is programmed to load the cruciform specimens at 

crosshead speeds close to 0.2 mm/s and 0.02 mm/s to achieve 0.01 /s and 0.001 /s 

strain rates, respectively, at the center square gauge area. Air streams from two 

vortex tubes with inlet pressures set at 827 kPa are directed towards the gage area 

to control the surface temperature. The airflow at the vortex tube outlets is adjusted 

such that uniform temperatures of 20°C and 0°C are obtained at the gage surface 

during the tests. A stereo-DIC system with two 5 MP Grasshopper (GRAS-50S5M) 

cameras and the FLIR IR camera are mounted on a metallic frame attached to the 

machine, to capture the strain and temperature fields at the gage area. The 

acquisition rate is set at 2 Hz, and the images are postprocessed using VIC-3D 

software with the same parameters as in the uniaxial tension tests.software with the same parameters as in the uniaxial tension tests.

acquisition rate is set at 2 

software with the same parameters as in the uniaxial tension tests.

machine, to capture the strain and temperature fields at the gage area. The 
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gauge area. Air streams from two 
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crosshead speeds close to 0.2 mm/s and 0.02 mm/s to achieve 0.01 /s and 0.001 /s 

mm and tensile force capacity of 25.8 kN load the samples. An equibiaxial 

 is programmed to load the cruciform specimens at 
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Figure 2 a) Cruciform specimen geometry and b) in-plane biaxial tension test setup 

with stereo-DIC, IR camera, and vortex tube for temperature control. 

2.3 Plastic anisotropy 

The engineering stress-strain curves shown in Figures 3a and 3b demonstrate the 

effect of orientation, temperature, and strain rate on the mechanical behavior of CP-

Ti (grade 1). The three distinct orientation curves, i.e., RD, DD, and TD, for each 

temperature and strain rate condition depict the anisotropy in the flow stress. The 

yield strength measured with the 0.2% offset method is found to be the highest in the 

Figure 2 a) Cruciform specimen geometry and b) in-plane biaxial tension test setup 
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TD, which agrees with the available literature on the mechanical behavior of CP-Ti 

(Baral et al., 2018; Pham et al., 2019; Roth et al., 2014). Across all orientations, 

higher strength is observed at lower temperature and higher strain rate. The samples 

tested along the RD have superior ductility and strength, whereas the DD and TD 

result in low uniform elongation, i.e., plastic strain prior to the peak engineering 

stress, and high post-necking deformation, i.e., strain after the peak engineering 

stress. For the 20°C and 0.001 /s condition, the ratio of the uniform to the total 

elongation in the RD, DD, and TD are 0.62, 0.19 and 0.28, respectively. 

Furthermore, the work hardening rates in each orientation exhibit visually 

distinguishable variations within the range of uniform deformation. The anisotropy of 

flow stress in this material is possibly related to twinning of CP-Ti (Yi et al., 2016). 

The twinning activity is controlled by material grade, specifically oxygen content 

(Choi et al., 2021), deformation type, such as tensile/compressive (Yang et al., 2022; 

Yi et al., 2016), material orientation (Battaini et al., 2007; Pham et al., 2019; Yi et al., 

2016), and initial grain size (Deguchi et al., 2023). Temperature is also a significant 

factor governing the twinning volume fraction and the active twin systems (Yang et 

al., 2022). 

factor governing the twinning volume fraction and the active twin systems (Yang et factor governing the twinning volume fraction and the active twin systems (Yang et 

2016), and initial grain size (Deguchi et al., 2023). Temperature is also a significan

Yi et al., 2016), material orientation (Battaini et al., 2007; Pham et al., 2019; Yi et al., 

2016), and initial grain size (Deguchi et al., 2023). Temperature is also a significan

(Choi et al., 2021), deformation type, such as tensile/compressive (Yang et al., 2022; 

Yi et al., 2016), material orientation (Battaini et al., 2007; Pham et al., 2019; Yi et al., 

(Choi et al., 2021), deformation type, such as tensile/compressive (Yang et al., 2022; 

The twinning activity is controlled by material grade, specifically oxygen content 

distinguishable variations within the range of uniform deformation. The anisotropy of 

 this material is possibly related to twinning of CP-

The twinning activity is controlled by material grade, specifically oxygen content 
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Figure 3 Engineering stress-strain curves of uniaxial tension in RD, DD, and TD at 

strain rates of (a) 0.001 /s and (b) 0.01 /s. 

Figures 4a and 4b show the evolution of normalized stress 𝜎̂ with the plastic work 𝑊𝑝
in the uniaxial tension and in-plane biaxial tension tests. Each flow stress is

normalized by the reference condition, which is uniaxial tension in the RD in this 

study, i.e., 𝜎̂𝑖 = 𝜎𝑖 𝜎𝑅𝐷⁄ . During the early stages of plastic deformation, the 

normalized stresses of DD and TD, i.e., 𝜎̂𝐷𝐷 and 𝜎̂𝑇𝐷 , are greater than 1, which 

eventually become lower than 1 as the plastic work progresses. This means that the 

flow stresses in the uniaxial tension in the DD and TD are initially higher than the RD 

and decreased with reduced hardening rate. Similarly, the evolutional behavior in the 

biaxial tension along the RD and TD, i.e., 𝜎̂𝑏,𝑅𝐷 and 𝜎̂𝑏,𝑇𝐷, is observed, but the values 

always exceed 1. The observed evolution in the flow stress anisotropy appears as 

differential hardening, which is indicated by the non-uniform expansion of the yield 

locus, under various proportional loading conditions. 

Figures 5a and 5b show the evolution of strain ratio with plastic work 𝑊𝑝. The strain 

ratio in uniaxial tension is defined by the Lankford coefficient, so called r-value, 

which is the ratio of plastic strain increments in the width to the thickness directions, 

i.e., 𝑟 = 𝑑𝜀𝑤 𝑑𝜀𝑡⁄ . For biaxial tension, it is defined as the ratio of plastic strain 

increments in the TD to the RD, i.e., 𝑟𝑏 = 𝑑𝜀𝑇𝐷 𝑑𝜀𝑅𝐷⁄ , which represents the tangential 

slope of the yield locus in biaxial tension. The anisotropy observed in the r-values 

biaxial tension along the RD and TD, i.e., 

always exceed 1. The observed evolution in the flow stress anisotropy appears as 

and decreased with reduced hardening rate. Similarly, the evolutional behavior in the 
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Figure 3 Engineering stress-strain curves of uniaxial tension in RD, DD, and TD at Figure 3 Engineering stress-strain curves of uniaxial tension in RD, DD, and TD at 
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and 𝑟𝑏  is more pronounced compared to the anisotropy in flow stress. In uniaxial 

tension, the r-value variation ∆𝑟 in CP-Ti is significant compared to other lightweight 

materials, such as steel and aluminum alloys: 𝑟𝑇𝐷 exhibits the highest value, then 𝑟𝐷𝐷
followed by 𝑟𝑅𝐷. In addition, the significant evolution is observed at the beginning of 

plastic work and quickly saturated to a constant level which is close to the average 

strain ratio, i.e., 𝑟 = 𝜀𝑤 𝜀𝑡⁄ , in the homogeneous deformation range. 

The evolution of experimentally obtained stresses (normalized flow stresses) and 

strain ratios (r-value and 𝑟𝑏) with respect to the plastic work 𝑊𝑝 are approximated 

using an exponential function, 

𝑦𝑓𝑖𝑡 = 𝜔1 ∙ exp(𝜔2 ∙ 𝑊𝑝) + 𝜔3 ∙ exp(𝜔4 ∙ 𝑊𝑝) (1)

which is later used for the yield function parameter calibrations. The coefficients 

𝜔𝑖,1−4 in Eq. (1) are found by fitting experiment data, as in Figures 4 and 5. It is 

assumed that the plastic anisotropy is saturated as the plastic deformation increases 

and does not change beyond the plastic work level of 45 MJ/m3. 

assumed that the plastic anisotropy is saturated as the plastic deformation increases 

and does not change beyond the plastic work level of 45 MJ/m

assumed that the plastic anisotropy is saturated as the plastic deformation increases 

and does not change beyond the plastic work level of 45 MJ/m

 in Eq. (1) are found by fitting experiment data, as in Figures 4 and 5. It is 
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 in Eq. (1) are found by fitting experiment data, as in Figures 4 and 5. It is 

which is later used for the yield function parameter calibrations. The coefficients 

 in Eq. (1) are found by fitting experiment data, as in Figures 4 and 5. It is 

which is later used for the yield function parameter calibrations. The coefficients 

𝑊𝑝𝑊𝑝𝑊 )
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Figure 4 Evolution of normalized stress with respect to plastic work 𝑊𝑝 at strain rates 

of (a) 0.001 /s and (b) 0.01 /s.

Figure 4 Evolution of normalized stress with respect to plastic work Figure 4 Evolution of normalized stress with respect to plastic work 
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Figure 5 Evolution of strain ratio with respect to plastic work 𝑊𝑝 at strain rates of (a) 

0.001 /s and (b) 0.01 /s. The transparent curves in the background represent 

experimental results, and the dark curves represent exponential fitting.

3. Constitutive modelling of CP-Ti  

According to classical plasticity theory, deformation is governed by, 

𝐹(𝝈, 𝜀)̅ = 𝜙(𝝈) − 𝐻(𝜀)̅ = 0 (2)

where 𝜙(𝝈) is the equivalent stress defined by the yield function of Cauchy stress 

tensor 𝝈 and 𝐻(𝜀)̅ is the flow stress from the strain hardening model as a function of 

equivalent strain. Assuming that the plastic potential and yield functions are identical, 

the plastic strain increment is determined by the associated flow rule as follows, 

𝑑𝜺𝒑 = 𝑑𝜆
𝜕𝐹

𝜕𝝈
(3)

 is the equivalent stress defined by the yield function of Cauchy stress 

𝐹(
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Figure 5 Evolution of strain ratio with respect to plastic work 
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where 𝑑𝜆  is a plastic multiplier. The present work follows the above classical 

plasticity theory while two deep learning models are employed to capture the strain 

hardening 𝐻(𝑇, 𝜀 ̅̇, 𝜀)̅ and the plastic anisotropy evolution with respect to yield function 

parameters 𝛼(𝑇, 𝜀 ̅̇,𝑊𝑝) at various temperatures and strain rates. 

3.1 Hardening law 

In order to extrapolate the hardening behavior, the combined Swift-Voce hardening 

law (Dunand and Mohr, 2010) is used to describe the stress-strain response of the 

material. The flow stress given by the Swift-Voce hardening law is, 

𝐻(𝜀)̅ = 𝜎 = 𝑤𝑠𝑣 ∙ 𝜎𝑆𝑤𝑖𝑓𝑡 + (1 − 𝑤𝑠𝑣) ∙ 𝜎𝑉𝑜𝑐𝑒 (4)

where 𝜎𝑆𝑤𝑖𝑓𝑡 = 𝑠0 ∙ (𝑠1 + 𝜀)̅𝑠2 and 𝜎𝑉𝑜𝑐𝑒 = 𝑣0 − 𝑣1 ∙ exp(−𝑣2 ∙ 𝜀)̅ with 𝑤𝑠𝑣 for the weight 

factor and 𝑠𝑖,0−2 and 𝑣𝑖,0−2 for material parameters (see Appendix A). The parameters 

are calibrated with the stress-strain curve of uniaxial tension in the RD. The Swift-

Voce curve fittings at two strain rates (0.01 /s and 0.001 /s) and three temperatures 

(-10˚C, 0˚C and 20˚C) can be found in Figure 6. The additional set of uniaxial tension

tests conducted at a temperature of -10°C and strain rates of 0.001 /s and 0.01 /s 

are aimed to enhance the diversity of the training dataset for the strain hardening 

artificial neural network (ANN) model, which is discussed in section 4.2. artificial neural network (ANN) model, which is discussed in section 4artificial neural network (ANN) model, which is discussed in section 4

are aimed to enhance the diversity of the training dataset for the strain hardening 
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− 𝑣1 ∙ exp

𝜎𝑉𝑜𝑐𝑒
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Figure 6 Identification of Swift-Voce hardening curves at two strain rates (0.01 /s and 

0.001 /s) and three temperatures (-10˚C, 0˚C and 20˚C). 

3.2 Anisotropic yield function

As the local stress and strain parameters are obtained from the FE simulation in the 

hybrid approach, it is important to achieve the accurate prediction of plastic 

deformation of the anisotropic material. To capture plastic anisotropy and its 

evolution in response to plastic work, this study employs a non-quadratic anisotropic 

yield function Yld2000-3d (Dunand et al., 2012). This is an extended version of 

Yld2000-2d (Barlat et al., 2003) model from plane stress to a full 3D stress condition 

without additional anisotropic material parameters, i.e., 𝛼𝑖,1−8. It should be noted that 

Yld2004-18p (Barlat et al., 2005) for a full stress condition has 18 parameters for 

anisotropy description, which can be reduced to 16 independent parameters (Van 

Den Boogaard et al., 2016). Yld2000-3d has similar mathematical formulations with 

the original Yld2000-2d model as, 

𝜙 = 𝜙′(𝒔′) + 𝜙′′(𝒔′′) = 2𝜎𝑛 (5)
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where 𝜙′(𝒔′) = |𝑆1
′ − 𝑆2

′ |𝑛  and 𝜙(𝒔′′) = |2𝑆1
′′ + 𝑆2

′′|𝑛 + |𝑆1
′′ + 2𝑆2

′′|𝑛 . 𝑛  is the yield 

function exponent related to the crystal structure, e.g., 6 for body- and 8 for face-

centered cubic. The (𝑆1′, 𝑆2′ ) and (𝑆1′′, 𝑆2′′) in the above expression are the principal 

values of the deviatoric stress tensors 𝒔′  and 𝒔′′ , which are linearly transformed 

Cauchy stress 𝝈 by operators 𝑳′ and 𝑳′′as, 

s

𝒔′ = 𝑪′𝒔 = 𝑪′𝑻𝝈 = 𝑳′ 𝝈 (6)

𝒔′′ = 𝑪′′𝒔 = 𝑪′′𝑻𝝈 = 𝑳′′𝝈 (7)

Tensor representation of two linear transformation tensors 𝑳′ and 𝑳′′ of Yld2000-3d 

anisotropic yield function (Dunand et al., 2012), used to transform the Cauchy stress 

𝝈 to deviatoric stress tensors 𝒔′ and 𝒔′′are given as:  

𝑳′ =
1

3

[
 
 
 
 
2𝛼1 −𝛼1 −𝛼1 0 0 0
−𝛼2 2𝛼2 −𝛼2 0 0 0
0 0 0 3𝛼7 0 0
0 0 0 0 3𝛼9 0
0 0 0 0 0 3𝛼10]

 
 
 
 

(8)

𝑳′′ =
1

9

[
 
 
 
 
−2𝛼3 + 2𝛼4 + 8𝛼5 − 2𝛼6 −4𝛼4 + 4𝛼6 + 𝛼3 − 4𝛼5 𝛼3 + 2𝛼4 − 4𝛼5 − 2𝛼6 0 0 0
4𝛼3 − 4𝛼4 − 4𝛼5 + 𝛼6 −2𝛼3 + 8𝛼4 + 2𝛼5 − 2𝛼6 −2𝛼3 − 4𝛼4 + 2𝛼5 + 𝛼6 0 0 0

0 0 0 9𝛼8 0 0
0 0 0 0 9𝛼11 0
0 0 0 0 0 9𝛼12]

 
 
 
 

(9)

The linear transformation tensors above are composed of 12 anisotropic material 

parameters 𝛼 𝑖,1−12 , among which 𝛼𝑖,9−12  represent out of plane shear stresses. 

These parameters are considered unity as the out of plane shear stresses are 

assumed to be isotropic, thereby reducing the computation cost (Dunand et al., 

2012). The Cauchy stress vector is 𝜎 = {𝜎𝑥𝑥 𝜎𝑦𝑦 𝜎𝑧𝑧 𝜎𝑥𝑦 𝜎𝑦𝑧 𝜎𝑧𝑥} and the 

0
0

4𝛼5
0

𝛼5
+ 𝛼
2𝛼6

0

0
0
0

2

3

0
0

are given as:  

anisotropic yield function (Dunand et al., 2012), used to transform the Cauchy stress 

are given as:  

anisotropic yield function (Dunand et al., 2012), used to transform the Cauchy stress 

Tensor representation of two linear transformation tensors 
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transformed stress deviator vectors are 𝑠′ = {𝑠′𝑥𝑥 𝑠′𝑦𝑦 𝑠′𝑥𝑦 𝑠′𝑦𝑧 𝑠′𝑧𝑥} and 𝑠′′ =

{𝑠′′𝑥𝑥 𝑠′′𝑦𝑦 𝑠′′𝑥𝑦 𝑠′′𝑦𝑧 𝑠′′𝑧𝑥}.

To capture the differential hardening behavior as shown in Figures 4a and 4b, the 

variations of normalized stresses (𝜎̂𝑅𝐷, 𝜎̂𝐷𝐷, 𝜎̂𝑇𝐷 and 𝜎̂𝑏) and strain ratios (𝑟𝑅𝐷, 𝑟𝐷𝐷, 

𝑟𝑇𝐷 and 𝑟𝑏) are fitted by an exponential equation as Eq. (1), and the results are used 

to calibrate the parameters with respect to the plastic work 𝛼𝑖,1−8(𝑊𝑝) . The 

parameters are determined by solving the equations using the least square algorithm 

consecutively with respect to the plastic work. Different values have been 

recommended for the yield function exponent 𝑛 in the literature. For instance, 

Nagano et al. (2018) observed the closest agreement with the experimental data 

when 𝑛 =8 is used to describe the anisotropy of a pure titanium sheet. In this study, 

The yield function exponent is set to 𝑛=8 based on the recommendation by Ishiki et 

al. (2011) for CP-Ti, identified using uniaxial tension and in-plane biaxial tension tests 

for the Yld2000-2d yield locus which should produce the same yield locus description 

with Yld2000-3d. However, there are other studies using different values of exponent 

based on the material, e.g., 6, 8, and 10, etc., (Hu et al., 2021; Mutrus et al., 2010). 

The evolutionary parameters 𝛼𝑖,1−8(𝑊𝑝) , calibrated for different strain rate and 

temperature conditions up to a plastic work level of 𝑊𝑝=45 MJ/m³, are illustrated in 

the Figures 7a and 7b. Most parameters tend to saturate with the exception of 𝛼2
and 𝛼3  when 𝑊𝑝<30 MJ/m3, and all the parameters are assumed to be constant 

when 𝑊𝑝>45 MJ/m3. Figure 8 showcases the normalized yield loci predictions of CP-

Ti by the calibrated 𝛼𝑖,1−8(𝑊𝑝) parameters, under different levels of 𝑊𝑝 for strain rates 

of 0.001 /s and 0.01 /s and temperatures of 0˚C and 20˚C. Representation of yield 

loci in the real stress space is shown in Figures B1(a) and (b) Appendix B. As 

discussed in Section 1, a strong differential hardening is observed in the yield loci 

plots, especially at small plastic work levels, and eventually stabilizes at a higher 

plastic work level, approximately 30 MJ/m3. 
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Figure 7 Yld2000-3d parameters calibrated for 0˚C and 20˚C at strain rates of (a) 

0.001 /s and (b) 0.01 /s plotted with respect to plastic work 𝑊𝑝. 
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Figure 8 Yield locus evolution in normalized stress space at strain rates of (a) 0.001 

/s and (b) 0.01 /s.

The plasticity characterization of CP-Ti underscores the complexity of its yielding 

behavior which is influenced by factors such as material anisotropy, plastic 

deformation level, strain rate and temperature. It highlights the necessity of these 

multiple factors for an accurate description of the material’s plasticity. While previous 

works have numerically implemented the strain rate dependency of anisotropic yield 

functions (Peters et al., 2014), we employ a robust approach with an  ANN model 

employed within the Yld2000-3d framework to describe the strain rate and 

temperature dependent evolution of anisotropic yield locus for CP-Ti.  

4. Artificial neural network (ANN) modeling 

4.1 Architecture of ANN models 

To address the complexity of plastic behavior of CP-Ti as shown in section 3, a 

robust material modeling approach that integrates the machine learning algorithm 

with constitute models developed within plasticity theory framework, is proposed. 

This method leverages the flexibility of machine learning algorithms while adhering to 

the conventional constitutive equations and thereby ensuring numerical stability of 

FE simulations. Specifically, two deep learning regression models are introduced to 
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capture the effect of strain rate and temperature on the strain hardening and plastic 

anisotropy as a function of plastic deformation, i.e., equivalent plastic strain and 

plastic work. Deep learning involves training an ANN with multiple layers and nodes 

to learn to make predictions from the complex data. 

ANNs are typically built of multiple layers, which consist of several nodes, to 

progressively extract complex features from the input. In many neural network 

architectures, these layers are structured in a sequential manner, forming a chain-

like structure where each layer is a function of the preceding layer. The input data 𝑿

is fed into an input layer and passes through several hidden layers. The neurons in 

different layers are connected via weights 𝑾 and biases 𝒃, enabling information flow 

throughout the network. An activation function is applied to the weighted sum of 

inputs to introduce non-linearity into the network. The final predictions 𝒀′ are made at 

the output layer.  

For an ANN comprising 𝑙 hidden layers, the mathematical representation for various 

layers can be summarized as, 

 The output from the first hidden layer is, 

𝒀𝟏 = 𝜓(𝑾𝟏 ∙ 𝑿 + 𝒃𝟏) (10)

where 𝑾𝟏 and 𝒃𝟏 are the weight and bias matrices associated with the first hidden 

layer, 𝑿 is the input vector of shape (𝑘 × 1) fed into the ANN when 𝑘 is the number of 

inputs, and 𝜓 is the activation function applied to each layer. 

 In the subsequent hidden layers, the output of the previous layer serves as 

the input. 

𝒀𝒊=𝟐,𝒍 = 𝜓(𝑾𝒊=𝟐,𝒍 ∙ 𝒀𝒊=𝟏,𝒍−𝟏 + 𝒃𝒊=𝟐,𝒍) (11)

 Finally, the predictions from the ANN are given by the output layer, 
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𝒀′ = 𝑾𝒐𝒑 ∙ 𝒀𝒍 + 𝒃𝒐𝒑 (12)

where 𝑾𝒐𝒑 and 𝒃𝒐𝒑 are the weight and bias matrices of the output layer, respectively, 

𝒀𝒍 is the output from the 𝑙th hidden layer, and 𝒀′ is the output vector of the shape 

(𝑚 × 1) when 𝑚 is the number of outputs from the ANN. 

Being a regression problem, this study used mean-squared error (MSE) between the 

target value 𝑦𝑚 and the ANN output 𝑦’𝑚 as the cost function 𝜉. 

𝜉 =
∑ (𝑦𝑖 − 𝑦𝑖

′)2𝑚
𝑖=1

𝑚
(13)

The objective of the training phase is to determine weight and bias matrices reducing 

the cost function, equivalently improving the prediction accuracy. The 

backpropagation algorithm is employed to compute the gradients of the cost function 

from the output layer back to the input layer. The gradients are subsequently used to 

update the weights and biases of each neuron using the gradient descent 

optimization method. During the prediction, flow of data is unidirectional from the 

input layer to the output layer through the hidden layers. 

In the current study, two independent ANN models are proposed: ANN(𝜎̅) to capture 

the strain hardening behavior and ANN (𝛼)  to capture the evolution of plastic 

anisotropy commonly existing in a CP-Ti sheet. The ANN(𝜎̅) replaces conventional 

hardening models and predicts the stress as a function of temperature 𝑇, strain rate 

𝜀̅̇, and plastic strain level 𝜀.̅ On the other hand, ANN(𝛼) is introduced to predict the 

parameters of the Yld2000-3d yield function taking into account the temperature 𝑇, 

strain rate 𝜀̅̇, and plastic work 𝑊𝑝, thereby describing the plastic anisotropy of CP-Ti 

within a classical yield function framework. This approach is aimed to enhance the 

robustness in modelling complex material behavior using machine learning algorithm 

while following the plasticity theory framework. The ANN models can be represented 

as, 
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ANN(𝜎): {
𝑇
𝜀̅̇

𝜀 ̅
}→{𝜎}

ANN(𝛼): {

𝑇
𝜀̅̇

𝑊𝑝
}→
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𝛼1
𝛼2
.
.
𝛼8}
 
 

 
 

When it comes to the architecture of the ANN model, important decisions involve 

determining the depth of the network (# of layers), width of each layer (# of nodes), 

and activation function. Deeper networks often exhibit the ability to achieve 

comparable generalization to the test set using fewer nodes per layer and thus fewer 

parameters. However, optimizing deeper networks can be more challenging. 

Therefore, the optimal network architecture for ANN (𝛼) is determined using 

KerasTuner, a Python library for hyperparameter optimization. KerasTuner utilizes a 

random search algorithm to efficiently explores a wide range of hyperparameters, 

increasing the chance of finding an optimal solution and proposes the best 

architecture from the predefined search space. Subsequently, neural networks are 

developed in Python using Keras and TensorFlow libraries. The schematic diagram 

shown in Figure 9 illustrates the ANN architectures developed for this study. shown in Figure 9 illustrates the ANN architectures developed for this study. 
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Figure 9 Schematic diagram showing architectures of (a) ANN(𝜎) and (b) ANN(𝛼).

4.2 Training of ANN models 

The construction of ANN involves several essential steps, including creating and 

preprocessing training data, determining the network architecture, and training the 

network. For the training of the ANN(𝜎̅), the six extrapolated hardening curves at 

three temperatures (-10, 0 and 20 ˚C) and at two strain rates (0.01 and 0.001 /s), as 

shown in the Figure 6, are used. The training dataset comprises a total of 6006 data 

points created by Swift-Voce fitting to the experiment with Δ𝜀̅ = 0.001  between 

0 ≤ 𝜀̅ ≤ 1 . Similarly, a total of 18004 training data points are generated for the 

ANN(𝛼) with a plastic work increment Δ𝑊𝑝 = 0.01 between 0 ≤ 𝑊𝑝 ≤ 45MJ/m3. The 

input data are normalized using the following equation to eliminate any bias that 

could arise due to differences in the magnitudes of the different input features. 

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
(14)

where 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 are the maximum and minimum values of each input feature 

within the training data.  
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Among the total datasets, 15% is reserved as unseen to test the performances of the 

ANN(𝜎) and ANN(𝛼) after training. For the ANN(𝛼), additional 15% of the dataset is 

used for validation, leaving 70% of the dataset for training. Given the limited number 

of training data, 𝐾 -fold cross-validation is employed for the ANN (𝜎) . In this 

technique, the dataset is divided into 𝐾 equal-sized subsets, with one subset used 

for validation, leaving the remaining 𝐾 − 1  subsets for training. This process is

repeated 𝐾 times with each time a different subset used for validation, to ensure 

comprehensive validation of the model performance. With 𝐾 =8 chosen as the 

optimal value; results are averaged to estimate the overall model performance. For 

the ANN(𝛼) , 𝐾 -fold cross-validation is not required as sufficient training data is 

available. The Table 1 below provides an overview of features of ANN(𝜎)  and 

ANN(𝛼). 

During the training of the ANN models, an early stopping criterion with a patience of 

30 epochs is applied. This criterion monitors the model performance on the 

validation set throughout training and halts the process if the performance ceases to 

improve or degrades continuously for 30 consecutive epochs. Additionally, a callback 

named ModelCheckpoint is implemented to save the best-performing model, 

ensuring that the best model is saved rather than the model at the final epoch. These 

features are intended to prevent the model from over training. The learning curves 

demonstrating the performance evaluation of the ANN models during training and 

validation with respect to number of epochs are shown in Figure 10. The ANN(𝜎̅)

and ANN(𝛼) achieved remarkable performance, predicting the outputs with a mean 

absolute error (MAE) of 0.61 MPa and 0.0002, respectively when evaluated on a 

dedicated unseen test dataset. The models’ predictions for the test data set are 

discussed in Appendix C. 

Table 1 Details for artificial neural network (ANN) models 

Features ANN(𝜎) ANN(𝛼)

Node distribution 16x16x16x16x16x16 48x32x32x48

# tunable parameters 1441 4792
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Batch size 8 4

Optimizer ADAM ADAM

Activation function Softplus Sigmoid

Loss function MSE MSE

Metric function MAE MAE

Error 0.61 MPa 0.0002

Figure 10 Learning curves of (a) ANN(𝜎) and (b) ANN(𝛼).

4.3 ANN predictions at intermediate conditions with work hardening 
comparison 

The validity of ANN(𝜎) under untrained temperature and strain rate is assessed by 

comparing the stress-strain curves tested at an intermediate of training conditions, 

i.e., 𝑇=10˚C and 𝜀̅̇ =0.005 /s. As shown in Figure 11, the ANN(𝜎) prediction closely

align with the experimental flow curve, with a maximum mean absolute deviation of 

less than 4.6 MPa across three repetitions. The accurate prediction of flow curve 

demonstrates that the developed ANN(𝜎̅) can capture the strain hardening behavior 

of CP-Ti well within the training range. 

comparison 

The validity of ANN

4.3 ANN predictions at intermediate conditions with work hardening 4.3 ANN predictions at intermediate conditions with work hardening 

 Learning curves of (a) ANN Learning curves of (a) ANN
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Figure 11 Comparison of experimentally measured and ANN(𝜎) predicted hardening 

curves at a temperature of 10˚C and strain rate of 0.005 /s. Each symbol indicates an 

experiment trial. 

C and strain rate of 0.005 /s. Each symbol indicates an 

 Comparison of experimentally measured and ANN

C and strain rate of 0.005 /s. Each symbol indicates an 

 Comparison of experimentally measured and ANN
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To further validate the ANN(𝜎)  model, the stress strain response in a varying 

temperature uniaxial tension (UT) test at a constant displacement is investigated. 

During the test, the temperature varies from -1°C to 20°C and the specimen is 

loaded at a constant strain rate of 0.0074 /s. The temperature of the test specimen is 

controlled using a cooling plate attached to its rear as mentioned in Section 1.1, and 

a uniform temperature of -1°C is obtained on the gage area at the beginning of the 

test. To vary the temperature of the specimen, the cooling plate is detached from the 

specimen right before the beginning of the test, ensuring a gradual increase in 

temperature by exchanging heat with the atmosphere. The variation of temperature 

and plastic strain during the test is shown in Figure 12a. The experimental data is 

then fed into the ANN(𝜎) and the predictions are compared in Figure 12b. The good 

agreement between the ANN( 𝜎)  prediction and the experimental stress-strain 

response reaffirms the model’s capability to accurately predict complex conditions. 

Figure 12 (a) Variation of plastic strain and temperature during the varying 

temperature UT test and (b) Comparison of ANN( 𝜎) prediction with varying 

temperature UT test results.

Conversely, the validation of ANN(𝛼) is carried out through the ductile fracture tests 

conducted at the intermediate conditions (see Section 5). For this, the developed 

ANN models are implemented into user material subroutines (UMAT) for the FE 

simulations using Abaqus/Implicit. Figures 13a and 13b show the ANN(𝛼) predictions 

 (a) Variation of plastic strain and temperature during the varying 

response reaffirms the model’s capability to accurately predict complex conditions. 

 prediction and the experimental stress-strain 

response reaffirms the model’s capability to accurately predict complex conditions. 

 and the predictions are compared in Figure 

 prediction and the experimental stress-strain 
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and the corresponding yield loci evolutions with respect to the plastic work at 𝑇=10˚C 

and 𝜀̅̇ =0.005 /s. The ANN(𝛼) efficiently learns the trends exhibited by each yield 

function parameter for CP-Ti from the training data and successfully extends this to

predict the parameters for the unseen condition. The model predicts the strong 

differential hardening in the yield loci at small plastic work and the saturation near 45

MJ/m3 similar to the training conditions. 
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Figure 13 (a) ANN(𝛼) prediction for Yld2000-3d parameters at T=10˚C and 𝜀̅̇=0.005 

/s and (b) corresponding yield loci with plastic work 𝑊𝑝. 

5. Ductile fracture of CP-Ti

5.1 Ductile fracture models 

The developed model capturing plastic behavior of CP-Ti can be used with 

uncoupled ductile fracture models to investigate ductile fracture behavior across 

positive stress triaxiality condition (𝜂 > 0). It should be noted that negative stress 

triaxiality condition (𝜂 < 0) is not considered in the current study because the fracture 

strain under positive triaxiality is usually much lower than negative range. In this 

reason, the strength differential effect exiting in CP-Ti is not included in the modelling 

framework although the importance is fully acknowledged. Among the various 

models outlined in the Introduction, this work adopts Johnson-Cook (JC), Hosford-

Coulomb (HC), and Lou-2014 criteria for ductile fracture analysis of CP-Ti across 

positive triaxiality. 

The developed model capturing plastic behavior of CP-Ti can be used with 

uncoupled ductile fracture models to investigate ductile fracture behavior across 

The developed model capturing plastic behavior of CP-Ti can be used with 

5.1 Ductile fracture models 

5. Ductile fracture of CP-
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 corresponding yield loci with plastic work 

 Yld2000-3d parameters 

 corresponding yield loci with plastic work 
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The stress state of the material is characterized using dimensionless scalars, namely 

stress triaxiality 𝜂 and Lode angle parameter 𝜃̅. Stress triaxiality is a representation 

of the ratio between the first Cauchy and second deviatoric stress tensors invariants. 

Conversely, the Lode angle parameter 𝜃̅ measures the ratio of the third and second 

deviatoric stress tensors invariants. These parameters represent the influence of 

hydrostatic pressure and deviatoric stress on fracture strain, respectively. The 

formulas defining these parameters are, 

𝜂 =
𝜎𝑚
𝜎
=
𝐼1
3𝜎

(15)

𝜃̅ = 1 −
2

𝜋
acos (

3√3

2

𝐽3

√𝐽2
3
) (16)

where 𝐼1 is the first Cauchy, and the 𝐽2  and 𝐽3  are the second and third deviatoric 

stress invariants. 

The JC model characterizes the ductile fracture strain 𝜀𝐽̅𝐶
𝑓  as a function of stress 

triaxiality 𝜂, strain rate 𝜀 ̅̇ , and temperature 𝑇. Since the temperature and strain rate 

effects are neglected in the current ductile fracture study, the expression for the JC 

model reduces to, 

𝜀𝐽̅𝐶
𝑓
= 𝐷1 + 𝐷2 exp(−𝐷3 𝜂) (17)

where 𝐷𝑖,1−3 are material constants. 

The HC model, proposed by Mohr and Marcadet (2015), transforms the principal 

stress space into the domain of equivalent plastic strain 𝜀,̅ stress triaxiality 𝜂, and the 

Lode angle parameter 𝜃̅  for the fracture prediction. Based on micromechanical 

considerations, the HC model defines the plastic strain at the onset of fracture 𝜀𝐻̅𝐶
𝑓

as, 
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and temperature 
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𝜀𝐻̅𝐶
𝑓
(𝜂, 𝜃̅) = 𝑏(1 + 𝑐)

1
𝑞 [{(

(𝑓1 − 𝑓2)
𝑎 + (𝑓2 − 𝑓3)

𝑎 + (𝑓1 − 𝑓3)
𝑎

2
)}

1
𝑎

+ 𝑐(2𝜂 + 𝑓1 + 𝑓3)]

−
1
𝑞

(18)

with the Lode angle parameter dependent trigonometric functions, 

𝑓1[𝜃̅] =
2

3
cos (

𝜋

6
(1 − 𝜃̅)) (19)

𝑓2[𝜃̅] =
2

3
cos (

𝜋

6
(3 + 𝜃̅)) (20)

𝑓3[𝜃̅] = −
2

3
cos (

𝜋

6
(1 + 𝜃̅)) (21)

The Lou-2014 model describes the ductile fracture in a 3D space of stress triaxiality 

𝜂, Lode parameter 𝐿 (≅ −𝜃̅), and equivalent plastic strain 𝜀𝐿̅𝑜𝑢
𝑓 . The model extends 

the ductile fracture below a stress triaxiality of −1/3 by introducing a cut off function. 

The model consists of four material parameters 𝐶1 , 𝐶2 , 𝐶3  and 𝐶 , in which 𝐶

determines the cut off value for stress triaxiality. There is no fracture for 𝜂 < −1/3, 

when 𝐶 = 0, while the model predicts the fracture for uniaxial compression, plane 

strain compression, and equibiaxial compression (where 𝜂 < −1/3), when 𝐶 = 1/3. 

𝜀𝐿̅𝑜𝑢
𝑓 (𝜂, 𝐿) = 𝐶3 (

2

√𝐿2 + 3
)
−𝐶1

(

𝜂 +
3 − 𝐿

3√𝐿2 + 3
+ 𝐶

1 + 𝐶
)

−𝐶2

(22)

The model consists of four material parameters 

determines the cut off value for stress triaxiality. There is no fracture for 

The model consists of four material parameters 

the ductile fracture below a stress triaxiality of 

The model consists of four material parameters 

𝐿 (≅ −𝜃

the ductile fracture below a stress triaxiality of 

The Lou-2014 model describes

≅ −𝜃), and equivalent plastic strain 

The Lou-2014 model describes the ductile fracture in a 3D space of stress triaxiality 

3
cos (

6
1
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The Lode parameter is expressed as 𝐿 = 2𝜎2−𝜎1−𝜎3

𝜎1−𝜎3
 when 𝜎1, 𝜎2, and 𝜎3 indicate the 

principal stresses (𝜎1 > 𝜎2 > 𝜎3).  

For non-proportional loading conditions, the fracture strain under proportional loading 

is incorporated into a damage indicator 𝐷 framework as, 

𝐷 = ∫
𝑑𝜀̅

𝜀𝑝̅𝑟
𝑓
(𝜂, 𝜃̅)

𝜀̅𝑓

0
(23)

where 𝜀𝑓̅ is the accumulated equivalent plastic strain at the onset of fracture along a 

non-proportional path. The damage indicator 𝐷 evolves from 0 for undeformed to 1 

for the onset of fracture states. 

This work primarily focuses on developing a robust modeling approach using artificial 

neural networks (ANNs) to describe the complex plastic behavior of CP-Ti, which is 

highly sensitive to temperature and strain rate. The ductile fracture analysis of CP-Ti 

is discussed as a validation for the proposed approach. Consequently, the 

temperature and strain dependency of ductile fracture (Li et al., 2023; Pandya et al., 

2020) is not considered in this work. 

While the Yld2000-3d function is incorporated in this study to account for plastic 

anisotropy, it is assumed that the fracture response remains isotropic, meaning the 

initiation of fracture is not influenced by the orientation of the stress tensor relative to 

the material coordinate system. As this work primarily focus on developing a robust 

modeling approach using ANNs to describe the complex plastic behavior of CP-Ti, 

which is sensitive to temperature and strain rate, the ductile fracture analysis of CP-

Ti is discussed as a validation for the proposed approach. Hence the temperature 

and strain rate dependency of the ductile fracture is beyond the scope of this study. 

The temperature and strain dependency of ductile fracture can be found (Li et al., 

2023; Pandya et al., 2020).  

5.2 Experiments for ductile fracture characterization 

the material coordinate system. As this work primarily focus on developing a robust 

modeling approach using ANNs to describe the complex plastic behavior of CP-

initiation of fracture is not influenced by the orientation of the stress tensor relative to 

the material coordinate system. As this work primarily focus on developing a robust 

anisotropy, it is assumed that the fracture response remains isotropic, meaning the 
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anisotropy, it is assumed that the fracture response remains isotropic, meaning the 

3d function is incorporated in this study to account for plastic 
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2020) is not considered in this work. 
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Ductile fracture is characterized along the positive triaxiality range under four loading 

paths, including uniaxial tension (UT), shear (SH), and biaxial tensions near 

equibiaxial stretching (BT1) and plane strain tension (BT2) using specimens as 

illustrated in Figure 14. The central hole specimen, used for uniaxial tension fracture 

near the hole edge has a 4 mm diameter hole at the center. The outlines of samples 

are fabricated using abrasive water jet and the holes are made by drilling followed by 

milling to ensure a high-quality surface to enhance the fracture resistance. For the 

shear fracture (SH), a notched specimen geometry is determined following the 

methodology proposed by Roth and Mohr (2018), which takes into account the strain 

hardening and ductility. To address the uncertainty of ductility prior to testing, three 

different specimens are tested, and the one with the highest strain is selected for the 

shear fracture characterization, as shown in Figure 14b. shear fracture characterization, as shown in Figure 14b. 

different specimens are tested, and the one with the highest strain is selected for the 
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Figure 14 Specimen geometries for ductile fracture characterization: (a) central hole 

for uniaxial tension (UT), (b) notch for shear (SH), and (c) cruciform with double-

sided dimples at the center for biaxial tensions (BT1 and BT2).

For biaxial tensions (BT1 and BT2), the modified cruciform with dimples positioned at 

the center of both faces introduced by Ha et al. (2019) is used. This design aims to 

concentrate deformation towards the geometric center of the specimen, resulting in 

fracture in the center and enabling the fracture strain measurement using the DIC 

system from the surface. In this study, similar geometries are adopted to probe two 

biaxial tension stress states, i.e., near equibiaxial (BT1) and plane strain tension 

 Specimen geometries for ductile fracture characterization: (a) central hole 

for uniaxial tension (UT), (b) notch for shear (SH), and (c) cruciform with double-

 Specimen geometries for ductile fracture characterization: (a) central hole 
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(BT1). The dimples are defined by intersecting a radius 𝑅, i.e., 153.9 and 107.2 mm, 

with the specimen surface and specifying the diameter 𝜙 of the circles related to the 

2D arc length, i.e., 𝜙  22 and 𝜙  17 mm, for BT1 and BT2, respectively, as depicted in 

Figure 14c. The cruciform geometries with five slits on each arm are initially 

fabricated using abrasive water jet cutting, followed by the machining of the dimples 

using a 3-axis HAAS CNC machine with end-milling. A customized fixture is 

employed to securely hold and align the specimen during the milling process, 

ensuring support for the bottom face while the dimples are machined on the opposite 

face. 

The ductile fracture experiments are conducted under unseen temperature and 

strain rate conditions, i.e., T=10˚C and 𝜀̅̇ =0.005 /s. The experiments for UT and SH 

are performed using the MTS landmark 370 servo-hydraulic universal testing 

machine, and for BT1 and BT2, the in-plane displacement controlled biaxial loading 

frame is used (Deng et al., 2015). The displacements ratios 𝛿𝑅𝐷: 𝛿𝑇𝐷 =1:1 and 

𝛿𝑅𝐷: 𝛿𝑇𝐷 =  44:1 are applied to the BT1 and BT2 specimens to achieve near 

equibiaxial and plane strain tension, respectively. The detailed specifications of these 

machines along with the temperature control setup and the DIC system are 

previously provided in Section 2.1 and Section 2.2. From the ductile fracture 

experiments, the force-displacement (𝐹 − 𝛿) and local surface strain (𝜀 − 𝛿) curves, 

including the full strain field from the surface, are measured using the testing 

machine and the DIC systems. The details of local strain and displacement 

measurements from the specimens are described in Appendix D. 

5.3 Validation of plasticity models with hybrid approach 

The DIC system effectively captures the local strain field on the surface, but it has 

limitations in assessing fracture properties due to the inability to directly measure 

local stress and strain fields inside the material. Therefore, fracture initiation 

conditions are estimated through FE simulations of the fracture experiments using 

the developed ANN plasticity models. The simulations are conducted using the 

commercial software Abaqus/Implicit where the ANN (𝜎̅)  and ANN (𝛼)  are 

implemented into the UMAT subroutine as shown in the flowchart of Figure 15. 

General cutting plane method (GCPM) as described in Appendix E is employed as 

5.3 Validation of plasticity model

measurements from the specimens are described in Appendix D

machine and the DIC systems. The details of local strain and displacement 
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0.005 /s. The experiments for UT and SH 
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the stress update algorithm (Lee et al., 2022). The neural networks are translated 

into Fortran code as a subroutine with the weights and biases exported from the 

Python interface where the ANN models are originally developed. 

Figure 15 Flow chart showing incorporation of ANN(𝜎̅) and ANN(𝛼) within the 

Abaqus/Implicit UMAT subroutine. 

Considering the symmetry of the sample geometry about the three mutually 

perpendicular axes, 1/8 models are created for the FE simulation of UT, BT1, and 

BT2 specimens, while the asymmetric SH specimen allows only a full model. All 

models are meshed with 8 node linear brick elements using reduced integration 

(C3D8R) as shown in Figure 16. To investigate the importance of capturing the 

differential hardening of CP-Ti on the hybrid experimental-numerical approach, in the 

present work, two cases of yield function parameters are compared: one with 

evolving parameters predicted by the ANN model with respect to the plastic work, 

Considering the symmetry of the sample geometry about the three mutually 

 Flow chart showing incorporation of ANN Flow chart showing incorporation of ANN
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referred to as ANN(𝛼), and the other with constant parameters at 𝑊𝑝=45 MJ/m³, 

named as Const.(𝛼), which are often used by researchers. 

Figure 16 Mesh design for fracture specimens for (a) UT (b) SH, (c) BT1, and (d) 

BT2.

The experimental force-displacement (𝐹 − 𝛿) and local surface strain-displacement 

(𝜀 − 𝛿) curves are compared to validate the FE model predictions. The comparison 

of ductile fracture experiments and FE simulations until fracture initiation are 
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illustrated in Figures 17a to 17d. Overall, FE simulations with ANN(𝛼) provide better 

agreement with the experiments compared to the results with Const.(𝛼), except for 

BT2, but the difference is minor. Both models overpredict the hardening rate in SH, 

which indicates that the uniaxial tension experiment in DD using an ASTM E8 

specimen (in Section 2.1) is not sufficient to characterize the shear deformation of 

CP-Ti and requires future improvement, e.g., including additional shear testing for 

the ANN model training and validation.  

Figure 17 Force-displacement and local strain-displacement curves from 

experiments and FE simulations for ductile fracture specimens (a) UT, (b) SH, (c) 

BT1, and (d) BT2.

The 𝐹 − 𝛿 curve obtained from the UT simulations using both ANN(𝛼) and Const.(𝛼) 

models closely overlap each other (Figure 17a). The ANN models, especially 
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ANN(𝜎), prove the capability by providing a reasonably accurate prediction of the 

material hardening behavior even when trained with limited data, thereby eliminating 

additional effort for experiments and parameter calibration. For the 𝜀 − 𝛿  curves 

along the axial and transverse directions, the predictions from ANN(𝛼) lie closer to 

the experimental curve compared to the predictions from Const.(𝛼). Full strain fields 

measured by the DIC system at the onset of fracture, i.e., the image prior to a crack 

being visible, are compared in Figure 18. Local strains are highly concentrated near 

the hole where the stress state is close to uniaxial tension, but the material can 

reach a higher strain than an ASTM E8 uniaxial tension test before the fracture. Both 

ANN(𝛼) and Const.(𝛼) models reasonably well reproduced the experimental strain 

fields along the axial and transverse directions. However, it should be noted that the 

local strain of Const.(𝛼) is slightly overpredicted than the ANN(𝛼) and experiment.  slightly overpredicted than the ANN(

fields along the axial and transverse directions. However, it should be noted that the 

 slightly overpredicted than the ANN(
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Figure 18 Comparison of surface strain distribution along (a) axial and (b) transverse 

directions in UT at the onset of fracture obtained from the experiment and FE 

simulations. 

For SH, both models show very close predictions for the 𝜀 − 𝛿 curve in Figure 17b. 

The strong plastic anisotropy of the CP-Ti as discussed in Section 2.3 and Section 

3.2 is one of the key reasons for the inaccuracy in the SH simulations. Yld2000-3d 

yield function, calibrated by a conventional method using the uniaxial tensions and 

equibiaxial tension tests, is not flexible enough to capture the shear deformation at 

the same time. It should be noted that the uniaxial tension in the DD is the only test 

input including the shear stress component used for the yield function parameter 

calibration of this work, which leads to overprediction of shear flow stress, i.e., 

𝜎𝑥𝑦 𝜎⁄ = 0.82  at 45 MJ/m3. This contributes to the observed deviations between 

experimental and simulation results using ANN(𝛼) and Const.(𝛼). While the 𝜀 − 𝛿

predictions at the maximum strain localization are in good agreement with the 

experiment, the full strain field predictions in Figure 19 miss the localization pattern 

in the experiment, which are caused by the same limitations as the 𝐹 − 𝛿 curve. 

Figure 19 Comparison of shear surface strain distribution in SH at onset of fracture 

obtained from the experiment and FE simulations. 

the full strain field predictions in Figure 19 miss the localization pattern 

in the experiment, which are caused by the same limitations 

the full strain field predictions in Figure 19 miss the localization pattern 
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predictions at the maximum strain localization are in good agreement with the 

experimental and simulation results using ANN(𝛼
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) and Const.(

calibration of this work, which leads to overprediction of shear flow stress, i.e., 
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input including the shear stress component used for the yield function parameter 
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Under the equibiaxial stretching (BT1), the CP-Ti material clearly exhibits high 

anisotropy as is evident in the distinct 𝐹 − 𝛿 and 𝜀 − 𝛿 responses observed in the RD 

and TD (Figure 17c). The predictions of force and local strain in the RD and TD from 

the ANN(𝛼) align with the experimental results better than the Const.(𝛼). Const.(𝛼) is 

closer to the experimental strain along the RD and TD at a specific 𝛿, but it highly 

overpredicts the displacement to fracture in the RD and underpredicts the transverse 

force 𝐹𝑇𝐷 . This can be attributed to the missing prediction of strong differential 

hardening near equibiaxial and plane strain tension if constant 𝛼 values are used as 

illustrated in Figure 13b by the ANN(𝛼). For this reason, the surface strain fields at 

the onset of fracture (Figure 20) are missed by the Const.(𝛼), while the ANN(𝛼) 

predicts the distribution of 𝜀𝑅𝐷 and 𝜀𝑇𝐷 with fair resemblance to the experiment. (The 

crack propagation is shown in Appendix F.)

Figure 20 Comparison of surface strain distribution along (a) RD and (b) TD in BT1 

at the onset of fracture obtained from the experiment and FE simulations. 

 with fair resemblance to the experiment
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For BT2, the strain and displacement along the TD are very small due to the plane 

strain tension deformation in the center of specimen, and thus Figure 17d presents 

the force and strain data solely along the RD. Both ANN(𝛼) and Const.(𝛼) models 

closely replicate the 𝐹𝑅𝐷 − 𝛿𝑅𝐷 and 𝜀𝑅𝐷 − 𝛿𝑅𝐷  curves, matching well with the 

experimental values. Since the evolution of the yield locus near the plane strain 

tension along the RD is negligible (refer Figure 13b), it is expected that the FE 

models based on both evolving and constant parameters of the yield function yield 

similar results. However, the ANN(𝛼) strain field prediction shows slightly superior 

agreement with experimental results. This is evidenced by the similar vertical lengths

of severe positive strain (red region at the center) in Figure 21a, and the prediction of 

severe negative strain (blue regions at top and bottom of the center) in Figure 21b.

(The crack propagation and the strain path are shown in Appendix F.)

Figure 21 Comparison of surface strain distribution along (a) RD and (b) TD in BT2 

at the onset of fracture obtained from the experiment and FE simulations. 

(The crack propagation and the strain path are shown in Appendix F

 at top and bottom of the center) in Figure 21

(The crack propagation and the strain path are shown in Appendix F
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Overall, the ductile fracture simulations at unseen conditions show remarkable 

agreement with the experiments across various stress triaxialities. This highlights the 

successful integration of ANNs within the phenomenological framework without 

sacrificing the accuracy or computational stability of FE modeling. 

5.4 Construction of ductile fracture envelope for CP-Ti

The hybrid experimental-numerical analysis of ductile fracture of CP-Ti validates the 

efficiency of ANN(𝛼) in the previous section. The comparison of the experiments and 

simulations underscores the successful prediction of ANN models at unseen testing 

conditions, i.e., T=10˚C and 𝜀̅̇ = 0.005 /s. Consequently, the key parameters 

necessary for fracture model calibration, such as fracture strain 𝜀𝑓̅, stress triaxiality 𝜂, 

and Lode angle parameter 𝜃̅  (or Lode parameter 𝐿 ), are extracted from the 

simulations with the ANN(𝛼). These parameters are extracted from critical locations 

within the ductile fracture specimens where fracture is initiated. For instance, the 

data is extracted at the center of dimple for BT1 and BT2, at the edge of central hole 

for UT, and at the middle of narrow gage section for SH. Assuming the fracture is 

initiated at the location of highest equivalent strain, equivalently where the 

deformation is mostly concentrated, all extraction points are consistently positioned 

at the midplane through the specimen thickness. 

The loading paths to fracture are crucial for ductile fracture model calibration, as they 

capture the loading history of the critical point of the material from the beginning of 

loading until the fracture is initiated. The loading paths from the four ductile fracture 

specimens are plotted in relation to stress triaxiality 𝜂 and Lode angle parameter 𝜃̅ as 

depicted in Figure 22. Among the specimens, the UT displays the highest fracture 

strain 𝜀𝑓̅ while the lowest is obtained from BT2, i.e., plane strain. With the exception 

of initial fluctuations, the stress triaxiality 𝜂 and Lode angle parameter 𝜃̅ remained 

relatively consistent for UT, BT1, and BT2, indicating the proportional loading 

subjected in the experiment. It should be noted that stress triaxiality 𝜂 for plane strain 

tension and equibiaxial tension are predicted as 0.74 and 0.81, respectively, 

because of the strong anisotropy in CP-Ti. (The values are 0.58 and 0.67 for the von 

Mises prediction, respectively). On the other hand, the selected SH specimen shows 

capture the loading history of the critical point of the material from the beginning of 

loading until the fracture is initiated. The loading paths from the four ductile fracture 

capture the loading history of the critical point of the material from the beginning of 
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non-linearities in the loading history with varying stress triaxiality 𝜂 and Lode angle 

parameter 𝜃̅. The effect of non-linearity is compensated by the damage indicator in 

Eq. (23) in Section 5.1 to calibrate the parameters of ductile fracture models. 

Figure 22 Loading paths to fracture 𝜀𝑓̅ with respect to (a) stress triaxiality 𝜂 and (b) 

Lode angle parameter 𝜃̅.

The optimized parameters for the ductile fracture models are detailed in Table 2. The 

JC and Lou-2014 models are calibrated through the least square method, while a 

simplex error minimization algorithm is employed for optimizing the HC model 

parameters. In the case of the HC model, the parameter 𝑞 is typically set at 0.1 for 

most metals. For the Lou-2014 model, the parameter 𝐶 is set to 0, given our interest 

lies on 𝜂 > −0.33. Figure 23 illustrates the fracture envelopes constructed using HC, 

Lou-2014, and JC models in the 3D space of 𝜀𝑓̅, 𝜂, and 𝜃̅. The data points for UT, 

SH, BT1, and BT2 align precisely on the HC and Lou-2014 fracture surfaces. On the 

other hand, JC model, which is independent of Lode angle parameter produces a 

fairly flat envelop which fails to capture the failure strain for SH. The asymmetric 

shapes of fracture envelopes if HC and Lou-2014 underscores the significance of the 

effect of 𝜃̅ on 𝜀𝑓̅.  
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Table 2 Ductile fracture model parameters 

HC 𝑎 = 0.846 𝑏 = 1.362 𝑐 = 0.189 𝑞 = 0.1

Lou-2014 𝐶1 =12.977 𝐶2 = 3.459 𝐶3 = 1.269 𝐶 = 0

JC 𝐷1 = 0.303 𝐷2 = 0.638 𝐷3 = 2.1

Figure 23 Fracture envelopes predicted by (a) HC and (b) Lou-2014, and (c) JC 

models. 

6. Conclusions 

In this study, a robust modeling approach is proposed by incorporating a machine 

learning algorithm into an existing anisotropic yield function to describe the 

complicated temperature and strain rate dependent anisotropic plasticity behavior of 

CP-Ti. The plasticity of the material is characterized by uniaxial tension tests along 

the three orientations and the in-plane biaxial tension tests at temperatures of 20°C 

Figure 23 Fracture envelopes predicted by (a) HC and (b) Lou-Figure 23 Fracture envelopes predicted by (a) HC and (b) Lou-
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and 0°C with strain rates of 0.001 /s and 0.01 /s. The results show substantial 

anisotropy in stresses and strains as evidenced by the distinct stress-strain curves 

and r-values obtained in different orientations. The material also exhibits a differential 

hardening behavior with distorted yield loci, which eventually saturates with 

increased plastic deformation. Two ANNs, i.e., ANN(𝜎̅) and ANN(𝛼) are proposed to 

comprehensively describe the plastic behavior of CP-Ti by accounting for factors 

such as temperature, strain rate, and plastic deformation. The ANN(𝜎̅) model is used 

to capture the strain hardening behavior, while the ANN(𝛼)  model predicts the 

anisotropy parameters of the Yld2000-3d yield function. A remarkable alignment is 

observed between the experiment and prediction for the target conditions at T=10˚C 

and 𝜀̅̇ =0.005 /s, which distinctly underscores the competency of the ANN models in 

accurately capturing the temperature and strain rate dependent plastic behavior of 

the material.  

Next, the ductile fracture of the CP-Ti is investigated through a hybrid experimental-

numerical analysis by integrating the ANN models with the uncoupled fracture 

models. This also provide a validation for the proposed ANN models at an unseen 

temperature and strain rate condition. The fracture behavior is studied under various 

stress states in positive stress triaxiality range including uniaxial tension, shear, near 

equibiaxial tension, and plane strain tension at unseen conditions for the ANNs, i.e., 

T=10˚C and 𝜀̅̇ =0.005 /s. To assess the influence of differential hardening in the 

hybrid approach of ductile fracture modeling, two cases for Yld2000-3d yield function 

parameters, i.e., ANN(𝛼 ) for evolution and Const.(𝛼 ) for constant values, are 

employed in the FE simulations. Owing to the substantial differential hardening 

characteristics of CP-Ti, it is noteworthy that only the ANN(𝛼 ) could achieve a 

satisfactory agreement with the experiments consistently across all the tests. This 

demonstrates the significance of differential hardening on the ductile fracture 

behavior of CP-Ti and confirms the efficiency of ANN(𝛼) in capturing the anisotropic 

plastic behavior of the material. The ductile fracture simulations also highlight the 

computational stability of the developed ANN models while incorporated in FE 

simulations. 

Based on the successful validation of plasticity, the stress triaxiality 𝜂, Lode angle 

parameter 𝜃̅ (or Lode parameter 𝐿), and equivalent plastic strain to fracture 𝜀𝑓̅  are 

employed in the FE simulations. Owing to the substantial differential hardening 

characteristics of CP-Ti, it is noteworthy that only the ANN(

employed in the FE simulations. Owing to the substantial differential hardening 
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parameters, i.e., ANN(
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hybrid approach of ductile fracture modeling, two cases for Yld2000-

parameters, i.e., ANN(
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hybrid approach of ductile fracture modeling, two cases for Yld2000-

 plane strain tension at
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stress states in positive stress triaxiality range including uniaxial tension, shear, near 
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temperature and strain rate condition

stress states in positive stress triaxiality range including uniaxial tension, shear, near 

 also provide a validation for the proposed ANN models at an unseen 

The fracture behavior is studied under various 

 also provide a validation for the proposed ANN models at an unseen 

numerical analysis by integrating the ANN models with the uncoupled fracture 

Next, the ductile fracture of the CP-Ti is investigated through a hybrid experimental-

numerical analysis by integrating the ANN models with the uncoupled fracture 

Next, the ductile fracture of the CP-Ti is investigated through a hybrid experimental-

accurately capturing the temperature and strain rate dependent plastic behavior of 

0.005 /s, which distinctly underscores the competency of the ANN models

accurately capturing the temperature and strain rate dependent plastic behavior of 
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extracted from the FE simulations using ANN(𝛼). While the stress triaxiality 𝜂 and 

Lode angle parameter 𝜃̅ of the UT, BT1, and BT2 remain relatively consistent during 

loading, those of the SH sample are observed to evolve throughout the loading 

process. Notably, the UT demonstrates the highest fracture strain while the BT2 

experiences the fracture at the lowest equivalent plastic strain level. The higher the 

stress triaxiality 𝜂 predictions in the BT1 and BT2 compared to the von Mises values 

can be attributed to the pronounced anisotropic behavior of CP-Ti. Finally, the 

fracture envelops of CP-Ti are constructed using three ductile fracture models, HC, 

Lou-2014, and JC. 

In conclusion, this research demonstrates the potential of machine learning in 

unraveling the influence of strain rate and temperature in the anisotropic plastic 

deformation of CP-Ti. Particularly, the developed ANN models is implemented within 

the plasticity theory framework excel in capturing the anisotropic, differential 

hardening, and flow behavior sensitive to temperature and strain rate. Compared to 

purely data-driven approaches that rely solely on machine learning algorithms, this 

hybrid approach can leverage the robustness of machine learning while adhering to 

conventional constitutive equations, providing a balanced and reliable modeling 

strategy. The similar approach can be incorporated with any constitutive models 

chosen depending on the material characteristics and applications of interest and still 

maintain the computational stability in FE simulations. The ANN models used in this 

study still hold potential for further enhancement by incorporating additional strain 

rate and temperature conditions for training. 

Acknowledgements 

This work was funded by the National Science Foundation (NSF) EPSCoR award 

(#1757371), the New Hampshire Center for Multiscale Modeling and Manufacturing 

of Biomaterials (NH BioMade). The authors would like to thank Scott Campbell 

(Senior machinist, College of Engineering and Physical Sciences, UNH) and Nathan 

Daigle (Manufacturing engineer, John Olson Advanced Manufacturing Center, UNH) 

for their assistance with fixture design and sample fabrication for the experiments. 

Acknowledgements 

rate and temperature conditions for training

study still hold potential for further enhancement by incorporating additional strain 

rate and temperature conditions for training

maintain the computational stability 

study still hold potential for further enhancement by incorporating additional strain 

chosen depending on the material characteristics and applications of interest and still 

maintain the computational stability 

strategy. The similar approach can be incorporated with any constitutive models 

chosen depending on the material characteristics and applications of interest and still 

conventional constitutive equations, providing a balanced and reliable modeling 

strategy. The similar approach can be incorporated with any constitutive models 

hybrid approach can leverage the robustness of machine learning while adhering to 

conventional constitutive equations, providing a balanced and reliable modeling 

hybrid approach can leverage the robustness of machine learning while adhering to 

purely data-driven approaches that rely solely on machine learning algorithms, this 

hardening, and flow behavior sensitive to temperature and strain rate. Compared to 

purely data-driven approaches that rely solely on machine learning algorithms, this 

the plasticity theory framework excel in capturing the anisotropic, differential 

hardening, and flow behavior sensitive to temperature and strain rate. Compared to 

. Particularly, the developed ANN models

the plasticity theory framework excel in capturing the anisotropic, differential 

unraveling the influence of strain rate and temperature in the anisotropic plastic 

. Particularly, the developed ANN models

In conclusion, this research demonstrates the potential of machine learning in 

unraveling the influence of strain rate and temperature in the anisotropic plastic 



52

Declaration of Generative AI and AI-assisted technologies in the writing 
process 

During the preparation of this work, the author(s) used ChatGPT 3.5 in order to 

enhance readability, rephrase certain sections, and perform grammar checking. After 

using this tool/service, the author(s) reviewed and edited the content as needed and 

take(s) full responsibility for the content of the publication. 



53

Appendix A. Extrapolation of strain hardening behavior 

Table A1 Swift-Voce Hardening parameters 

Strain 
rate (/s)

Temp.
(˚C) 𝑤𝑠𝑣

Swift Voce

𝑠0 (MPa) 𝑠1 𝑠2 𝑣0 (MPa) 𝑣1 (MPa) 𝑣2

0.001

-10 0.183 33648 0.002 0.003 33059 40136 0.020

0 1.108 859 0.002 0.469 435 2292 6.106

20 1.259 613 0.002 0.357 176 656 10.09

0.01

-10 0.057 35167 0.002 0.008 18785 20499 0.036

0 0.255 19269 0.002 0.005 16273 22290 0.030

20 1.428 617 0.002 0.407 142 545 6.8640.407

0.0050.005 16273

18785

176

18785
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Appendix B. Anisotropic yield loci in (𝝈𝒙-𝝈𝒚) stress space 

Following the experimental characterization of CP-Ti at temperatures of 0°C and 

20°C, and strain rates of 0.001 /s and 0.01 /s, the yield loci of CP-Ti are constructed 

using the Yld2000-3d anisotropic yield function. The yield loci differentially expand

with the plastic work, due to strong anisotropy evolution. When plotted in the (𝜎𝑥-𝜎𝑦) 

stress space (see Figure B1), the yield loci reveal their actual size, with larger yield 

loci observed at lower temperatures. This observation is consistent with the results of 

uniaxial tension tests discussed in Section 2.3. 

  

Figure B1 Yield loci of CP-Ti plotted in (𝜎𝑥-𝜎𝑦) stress space for (a) 0.01/s and (b) 
0.001/s strain rates with 0oC and 20oC temperatures. 0.001/s strain rates with 0

Yield loci of CP-Ti plotted in (
0.001/s strain rates with 0

Yield loci of CP-Ti plotted in (
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Appendix C. Performance of ANN models 

Fifteen percent of the dataset created for training is set aside to test the performance 

of the ANN models with unseen data, after training. The ANN(𝜎̅) and ANN(𝛼) predict 

outputs with MAE of 0.61 MPa and 0.0002, respectively. The predictions of ANN 

models are plotted against the corresponding targets as shown in Figure C1. Only 50 

random data points from the test data are used for the following figure. 

Figure C1 Comparison of predictions and corresponding targets for (a) ANN(𝜎) and 
(b) ANN(𝛼). 

Comparison of predictions and corresponding targets for (a) ANNComparison of predictions and corresponding targets for (a) ANN
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Appendix D. Temperature field and strain measurement 

The local strains are extracted at different locations for each ductile fracture 

specimen as marked in Figure D1. In the UT, the local strains along the axial and 

transverse directions are obtained at a point 0.4 mm away from the central hole 

(Figure D1a). In both SH and cruciform specimens for BT1 and BT2, the local strains 

are extracted from the center of the gauge (Figures D1b – D1d). The displacements 

𝛿 are obtained using one or two virtual extensometers with an initial length of 20 mm 

except BT2, where the displacement is determined using a shorter virtual 

extensometer of initial length 15 mm. The color fields represent how well the 

temperature distribution is maintained around 10oC until the onset of fracture. 

Figure D1 Temperature distribution on ductile fracture specimens captured with IR 

camera prior to onset of fracture in (a) UT, (b) SH, (c) BT1, and (d) BT2 experiments. 

The white straight lines are the virtual extensometers used in stereo-DIC, and the 

red circles indicate the locations where the local strains are extracted from the 

surface. 

Temperature distribution on ductile fracture specimens captured with IR 
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Appendix E. Stress update algorithm: general cutting plane method (GCPM) 

The general cutting-plane method (GCPM) updates the Cauchy stress 𝝈 and the 

relevant state variables at the current time step 𝑡𝑛 for a given strain increment 𝛥𝜺𝑛
(Lee et al., 2022). This algorithm employs Newton–Raphson iteration method (Ortiz 

and Simo, 1986), initiating with the calculation of elastic predictor. 

Assuming the strain increment 𝛥𝜺𝑛  is entirely elastic, the elastic predictor 𝝈𝑛𝑡𝑟𝑖𝑎𝑙  is 

calculated as: 

𝝈𝑛
𝑡𝑟𝑖𝑎𝑙 = 𝝈𝑛−1 + 𝑪 ∶ 𝛥𝜺𝑛 (E1)

where 𝝈𝑛−1 represents the Cauchy stress at the previous time step 𝑡𝑛−1, 𝑪 is the 

fourth-order isotropic elasticity stiffness tensor, and “:” denotes a tensor product 

between the fourth-order and second-order tensors. 

If the following condition holds, the trial stress is purely elastic:  

𝐹𝑛 ( 𝝈𝑛
𝑡𝑟𝑖𝑎𝑙, 𝜀𝑛̅−1 ) = 𝜙𝑛( 𝝈𝑛

𝑡𝑟𝑖𝑎𝑙) − 𝐻(𝜀𝑛̅−1) ≤ 0 (E2)

Here, 𝐹 defines the plastic yielding of the material, while 𝐻 is the flow stress from the 

strain hardening model given by ANN(𝜎̅) and 𝜙 is the equivalent stress from the 

Yld2000-3d yield function as in Eq. (5). When this consistency condition is satisfied, 

the updated stress 𝝈𝑛  at the current step equals the trial stress 𝝈𝑛𝑡𝑟𝑖𝑎𝑙 , and the 

equivalent strain and other state variables of the yield function remain as the 

converged values from the previous time step. If not, i.e., when 𝐹𝑛(𝝈𝑛𝑡𝑟𝑖𝑎𝑙, 𝜀𝑛̅−1) >  0, 

the equation is iteratively solved to determine the plastic multiplier 𝛥𝛾 through return 

mapping algorithm to ensure the consistency is satisfied. Applying the associated 

flow rule and Euler’s theorem, the relationship between the equivalent plastic strain 

increment ∆𝜀̅ and plastic multiplier 𝛥𝛾 is obtained as: 

𝐹𝑛 = 𝜙(𝝈𝑛−1 + 𝛥𝝈𝑛)– 𝐻(𝜀𝑛̅−1 + 𝛥𝛾) = 𝜙(𝝈𝑛)– 𝐻(𝜀𝑛̅−1 + 𝛥𝜀𝑛̅) < 𝑡𝑜𝑙 (E3)

the updated stress 

equivalent strain and other state variables of the yield function remain as the 

Yld2000-3d yield function as in Eq. (5). When th

the updated stress 

strain hardening model given by ANN

Yld2000-3d yield function as in Eq. (5). When th

 defines the plastic yielding of the material, while 

strain hardening model given by ANN

 defines the plastic yielding of the material, while 

strain hardening model given by ANN

 defines the plastic yielding of the material, while 

) 𝜙𝑛(

If the following condition holds, the trial stress is purely elastic:  If the following condition holds, the trial stress is purely elastic:  

between the fourth-order and second-order tensors. 
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fourth-order isotropic elasticity stiffness tensor, and “:” denotes a tensor product 

between the fourth-order and second-order tensors. 

fourth-order isotropic elasticity stiffness tensor, and “:” denotes a tensor product 

 represents the Cauchy stress at the previous time step  represents the Cauchy stress at the previous time step 
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𝛥𝜺𝑝 = 𝛥𝛾
𝜕𝜙

𝜕𝝈
(E4)

𝛥𝜀̅ =
𝝈𝛥𝜺

𝜙(𝝈)
=
𝝈𝛥𝛾

𝜕𝜙
𝜕𝝈

𝜙(𝝈)
= 𝛥𝛾

𝜙(𝝈)

𝜙(𝝈)
= 𝛥𝛾 (E5)

where 𝛥𝜺 is the plastic strain tensor increment.  

By applying Taylor’s expansion to Eq. (E3), the variation of the equivalent plastic 

strain increment at the 𝑘th iteration is: 

𝛥𝜀𝑛̅
(𝑘)

= 𝛥𝜀𝑛̅
(𝑘−1)

+ 𝛿(𝛥𝜀)̅ (E6)

and

𝐹𝑛(𝛥𝜀𝑛̅) +
𝜕𝐹𝑛(𝛥𝜀𝑛̅

𝑘−1 )

𝜕𝛥𝜀̅
𝛿(𝛥𝜀)̅ = 0 (E7)

Then, 

𝛿(𝛥𝛾) = 𝛿(𝛥𝜀)̅ =
−𝐹𝑛+1 (𝛥𝜀𝑛̅

(𝑘−1)
)

𝜕𝐹𝑛 (𝛥𝜀𝑛̅
(𝑘−1)

)

𝜕𝛥𝜀̅

⁄

=
𝐹𝑛+1 (𝛥𝜀𝑛̅

(𝑘−1)
)

𝜕𝜙𝑛
(𝑘−1)

𝜕𝝈𝑛
(𝑘−1) : 𝑪:

𝜕𝜙𝑛
(𝑘−1)

𝜕𝝈𝑛
(𝑘−1) + 𝐻

′(𝛥𝜀𝑛̅
(𝑘−1)

)

(E8)

where 𝐻′ is the slope of the strain hardening curve. Finally, the updated stress and 

equivalent plastic strain are computed as: 

(𝛥𝛾) =

𝐹𝑛𝐹𝑛𝐹 (𝛥𝜀𝑛̅
𝑘

𝜕𝛥

−1 )
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𝝈𝑛
(𝑘)
= 𝝈𝑛

(𝑘−1)
+ 𝛿(𝛥𝜀̅) 𝑪 ∶

𝜕𝜙
𝑛
(𝑘−1)

𝜕𝝈𝑛
(𝑘−1) (E9)

and

𝜀𝑛̅
(𝑘)

= 𝜀𝑛̅
(𝑘−1)

+ 𝛥𝜀𝑛̅
(𝑘) (E10)
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Appendix F. Crack propagation and strain field in the cruciform specimens 

The ductile fracture specimens are subjected to deformation until any visible cracks 

are observed through the DIC cameras. In the dimple cruciform specimens, a 

surface crack becomes evident at the center of the dimple and gradually propagates, 

leading to the complete opening-up of the specimen at the dimple region. The cracks 

are formed on the BT1 and BT2 samples along the major principal strain direction as 

shown in Figure F1: the BT1 sample for equibiaxial stretching exhibits a diagonally 

oriented crack while the BT2 specimen for plane strain tension (see the strain path in 

Figure F2) present a crack perpendicular to the major loading axis in the RD.  

Figure F1 Crack formed on cruciform specimen surface in (a) BT1 and (b) BT2. Crack formed on cruciform specimen surface in (a) BT1 and (b) BT2. Crack formed on cruciform specimen surface in (a) BT1 and (b) BT2. Crack formed on cruciform specimen surface in (a) BT1 and (b) BT2. 
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Figure F2 Strain path of BT2 from DIC surface strain measurements.Strain path of BT2 from DIC surface strain measurementStrain path of BT2 from DIC surface strain measurement
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