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Abstract

This study primarily aims to develop a robust modelling approach to capture complex
material behavior of CP-Ti, appeared by high anisotropy, differential hardening due
to anisotropy evolution, and flow behavior sensitive to strain rate and temperature,
using artificial neural networks (ANNSs). Plasticity is characterized by uniaxial tension
and in-plane biaxial tension tests at temperatures of 0°C and 20°C with strain rates
of 0.001 /s and 0.01 /s, and the results are used to calibrate the non-quadratic
anisotropic Y1d2000-3d yield function with respect to the plastic work. In order to
predict the intricate plastic deformation with the temperature and strain rate effects,
two distinct ANN models are developed; one is to capture the strain hardening
behavior and the other to predict the anisotropic parameters in the chosen yield
function. The developed ANN models predict an unseen dataset well, which is
intermediate testing conditions at a temperature of 10°C and strain rate of 0.005 /s.
The ANN models, being computationally stable and adhering to conventional
constitutive equations, are implemented into a user material subroutine for the
ductile fracture characterization of CP-Ti sheet using the hybrid experimental-
numerical analysis. The favorable agreement between experimental data and
numerical predictions, particularly using the ANN models with evolving anisotropic
material parameters for the Yid2000-3d yield function, underscores the significance
of differential hardening eifect on the ductile fracture behavior and highlights the
capabilities of ANN models to capture the complex plastic behavior of CP-Ti. The key
parameters including stress triaxiality, Lode angle parameter, and equivalent plastic
strain at the fracture location are extracted from the simulations, enabling the
calibration of ductile fracture models, namely Johnson-Cook, Hosford-Coulomb, and

Lou-2014, and construction of fracture envelopes.

Keywords: Fracture (A), Anisotropic material (B), Constitutive behavior (B), Finite

elements (C), Artificial neural networks.
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1. Introduction

Commercially pure titanium (CP-Ti) has gained immense use across diverse
industries, such as aerospace, biomedical, and chemical, owing to its exceptional
properties and performance. For example, in proton exchange membrane fuel cells
(PEMFCs), the substitution of conventional graphite bipolar plates with CP-Ti has
emerged as a compelling alternative, primarily attributable to its low weight,
exceptional corrosion resistance, excellent electrical conductivity, and cost-effective
manufacturability (Meng et al., 2022). Due to its hexagonal close-packed (HCP)
crystal structure, alpha titanium exhibits low crystal symmetry, resulting in a limited
number of slip systems and reduced strain hardening ability. These distinct features
of titanium require special attention to avoid undesired failure during forming
applications. Thus, extensive understanding on the material plastic behavior leading
to failure is needed.

In micromechanics, the damage, which eventually leads to fracture, is often
explained by the void evolution in three stages: micro-voids nucleate at vulnerable
sites (e.g., second phase particles), grow or coalesce, and then ultimately lead to
localized failure across a sheet of micro-voids (Hayden and Floreen, 1969; Gurland,
1972; Thomason, 1990). Based on the micromechanical approach, Gurson (1977)
proposed a porous plasticity model, considering the void volume fraction as a
damage indicator. Subsequently, the original Gurson model has been extended to
consider factors, such as void nucleation and coalescence (Chu and Needleman,
1980; Tvergaard and Needleman, 1984), void shape and size effects (Gologanu et
al., 1993; Pardoen and Hutchinson, 2000; Wen et al., 2005), strain hardening
(Leblond et al.;, 1995) and plastic anisotropy (Liao et al., 1997; Grange et al., 2000;
Benzerga et al., 2001; Benzerga and Besson, 2001). These models are classified as
coupled fracture models as they integrate the damage parameter with the

elastoplastic behavior of the material.

Alternatively, several fracture criteria have been developed to predict ductile fracture
without explicitly modeling the void nucleation and growth, known as uncoupled
ductile fracture models. These criteria propose that the fracture takes place at a point
within a body when the weighted measure of damage indicator, e.g., accumulated
plastic strain, reaches a critical value (Clift et al., 1990; Le Roy et al., 1981,
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McClintock, 1968; Oh et al., 1979; Rice and Tracey, 1969). The Johnson-Cook
model (Johnson and Cook, 1985), which revealed a significant influence of stress
triaxiality n on the initiation of fracture, has been widely utilized in various studies
owing to its straightforward formulation. However, classical ductile fracture models
lack the flexibility in describing fracture across a wide range of stress triaxialities n
(Bao and Wierzbicki, 2004a).

Subsequently, ductile fracture models that incorporate the Lode angle parameter 6,
which is a function of second and third invariants of the deviatoric stress tensor, have
been introduced (Bai and Wierzbicki, 2008; Brinig et al., 2013, 2008; Lou and Yoon,
2017; Mirone and Corallo, 2010; Roth and Mohr, 2016; Wierzbicki et al., 2005). Bai
and Wierzbicki, (2010) proposed a ductile fracture criterion for metals, known as
modified the Mohr-Coulomb (MMC) model, by transforming the Mohr-Coulomb (MC)

criterion into the space of equivalent plastic strain &, stress triaxiality n, and Lode

angle parameter 8. Mohr and Marcadet (2015) made further advancements to the
MMC model by substituting the Tresca equivalent stress for the Hosford equivalent
stress, resulting in the development of the Hosford-Coulomb (HC) fracture model.
Lou et al. (2014) also introduced a novel criterion utilizing a proposed changeable
cut-off value function for the stress triaxiality . Recently, Baral et al. (2024) proposed
a new ductile fracture criterion that is capable of capturing fracture anisotropy by
coupling DF2016 criterion with the non-quadratic YId91 yield function. Additionally,
various uncoupled fracture criteria have been developed, considering the influence
of plastic work and elastic work (Khan and Liu, 2012a), strain rate and temperature
(Khan and-Liu, 2012b), volume change work and distortion work (Peng et al., 2021),

as well as various void deformation modes (Zheng et al., 2023).

To characterize the fracture for various stress states, several experimental methods,
such as notched tension, center hole, shear, punch, plane strain bending, in-plane
biaxial tension, etc., have been implemented (Ha et al., 2019a; Habib et al., 2019).
However, measuring damage parameters through experiments is challenging due to
the three-dimensional stress states and inhomogeneous deformation fields near the
fracture zones, as well as the difficulty in detecting crack initiation at the midplane
through the sheet thickness. To overcome these limitations, researchers have

adopted a hybrid experimental-numerical approach for ductile fracture analyses (Bai
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and Wierzbicki, 2008; Baral et al., 2019; Dunand and Mohr, 2010; Ha et al., 2018,
2019a; Luo et al., 2012; Mohr and Henn, 2007; Mu et al., 2020), where relevant
variables are determined through numerical simulations. However, it is important to
choose a suitable constitutive model to capture the anisotropy of plasticity leading to
failure (Ha et al., 2020; Ha and Korkolis, 2021) in order to minimize the uncertainties
from the finite element (FE) simulations and to achieve accurate prediction of critical
parameters for the fracture model calibration, e.g., von Mises istropic yield function
(Bao and Wierzbicki, 2004b; Li et al., 2010; Li and Wierzbicki, 2010) for isotropic
materials and Hill 1948 anisotropic yield function (Beese et al., 2010; Dunand and
Mohr, 2010; Wang et al.,, 2014) and YId2004-18p (Ha et al., 2018, 2019a) for
anisotropic materials. However, the Hill 1948 model falls short in providing
satisfactory descriptions for both stress and r-value simultaneously, necessitating the
non-associated flow rule. Advanced plastic anisotropy models, such as Y1d2000-2d
(Barlat et al., 2003), YId2004-18p (Barlat et al., 2005), Banabic (Banabic, 2010), etc.
have been introduced for advanced characterization of plastic anisotropy. The
constitutive modelling of CP-Ti is considered challenging due to its complex
behavior, including the significant anisotropy of flow stress and r-values, differential
hardening, and tension and compression asymmetry, so called strength differential
(SD) effect. Anisotropy in CP-Ti even shows strong evolution with respect to the
strain, which is much severe than steel (Feng et al., 2021; Lee et al., 2016; Mamros
et al., 2022) and aluminum alloys (Ha et al., 2018). Zhai et al. (2016) utilized the
asymmetric CPB-06 vyield function (Cazacu et al., 2006) for ductile fracture
investigation of CP-Ti, whereas Baral et al. (2018) yielded the best prediction of
experimental results for CP-Ti using KYL-12 (Khan et al., 2012) and CPB-06 yield
functions. Additionally, Nagano et al. (2018) have successfully captured the plastic
deformation behavior of CP-Ti using the Y1d2000-2d model while Peters et al. (2014)
incorporated the equivalent plastic strain and strain rate dependency to Yld2000-2d
and validation with FE simulation of deep drawing process demonstrated significant
improvement in the prediction accuracy. Complex plastic behavior of CP-Ti often
requires intricate meso-scale modeling approach such as crystal plasticity and visco-
plastic self-consistent formulation (Jeon et al., 2024; Tang et al., 2023; Wronski et al.,
2018; Wronski et al., 2022, Lebensohn et al., 2007; Lebensohn and Tomé, 1993;
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Wang et al., 2013), to study the deformation mechanisms with twinning, texture

evolution, and associated behavior of CP-Ti.

Recently, machine learning based material modeling has emerged as a promising
alternative to traditional physics based constitutive models. There are several
attempts to develop machine learning based constitutive models that entirely replace
the conventional mathematical framework (Bonatti and Mohr, 2022, 2021; Goriji et al.,
2020; Kim et al., 2024; Mozaffar et al., 2019; Muhammad et al., 2021; Tasdemir et
al.,, 2023; Zhang and Mohr, 2020), but some have also been exploring hybrid
models, where neural network algorithms are integrated into existing physics based
plasticity models (Fazily and Yoon, 2023; Jang et al., 2021; Jordan et al., 2020; Li et
al., 2023, 2019; Liu et al., 2023; Pandya et al., 2020; Weber et al., 2023). Mozaffar et
al. (2019) proposed a recurrent neural network (RNN) to capture plasticity behavior
of a material. The model predicted complex phenomena, such as yield locus
evolution with distortional hardening under 0.5% scaled mean absolute error
(SMAE). Similarly, Zhang and Mohr (2020) developed a fully connected feedforward
neural network to capture elasto-plastic response of a von Mises material and
implemented within a FE framework for notched tension test. Additionally, Schmidt
and Hartmaier (2023) presents a new texture descriptor for machine learning based
constitutive modeling that effectively captures the structure-property relationship
between texture and anisotropic plastic behavior. Moreover, Muhammad et al. (2021)
proposed a machine learning framework that integrates additive manufacturing
methods and artificial intelligence to predict the heterogeneous local strain observed
during the plastic deformation of an additively manufactured aluminum alloy.
However, the prediction accuracy and success of such data-driven approaches
heavily relies on the quality and quantity of training data. Challenges arise if they do
not adequately represent material behavior due to uncertainties or inaccuracies in
physics based constitutive laws during the training (Bessa et al., 2017; Bessa and
Pellegrino, 2018).

On the other hand, several researchers have adopted neural networks to effectively
describe the temperature and strain rate dependency of material behaviors such as
stress-strain response, strain aging, and fracture initiation. For instance, Li et al.
(2019) modified the Johnson-Cook plasticity model by incorporating the effect of

temperature and strain rate on the hardening of DP800 steel using a neural network

7
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through a hybrid experimental-numerical method. In a similar study, Jordan et al.
(2020) was able to describe the temperature and strain rate dependent large strain
response of a non-metallic material, i.e., polypropylene, using a shallow neural
network with just one hidden layer. Li et al. (2022) introduced a counter example
guided neural network with a state variable called effective aging time to separate
the positive rate effects on viscous flow and negative rate effects on dynamic strain
aging. Furthermore, by employing physics based assumptions and leveraging
experimental data on fracture, Pandya et al. (2020) developed a neural network
based fracture initiation model to address the significant influences of temperature,
strain rate, and stress state on the failure behavior of aluminum 7075 during hot
forming. However, the model was trained using a Hosford-Coulomb fracture model
that did not account for varying temperature and strain rate. To address this
limitation, Li et al. (2023) employed a neural network to extend the Hosford-Coulomb

fracture criterion into the domain of strain rate and temperature.

This study primarily aims to develop a robust modelling approach to capture complex
material behavior of CP-Ti, appeared by high anisotropy, differential hardening due
to anisotropy evolution, and flow behavior sensitive to strain rate and temperature,
using artificial neural networks (ANNs). Many past works on machine learning-based
material modeling employ purely data-driven, statistical approaches. As a result, they
do not strictly follow plasticity theories and may compromise computational stability
when used for FE simulations. In contrast, hybrid approaches combine the machine
learning algorithm with constitutive models developed within plasticity theory
framework, e.g., hardening laws, yield function. This allows them to leverage the
strengths of both machine learning and plasticity theory based models, such as
robustness of machine learning, compatibility and numerical stability with FE
simulations of plasticity theory based models. In addition, present work proposes an
approach that is highly flexible for use with any plasticity models, chosen depending
on material characteristics, (e.g., Bauschinger effect, strength differential effect,
plastic anisotropy, etc.), and applications of interest, (e.g., springback with cyclic
loading (Lee et al., 2018, 2012), ductile fracture (Ha et al., 2019b), hole flangeability
(Ha and Korkolis, 2021)), etc.

Two independent artificial neural networks (ANNs) are developed and trained using

experimentally generated data from uniaxial tension and biaxial tension tests to

8
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capture the strain hardening and plastic anisotropy of the material at various
temperatures, strain rates, and plastic deformation levels. The ductile fracture of CP-
Ti (grade 1) is investigated within the positive triaxiality range by a hybrid
experimental-numerical approach, where the ANN models proposed for capturing the
plasticity is incorporated with the uncoupled ductile fracture models. This also
provides a validation for the proposed ANNs at an unseen temperature and strain
rate condition. The strain to fracture is assessed experimentally for uniaxial tension,
biaxial tension, plane strain tension, and shear conditions using specific specimen
geometries suggested in the literature. The FE simulations of fracture experiments
are performed using Abaqus/Implicit with ANN models incorporated into a user
material (UMAT) subroutine and validated against the fracture experiments. Using
the parameters obtained from the FE simulations, Johnson-Cook, Hosford-Coulomb,
and Lou-2014 fracture initiation criteria are calibrated, and the fracture envelopes are
constructed accordingly.

2. Plasticity Characterization

The material used in this study is commercially pure titanium (CP-Ti) in grade 1
received as 0.9 mm thick sheets of size 1.5 m x 1.2 m. The plasticity of material is
characterized by uniaxial tension and biaxial tension tests to calibrate the Swift-Voce

hardening model and YId2000-3d yield function parameters (Dunand et al., 2012).

2.1 Uniaxial tension

The study employs ASTM E8 standard specimens machined using an abrasive water
jet with orientations along the rolling direction (RD), 45° to the RD (referred to as
diagonal direction, DD), and transverse direction (TD) as shown in Figure 1a. The
tests are performed on a 250kN MTS landmark 370 servo-hydraulic universal testing
machine with crosshead speeds set at 0.1 mm/s and 1 mm/s to achieve strain rates
of approximately 0.001 /s and 0.01 /s, respectively, in the gauge section. For each
strain rate case, the tests are carried out at two different temperatures, 20°C and
0°C. At least 3 samples are tested for each condition for repeatability. To ensure

uniform temperature across the gage area during the tests, a cooling plate of 150
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mm X 200 mm is affixed to the specimens from the rear side. A silicon based thermal
paste with thermal conductivity of 0.735 W/mK is applied to the specimen and

cooling plate interface for effective heat transfer between them.

200

Units: mm

(a)

Figure 1 a) ASTM E8 specimen along RD, DD, and TD and b) experimental setup in
MTS with stereo-DIC, IR camera, and cooling plate for temperature controlled

uniaxial tension test.

A random black speckle on a white background is spray painted onto the sample
surfaces to capture the strain field using a stereo type digital image correlation (DIC)
system. The stereo-DIC system consists of two 9 MP cameras (Grasshopper3
89S6M) and a light source for the full strain field measurement and an infrared (IR,
FLIR SC645) camera for the temperature field (see Figure 1b). The images are
captured at acquisition rates of 12.5 Hz and 2 Hz for tests conducted at strain rates
of 0.01/s and 0.001 /s, respectively. The stereo-DIC system is synchronized with the
MTS load cell to ensure accurate correlation between load and strain data. The DIC
images have a resolution close to 0.035 mm/pixel. Post-processing of the captured
images is performed using VIC-3D software, with a filter size of 5, subset of 29

pixels, and step size of 7 pixels for strain and temperature distribution analysis.

10
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2.2 Biaxial tension

The in-plane biaxial tension tests are performed using cruciform samples fabricated
using the abrasive water jet. The specimen arms are aligned in the RD and TD of the
material and contain 5 equally spaced slits as shown in Figure 2a. The center of the
specimen is carefully machined down to 0.4 mm thickness using an end mill on both
sides of the sample. The tests are carried out using a displacement control tabletop
biaxial loading frame developed at the University of New Hampshire (UNH) as
shown in Figure 2b (Wilson et al., 2013). Hydraulic cylinders with a stroke of 12.7
mm and tensile force capacity of 25.8 kN load the samples. An equibiaxial
displacement path (6,:6, = 1:1) is programmed to load the cruciform specimens at
crosshead speeds close to 0.2 mm/s and 0.02 mm/s tc achieve 0.01 /s and 0.001 /s
strain rates, respectively, at the center square gauge area. Air streams from two
vortex tubes with inlet pressures set at 827 kPa are directed towards the gage area
to control the surface temperature. The airflow at the vortex tube outlets is adjusted
such that uniform temperatures of 20°C and 0°C are obtained at the gage surface
during the tests. A stereo-DIC system with two 5 MP Grasshopper (GRAS-50S5M)
cameras and the FLIR IR camera are mounted on a metallic frame attached to the
machine, to capture the strain and temperature fields at the gage area. The
acquisition rate is set at 2 Hz, and the images are postprocessed using VIC-3D

software with the same parameters as in the uniaxial tension tests.

11
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Figure 2 a) Cruciform specimen geometry and b) in-plane biaxial tension test setup
with stereo-DIC, IR camera, and vortex tube for temperature control.

2.3 Plastic anisotropy

The engineering stress-strain curves shown in Figures 3a and 3b demonstrate the
effect of orientation, temperature, and strain rate on the mechanical behavior of CP-
Ti (grade 1). The three distinct orientation curves, i.e., RD, DD, and TD, for each
temperature and strain rate condition depict the anisotropy in the flow stress. The

yield strength measured with the 0.2% offset method is found to be the highest in the

12
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TD, which agrees with the available literature on the mechanical behavior of CP-Ti
(Baral et al., 2018; Pham et al., 2019; Roth et al., 2014). Across all orientations,
higher strength is observed at lower temperature and higher strain rate. The samples
tested along the RD have superior ductility and strength, whereas the DD and TD
result in low uniform elongation, i.e., plastic strain prior to the peak engineering
stress, and high post-necking deformation, i.e., strain after the peak engineering
stress. For the 20°C and 0.001 /s condition, the ratio of the uniform to the total
elongation in the RD, DD, and TD are 0.62, 0.19 and 0.28, respectively.

Furthermore, the work hardening rates in each orientation exhibit visually
distinguishable variations within the range of uniform deformation. The anisotropy of
flow stress in this material is possibly related to twinning of CP-Ti (Yi et al., 2016).
The twinning activity is controlled by material grade, specifically oxygen content
(Choi et al., 2021), deformation type, such as tensile/compressive (Yang et al., 2022;
Yi et al., 2016), material orientation (Battaini et al., 2007; Pham et al., 2019; Yi et al.,
2016), and initial grain size (Deguchi et al., 2023). Temperature is also a significant
factor governing the twinning volume fraction and the active twin systems (Yang et
al., 2022).

500 .
—— 20°C - [ £=0.001/s
=400
o
=
?LE 300
=
g
— 200
o
=
(=]
| -
W 100
D A L A L
0 0.1 0.2 0.3 0.4 0.5 0.6
Engineering strain
(a)

13
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0 0.1 0.2 0.3 0.4 0.5 0.6
Engineering strain

(b)

Figure 3 Engineering stress-strain curves of uniaxial tension in RD, DD, and TD at
strain rates of (a) 0.001 /s and (b) 0.01 /s.

Figures 4a and 4b show the evolution of normalized stress & with the plastic work W,
in the uniaxial tension and in-plane biaxial tension tests. Each flow stress is
normalized by the reference condition, which is uniaxial tension in the RD in this
study, i.e., 6; =0;/0ozp . During the early stages of plastic deformation, the
normalized stresses of DD and TD, i.e., 6pp and 6;p, are greater than 1, which
eventually become lower than 1 as the plastic work progresses. This means that the
flow stresses in the uniaxial tension in the DD and TD are initially higher than the RD
and decreased with reduced hardening rate. Similarly, the evolutional behavior in the
biaxial tension along the RD and TD, i.e., 6, rp and 6, rp, is observed, but the values
always exceed 1. The observed evolution in the flow stress anisotropy appears as
differential hardening, which is indicated by the non-uniform expansion of the yield

locus, under various proportional loading conditions.

Figures 5a and 5b show the evolution of strain ratio with plastic work W},. The strain
ratio in uniaxial tension is defined by the Lankford coefficient, so called r-value,
which is the ratio of plastic strain increments in the width to the thickness directions,
i.e., r =de,/de,. For biaxial tension, it is defined as the ratio of plastic strain
increments in the TD to the RD, i.e., 1, = derp/degp, Which represents the tangential

slope of the yield locus in biaxial tension. The anisotropy observed in the r-values

14
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and r, is more pronounced compared to the anisotropy in flow stress. In uniaxial
tension, the r-value variation Ar in CP-Ti is significant compared to other lightweight
materials, such as steel and aluminum alloys: r;, exhibits the highest value, then )
followed by rgp. In addition, the significant evolution is observed at the beginning of
plastic work and quickly saturated to a constant level which is close to the average

strain ratio, i.e., r = ¢, /¢&;, in the homogeneous deformation range.

The evolution of experimentally obtained stresses (normalized flow stresses) and
strain ratios (r-value and r,) with respect to the plastic work W}, are approximated

using an exponential function,

Vfit = Wy * exp(wz . Wp) + w3 - exp(a)4 . Wp) (1)

which is later used for the yield function parameter calibrations. The coefficients
w;q1-4 IN EQ. (1) are found by fitting experiment data, as in Figures 4 and 5. It is
assumed that the plastic anisotropy is salurated as the plastic deformation increases

and does not change beyond the plastic work level of 45 MJ/m?.
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Figure 4 Evolution of normalized stress with respect to plastic work W, at strain rates
of (a) 0.001 /s and (b) 0.01 /s.
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Figure 5 Evolution of strain ratio with respect to plastic work W, at strain rates of (a)
0.001 /s and (b) 0.01 /s. The transparent curves in the background represent

experimental results, and the dark curves represent exponential fitting.

3. Constitutive modelling of CP-Ti

According to classical plasticity theory, deformation is governed by,

F(0,8) =¢(0) —H(E) =0 (2)

where ¢ (o) is the equivalent stress defined by the yield function of Cauchy stress
tensor o and H(¢) is the flow stress from the strain hardening model as a function of
equivalent strain. Assuming that the plastic potential and yield functions are identical,

the plastic strain increment is determined by the associated flow rule as follows,

oF
deP = dA— (3)
oo

17
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where dA is a plastic multiplier. The present work follows the above classical
plasticity theory while two deep learning models are employed to capture the strain
hardening H(T, ,£) and the plastic anisotropy evolution with respect to yield function

parameters a(T, £, W,) at various temperatures and strain rates.

3.1 Hardening law

In order to extrapolate the hardening behavior, the combined Swift-Voce hardening
law (Dunand and Mohr, 2010) is used to describe the stress-strain response of the

material. The flow stress given by the Swift-Voce hardening law is,

H(E)=0=wg" Oswift T (1= W) * Ovoce 4)

where ggire = S * (51 + €)%z and oyece = Vo = vy » exp(—v, - &) with wy, for the weight
factor and s; ,_, and v; ,_, for material parameters (see Appendix A). The parameters
are calibrated with the stress-strain curve of uniaxial tension in the RD. The Swift-

Voce curve fittings at two strain rates (0.01 /s and 0.001 /s) and three temperatures

(-10°C, 0°C and 20°C) can be found in Figure 6. The additional set of uniaxial tension

tests conducted at a temperature of -10°C and strain rates of 0.001 /s and 0.01 /s
are aimed to enhance the diversity of the training dataset for the strain hardening

artificial neural network (ANN) model, which is discussed in section 4.2.

18
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Figure 6 Identification of Swift-Voce hardening curves at two strain rates (0.01 /s and
0.001 /s) and three temperatures (-10°C, 0°C and 20°C).

3.2 Anisotropic yield function

As the local stress and strain parameters are obtained from the FE simulation in the
hybrid approach, it is important to achieve the accurate prediction of plastic
deformation of the anisotropic material. To capture plastic anisotropy and its
evolution in response to plastic work, this study employs a non-quadratic anisotropic
yield function Y1d2000-3d (Dunand et al., 2012). This is an extended version of
Y1d2000-2d (Barlat et al., 2003) model from plane stress to a full 3D stress condition
without additional anisotropic material parameters, i.e., a; ;_g. It should be noted that
Y1d2004-18p (Barlat et al., 2005) for a full stress condition has 18 parameters for
anisotropy description, which can be reduced to 16 independent parameters (Van
Den Boogaard et al., 2016). YId2000-3d has similar mathematical formulations with
the original YId2000-2d model as,

¢ — ¢I(S,) + ¢”(S”) — 2611_ (5)
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where ¢'(s") = |5 —S3|™ and ¢(s") = |25 + S7|™ + [S; +25)|*. n is the yield
function exponent related to the crystal structure, e.g., 6 for body- and 8 for face-
centered cubic. The (S;, S;) and (57, S5') in the above expression are the principal
values of the deviatoric stress tensors s’ and s’’, which are linearly transformed

Cauchy stress o by operators L’ and L" as,
s

s’ =Cs =CTo =L o (6)
s"=C"s=C"To=L"o (7)

Tensor representation of two linear transformation tensors L “and L~ of Y1d2000-3d
anisotropic yield function (Dunand et al., 2012), used to transform the Cauchy stress

o to deviatoric stress tensors s “and s are given as:

204 —a; —a; O 0 0
1[—CZ2 20, —a, 0O 0 0 ]
L =§| 0 0 0 3a, O 0 | ®)
0 0 0 0 3a9 O
lo o 0 0 0 3ayl

[—2013 +2a, +8as — 205 —4ay + 4dag + az — 4as as + 2a, — 4as — 2a4 0 0 0 ]

B 1| 4az — 4ay — 4das + ag —2a3 +8ay + 2as — 2a¢ —2a3—4a,+2as5+ags O 0 0 |
L =- 0 0 0 9ag 0 0

& 0 0 0 0 9a; 0 |

| 0 0 0 0 0 9apl

The linear transformation tensors above are composed of 12 anisotropic material
parameters a;,_1,, among which «a;¢_1, represent out of plane shear stresses.
These parameters are considered unity as the out of plane shear stresses are
assumed to be isotropic, thereby reducing the computation cost (Dunand et al.,

2012). The Cauchy stress vector is 0 = {0xx Oyy Ozz Oxy Oyz; Oz} and the
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transformed stress deviator vectors are s'={s%x Sy, Sx Syz Sz} and s”=

6% S Sy She ST

To capture the differential hardening behavior as shown in Figures 4a and 4b, the
variations of normalized stresses (6xp, 6pp, 67p and 6,) and strain ratios (rzp, 7pp,
rrp and r,) are fitted by an exponential equation as Eq. (1), and the results are used
to calibrate the parameters with respect to the plastic work a;,_g(W,). The
parameters are determined by solving the equations using the least square algorithm
consecutively with respect to the plastic work. Different values have been
recommended for the yield function exponent n in the literature. For instance,
Nagano et al. (2018) observed the closest agreement with the experimental data
when n =8 is used to describe the anisotropy of a pure titanium sheet. In this study,
The yield function exponent is set to n=8 based on the recommendation by Ishiki et
al. (2011) for CP-Ti, identified using uniaxial tension and in-plane biaxial tension tests
for the Y1d2000-2d yield locus which should produce the same yield locus description
with Y1d2000-3d. However, there are other studies using different values of exponent
based on the material, e.g., 6, 8, and 10, eic., (Hu et al., 2021; Mutrus et al., 2010).

The evolutionary parameters «;;_3(W,), calibrated for different strain rate and
temperature conditions up to a plastic work level of W,=45 MJ/m?, are illustrated in

the Figures 7a and 7b. Most parameters tend to saturate with the exception of a,

and a; when W,<30 MJ/m?, and all the parameters are assumed to be constant
when W,>45 MJ/m?. Figure 8 showcases the normalized yield loci predictions of CP-
Ti by the calibrated a; ;_g(W,) parameters, under different levels of W, for strain rates

of 0.001 /s and 0.01 /s and temperatures of 0°C and 20°C. Representation of yield
loci in the real stress space is shown in Figures B1(a) and (b) Appendix B. As
discussed in Section 1, a strong differential hardening is observed in the yield loci
plots, especially at small plastic work levels, and eventually stabilizes at a higher

plastic work level, approximately 30 MJ/m?®.
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Figure 7 Y1d2000-3d parameters calibrated for 0°C and 20°C at strain rates of (a)
0.001 /s and (b) 0.01 /s plotted with respect to plastic work W},.
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Figure 8 Yield locus evolution in normalized stress space at strain rates of (a) 0.001
/s and (b) 0.01 /s.

The plasticity characterization of CP-Ti underscores the complexity of its yielding
behavior which is influenced by factors such as material anisotropy, plastic
deformation level, strain rate and temperature. It highlights the necessity of these
multiple factors for an accurate description of the material’s plasticity. While previous
works have numerically implemented the strain rate dependency of anisotropic yield
functions (Peters et al., 2014), we employ a robust approach with an ANN model
employed within the YId2000-3d framework to describe the strain rate and

temperature dependent evolution of anisotropic yield locus for CP-Ti.

4. Artificial neural network (ANN) modeling
4.1 Architecture of ANN models

To address the complexity of plastic behavior of CP-Ti as shown in section 3, a
robust material modeling approach that integrates the machine learning algorithm
with constitute models developed within plasticity theory framework, is proposed.
This method leverages the flexibility of machine learning algorithms while adhering to
the conventional constitutive equations and thereby ensuring numerical stability of

FE simulations. Specifically, two deep learning regression models are introduced to
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capture the effect of strain rate and temperature on the strain hardening and plastic
anisotropy as a function of plastic deformation, i.e., equivalent plastic strain and
plastic work. Deep learning involves training an ANN with multiple layers and nodes

to learn to make predictions from the complex data.

ANNSs are typically built of multiple layers, which consist of several nodes, to
progressively extract complex features from the input. In many neural network
architectures, these layers are structured in a sequential manner, forming a chain-
like structure where each layer is a function of the preceding layer. The input data X
is fed into an input layer and passes through several hidden layers. The neurons in
different layers are connected via weights W and biases b, enabling information flow
throughout the network. An activation function is applied to the weighted sum of
inputs to introduce non-linearity into the network. The final predictions Y’ are made at

the output layer.

For an ANN comprising [ hidden layers, the mathematical representation for various

layers can be summarized as,

e The output from the first hidden layer is,

YVi=yWy X+ by) (10)

where W, and b, are the weight and bias matrices associated with the first hidden
layer, X is the input vector of shape (k x 1) fed into the ANN when k is the number of

inputs, and vy is the activation function applied to each layer.

¢ In the subsequent hidden layers, the output of the previous layer serves as

the input.

Yicot =Y Wizzq * Yizq-1 + bi=2)) (11)

¢ Finally, the predictions from the ANN are given by the output layer,
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Y =W,," Y, +b,, (12)

where W,,, and b,,, are the weight and bias matrices of the output layer, respectively,

lth

Y, is the output from the [ hidden layer, and Y’ is the output vector of the shape

(m x 1) when m is the number of outputs from the ANN.

Being a regression problem, this study used mean-squared error (MSE) between the

target value y,, and the ANN output y’,,, as the cost function ¢.

m . N2
— l'=1(yrln yl) (13)

$

The objective of the training phase is to determine weight and bias matrices reducing
the cost function, equivalently improving the prediction accuracy. The
backpropagation algorithm is employed to compute the gradients of the cost function
from the output layer back to the input layer. The gradients are subsequently used to
update the weights and biases of each neuron using the gradient descent
optimization method. During the prediction, flow of data is unidirectional from the

input layer to the output layer through the hidden layers.

In the current study, two independent ANN models are proposed: ANN(&) to capture
the strain hardening behavior and ANN (a) to capture the evolution of plastic
anisotropy commonly existing in a CP-Ti sheet. The ANN(a) replaces conventional
hardening models and predicts the stress as a function of temperature T, strain rate
¢, and plastic strain level £&. On the other hand, ANN(«) is introduced to predict the
parameters of the Y1d2000-3d yield function taking into account the temperature T,
strain rate &, and plastic work W,, thereby describing the plastic anisotropy of CP-Ti
within a classical yield function framework. This approach is aimed to enhance the
robustness in modelling complex material behavior using machine learning algorithm
while following the plasticity theory framework. The ANN models can be represented

as,
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When it comes to the architecture of the ANN model, important decisions involve
determining the depth of the network (# of layers), width of each layer (# of nodes),
and activation function. Deeper networks often exhibit the ability to achieve
comparable generalization to the test set using fewer nodes per layer and thus fewer
parameters. However, optimizing deeper networks can be more challenging.
Therefore, the optimal network architecture for ANN (a) is determined using
KerasTuner, a Python library for hyperparameter optimization. KerasTuner utilizes a
random search algorithm to efficiently explores a wide range of hyperparameters,
increasing the chance of finding an optimal solution and proposes the best
architecture from the predefined search space. Subsequently, neural networks are
developed in Python using Keras and TensorFlow libraries. The schematic diagram

shown in Figure 9 illustrates the ANN architectures developed for this study.
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Figure 9 Schematic diagram showing architectures of (a) ANN(&) and (b) ANN(«a).

4.2 Training of ANN models

The construction of ANN involves several essential steps, including creating and
preprocessing training data, determining the network architecture, and training the
network. For the training of the ANN(G), the six extrapolated hardening curves at
three temperatures (-10, 0 and 20 °C) and at two strain rates (0.01 and 0.001 /s), as
shown in the Figure 6, are used. The training dataset comprises a total of 6006 data
points created by Swift-Voce fitting to the experiment with A& = 0.001 between
0 <&<1. Similarly, a total of 18004 training data points are generated for the
ANN(a) with a plastic work increment AW, = 0.01 between 0 < I, < 45 MJ/m3. The
input data are normalized using the following equation to eliminate any bias that

could arise due to differences in the magnitudes of the different input features.

Xnorm = ———— (14)

where x,,,,, and x,,;, are the maximum and minimum values of each input feature

within the training data.

27



Journal Pre-proof

Among the total datasets, 15% is reserved as unseen to test the performances of the
ANN(5) and ANN(a) after training. For the ANN(«), additional 15% of the dataset is
used for validation, leaving 70% of the dataset for training. Given the limited number
of training data, K -fold cross-validation is employed for the ANN (a). In this
technique, the dataset is divided into K equal-sized subsets, with one subset used
for validation, leaving the remaining K — 1 subsets for training. This process is
repeated K times with each time a different subset used for validation, to ensure
comprehensive validation of the model performance. With K =8 chosen as the
optimal value; results are averaged to estimate the overall model performance. For
the ANN(a), K-fold cross-validation is not required as sufficient training data is
available. The Table 1 below provides an overview of features of ANN (&) and
ANN(a).

During the training of the ANN models, an early stopping criterion with a patience of
30 epochs is applied. This criterion monitors the model performance on the
validation set throughout training and halts the process if the performance ceases to
improve or degrades continuously for 30 consecutive epochs. Additionally, a callback
named ModelCheckpoint is implemented to save the best-performing model,
ensuring that the best model is saved rather than the model at the final epoch. These
features are intended to prevent the model from over training. The learning curves
demonstrating the performance evaluation of the ANN models during training and
validation with respect to number of epochs are shown in Figure 10. The ANN(a)
and ANN(a) achieved remarkable performance, predicting the outputs with a mean
absolute error (MAE) of 0.61 MPa and 0.0002, respectively when evaluated on a
dedicated unseen test dataset. The models’ predictions for the test data set are

discussed in Appendix C.

Table 1 Details for artificial neural network (ANN) models

Features ANN(o) ANN(a)
Node distribution 16x16x16x16x16x16 48x32x32x48
# tunable parameters 1441 4792
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Batch size 8 4
Optimizer ADAM ADAM
Activation function Softplus Sigmoid
Loss function MSE MSE
Metric function MAE MAE
Error 0.61 MPa 0.0002
60 0.03
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Figure 10 Learning curves of (a) ANN(a) and (b) ANN(@).

4.3 ANN predictions at intermediate conditions with work hardening

comparison

The validity of ANN(a) under untrained temperature and strain rate is assessed by
comparing the stress-strain curves tested at an intermediate of training conditions,
i.e., T=10°C and £ =0.005 /s. As shown in Figure 11, the ANN(&) prediction closely
align with the experimental flow curve, with a maximum mean absolute deviation of
less than 4.6 MPa across three repetitions. The accurate prediction of flow curve
demonstrates that the developed ANN(a) can capture the strain hardening behavior

of CP-Ti well within the training range.
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Figure 11 Comparison of experimentally measured and ANN(&) predicted hardening
curves at a temperature of 10°C and strain rate of 0.005 /s. Each symbol indicates an

experiment trial.
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To further validate the ANN(&) model, the stress strain response in a varying
temperature uniaxial tension (UT) test at a constant displacement is investigated.
During the test, the temperature varies from -1°C to 20°C and the specimen is
loaded at a constant strain rate of 0.0074 /s. The temperature of the test specimen is
controlled using a cooling plate attached to its rear as mentioned in Section 1.1, and
a uniform temperature of -1°C is obtained on the gage area at the beginning of the
test. To vary the temperature of the specimen, the cooling plate is detached from the
specimen right before the beginning of the test, ensuring a gradual increase in
temperature by exchanging heat with the atmosphere. The variation of temperature
and plastic strain during the test is shown in Figure 12a. The experimental data is
then fed into the ANN(&) and the predictions are compared in Figure 12b. The good
agreement between the ANN( &) prediction and the experimental stress-strain

response reaffirms the model’s capability to accurately predict complex conditions.
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Figure 12 (a) Variation of plastic strain and temperature during the varying
temperature UT test and (b) Comparison of ANN( &) prediction with varying

temperature UT test results.

Conversely, the validation of ANN(«) is carried out through the ductile fracture tests
conducted at the intermediate conditions (see Section 5). For this, the developed
ANN models are implemented into user material subroutines (UMAT) for the FE

simulations using Abaqus/Implicit. Figures 13a and 13b show the ANN(«) predictions
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and the corresponding yield loci evolutions with respect to the plastic work at T=10°C
and £ =0.005 /s. The ANN(«) efficiently learns the trends exhibited by each yield
function parameter for CP-Ti from the training data and successfully extends this to
predict the parameters for the unseen condition. The model predicts the strong

differential hardening in the yield loci at small plastic work and the saturation near 45

MJ/m? similar to the training conditions.
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Figure 13 (a) ANN(a) prediction for YId2000-3d parameters at T=10°C and £=0.005

/s and (b) corresponding yield loci with plastic work W,.

5. Ductile fracture of CP-Ti
5.1 Ductile fracture models

The developed model capturing plastic behavior of CP-Ti can be used with
uncoupled ductile fracture models to investigate ductile fracture behavior across
positive stress triaxiality condition (n > 0). It should be noted that negative stress
triaxiality condition (n < 0) is not considered in the current study because the fracture
strain under positive triaxiality is usually much lower than negative range. In this
reason, the strength differential effect exiting in CP-Ti is not included in the modelling
framework although the importance is fully acknowledged. Among the various
models outlined in the Introduction, this work adopts Johnson-Cook (JC), Hosford-
Coulomb (HC), and Lou-2014 criteria for ductile fracture analysis of CP-Ti across

positive triaxiality.
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The stress state of the material is characterized using dimensionless scalars, namely
stress triaxiality n and Lode angle parameter 8. Stress triaxiality is a representation
of the ratio between the first Cauchy and second deviatoric stress tensors invariants.
Conversely, the Lode angle parameter  measures the ratio of the third and second
deviatoric stress tensors invariants. These parameters represent the influence of
hydrostatic pressure and deviatoric stress on fracture strain, respectively. The

formulas defining these parameters are,

n="T=2t (15)
N 3V3 J;
0=1 —;acos (T_23> (16)

where [;is the first Cauchy, and the J, and J; are the second and third deviatoric

stress invariants.

The JC model characterizes the ductile fracture strain e‘]fc

as a function of stress
triaxiality n, strain rate £, and temperature T. Since the temperature and strain rate
effects are neglected in the current ductile fracture study, the expression for the JC

model reduces to,

S_jfc = D; + Dy exp(=Dz 1) (17)

where D; ;_3 are material constants.

The HC model, proposed by Mohr and Marcadet (2015), transforms the principal
stress space into the domain of equivalent plastic strain &, stress triaxiality n, and the
Lode angle parameter 6 for the fracture prediction. Based on micromechanical
considerations, the HC model defines the plastic strain at the onset of fracture &/

as,
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1
5,]_;6(77, 0)=b(1+ c)% {<(f1 - )%+ (f, _zfs)a +(f, - f3)a)}a

Q-

+c2n+fi+f3)

(18)
with the Lode angle parameter dependent trigonometric functions,
0] = 2cos(Z(1 - 0) 19
/18] = S cos | 2 (19)
_ 2 T _
f2160] = = cos <— 3+ 9)) (20)
3 6

_ 2 T — 21
/161 = —Zcos (g (1 +0)) (21)

The Lou-2014 model describes the ductile fracture in a 3D space of stress triaxiality
n, Lode parameter L (= -8), and equivalent plastic strain e‘[ou. The model extends
the ductile fracture below a stress triaxiality of —1/3 by introducing a cut off function.
The model consists of four material parameters C,, C,, C; and C, in which C
determines the cut off value for stress triaxiality. There is no fracture forn < —1/3,
when C = 0, while the model predicts the fracture for uniaxial compression, plane

strain compression, and equibiaxial compression (where n < —1/3), when C = 1/3.

3L C_Cz
_ +— 4
g mL)=C ( )Cl MY/ (22)
Loum *\VIZ+3 1+C
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207—01—0: . .
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01—03

The Lode parameter is expressed as L =

principal stresses (a; > g, > 03).

For non-proportional loading conditions, the fracture strain under proportional loading

is incorporated into a damage indicator D framework as,

D= f T (23)
0 Er(.0)

where & is the accumulated equivalent plastic strain at the onset of fracture along a

non-proportional path. The damage indicator D evolves from 0 for undeformed to 1

for the onset of fracture states.

This work primarily focuses on developing a robust modeling approach using artificial
neural networks (ANNs) to describe the complex plastic behavior of CP-Ti, which is
highly sensitive to temperature and strain rate. The ductile fracture analysis of CP-Ti
is discussed as a validation for the proposed approach. Consequently, the
temperature and strain dependency of ductile fracture (Li et al., 2023; Pandya et al.,

2020) is not considered in this work.

While the Y1d2000-3d function is incorporated in this study to account for plastic
anisotropy, it is assumed that the fracture response remains isotropic, meaning the
initiation of fracture is not influenced by the orientation of the stress tensor relative to
the material coordinate system. As this work primarily focus on developing a robust
modeling approach using ANNs to describe the complex plastic behavior of CP-Ti,
which is sensitive to temperature and strain rate, the ductile fracture analysis of CP-
Ti is discussed as a validation for the proposed approach. Hence the temperature
and strain rate dependency of the ductile fracture is beyond the scope of this study.
The temperature and strain dependency of ductile fracture can be found (Li et al.,
2023; Pandya et al., 2020).

5.2 Experiments for ductile fracture characterization
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Ductile fracture is characterized along the positive triaxiality range under four loading
paths, including uniaxial tension (UT), shear (SH), and biaxial tensions near
equibiaxial stretching (BT1) and plane strain tension (BT2) using specimens as
illustrated in Figure 14. The central hole specimen, used for uniaxial tension fracture
near the hole edge has a 4 mm diameter hole at the center. The outlines of samples
are fabricated using abrasive water jet and the holes are made by drilling followed by
milling to ensure a high-quality surface to enhance the fracture resistance. For the
shear fracture (SH), a notched specimen geometry is determined following the
methodology proposed by Roth and Mohr (2018), which takes into account the strain
hardening and ductility. To address the uncertainty of ductility prior to testing, three
different specimens are tested, and the one with the highest strain is selected for the

shear fracture characterization, as shown in Figure 14b.
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Figure 14 Specimen geometries for ductile fracture characterization: (a) central hole

for uniaxial tension (UT), (b) notch for shear (SH), and (c) cruciform with double-

sided dimples at the center for biaxial tensions (BT1 and BT2).

For biaxial tensions (BT1 and BT2), the modified cruciform with dimples positioned at

the center of both faces introduced by Ha et al. (2019) is used. This design aims to

concentrate deformation towards the geometric center of the specimen, resulting in

fracture in the center and enabling the fracture strain measurement using the DIC

system from the surface. In this study, similar geometries are adopted to probe two

biaxial tension stress states, i.e., near equibiaxial (BT1) and plane strain tension
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(BT1). The dimples are defined by intersecting a radius R, i.e., 153.9 and 107.2 mm,
with the specimen surface and specifying the diameter ¢ of the circles related to the
2D arc length, i.e., ¢ 22 and ¢ 17 mm, for BT1 and BT2, respectively, as depicted in
Figure 14c. The cruciform geometries with five slits on each arm are initially
fabricated using abrasive water jet cutting, followed by the machining of the dimples
using a 3-axis HAAS CNC machine with end-milling. A customized fixture is
employed to securely hold and align the specimen during the milling process,
ensuring support for the bottom face while the dimples are machined on the opposite

face.

The ductile fracture experiments are conducted under unseen temperature and
strain rate conditions, i.e., T=10°C and & =0.005 /s. The experiments for UT and SH
are performed using the MTS landmark 370 servo-hydraulic universal testing
machine, and for BT1 and BT2, the in-plane displacement controlled biaxial loading
frame is used (Deng et al., 2015). The displacements ratios 6zp:drp =1:1 and
Orp:O07p = 44:1 are applied to the BT1 and BT2 specimens to achieve near
equibiaxial and plane strain tension, respectively. The detailed specifications of these
machines along with the temperature control setup and the DIC system are
previously provided in Section 2.1 and Section 2.2. From the ductile fracture
experiments, the force-displacement (F — §) and local surface strain (¢ — §) curves,
including the full strain field from the surface, are measured using the testing
machine and the DIC systems. The details of local strain and displacement

measurements from the specimens are described in Appendix D.

5.3 Validation of plasticity models with hybrid approach

The DIC system effectively captures the local strain field on the surface, but it has
limitations in assessing fracture properties due to the inability to directly measure
local stress and strain fields inside the material. Therefore, fracture initiation
conditions are estimated through FE simulations of the fracture experiments using
the developed ANN plasticity models. The simulations are conducted using the
commercial software Abaqus/Implicit where the ANN () and ANN (a) are
implemented into the UMAT subroutine as shown in the flowchart of Figure 15.

General cutting plane method (GCPM) as described in Appendix E is employed as
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the stress update algorithm (Lee et al., 2022). The neural networks are translated
into Fortran code as a subroutine with the weights and biases exported from the

Python interface where the ANN models are originally developed.
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Figure 15 Flow chart showing incorporation of ANN(a) and ANN(«) within the
Abaqus/Implicit UMAT subroutine.

Considering the symmetry of the sample geometry about the three mutually
perpendicular axes, 1/8 models are created for the FE simulation of UT, BT1, and
BT2 specimens, while the asymmetric SH specimen allows only a full model. All
models are meshed with 8 node linear brick elements using reduced integration
(C3D8R) as shown in Figure 16. To investigate the importance of capturing the
differential hardening of CP-Ti on the hybrid experimental-numerical approach, in the
present work, two cases of yield function parameters are compared: one with

evolving parameters predicted by the ANN model with respect to the plastic work,
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referred to as ANN(a), and the other with constant parameters at IW,=45 MJ/m?,

named as Const.(a), which are often used by researchers.

(c) BT1 (d) BT2

Figure 16 Mesh design for fracture specimens for (a) UT (b) SH, (c) BT1, and (d)
BT2.

The experimental force-displacement (F — §) and local surface strain-displacement
(e — &) curves are compared to validate the FE model predictions. The comparison

of ductile fracture experiments and FE simulations until fracture initiation are
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illustrated in Figures 17a to 17d. Overall, FE simulations with ANN(«) provide better
agreement with the experiments compared to the results with Const.(a), except for
BT2, but the difference is minor. Both models overpredict the hardening rate in SH,
which indicates that the uniaxial tension experiment in DD using an ASTM ES8
specimen (in Section 2.1) is not sufficient to characterize the shear deformation of

CP-Ti and requires future improvement, e.g., including additional shear testing for

the ANN model training and validation.
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Figure 17 Force-displacement and local strain-displacement curves from

experiments and FE simulations for ductile fracture specimens (a) UT, (b) SH, (c)
BT1, and (d) BT2.

The F — 6 curve obtained from the UT simulations using both ANN(a) and Const.(a)

models closely overlap each other (Figure 17a). The ANN models, especially
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ANN(&), prove the capability by providing a reasonably accurate prediction of the
material hardening behavior even when trained with limited data, thereby eliminating
additional effort for experiments and parameter calibration. For the ¢ — § curves
along the axial and transverse directions, the predictions from ANN(«) lie closer to
the experimental curve compared to the predictions from Const.(a). Full strain fields
measured by the DIC system at the onset of fracture, i.e., the image prior to a crack
being visible, are compared in Figure 18. Local strains are highly concentrated near
the hole where the stress state is close to uniaxial tension, but the material can
reach a higher strain than an ASTM ES8 uniaxial tension test before the fracture. Both
ANN(a) and Const.(a) models reasonably well reproduced the experimental strain
fields along the axial and transverse directions. However, it should be noted that the

local strain of Const.(a) is slightly overpredicted than the ANN(a) and experiment.

Sim.
Const.la)

Sim , { Sim . { -

ANN{x) Const.ea)

ETransverse

(b)
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Figure 18 Comparison of surface strain distribution along (a) axial and (b) transverse
directions in UT at the onset of fracture obtained from the experiment and FE

simulations.

For SH, both models show very close predictions for the ¢ — § curve in Figure 17b.
The strong plastic anisotropy of the CP-Ti as discussed in Section 2.3 and Section
3.2 is one of the key reasons for the inaccuracy in the SH simulations. Y1d2000-3d
yield function, calibrated by a conventional method using the uniaxial tensions and
equibiaxial tension tests, is not flexible enough to capture the shear deformation at
the same time. It should be noted that the uniaxial tension in the DD is the only test
input including the shear stress component used for the yield function parameter
calibration of this work, which leads to overprediction of shear flow stress, i.e.,
0,y/G = 0.82 at 45 MJ/m®. This contributes to the observed deviations between
experimental and simulation results using ANN(«) and Const.(a). While the e — §
predictions at the maximum strain localization are in good agreement with the
experiment, the full strain field predictions in Figure 19 miss the localization pattern

in the experiment, which are caused by the same limitations as the F — § curve.

(a) T ) (©)

Figure 19 Comparison of shear surface strain distribution in SH at onset of fracture

obtained from the experiment and FE simulations.
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Under the equibiaxial stretching (BT1), the CP-Ti material clearly exhibits high
anisotropy as is evident in the distinct F — § and € — § responses observed in the RD
and TD (Figure 17c). The predictions of force and local strain in the RD and TD from
the ANN(a) align with the experimental results better than the Const.(a). Const.(a) is
closer to the experimental strain along the RD and TD at a specific §, but it highly
overpredicts the displacement to fracture in the RD and underpredicts the transverse
force Frp. This can be attributed to the missing prediction of strong differential
hardening near equibiaxial and plane strain tension if constant a values are used as
illustrated in Figure 13b by the ANN(a). For this reason, the surface strain fields at
the onset of fracture (Figure 20) are missed by the Const.(a), while the ANN(«)
predicts the distribution of e, and e with fair resemblance to the experiment. (The

crack propagation is shown in Appendix F.)

Sime ; _i I sim,
AMNMN{c) j Consk{e)

Sim. E ' Sim.
ANM(x) 3 "y Const.(e)

Figure 20 Comparison of surface strain distribution along (a) RD and (b) TD in BT1
at the onset of fracture obtained from the experiment and FE simulations.
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For BT2, the strain and displacement along the TD are very small due to the plane
strain tension deformation in the center of specimen, and thus Figure 17d presents
the force and strain data solely along the RD. Both ANN(a) and Const.(a¢) models
closely replicate the Frp —d&gzp and ezp — dzp curves, matching well with the
experimental values. Since the evolution of the yield locus near the plane strain
tension along the RD is negligible (refer Figure 13b), it is expected that the FE
models based on both evolving and constant parameters of the yield function yield
similar results. However, the ANN(«) strain field prediction shows slightly superior
agreement with experimental results. This is evidenced by the similar vertical lengths
of severe positive strain (red region at the center) in Figure 21a, and the prediction of
severe negative strain (blue regions at top and bottom of the center) in Figure 21b.

(The crack propagation and the strain path are shown in Appendix F.)

k_‘_:.:
& %

#Const.(a) :I

o Sim.
¢ Const.(a)

Figure 21 Comparison of surface strain distribution along (a) RD and (b) TD in BT2
at the onset of fracture obtained from the experiment and FE simulations.
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Overall, the ductile fracture simulations at unseen conditions show remarkable
agreement with the experiments across various stress triaxialities. This highlights the
successful integration of ANNs within the phenomenological framework without

sacrificing the accuracy or computational stability of FE modeling.

5.4 Construction of ductile fracture envelope for CP-Ti

The hybrid experimental-numerical analysis of ductile fracture of CP-Ti validates the
efficiency of ANN(«) in the previous section. The comparison of the experiments and
simulations underscores the successful prediction of ANN models at unseen testing
conditions, i.e., T=10°C and &= 0.005 /s. Consequently, the key parameters

necessary for fracture model calibration, such as fracture strain &, stress triaxiality 7,

and Lode angle parameter 6 (or Lode parameter L), are extracted from the
simulations with the ANN(a). These parameters are extracted from critical locations
within the ductile fracture specimens where fracture is initiated. For instance, the
data is extracted at the center of dimple for BT1 and BT2, at the edge of central hole
for UT, and at the middle of narrow gage section for SH. Assuming the fracture is
initiated at the location of highest equivalent strain, equivalently where the
deformation is mostly concentrated, all extraction points are consistently positioned

at the midplane through the specimen thickness.

The loading paths to fracture are crucial for ductile fracture model calibration, as they
capture the loading history of the critical point of the material from the beginning of
loading until the fracture is initiated. The loading paths from the four ductile fracture
specimens are plotted in relation to stress triaxiality n and Lode angle parameter 8 as
depicted in Figure 22. Among the specimens, the UT displays the highest fracture

strain & while the lowest is obtained from BT2, i.e., plane strain. With the exception

of initial fluctuations, the stress triaxiality n and Lode angle parameter 8 remained
relatively consistent for UT, BT1, and BT2, indicating the proportional loading
subjected in the experiment. It should be noted that stress triaxiality n for plane strain
tension and equibiaxial tension are predicted as 0.74 and 0.81, respectively,
because of the strong anisotropy in CP-Ti. (The values are 0.58 and 0.67 for the von

Mises prediction, respectively). On the other hand, the selected SH specimen shows
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non-linearities in the loading history with varying stress triaxiality n and Lode angle
parameter 6. The effect of non-linearity is compensated by the damage indicator in

Eq. (23) in Section 5.1 to calibrate the parameters of ductile fracture models.
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Figure 22 Loading paths to fracture & with respect to (a) stress triaxiality n and (b)

Lode angle parameter 6.

The optimized parameters for the ductile fracture models are detailed in Table 2. The
JC and Lou-2014 models are calibrated through the least square method, while a
simplex error minimization algorithm is employed for optimizing the HC model
parameters. In the case of the HC model, the parameter g is typically set at 0.1 for
most metals. For the Lou-2014 model, the parameter C is set to 0, given our interest
lies on n > —0.33. Figure 23 illustrates the fracture envelopes constructed using HC,
Lou-2014, and JC models in the 3D space of &, n, and 6. The data points for UT,
SH, BT1, and BT2 align precisely on the HC and Lou-2014 fracture surfaces. On the
other hand, JC model, which is independent of Lode angle parameter produces a
fairly flat envelop which fails to capture the failure strain for SH. The asymmetric
shapes of fracture envelopes if HC and Lou-2014 underscores the significance of the

effect of 6 on &;.
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Table 2 Ductile fracture model parameters

HC a=0846 b=1362 c=0.189 q=0.1
Lou-2014 ¢, =12.977 C,=3.459 (;=1269 C=0
JC D, =0.303 D,=0.638 Dy=2.1

Hesfard-Coulomb Lou (2014)

L e il 74 H“'-'-gé.-' kb
e T TR

-0.33

Johnzon-Cook £f

L3

Figure 23 Fracture envelopes predicted by (a) HC and (b) Lou-2014, and (c) JC
models.

6. Conclusions

In this study, a robust modeling approach is proposed by incorporating a machine
learning algorithm into an existing anisotropic yield function to describe the
complicated temperature and strain rate dependent anisotropic plasticity behavior of
CP-Ti. The plasticity of the material is characterized by uniaxial tension tests along
the three orientations and the in-plane biaxial tension tests at temperatures of 20°C

49



Journal Pre-proof

and 0°C with strain rates of 0.001 /s and 0.01 /s. The results show substantial
anisotropy in stresses and strains as evidenced by the distinct stress-strain curves
and r-values obtained in different orientations. The material also exhibits a differential
hardening behavior with distorted yield loci, which eventually saturates with
increased plastic deformation. Two ANNSs, i.e., ANN(a) and ANN(a) are proposed to
comprehensively describe the plastic behavior of CP-Ti by accounting for factors
such as temperature, strain rate, and plastic deformation. The ANN(&) model is used
to capture the strain hardening behavior, while the ANN (a) model predicts the
anisotropy parameters of the Y1d2000-3d yield function. A remarkable alignment is
observed between the experiment and prediction for the target conditions at T=10°C
and £ =0.005 /s, which distinctly underscores the competency of the ANN models in
accurately capturing the temperature and strain rate dependent plastic behavior of

the material.

Next, the ductile fracture of the CP-Ti is investigated through a hybrid experimental-
numerical analysis by integrating the ANN models with the uncoupled fracture
models. This also provide a validation for the proposed ANN models at an unseen
temperature and strain rate condition. The fracture behavior is studied under various
stress states in positive stress triaxiality range including uniaxial tension, shear, near
equibiaxial tension, and plane strain tension at unseen conditions for the ANNSs, i.e.,
T=10°C and £ =0.005 /s. To assess the influence of differential hardening in the
hybrid approach of ductile fracture modeling, two cases for YId2000-3d yield function
parameters, i.e., ANN(a) for evolution and Const.(a) for constant values, are
employed .in the FE simulations. Owing to the substantial differential hardening
characteristics of CP-Ti, it is noteworthy that only the ANN(a) could achieve a
satisfactory agreement with the experiments consistently across all the tests. This
demonstrates the significance of differential hardening on the ductile fracture
behavior of CP-Ti and confirms the efficiency of ANN(«) in capturing the anisotropic
plastic behavior of the material. The ductile fracture simulations also highlight the
computational stability of the developed ANN models while incorporated in FE

simulations.

Based on the successful validation of plasticity, the stress triaxiality n, Lode angle

parameter 8 (or Lode parameter L), and equivalent plastic strain to fracture & are
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extracted from the FE simulations using ANN(«). While the stress triaxiality n and
Lode angle parameter  of the UT, BT1, and BT2 remain relatively consistent during
loading, those of the SH sample are observed to evolve throughout the loading
process. Notably, the UT demonstrates the highest fracture strain while the BT2
experiences the fracture at the lowest equivalent plastic strain level. The higher the
stress triaxiality n predictions in the BT1 and BT2 compared to the von Mises values
can be attributed to the pronounced anisotropic behavior of CP-Ti. Finally, the
fracture envelops of CP-Ti are constructed using three ductile fracture models, HC,
Lou-2014, and JC.

In conclusion, this research demonstrates the potential of machine learning in
unraveling the influence of strain rate and temperature in the anisotropic plastic
deformation of CP-Ti. Particularly, the developed ANN models is implemented within
the plasticity theory framework excel in capturing the anisotropic, differential
hardening, and flow behavior sensitive to temperature and strain rate. Compared to
purely data-driven approaches that rely solely en machine learning algorithms, this
hybrid approach can leverage the robustness of machine learning while adhering to
conventional constitutive equations, providing a balanced and reliable modeling
strategy. The similar approach can be incorporated with any constitutive models
chosen depending on the material characteristics and applications of interest and still
maintain the computational stability in FE simulations. The ANN models used in this
study still hold potential for further enhancement by incorporating additional strain

rate and temperature conditions for training.
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Appendix A. Extrapolation of strain hardening behavior

Table A1 Swift-Voce Hardening parameters

Strain  Temp. Swift Voce

rate (/s) ('C) s

so (MPa) S1 S5 vo (MPa) v, (MPa) v,

-10 0.183 33648 0.002 0.003 33059 40136  0.020

0.001 0 1.108 859 0.002 0.469 435 2292  6.106

20 1.259 613 0.002 0.357 176 656 10.09

-10 0.057 35167 0.002 0.008 18785 20499 0.036

0.01 0 0.255 19269 0.002 0.005 16273 22290 0.030

20 1.428 617 0.002 0.407 142 545 6.864
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Appendix B. Anisotropic yield loci in (o,-0,) stress space

Following the experimental characterization of CP-Ti at temperatures of 0°C and
20°C, and strain rates of 0.001 /s and 0.01 /s, the yield loci of CP-Ti are constructed
using the Y1d2000-3d anisotropic yield function. The vyield loci differentially expand
with the plastic work, due to strong anisotropy evolution. When plotted in the (o,-0,)
stress space (see Figure B1), the yield loci reveal their actual size, with larger yield
loci observed at lower temperatures. This observation is consistent with the results of

uniaxial tension tests discussed in Section 2.3.

8OO0 — 800 —
£=0001/s W= 0 MJ/m3---- £ =0.01 s W= 0 Mdfm -~
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Figure B1 Yield loci of CP-Ti plotted in (o,-0,) stress space for (a) 0.01/s and (b)
0.001/s strain rates with 0°C and 20°C temperatures.
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Appendix C. Performance of ANN models

Fifteen percent of the dataset created for training is set aside to test the performance
of the ANN models with unseen data, after training. The ANN(a) and ANN(«) predict
outputs with MAE of 0.61 MPa and 0.0002, respectively. The predictions of ANN
models are plotted against the corresponding targets as shown in Figure C1. Only 50

random data points from the test data are used for the following figure.
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Figure C1 Comparison of predictions and corresponding targets for (a) ANN(&) and
(b) ANN(@).
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Appendix D. Temperature field and strain measurement

The local strains are extracted at different locations for each ductile fracture
specimen as marked in Figure D1. In the UT, the local strains along the axial and
transverse directions are obtained at a point 0.4 mm away from the central hole
(Figure D1a). In both SH and cruciform specimens for BT1 and BT2, the local strains
are extracted from the center of the gauge (Figures D1b — D1d). The displacements
6 are obtained using one or two virtual extensometers with an initial length of 20 mm
except BT2, where the displacement is determined using a shorter virtual
extensometer of initial length 15 mm. The color fields represent how well the

temperature distribution is maintained around 10°C until the onset of fracture.

Temperature
(C)

Figure D1 Temperature distribution on ductile fracture specimens captured with IR
camera prior to onset of fracture in (a) UT, (b) SH, (c) BT1, and (d) BT2 experiments.
The white straight lines are the virtual extensometers used in stereo-DIC, and the
red circles indicate the locations where the local strains are extracted from the

surface.
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Appendix E. Stress update algorithm: general cutting plane method (GCPM)

The general cutting-plane method (GCPM) updates the Cauchy stress o and the
relevant state variables at the current time step t,, for a given strain increment 4¢,
(Lee et al., 2022). This algorithm employs Newton—Raphson iteration method (Ortiz
and Simo, 1986), initiating with the calculation of elastic predictor.

Assuming the strain increment Ae,, is entirely elastic, the elastic predictor af@ is

calculated as:

trial

o' = 0,1+ C: Ag, (E1)

where a,_; represents the Cauchy stress at the previous time step t,,_;, C is the

fourth-order isotropic elasticity stiffness tensor, and “.” denotes a tensor product

between the fourth-order and second-order tensors.

If the following condition holds, the trial stress is purely elastic:

Fo (07", &1 ) = ¢u( 07"%") — H(&-1) < 0 (E2)

Here, F defines the plastic yielding of the material, while H is the flow stress from the
strain hardening model given by ANN(&) and ¢ is the equivalent stress from the
Y1d2000-3d yield function as in Eq. (5). When this consistency condition is satisfied,
the updated stress o, at the current step equals the trial stress af%, and the
equivalent strain and other state variables of the yield function remain as the
converged values from the previous time step. If not, i.e., when E,(¢7%,&,_,) > 0,
the equation is iteratively solved to determine the plastic multiplier 4y through return
mapping algorithm to ensure the consistency is satisfied. Applying the associated
flow rule and Euler’s theorem, the relationship between the equivalent plastic strain

increment Ae and plastic multiplier Ay is obtained as:

Fy = ¢(0,-1 + A0,)- H(E—1 + Ay) = ¢p(0,)- H(E—q + 4&,) < tol (E3)
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0
AgP = AV% (E4)
¢
pe= %2 _Vag_ 4 00 _ (E5)

b ¢ T d@

where Aeg is the plastic strain tensor increment.

By applying Taylor’s expansion to Eq. (E3), the variation of the equivalent plastic

strain increment at the k™ iteration is:

Ae%0 = 6%V 1 549 (E6)

and

OF, (Aek=)

e 88 =0 (E7)

E,(4&,) +

Then,

_ ~(k=1)
5(4y) = 8(48) = P (465 )aF )
n

n

9AE
(E8)

Fara (45, 77)

TGO GE }
Pn__.c.%%n__ prasD)

aa;k_l) ' aa;’“”

where H' is the slope of the strain hardening curve. Finally, the updated stress and

equivalent plastic strain are computed as:
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B 9%
k k—1 —
o) = oy + 6(48) C: —— (E9)
do,
and
89 =&Y+ 28l (E10)
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Appendix F. Crack propagation and strain field in the cruciform specimens

The ductile fracture specimens are subjected to deformation until any visible cracks
are observed through the DIC cameras. In the dimple cruciform specimens, a
surface crack becomes evident at the center of the dimple and gradually propagates,
leading to the complete opening-up of the specimen at the dimple region. The cracks
are formed on the BT1 and BT2 samples along the major principal strain direction as
shown in Figure F1: the BT1 sample for equibiaxial stretching exhibits a diagonally
oriented crack while the BT2 specimen for plane strain tension (see the strain path in

Figure F2) present a crack perpendicular to the major loading axis in the RD.

Figure F1 Crack formed on cruciform specimen surface in (a) BT1 and (b) BT2.
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Figure F2 Strain path of BT2 from DIC surface strain measurements.
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