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ABSTRACT: In this paper we provide a detailed account of our calculation, briefly reported
in arXiv:2209.09263, of a two-particle form factor of the lowest components of the stress-
tensor multiplet in N' = 4 sYM theory on its Coulomb branch, which is interpreted as
an off-shell kinematical regime. We demonstrate that up to three-loop order, both its
infrared-divergent as well as finite parts do exponentiate in the Sudakov regime, with the
coefficient accompanying the double logarithm being determined by the octagon anomalous
dimension I'pct. We also observe that up to this order in 't Hooft coupling the logarithm of
the Sudakov form factor is identical to twice the logarithm of the null octagon, which was
introduced within the context of integrability-based computation of four point correlators
with infinitely large R-charges. The null octagon is known in a closed form for all values of
the 't Hooft coupling constant and kinematical parameters. We conjecture that the relation
between the former and the off-shell Sudakov form factor holds to all loop orders.
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1 Introduction

The past three decades have witnessed enormous progress in unravelling the structure of
S-matrices in gauge theories in various space-time dimensions. One playground where this
was achieved in a spectacular manner is the maximally supersymmetric Yang-Mills theory
in four space-time dimensions, or A’ = 4 sYM, for short. The structure of perturbative
amplitudes in the latter is qualitatively similar to the one of parton-level scattering in
Quantum Chromodynamics,— the theory of strong interaction —, and it was explicitly
employed in aiding cutting-edge multi-loop QCD analyses starting from their N' = 4 sYM
counterparts.

A number of analytical frameworks were devised, tested and employed to obtain
a plethora of multi-loop and sometimes all-order scattering amplitudes, with unitarity-
based [1], bootstrap [2], duality [3-5] and integrability [6] methods, to name just a few. The
same or similar strategies can be applied to other (dimensionally regularized) quantities in
N =4 sYM such as form factors and correlation functions. None of these results would be
feasible with standard Feynman diagrammatic methods, which require calculational power
far beyond current computational capabilities.

All-order results for scattering amplitudes [7, 8] allowed one to explicitly verify theorems
regarding infrared (IR) behavior and factorization properties of massless amplitudes in
gauge theories [9-11]. They were found in perfect agreement with general considerations
stating that IR divergent parts of the color ordered amplitudes have to be given by products



of two-particle Sudakov form factors 7, 10, 11]. The latter were in turn governed by the
ubiquitous cusp anomalous dimension I'cygp [12, 13].

These perturbative studies are not of purely academic interest though, considering the
unphysical nature of the model in question, but rather, as we briefly touched upon at the
very beginning, are of phenomenological relevance as well. For many observables, N = 4
results represent the “most complicated” portion of the ones in QCD and thus can be used
to facilitate tedious calculations. This is known under the name of the principle of maximal
transcendentality [14].

In our present work, a two-particle form factor of a two-scalar field operator in the
stress-tensor multiplet will take center stage. Starting with a precocious two-loop analysis
in ref. [15], this on-shell observable in the massless N’ = 4 sYM perturbative expansion is
currently known up to four-loop accuracy [16-19].

In the bulk of the analyses alluded to above, one dealt with the N'= 4 sYM theory
with the exact SU(N) gauge symmetry. Much less attention has been paid to its phase
where the latter is broken by non-zero vacuum expectation values (VEVs) of scalar fields
present in the model. This setup is referred in the literature as to the Coulomb branch [20].
One of the motivations to even address the theory with the spontaneously broken gauge
symmetry is that so induced particle masses can be regarded as an IR regulator [21-23], —
an alternative to the conventional dimensional regularization. As innocent as it may look,
the use of the former leaves certain other (space-time) symmetries intact, such as the dual
conformal symmetry [4, 24], violated otherwise [21]. Indeed, in N' =4 sYM with unbroken
gauge symmetry, amplitudes and form factors can be made well-defined only in D =4 — 2¢
space-time dimensions and they become singular as ¢ — 0 due to copious emissions of
massless states and their presence in quantum loops, hence IR divergent. However, in the
case of the spontaneously broken gauge symmetry, massive particles will play the role of
an IR regulator and the limit € — 0 can safely be taken from the get-go such that the
theory will safely reside in four space-time dimensions. IR divergences will now manifest
themselves as logarithms of the particle mass m as m — 0.

The N =4 sYM on the Coulomb branch is also intricately connected to sYM theories
in higher dimensions. In this correspondence, massless higher dimensional momenta of
particles can be interpreted as massive four dimensional ones [20, 21, 25]. As a consequence,
amplitudes and form factors with massive states in N'=4 sYM on the Coulomb branch
are expected to be equivalent to their counterparts in A/ =1 sYM in D = 10 dimensions
with loop momenta restricted to the D = 4 space-time subspace [20, 21, 25]. A choice
of VEVs can be enforced in such a manner that all external particles are truly massless
in four dimensions, while nonvanishing masses emerge only for loop states propagating
roughly around diagram perimeters. In this massive setup, IR factorization properties of
scattering amplitudes and Sudakov form factors were briefly discussed in ref. [26]. Results
obtained there were in line with general expectations about the structure of IR divergences
in gauge theories. In particular, the leading IR behavior of form factors and amplitudes
was controlled by the very same cusp anomalous dimension I'cysp, as in the massless case.

Recently a duality was suggested [25], which relates correlation functions of half-BPS
operators with infinitely-large R-charges to scattering amplitudes of massive particles, or



W-bosons, in planar N' = 4 sYM on the Coulomb branch in the regime when all states
which propagate in internal loops are massless. Consistency and gauge invariance of such
kinematical regime was advocated by the authors of [25] using the above massless/massive
correspondence between sYM theories in various dimensions. This kinematical regime
mimics a naive off-shell generalization of a purely massless scattering with unbroken gauge
symmetries, so hereafter we will refer to it as off-shell to distinguish it from the one where
massive particles are also present in quantum loops, such as discussed in refs. [21, 26].
Integrability allowed the authors of ref. [25] to obtain a closed-form all-loop expression
for the scattering amplitude of four W-bosons starting from the four-point correlation
function of very heavy half-BPS operators [27-29]. This conjecture was supported by a
comparative analysis of the ten-dimensional null limit of the correlator’s integrand with the
D-dimensional integrands of four-point amplitudes up to four [30] and five [31] loops.

This conjecture allowed the authors of [25] to probe the IR behavior of the off-shell
four point amplitude to all orders of perturbative series and to reveal quite an unexpected
result: it turned out that the IR divergences in this case are not controlled by the I'cysp,
as previously expected, but rather by a different function of the coupling, the so-called
octagon anomalous dimension I'ye;, which has made its debut in the four-dimensional
null limit of the aforementioned four-point large R-charge correlator [27-29]. Further
studies performed in ref. [32], this time involving a five-leg off-shell amplitude, supported
these results and solidified the role of I'y¢; as the off-shell counterpart of I'cysp. These
observations immediately raise the question about the structure of Sudakov form factors
and IR factorization properties of amplitudes in the off-shell kinematical regime. This is a
very important and nontrivial endeavor since these recent findings regarding IR behavior
of the off-shell scattering amplitudes are in tension with what was expected previously in
N =4 sYM [4] as well as in other gauge theories such as QCD [33, 34].

The aim of the current paper is to report details of a three-loop computation of the
off-shell two-particle form factor and its Sudakov limit in planar A’ = 4 sYM. This was
first announced in a short note in ref. [35]. Based on this analysis, we confirm that the
IR behavior of the off-shell Sudakov form factor in N' = 4 sYM is indeed controlled by
et rather than I'cys,. Moreover, we conjecture a closed-form all-order expression for
the finite part of the off-shell Sudakov form factor as well: it is found to be proportional
to the non-logarithmic “hard” function of the so-called null octagon Qgy, which in turn
was introduced within the context of integrability based computation of the four point
correlation functions with infinitely-large R-charges [28, 29].

Our subsequent consideration is organized as follows. In section 2 we provide a lightening
overview of salient facts about IR properties of amplitudes and form factors in N' = 4 sYM
at different points of the Coulomb branch, its origin and beyond. In section 3, we briefly
recall the structure of the Sudakov form factor on the Coulomb branch up to two loop order,
which was previously known in the literature. We further discuss certain assumptions made
in our off-shell calculation. In section 4, we present detailed analysis and explicit results
for the three-loop off-shell form factor and its double logarithmic limit. Based on this
computation we also make an all-order conjecture for the off-shell Sudakov form factor. In

section 5, we summarize our observations regarding IR factorization properties of Coulomb



branch amplitudes in the off-shell kinematical regime and compare them with statements
made in earlier literature. Finally, we summarize.

2 IR structure of amplitudes and form factors

The IR structure of amplitudes and form factors in gauge theories are closely related to
each other. Therefore, before diving into the subject of form factors, it is instructive to
recall key facts regarding the IR behavior of massless scattering amplitudes in N’ =4 sYM
at the origin of the moduli space. This situation is very well understood.

2.1 Origin of moduli space

As in any four-dimensional gauge theories with massless particles, scattering amplitudes in
N = 4 sYM possess IR divergences. One can tame them with conventional dimensional
regularization (or its supersymmetric version, dimensional reduction) by considering the
theory in D = 4 — 2¢ space-time instead. The IR singularities then manifest themselves as
poles in the € regulator. For a planar color-ordered n-particle amplitude A,, with arbitrary
helicity content, it is convenient to define the ratio M,, = A,,/A%®. One can then expect
the following form of M,, to hold at all-loop orders [7, 9-11]:

(0) (0 2 Le
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where the perturbative series is furnished in terms of the D-dimensional 't Hooft coupling
g% = g2,,N(4me™ %) /(47)2. The generalized Mandelstam invariants s;; 11 = (p; + pir1)?
are built from particles’ momenta p; (i = 1,...,n), and p is a mass parameter of the
dimensional regularization. Last but far from being the least, F((fl)sp and G® are some
numerical transcendental coefficients. The function F,, depends on the helicity configuration
of the amplitude A,, kinematical invariants as well as the coupling constant, however, it
depends neither on the parameter & nor the scale . The 1/&2-pole structure originates from
the overlap of soft and collinear divergences, where each of them manifests itself individually
as 1/e.

We see that IR divergences of the ratio M, factorize and exponentiate. Their structure
is universal for all amplitudes (i.e., independent of particular helicity configurations) and
is controlled by two sets of coefficients: Fg@sp and GO . These coefficients in turn define
two functions of the 't Hooft coupling, the cusp I'cusp(g) and collinear G(g) anomalous
dimensions. The first few terms in their perturbative expansion are

o0

FCUSp(g) = Z Fg{l)spg% = 492 - 8(3 + 88(496 + ...,
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S 80
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The above formulas exhibit standard folklore that the leading IR behavior (i.e. 1/¢? poles)
of planar amplitudes in N' =4 sYM at the origin of moduli space is controlled by Tcusp(g).



Not only the cusp anomalous dimension, but the whole IR divergent part of the
amplitude can be independently defined in terms of matrix elements of some local operators.
Indeed one can show that the divergent part of the amplitude is given by the product of
Sudakov form factors F3, which are determined here as matrix elements of an operator
from the N' = 4 sYM stress-tensor supermultiplet and a pair of on-shell states. The lowest
component of this supermultiplet is given by the operator O = tr(¢12¢12), built out of two
scalar fields ¢ap = ¢%pt, from the N' = 4 sYM Lagrangian in the 6 representation of
SU(4)r with ¢, being the SU(IV) generators in the fundamental representation. So one can
define F5 as:

Fy = (0|(a")fy,, (@')12,,010)/(01(a")y , (8)5 5, O10)trce - (2.3)

Here (&T)‘b,pi is a creation operator of the on-shell scalar ¢¢, with momentum p;, p? = 0.
One can demonstrate that F5 will in fact be identical to all other operators from the
stress-tensor supermultiplet and all possible pairs of particles from the on-shell N' = 4 sYM
supermultiplet [36, 37]. Information about operator type and particle helicities is encoded
in <0|(&T)11127p1 (&T)%21p2(9|0)tree, which we factor out. Then one can rewrite (2.1) as:

2
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with:
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Here g = py + po is the off-shell momentum, ¢ # 0, carried by the operator in question

and ¢(g) = 3, ¥ g2, where ¢ are some (potentially) scheme-dependent constants. These
factorization theorems for F5 and M,, were tested by multiple explicit computations of M, for
some values of n and F» and are in perfect agreement with each other, see, e.g., [7, 8, 15, 38|.
They are also supported by general theoretical arguments which map IR behavior of
amplitudes to UV behavior of cusped Wilson lines [12, 13]. Standard renormalization
group (RG) machinery can be applied to tackle their UV behavior [33, 34]. For example,
the all-order structure of Fy (2.5) is a result of such analyses [7, 10, 33]. For illustrative
purposes, scalar Feynman integrals contributing to M, and F5 in the first two orders of
perturbative series are displayed in figure 1. It is also worth to mention explicitly that
because the operator insertion in definition of Sudakov form factor is color singlet, even
in the planar limit there will be contributions of non-planar graphs to the Sudakov form
factor in contrast to the planar nature of amplitude case. This fact makes relations (2.4)
between amplitudes and form factor especially nontrivial.

In gauge theories with less or without supersymmetry, such as QCD, IR factorization
relations similar to (2.4) will also hold, but their explicit structure will be more involved
since one will have to take the running of coupling into consideration [10, 11, 33, 34].
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Figure 1. Two-loop expansion of the four-leg amplitude (top panel) and the two-leg form factor
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(bottom panel) in terms of scalar integrals.

2.2 Coulomb branch

As we already mentioned in the introductory section, in addition to the coupling constant
gyu and the number of colors N, the N/ = 4 sYM with SU(N) gauge group possesses another
set of free adjustable parameters,— the VEVs of the six real scalar fields ¢ 4p of the theory,
aka moduli. In principle, there are no restrictions on their values and one can consider
the theory at any point in its moduli space. So what about the above amplitude story
away from its origin? As was advocated in [25], it is convenient to use the aforementioned
D-dimensional framework together with observations that the integrands of n = 4 and
n = 5 of planar amplitudes (or rather the ratio functions M,,), have universal structure
shared among sYM theories [39—41]. Then by imposing kinematical constraints on the
D-dimensional integrand, one can obtain integrands in N'= 4 sYM at a nontrivial position
in its moduli space away from its origin.

Ref. [25] found that it is useful to invoke the D-dimensional dual coordinates X; to
impose the aforementioned kinematical constraints. These are related to particles’ momenta
as p; = Xji+1 = X; — X;4+1. Namely, all loop integrations dP X; are accompanied by the
constraint 6”~4(X,). This effectively decomposes all propagator denominators XiQZ into the
four- and extra-dimensional components, Xfé = x?e +y?, where y? must be identified in turn
with particle masses y; = m? generated by a specific pattern of gauge symmetry breaking.
Momenta of external particles encoded in p% = XZ%- +1 = 0 should also be decomposed
accordingly, X2 = x2, 41t v 11, where once again D > 4 part is regarded as their
mass y2,, = m%,, see figure 2. The specifics of the VEV choice is not relevant for our
discussion,— as long as it is possible —, so we sweep under the rug these irrelevant details
about concrete patterns of gauge symmetry breaking, structure of the R-symmetry group
after the latter took place etc. All this information is contained in A% amplitude, which
we factor out anyway.

As an illustration, let us consider the contribution of the one-loop box integral from
figure 1:

/ dP X, 0P (X,) X5 X3, dlag X5 X3, (2.6)

X%eXgeXgeXZe / (fE%g + y%)(:vge + y%)(ﬂfge + Z/g)(ﬁw + yi) '
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Figure 2. Various kinematical regimes discussed in the text stemming from a D-dimensional pro-
genitor.

There exist two essentially different possibilities. One can consider the situation where
all m?z 41 = 0. This will correspond to the scattering of massless particles via massive
states propagating in loops, such as in the four-photon scattering amplitude in QED. Here
y? = m? will play the role of the IR regulator, and to investigate the IR properties of
the amplitude one must evaluate loop integrals in D = 4 and then approach the limit
m? =m? — 0. For eq. (2.6), this will yield
) x%3x%4
/ (23, +m?)(23, +m?)(x3, + m?)(z, + m?)”’

(2.7)

where everything is four dimensional and 2%, ; = p? = 0. In particular, these last conditions
imply that 2,23, is now equal to sjas93.

Another interesting option is to consider the opposite limit and put all y? = m? = 0
first. Then, the external masses m?,_; instead will play the role of an IR regulator. Once
again, it is implemented in such a manner that all integrals are evaluated in D = 4 and then
the limit m?z = m? — 0 is taken. Physically, this situation corresponds to the scattering
of massive W-bosons in the limit where we neglect all masses of states propagating in
quantum loops. For our one-loop box (2.6), this limit provides:

4 33139524
/ @ C22,a2,22,02, (28)
107207307 4L
where every Lorentz invariant is four-dimensional and z%,; = p? = —m? — 0. This integral

can be re-expressed in terms of the Davydychev-Usyukina one loop box function [42, 43].
Since the scalar integral families as well as their accompanying numerical coefficients will be
identical to the on-shell case for n = 4,5, this kinematical regime will be in fact identical to
the naive off-shell regularization of purely massless results. This was briefly discussed in the
earlier literature, see, e.g., [4]. At that time such an apparently naive off-shell continuation
was obscured by potential problems with gauge invariance and, thus, overall consistency of
such a procedure. Relations to higher dimensional sYM theories were not (widely) known
or explored back then.

Let us consider the situation with the scattering of massless external particles via
massive virtual states first. Using the aforementioned prescription, explicit n = 4 three loop
and n = 5 two loop computations were performed® [21-23]. Results of these computations

LAt two-loop level, they were also verified by explicit Feynman diagram calculations [21].



allow one to conjecture the following IR factorization formula for the ratio function M,:

2

log My = —2 > [Fcusp(g) log? ( ) +2G(g) log ( ) + Fu({pi}, 9) + O(m?).
= Sii+1 Siit+1

(2.9)

Here G(g) may potentially be different from the pure massless case (2.1). Based on the
results of refs. [21-23], one can also expect that the hard function F,, here is identical to
the purely massless case. We see that this situation is essentially equivalent to the massless
case (i.e., the theory at the origin of its moduli space) with the replacement of 1/& poles
with logm?. Leading IR logarithms are still controlled by T'cusp(g), which is in line with
the folklore that I'cysp(g) is “the ultimate IR anomalous dimension” and all IR limits of
the theory should be controlled by I'cysp(g) of that theory. It is also curious to mention for
eq. (2.9) to hold, it is sufficient to retain nonvanishing m? only in propagators which form a
closed frame around graph sites. All other masses can be considered strictly set to zero,
see, e.g., the right-hand side of figure 2 for the n = 4 amplitude.

The opposite situation of the massive particle scattering via massless virtual states
revealed, however, a different picture. Based on the three loop n = 4 and two loop n =5
computations [25, 32], one can conjecture the following IR factorization formula:

n m2 B
log M,, = —i > Toct(g) log® < ) + Fo({pit g) + O(m), (2.10)

o] Sii41
with T'oct(g) being a different function of t Hooft coupling compared to I'cysp(9):
Toct(9) = 49 — 16Cag™ + 256¢ag® + ..., (2.11)

and (potentially) different ]t"n compared to pure massless case. More accurately for n = 4,5
examples the kinematical dependence of F,, and F, was identical, but the dependence on
coupling constant g was different, which can be captured by I'oct — I'cysp replacement.

This unexpected result immediately raises the question about the IR factorization
properties of amplitudes in the off-shell kinematical regime, i.e., can their IR divergent
parts be captured by the product of the off-shell Sudakov form factors? The ultimate goal
of this article is to shed light on these questions and we will address them in details in the
next sections.

3 Form factors in N =4 sYM

Before discussing the off-shell regime for production of external (massive) particles by the
operator O from the vacuum, let us briefly discuss the opposite situation for scattering of

massless particles via massive virtual states.

3.1 Coulomb branch: massive internal lines

For simplicity,we will choose a single mass y? = m? < 1 for all i and then take the limit
m? — 0. In the pure massless case with the unbroken gauge symmetry, the Sudakov form



Figure 3. Scalar integrals determining the second order perturbative expansion of the on-shell form
factor regularized by massive internal lines.

factor F5 reads up to two loops
B=1+¢F" + ¢ F® + ..., (3.1)
in terms of the following set of scalar integrals, shown graphically in figure 1,

F2(1) — 2@2 Tﬁnl_ShEII,
1

F2(2) — 4@4 Té),rll—shell + i

T;E_Shell 7 (32)
where we introduced Euclidean momentum transfer Q? = —¢> > 0. These results for
p? = 0 were (re)derived by different methods by multiple authors [15, 16, 44]. As in the
amplitude case, one can argue that the integrands in these expansions are identical among
sYM theories in all D’s [16]. So it is tempting to use the massless/massive prescription
of [25] to obtain scalar integral representation for form factors as well starting from eq. (3.2).
One faces an immediate obstacle, however, due to the presence of non-planar? graphs, e.g.,
TQOE‘SheH is the first example of such scalar integral. A general consensus is that there is no
well-defined way to introduce dual coordinates for such integrals. Despite this fact, one
can still insert masses in massless propagators in non-planar D = 4 dimensional integrals
“by hand” akin to how it is done for planar integrals, assuming that there is a way to
choose D-dimensional momenta to replicate these mass insertions. Hereafter, we will adopt
exactly this hands-on approach for obtaining candidates integrals for massive integrands
from purely massless ones.

In current case, there are two possible ways to insert massive propagators to form
closed frames in the Té),nl'She“ integral, which will lead to finite four-dimensional results. It

is natural to consider both of them with equal apportions, i.e., % coefficients, see figure 3.

The choice of the massive frame in the nonplanar integral TQOE‘She”

, which make this integral
finite in D = 4, is unique. This results in the following conjectured expansion for the

on-shell form factor with massive internal loops:
F2(1) — 2@2 Tlr?fSSive7

1 ; 1 i 1 .
F2(2) _ 4@4 §T2II711asswe,a + §T2H,11asswe,b+ ZT2H,12aSSNe : (33)

2These graphs are endowed nevertheless by leading color structures due to the fact that the operator
vertex O is a unity matrix in the SU(NN) group space contrary to other external legs which are in its
adjoint representation.



where, as was explained earlier, 775255

are scalar integrals corresponding to the very same
graphs as 7}?;“511911 in (3.2), but massive instead of massless propagators, see figure 3. This
decomposition can in fact be derived [26] in the standard perturbation theory in ' = 4
sYM where a specific pattern of spontaneous gauge symmetry breaking is chosen, see
refs. [21-23] for details. This provides a solid endorsement for our approach of uplifting
massless contributions off of their mass shell.

The small-mass expansion for all T;7**"¥ integrals leads to the following result [26]:

—m? 1 —m? = —m? ~
log F (QZ,9> = = Leusn(9) log? < 02 ) - G(g) 10g< o2 ) +2(g) +0(m?). (3.4)

Here as before T'eysp(a) and G(a) identical to those of (2.2) at this order of perturbative
series, i.e., two loops.

One can expect that the structure of (2.9) will hold to all orders in g with the same
Leusp(g) but (potentially) different G(g) and &(g) compared to eq. (2.5). This means that
the factorization formula on this massive Coulomb branch will be identical to the one of
the massless case (2.4). The structure of the Sudakov form factor itself is also very similar
to purely massless case with bold replacements of all poles 1/e by logarithms log m?.

The Sudakov form factor satisfies an evolution equation [4, 33, 34], which in the massless
case is given by

(‘9)21 Py = — (o) (3.5)
810gﬂ2 og by = 2 cusp\9) - .

We see from (3.4) that in the case of the massive kinematical regime, this evolution equation
will be intact provided on replaces log u? +— logm?. At the time of its derivation, this
result was completely in line with general expectations that all IR physics in gauge theories
under consideration must be controlled by I'cysp of that theory and that I'cusp is the
“ultimate anomalous dimension” of IR physics. The appearance of I'c;sp in the form factors
and amplitudes in this massive kinematical regime was considered for granted and was
interpreted as the consequence of scheme independence of I'cysp [21].

3.2 Coulomb branch: off-shell regime

Let us now return to the main observable of our interest, i.e., the Sudakov form factor in the
off-shell kinematical regime. Based on the two-loop purely massless result (3.3) and making
use of the D-dimensional approach described in the previous sections, we can conjecture
that the perturbative expansion of the Sudakov form factor of W-bosons

Fy=1+@FY + ¢*F® + 5P + .. (3.6)
is determined up to two loop order by the following scalar integrals
By =207,

1
F? = 4Q* [TM + 4T2,2} , (3.7)
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Figure 4. Scalar integrals contributing to the three-loop off-shell form factor. Arrows on the lines
corresponds to the presence of the numerator (p, + py)?, where p, and p, are the momenta flowing
through corresponding lines.

with very same graphs representation as in (3.2), but now with momenta of external
particles being p; massive, or off-shell. On the other hand, all internal lines (propagators)
are massless, see figure 4. Note that we currently choose m? = —p? in contrast to the
previous section, where m was the mass parameter in the massive propagators 1/(k? —m?).

In the following, we will use the notation® t = m?/Q? > 0 for the dimensionless ratio
entering all integrals. The one- and two-loop integrals 77 1 and 751, T3 2 can be expressed
in terms of the Davydychev-Usyukina ¢-loop box ladder functions ®(z,y) [42, 43, 45]

as follows
QQTI,I = _q)l(tu t) ) Q4T2,1 = (I)Q(ta t) ) (38)
Q'Tan = [01(t, 1)), (3.9)

where we grouped them together according to their (non)planarity. In turn, the Davydychev-
Usyukina functions ®4(x,y) can be solely written in terms of (poly)logarithms,

24N (=1) 1og* 7 (¥) Lij(— (px)~") = Lij(— (pm) ")

Oy(z,y) ==Y : . (3.10)
= (5 — 0120 — j5)! A
with p and A being functions of x and y,
1 a2 1/2 _ e -1
Na,y) =[1—2—y)" —day] =,  plz,y) =2[1—z—y— Mz, y)]- (3.11)

It is worth to realize that eq. (3.9) is highly non-trivial since it re-expresses the nonplanar
integral T5 2 in terms of the planar 77 ;. It is well-known that all planar scalar integrals,4

3We hope that there will be no confusion with a Mandelstam invariant for the four-point amplitude.
“The integral Tb1 can be obtained from the double box integral using a limiting procedure from
refs. [42, 43]. The same is applicable to other planar integrals in eq. (3.6), at least up to three loops.
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including 751 above, are invariant® with respect to the so-called dual conformal symmetry,
i.e., conformal boosts in the momentum space [4], which is a harbinger of integrability of
N =4 sYM. We will see in the next section that relations akin (3.9) between non-planar
and planar integrals is likely to be a general pattern of the Sudakov form factor in N' = 4
in the off-shell kinematical regime.

For the first two £’s, i.e., £ = 1,2, the small-t expansion of the Davydychev-Usyukina
functions immediately reads

@ (t,t) = log?t + 2¢2 + O(m?),

21¢,

log*t
&1 130102t + = O(m?). (3.12)

Do(t,t) =

Let us direct the reader’s attention to the fact that contrary to the case of the dimensional
regularization, used in the purely massless cases, there is no analog of £ x 1/e-interference
between different orders in coupling constant g, and relation like eq. (3.12) are sufficient to
completely determine log F» up to terms O(m?) and three loop accuracy. At this point, let
us quote the expansion for ®3(t,¢) which will be useful in what follows

logbt 56 155Cs

35
+ 22 loght + 35 logZt + —=2 + O(m?). (3.13)

3(t,1) = 55 6 2 A

Substituting these in log F5 and expanding, in turn, log 5 in powers of g up to two-loop
accuracy, we obtain [32]:

log F» (t,g) = [—292 + 8G9 + .. } log?t + [—4(292 +32Cg™ + .. } +0(m?). (3.14)

The structure of this result is in line with general expectations about exponentiation of IR
logarithms, however, there are some important differences. Indeed we see that IR logarithms
exponentiate but the coefficient accompanying log? m? is different from —Tcusp(g) divided
by 4. Note also that the analogue of the collinear anomalous dimensions G(g), that is
é(g), is completely missing in this case, compared to (2.9). A naked eye inspection of the
coefficient accompanying the double logarithm as well as the finite piece [32], allows one to
verify that these are in agreement with the leading two terms of the perturbative expansion
of the null octagon encoded by the two functions of 't Hooft coupling, which are known
exactly in terms of elementary functions [28, 29, 46]

2
Coct(9) = - log [cosh (27¢)] = —4¢% 4+ 16(ag® + ... , (3.15)
1 sinh(4m
D(g) = 7 log [4;99)] =4Gg? — 3209t + ... (3.16)

The above off-shell kinematical regime was discussed in early literature, see, e.g., [4, 33].
It was predicted there that the coefficient before log? m? should merely be given by —Tcusp,
that is, twice larger compared to the purely massless case (2.5) and (6.1). At one loop
this is indeed the case, and the origin of the doubling is very well understood [47-50]. The

50f course, these have to be accompanied by certain prefactors built out from external particle momenta
to render them dimensionless.
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latter is a consequence of an additional integration domain over the loop momentum in 77 ;
integral, dubbed the ultra-soft regime, compared to the on-shell case. This domain provides
leading contribution on par with the soft-collinear regions intrinsic to both on- and off-shell
integrals. However, as we observe, at higher loop orders this simple doubling relation is no
longer true. Thus, a calculation of the three loop correction is highly desirable to clarify
this clash and to support the claim that the coefficient of log? m? is indeed proportional to
['oct rather that I'cysp. This is what we are set to demonstrate in the next section.

4 Off-shell form factor at three loops and beyond
In this section, we present the main result of the current work.

4.1 Integral basis at three loops

The massless form factor at three loop order was first evaluated in [16]. We employ their
basis of scalar integrals and cast this contribution FQ(S) to eq. (3.6) into the form

F2(3) =8Q" |Q*Ts1— %Ts,z + %T3,3+ %T3,4 - %T3,5 - %T&ﬁ - %T3,7+ %Ts,s ;o (4
see figure 4 for graphical representation of individual 73;’s. Our goal is to evaluate T3 ;.
More precisely, we are interested in their small-m behavior up to O(m?).

Before we dive into technicalities, let us make a general comment about the task
at hand. Of course, the most straightforward approach to the calculation would be to
compute corresponding parametric integrals directly in four dimensions since all 73 ;’s are
finite. This can immediately be accomplished with existing software packages such as,
for instance, HyperInt [51, 52]. However taking into account the presence of integrals
with irreducible numerators,® e.g., T3 3, HyperInt is not an optimal code to tackle them.
We found that it is more efficient to use other approaches, in particular, the method of
differential equations and the method of regions. These two independent techniques were
used in parallel to cross-check correctness of devised expressions. Both of these require,
however, lifting considerations away from four dimensions to D = 4 — 2¢. In the former
case, it is needed to render the system of master integrals complete, while in the latter,
separation of integrals into various asymptotic regions makes them individually divergent
and recover a finite expression only in their sum. We will discuss them in turn.

4.2 Evaluating T3 ; integrals with differential equations

The first approach that we used is based on solving differential equations [55-57] for these
integrals at general values of Q? and m?, with p? = p3 = —m?. In this manner, we obtained
three-loop corrections in exact kinematics, i.e., not just the limit m — 0. In fact we adopted

SWe tested HyperInt for some of the integrals without numerators in eq. (4.1). They turned out to be
linearly reducible and expressible in terms of Goncharov polylogarithms [53] for a general value of m. They
were further expanded at small m using HyperInt functions. Thus obtained expressions were confirmed by
other methods that we employed for all T3 ;, with or without irreducible numerators. One can expect that
all T3,; integrals are also linearly reducible [54].
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an earlier analysis from ref. [58] where these integrals were calculated at the symmetrical
point, p? = p3 = ¢> = —1. The homogeneity of T3, in the two kinematical invariants
allows us to factor out their mass dimension in terms of @2 and thus focus solely on their
dependence on the dimensionless ratio t = m?/Q?.

The first step on the way to find the so-called canonical form of the differential
equations [57]

0J =cA-J, (4.2)

is to perform an IBP reduction for all 73 ; in order to reveal the initial set of master integrals
I involved in their representation. This can be achieved by any software available for this
purpose. We relied on FIRE6 [59] and LiteRed [60]. For the resulting basis of preliminary
master integrals, we then constructed a set of differential equation in the ¢-variable. To
transform the resulting differential equations to a Fuchsian (aka dLog) and e-form, it is
convenient to introduce a new variable by ¢t = —(z —1)2/z. This choice rationalizes potential
square roots in the matrix A. Then the singular points ¢t = {1,0, 00,4} of the latter are
transformed into z = {exp(%ﬂ), 1,0,—1}. Let us emphasize that the appearance of the sixth
root of unity o = exp(%') in this problem is a feature that shows up for the first time at
the three-loop order.

Making use of the public codes CANONICA [61] and Libra [62, 63], we transformed the
initial system of differential equations for the integrals I = T - J first to the dLog and
ultimately to the e-form, with the A matrix having only Fuchsian singularities

R R R, Ro‘ RO’*
A= Ly + : (4.3)

z z—1 z+1 z—0o z—o0F

The main advantage of the canonical form of the resulting differential equations is that
their general solution

J =Pexp <5/dzA> -Jo, (4.4)

when expanded in the power series in € can easily be integrated order-by-order up to the
desired weight-six contributions. The results are naturally expressed in terms of multiple
Goncharov polylogarithms [53] or, presently, via harmonic polylogarithms (HPL) [64]. The
integration constants Jy were fixed with the help of boundary conditions in the limit where
one of the two external momenta was considered large in the Euclidean sense. In this
limit well-known graph-theoretical methods can be used to perform systematic expansions.
These prescriptions are implemented in the computer codes EXP [65, 66] and MINCER [67, 68|,
which we relied on.

As a result of our analysis, we deduced the analytical form for all integrals T3 ; required
for three-loop off-shell form factor. For example, we obtained for 737

Oy — 40 Hg N 474 Hy g N 2072 Ho 0,0,0
’ =183+ 1)t 9@t =13+ 1)tz 3t —1)3(¢t+1)2
207 H 20H 80
7 10,0000 0,0,0,0,0,0 n ™ (4'5)

=130+ (E—1)30+ 12 189(t —1)3(t+ 1)’
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where we used the conventional nomenclature
HCU,...,CLn = HPLalw-yan (t) . (46)

The rest of integrals are relegated to the Mathematica notebook 3loopTs.nb in the sup-
plementary material attached to this paper. Eventually, these were expanded in the limit
t — 0. Since all contributions are expressed in terms of HPL, this is a rather straightforward
task and can be systematically performed by means of the so-called shuffle relations. For
instance, for T3 7 we find”

35G4

10g6 t 5C2 155(6
4 4 2

Q 1 = + —=1lo + ——1o + —
37 36 6 & t 2 & t 4

It is curious to observe that this turns out to be the small-¢ expansion of the Davydychev-

+O0(m?). (4.7)

Usyukina function ®3(¢,t) in disguise. Explicit form of these series for all other integrals
T3 ; can be found in appendix A.

4.3 Evaluating T3 ; integrals with expansion by regions

In order to cross check our findings, we relied on yet another method to evaluate the
small-t expansion of the three-loop integrals. It is based on a strategy of the expansion by
regions [69] (see also [70, 71]). It was originally introduced to tackle threshold expansions of
Feynman integrals [69] and later generalized to any limit. The limit under consideration in
the present work, i.e., t — 0, is intrinsic to Minkowski space-time and cannot be formulated
in Euclidean kinematics.® The essence of the expansion by region consists in classification
of loop-momentum integrands with regard to their scaling in a small parameter involved,
i.e., t for the case at hand. The contributions of these so-called regions are then evaluated
according to the instructions formulated in ref. [69] by extending loop integrals to the
entire infinite space without any kinematical restrictions. Setting to zero all emerging
scaleless integrals, one obtains desired asymptotic expansion by summing up non-vanishing
contributions of the regions.

Remarkably, this fairly dubious procedure formulated in the momentum space works
extremely well in practice. However, insisting on the momentum-space language it proves
rather difficult to reveal all regions in a given limit following the decomposition of loop
momenta in terms of hard, collinear, soft and ultrasoft. It is the use of the Feynman
parametric representation, see eq. (4.8) below, which allowed one to alleviate this drawback
and provided the possibility to develop a systematic algorithm [77-79] and, moreover, to
implement it in the computer code asy [78, 79]. Within this algorithm, relevant regions
correspond to facets (i.e., faces of maximal dimension) of a Newton polytope connected with
two Symanzik polynomials in the Feynman parametric representation. In fact, the expansion

by regions can be applied with the use of the code asy to any parametric integrals over?

7If the appropriate branch of HPL functions is chosen.

8Limits of Feynman integrals typical to Euclidean space, such as a off-shell large momentum expansion,
receive support from the Wilson operator product expansion. The latter can be formulated in a graph-
theoretical language as in refs. [72-75], see [70, 76] for comprehensive reviews.

9For other domains, one should first map it to Rf and then proceed with asy. An example of its
application to integrals, which are not Feynman integrals, can be found in [80] where the initial integration
domain was a multidimensional unit cube.
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Rf of products of polynomials raised to powers linearly depending on the regularization
parameter €. Expansion by regions has up to now the status of experimental mathematics.
However, to date there are no known examples where it fails. Let us refer to [81, 82] for
discussions of possible ways to prove this strategy.

For Feynman integrals with integrands determined by a product of N propagators
1/ (]o2 —m?+ 10)% the corresponding Feynman parametric representation is an integral
over a projective Rf ,

(mD/2)L I'(a — LD/2) oo N .
_ | I a;— . § : L a—(L+1)D/2 ;pLD/2—a
Ial,...,aN - HZ F(al) /0 1 $i dxlé ( I, ]_) U + F ,

(4.8)

where a = 3 a;, L is the number of loops and F = U Y mZx; — V. The functions U and V
are the two Symanzik polynomials given by the well-known formulas with summations over
graph’s trees and 2-trees, respectively (see, e.g., [71]). To apply asy to (4.8), it proves more
convenient to exploit it as a part of the FIESTAS5 distribution package [83, 84]. The advantage
of its use is that the command UF will generate U and V' automatically as well. In fact, the
folklore Cheng-Wu theorem allows one to choose the sum over Feynman parameters in the
argument of the delta-function to be over any nonempty subset of indices. For example,
one can take ¢ (z;, — 1) for a conveniently chosen ip. In circumstances when some indices
a; are negative, i.e., it’s a numerator, the corresponding parametric integral is obtained
by a limiting procedure, with a result which has no integration over the corresponding
parameter and involves extra polynomials in the integrand. So, in eq. (4.8) we implied that
all propagator indices a; are positive and, if some indices are negative FIESTAS immediately
yields corresponding expressions as well.

The heuristic formulation of the expansion by regions in the momentum space alluded
to above can be repeated to the letter for parametric integrals as well. Let us emphasize,
however, that the notion of a region here literally implies certain scaling of integration
variables with powers of the small parameter in the problem. Our goal is then to select
scalings that generate, after a subsequent expansion, non-zero contributions and we relegate
this task to the code asy. The latter yields an output given as a set of N-dimensional
vectors rj = {(rj)1,...,(rj)n}.

In our case of a single small parameter ¢, the contribution of a given region r; is
obtained from the original integral by adopting the following three steps

(i) rescaling variables as: z; — tTig, . i=1,...,N,

N
(ii) multiplying integrands by: #2211 ()i , (4.9)
(iii) expanding integrands as: ¢ — 0.

To see how this works, let us consider an example, say, the three-loop integrals 73 ¢ which
is in fact the most complicated case. The “propagators” defining it read

Props = { — ki, —k3, —k3, —(k1 + p1)*, —(k1 + k2 + p1)%, — (k1 + k2 + ks + p1)?,

— (k1 + ko + k3 — p2)?, —(ka + k3 — p2)?, —(ka — p2)?, —(k1 + p1 + p2)*},
(4.10)
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where k; (i = 1,2,3) are the loop momenta. The tenth invariant is in fact a numerator such
that our integral T3 ¢ possesses the indices {a1,...,a9,a10} ={1,...,1,—1}. The Feynman
integral in question is finite in four dimensions. However, when expanded in the limit ¢ — 0
different regions being integrated over the entire Rf space inevitably induce divergences.
These need to be regularized to get finite results. Dimensional regularization comes to
the rescue as the most optimal choice and it mends singularities to becomes poles in ¢.
Ultimately, cancellations of the latter becomes then a very powerful check of the correctness
of the expansion procedure.

After running asy with the help of the FIESTA’s command SDExpandAsy, we obtain
information about all contributing regions. For the case at hand there are 35 of them

r={{1,1,1,0,1,1,1,0,1,0},{0,0,0,0,0,0,0,0,0,0},{0,1,0,1,2,2,0,0,0,0},
{1,1,0,1,2,2,1,0,0,0},{0,0,1,1,1,2,0,0,1,0},{0,1,1,0,1,1,0,0,1,0},
{0,1,0,0,1,1,0,0,0,0},{1,1,0,0,1,1,1,0,0,0},{0,1,1,1,2,2,1,1,1,0},
{0,1,1,0,1,1,1,1,1,0},{0,1,1,1,2,2,0,0,1,0},{1,0,0,1,1,1,1,0,0,0},
{1,0,1,0,0,1,1,0,1,0},{1,0,1,1,1,2,1,0,1,0}, {0,0,0,0,1,1,1,0,0, 0},
{0,0,0,1,1,1,0,0,0,0},{1,1,1,0,1,1,2,1,1,0},{1,0,1,1,1,1,2,2,1,0},
{1,0,2,1,1,2,1,1,1,0},{1,0,1,1,1,2,2,1,1,0},{0,0,1,0,0,1,1, 1, 1,0},
{0,0,1,0,1,1,1,1,0,0},{1,0,0,0,0,0,1,0,0,0},{0,0,1,1,1,2,1,1,1,0},
{0,0,1,0,0,1,0,0,1,0},{0,0,1,0,1,1,0,0,0,0},{0,0,0,1,1,1,1,1,1,0},
{1,0,1,0,0,1,2,1,1,0},{1,0,0,0,0,0,2,1,1,0},{1,0,1,1,1,1,1,1,0, 0},
{1,1,1,1,2,2,1,0,1,0},{1,0,2,1,1,2,2,2,1,0},{1,1,1,1,2,2,1,1,0,0},
{0,0,0,0,0,0,1,1,1,0},{1,0,0,1,1,1,2,1,1,0}} , (4.11)

and they scale, respectively, as the following function of ¢

{t—55’ t07 t_6€7 t_5€, t_6€, t_2€, t—3€’ t—GE’ t_4€, t—E’ t_567 t_2€7

t*GE t755 t*?)E t73€ t74€ t74€ t74€ t74€ t72€ t728 t*3€ t*5€
t—3e’ t—Se7 t—GE, t—56, t_66, t—s’ t_4€, t—35’ t_4€, t—3e’ t—55} ) (4.12)

It becomes immediately obvious that the momentum-space language would make the goal
of identification of loop-momentum scalings quite a tedious task. While it is more or less
clear that the t behavior is associated with the hard-hard-hard region in the three loop
momenta, t~¢ is associated with regions where one of the loop momenta is collinear (to
p;) and the other two are hard, however, a proper identification of other regions in the
momentum-space formalism looks quite challenging. Nevertheless, such an analysis will
definitely be beneficial since it would result in a factorization theorem for the off-shell
Sudakov form factor akin to the on-shell case [33, 34].

The analytical mode of the command SDExpandAsy provides explicit parametric integrals
corresponding to the above 35 contributing regions. To systematically evaluate these in the
g-expansion, we rely on the method of the Mellin-Barnes (MB) representation (see, e.g.,
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ref. [71]). The latter is based on the simple formula

11 dz B*
(A+ B> T(\) Je 2mi AM+=

T\ + 2)T(—2), (4.13)

which allows one to partition a complicated polynomial in terms of its two ‘simpler’
components A and B. In this equation, the contour C runs from —ioco to +ico in the
complex plane and the poles of T'(... + z) are to its left while the ones of T'(... — z) are to
its right with these left/right poles corresponding to infrared/ultraviolet singularities of the
original integral. This formula is usually applied repeatedly enough number of times to a
given parametric integral in order to transform it into a multiple MB integral. Of course,
one attempts to arrive at as simple final representation as possible with fewer complex
integrations. This procedure was recently automated with the code MBcreate.m [85].

Once a reasonable MB representation for a given parametric integral is obtained, the next
step is to resolve integrand’s singularities in €. The goal here is to represent a given complex
integral as a linear combination of MB integrals whose e-expansion can be performed under
the integral sign. There are two public codes MB.m and MBresolve.m [86, 87|, where this
algorithm is implemented. They are based on integrations strategies developed in [88, 89].
We relied on MBresolve.m.

The next step is to evaluate emerging MB integrals emerging as the coefficients
in the Laurent expansion in e. Here the command DoAllBarnes from Kosower’s!’
barnesroutines.m automatically applies the first and the second Barnes lemmas (and their
corollaries) and thereby performs some integrations in terms of the Euler gamma functions.
After all these possibilities were exhausted and if some one- and two-fold MB integrals are
still left, one can turn to numerical evaluations with high accuracy and then apply the
PSLQ algorithm [90] to obtain analytic results given a basis of numbers,— typically values
of Riemann zeta function,— entering the final result is known.

The strategy formulated above was successful in our calculation: we obtained asymp-
totics for all three-loop integrals T3; and confirmed their complete agreement with the
results determined via differential equations. Further making use of the numerical mode of
FIESTA, these findings were also verified numerically.

5 Sudakov form factor: three loops and beyond

Having calculated individual contributions in the previous section, we can neatly combine
them in linear combinations which arise in the three-loop expression (4.1) and observe
massive cancellations of odd powers of the logarithm log ¢ such that the small-m expansions
for the T3 ; integrals

QT3 1 = —®3 + O(m?),
QT35 = &3+ O(m?),

1
Q' T3 — Ts5] = B (@3 — D1 Do) + O(m?),

10A11 required MB tools can be downloaded from bitbucket.org/feynmanIntegrals/mb/src/master/.
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QT34 — Ts6] = —®1P + O(m?),
Q'Ts7 = B3 + O(m?),
Q'T38 = ®1®2 + O(m?), (5.1)

is determined exclusively by the Davydychev-Usyukina functions ®y = ®,(t,t). We remind
the reader that indeed the small-m expansion of ®; possesses even powers of logt one, as
can be observed from the explicit expressions for ®; o and ®3 previously quoted in eqgs. (3.12)
and (3.13), respectively. It is worth pointing out that making use of the symmetry properties
of the Davydychev-Usyukina functions with respect to their two arguments, the above
relations for T3 o and T3 7 are similar to the so-called “magic identities” of ref. [91]. Other
relations, however, cannot be obtained in this manner and are therefore unique in this
regard.

Substituting (5.1) in F2(3) and expanding log F> in powers of g we found that, up to
the three-loop order, log I equals to:

1
IOgFQ (tag) = _§Foct(g) loth_ D(g) +O(m2)7 (52)
with the functions T'oct(g) and D(g) of the coupling quoted earlier in egs. (3.15) and (3.16),
respectively. This is exactly the logarithm of the null octagon Qg(z, z) [27, 28] multiplied
by the factor of 2 and expanded up to O(g%),

log Qg (2, Z) = —%Foct(g) log? (i) ~ Plog(27) — %D(g), (5.3)

with z = 1/z = v/t. It appears natural to us to conjecture that this relation holds at any
order of perturbation theory as well, i.e.,

log F = 2log Qg + O(m?), (5.4)

and thus conjecturing that the off-shell Sudakov form factor is given by the null octagon
function Qg to all orders of the perturbation theory. This is the main result of our work.
Let us make a few comments regarding our claim. The above formula (5.2) is expected
to hold in the planar limit, i.e., for the leading color structure. While the log-squared
asymptotic behavior proportional to I'oct(g) was in fact anticipated in light of an explicit
four loop computation of the four-point amplitude in ref. [25], the closed form of the D-piece
is solely based on our three-loop analysis. This is the main (uncertain) ingredient of our all-
loop conjecture. On a more technical level, we observe that all integrals (individual integrals
or their linear combinations) in (4.1) can be represented as linear combinations of products
of Davydychev-Usyukina function ®,(¢,t) at least up to O(m?) terms. This observation
is reminiscent of the results of [25] where all scalar integrals contributing to four point
amplitude in off-shell kinematical regime where expressed in terms of linear combinations
of products of ®,(z,y) functions up to four loops. The reason why such relations between
integrals exist can be traced back to the integrability of underlying problem. The four point
amplitude in off-shell kinematical regime is expected to be given by Qy(z, z), which can be

~19 —



written in closed form, for instance as a perturbative series [27, 92, 93],

0o = det(1 — Ky), Ko)um = Y. (—gH)'Cdy(2,2), (5.5)
l=n+m—1

where C’T(f;?@ are explicitly known coefficients

ol — —(2m — 1)[2001[¢ — 1]1¢!

e l=(m4+m =D+ n+m—D)Il—|n—m|][l+|n—m|]!" (5.6)

The relations (5.1) together with (3.8) and (3.9) can be considered as subtle hints that the
Sudakov problem (for the two-particle form factor, in the current case, or generally even
multi-leg ones) in N' =4 sYM on the Coulomb branch in the off-shell kinematical regime
can potentially be solved using integrability. Another hint pointing to this conclusion is that
egs. (5.1), (3.8) and (3.9) express nonplanar integrals in terms of planar one. The latter
in turn possess well defined dual conformal symmetry properties, which being a part of a
larger symmetry group,— the so-called Yangian symmetry [94],— is intrinsic to integrable
systems, see, e.g., [95]. If the integrability of the off-shell Sudakov problem will hold in a
fashion similar to the on-shell case [96] then it would not be probably too surprising that
Toct(g) and D(g) appeared in tandem.

6 Conclusions

As a conclusion, let us make several comments regarding IR properties of the off-shell
Sudakov form factor and amplitudes which we observed as a result of our analysis. The most
obvious one is that in the off-shell regime the Sudakov logarithms indeed exponentiate but it
is I'oct rather than I'cygp that governs the rate of its decay. As was already anticipated in [25],
the I'cusp is not the archetypal IR anomalous dimension and IR behavior of amplitudes and
form factors is far more involved than previously expected. Note also that in the off-shell
case there are no log?"*! terms and hence there is no analogue of the collinear anomalous
dimension, at least, up to the three loop accuracy. In terms of evolution equation, the
result (5.2) can be rewritten as:

a 2
(M> log I = _Foct(g)' (6-1)

This evolution equation is obviously different from what was conjectured earlier in the
literature, e.g., [4], which involved I'cysp instead.

Let us point out that factorization properties for four- and five-leg amplitudes for
W-boson scattering still hold in this off-shell kinematical regime such that IR-sensitive parts
are still driven by the product of Sudakov form factors identical to (2.4), but now with
F; given by eq. (5.2). This demonstrates self-consistency of these considerations in such
kinematical regime. A natural extension of these findings would be to study the structure of
the Sudakov form factor in a similar kinematical regime in QCD and other four-dimensional
gauge theories. Regarding QCD, our computation can be considered as a determination of
its “most transcendental” part in the planar limit.

—90 —



In spite of the fact that the form of the evolution equations differs depending on the
value of the external particles’ off-shellness, (3.5) vs. (6.1), there is a chance that they are in
fact next of kin. The two anomalous dimensions can be found as solutions to the so-called
flux-tube equations, given in ref. [97] for I'cysp and [28] for I'oer. The two can in fact be
combined into a more general equation by introducing a deformation parameter [98]. Thus,
it appears that the latter encodes a very subtle, anomalous effect of the non-commutativity
of p? — 0 and £ — 0 limits. At the moment we have no adequate understanding of this fact.
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A Small off-shellness expansion of T3 ;

In this appendix, we present a list of the small-m expansions for all 73 ; integrals given in
terms of HPLs in the Mathematica notebook 3loopTs.nb in the supplementary material
attached to this paper. They read

52 35C4 155¢6

1
6 _ 6 4, 24
QT3 =— 10 t— 5 log™ ¢ 5 log“t 1 (A1)
4 5C2 354, 155¢6
T: ——1 lo — A2
QT = 5o log t+—=loght+ =" log*t 4+ — ==, (A.2)
1 2
QT =~ Tog 1+ Zlogh 140 log? 14 20 log? 1+ (46as ~200s) o+ 820 —4¢3,
(A.3)
1
Q4T374:—%10g6t—%10g4 C31 og> t+C4 log?t— 20C5logt—7TC6—16§3, (A4)
Q* T35——log t+ C21 oght+22 43 og’ t+ C41 0g? t4 (4¢aC3—20C5) log t+31¢6 — 4¢3,
(A.5)
2 82, 4y (3
Q* T36—§log t+—= 5 log™t log®t+264 log®t —20¢s logt+30¢s — 16¢3, (A.6)
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and valid up to O(m?).
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