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ABSTRACT

Majorana zero modes (MZMs), emerging as exotic quasiparticles that carry non-Abelian statistics, hold great promise for
achieving fault-tolerant topological quantum computation. A key signature of the presence of MZMs is the zero-bias peaks
(ZBPs) from tunneling differential conductance. However, the identification of MZMs from ZBPs has faced tremendous chal-
lenges, due to the presence of topological trivial states that generate spurious ZBP signals. In this work, we introduce a
machine-learning framework that can discern MZM from other signals using ZBP data. Quantum transport simulation from
tight-binding models is used to generate the training data, while persistent cohomology analysis confirms the feasibility of
classification via machine learning. In particular, even with added data noise, XGBoost classifier reaches 85% accuracy for
1D tunneling conductance data and 94% for 2D data incorporating Zeeman splitting. Tests on prior ZBP experiments show
that some data are more likely to originate from MZM than others. Our model offers a quantitative approach to assess
MZMs using ZBP data. Furthermore, our results shed light on the use of machine learning on exotic quantum systems with
experimental-computational integration.

Introduction

The identification of quantum many-body phases from experimental observations is one of the central tasks in condensed
matter physics'~. While symmetry-breaking phases can be detected unequivocally using local order parameters, topological
phases of matter pose a more complex problem. Unlike the former, the topological phases cannot be characterized by local
order parameters but instead carry global topological invariants®. As a result, detecting topological phases often requires an
indirect measurement where topology can manifest, such as examining bulk excitations or specific boundary states®. Success-
ful examples include the quantum anomalous Hall effect with insulating bulk and spin-polarized chiral edge states that can be
probed by electrical transport’~, or topological Weyl semimetals with bulk Weyl fermions and surface Fermi arcs using pho-
toemission'®. In other cases, probing topology can become notably more challenging. In quantum spin liquids, for instance,
bulk spinon excitations and edge Majorana fermions only leave subtle experimental evidence®'!. An enhanced capability to
detect topological phases of matter will greatly enrich our understanding of quantum phases and hold paramount importance
for next-generation microelectronic and quantum computing applications.

Among the exotic topological phases of matter, Majorana Zero Modes (MZM), characterized by the non-Abelian, Ising-
type anyonic statistics, have captured significant research and industrial attention over the past decade. Thanks to their unique
ability to store information nonlocally, and their intrinsic zero energy that guards against hybridization, MZMs are deemed
a highly promising platform to realize fault-tolerant topological quantum computation!>~'>. Theoretically, MZMs were first
proposed in the Kitaev 1D chain model with p-wave superconductor, where pairs of MZMs can emerge at the ends of the
chain'®. However, the evidence of p-wave superconductors has been elusive, with an unclear pathway to lift the double de-
generacy of the spin pairing. Several remedies have been proposed in previous literature!”. Fu and Kane suggest constructing
MZMs using the proximity effect at the interface between an s-wave superconductor (SC) and a topological insulator, which
resembles a p, +ip, SC with additional time reversal symmetry'®. Candidates like 5/2 fractional quantum Hall states'®-? and
other platforms?'=2° are also potential candidates for hosting MZMs. Another milestone was reached to construct MZMs on
a 1D nanowire with semiconductor (SM) coupled with proximity s-wave SC?’~2°, Under strong Rashba spin-orbit coupling
and external Zeeman field, MZMs can emerge from an effective p-wave SC with the double degeneracy lifted. This SM/SC



nanowire system has been considered extremely feasible to realize MZMs, with numerous experimental reports demonstrated
in the past decade’™*0. In these cases, the zero biased peaks (ZBPs) of the differential tunneling conductance under the
scanning tunneling spectroscopy (STS) provide a strong experimental signature for MZMs*!'. However, there has been a long
concern that there are other topologically trivial states that can also produce ZBPs, such as Andreev bound states (ABS), Yu-
Shiba-Rusinov states, or simply large disorders*>#. To make detection of MZMs even more elusive, it is difficult to actually
define what is a Majorana mode in topological superconductors, because there are several low-energy localized states, e.g.,
the so-called quasi-Majorana states, with intermediate properties between topological Majorana modes and trivial low energy
states.*’ !, Various practical approaches to distinguish MZMs from trivial modes have been proposed, such as topological
gap protocol’>3? and interferometry with floating Majorana islands>*. However they both rely on more involved operations
such as non-local conductance measurements or embedding a Majorana island into an A-B interferometer. Even under such
intricated designs, it is still hard to eliminate false positives mimicking MZMs. Therefore, a more direct approach to identify
topological MZMs based on solely the traditional experimental ZBP measurements would be highly desirable. And the power
of interpretation of machine learning could facilitate such a task, which is beyond the imagination of conventional protocols
based on principles of physics.

In this work, we develop a machine-learning pipeline that aims to differentiate topological MZM from other topologically
trivial states using experimental ZBP signals. The primary obstacles are the scarcity of experimental data and the absence of a
universally acknowledged MZM ground truth. However, thanks to the STS technique, which can provide direct access to the
single-particle density-of-states and further enables quantitative comparisons between experiments and computations, we were
able to generate the ZBP training data computationally. Using effective Hamiltonian and quantum transport simulations, we
cover a broad spectrum of physical parameters and mechanisms and further add data noises to mimic experiments. Although
distinguishing MZM has created challenges due to the spectral similarity of ZBP between topological MZM and topologically
trivial states, from a machine-learning perspective, this complexity is transformed into a classification task. Persistent coho-
mology analysis shows that the hidden global features of different topological classes remain robust, indicating that such a
classification task is fundamentally machine-classifiable. By further implementing various machine-learning methods, such
as linear classifiers, convolutional neural networks, and XGBoost, excellent accuracy is finally reached even with a reasonable
level of data noise. We carry out additional tests on the experimental ZBP data from existing literature and found that some
ZBP data are more likely to arise from MZM, while others are not. This does not rule out the potential presence of MZM in
any of the reported experimental systems, given the limitation of the effective Hamiltonian approach and other experimental
complexities not considered in this work. Our model offers an attempt to solve the MZM detection problem with machine
learning. The work can also shed light on the application of machine learning in other exotic many-body quantum systems
with very limited training data and a lack of ground truth.

Results

Model setup
The general machine learning workflow is shown in Fig. 1. We consider the popular 1D SC/SM nanowire discussed earlier
as the modeled system. The pristine nanowire system can be described by the 1D Boguliubov-de-Gennes (BdG) Hamiltonian

following the s-wave pairing Oreg-Lutchyn model H = 1 [ PT (x) Hio'P(x)dx?%28, where
Hiot =T +Hsoc +U +Hyz +Hcouple
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Here, ¥(x) = (I,TJT (x), % (x), ‘iff (x), li/TT (x)) ! spans a Nambu space with four spinors, and & and 7 stand for Pauli matrices in
the spin and particle-hole space, respectively. The five terms T, Hsoc,U, Hz and Heouple denote the kinetic energy, spin-orbit
coupling, on-site potential, Zeeman coupling, and the SC-SM coupling, respectively. Detailed information about the choice
of parameters is shown in Supplementary Information 1.

The Hamiltonian Eq. 1 is the pristine Hamiltonian that leads to MZM. We further apply weak diagonal disorder Vi (x) ~
eN(0,1) sampled from a normal distribution to mimic the noise but without destroying the topology. In real experiments,
trivial ZBPs may arise from a non-ideal potential landscape on the nanowire. At least two scenarios can lead to topologically
trivial states, including I. quantum dots located at ends of the nanowire and II. large fluctuating disorder spread on the whole
nanowire**. Therefore, for the topological trivial classes without MZM, we construct the Hamiltonian in two ways: For
scenario I., we add a Gaussian potential as an incommensurate on-site perturbation to the diagonal Hamiltonian. It has been
shown that such smearing potential could be the culprit to the ABS. When the two Andreev bias peaks come closer under
tuned parameters, these peaks will merge and form a trivial ZBP>>3; For scenario IL, we amplify the disorder strength so
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that the fluctuation energy is comparable to the original chemical potential p. This can also give rise to topologically trivial
states with ZBPs, creating a challenge for the MZM identification**. Overall, to justify our approach we also include an extra
check on whether smearing potential or large disorder will generally create trivial modes with observable ZBPs in our dataset
(see Supplementary Information 1).

To generate the training data for machine learning, we cover a wide range of input Hamiltonian parameters (see Sup-
plementary Information 1). The continuous Hamiltonian is discretized in real space to a finite tight-binding matrix. Then,
we perform tight-binding simulations on this discretized system to calculate the tunneling conductance G = dI/dV via the
S matrix formalism (see Methods for more details). A total of 12,000 labeled Hamiltonians are generated, with 4,000 for
topological MZM, 4,000 for trivial ABS, and 4,000 for trivial large disordered states. The tunneling conductance signal can
thus be calculated under sweeping a 2D parameter space composed of bias voltage Vyias and Zeeman splitting Ez, each with
28 different values. This leads to the use of 28 x 28 image to represent the tunneling conductance data, labeled by either topo-
logical (hosting MZM) or trivial states (either ABS or large disorders) for machine learning classification. In addition, since
some experimental works focus on 1D dI/dV data without sweeping the Zeeman splitting, we single out the 1D data with zero
Zeeman splitting for additional training. This can be done by searching the ZBPs while sweeping through E7 horizontally.
Lastly, to improve the training robustness and bridge the theoretical-experimental gap, we perform pre-processing on the raw
data, including Gaussian smearing, additional noise, anomaly detection on the dataset. We can also refine our workflow by
carrying out a post selection on the dataset to ensure the topological/trivial labels are assigned properly, and the ZBPs are
generally present in our dataset. More details on the Hamiltonian model, data generation, processing and selection can be
found in Methods and Supplementary Information 1.

Global pattern with topological data analysis

We first display typical tunneling conductance dI/dV data generated from the workflow above in Fig. 2(b) for topological
MZM and trivial classes (see Supplementary Information 2 for more examples). It can be seen that the 2D dI/dV data from
topological and trivial states have similar patterns. One earlier approach to achieve MZM pattern recognition** is finding the
phase boundary between the topological and trivial classes. By pointing out the difference in the position of the topological
phase transition compared to the pristine data, it was concluded that quantum dots and large disorder destroy the topology
of the system, thus creating trivial ZBPs. However, this approach is performed with fixed Hamiltonian parameters; when the
parameters are unknown, discerning the topological MZM phase is still challenging for human eyes.

To investigate the potential intrinsic separability between the topological MZM and trivial classes, we employ the persistent
cohomology analysis on a portion of the training dataset for all classes. Persistent cohomology is a type of topological
data analysis (TDA) that studies the global feature difference at various scales. Figure 2(a) shows an example of persistent
cohomology analysis on simplified 2D data. Starting from a gray image, a threshold value is tuned from the lowest pixel value
to the highest. For a given threshold value, each pixel can be masked to binary black/white (lower/higher than threshold).
Then two topological features emerge: Feature O identifies isolated black clusters in data (partially marked with light blue);
Feature 1 focuses on closed loops encircled by a black cluster (partially filled with red). By sweeping the threshold values,
different patterns assigned with different features emerge and annihilate, which create a birth-death scattered plot>’. Therefore,
persistent cohomology provides insights into the robustness and significance of these topological characteristics in the data.

Our analysis involves the 3D data composed of Bias voltage, Zeeman splitting, and other Hamiltonian parameters as one
dimension. As a result, there is additional Feature 2 which captures voids or cavities entirely enclosed by surfaces. The
persistent cohomology analysis is performed on our datasets using the GUDHI package with cubical complex®. Results are
shown in Fig. 2(c, d), where the difference between the topological MZM class and the trivial class can be seen clearly. Taking
Feature 0 as an example; on the one hand, for the topological MZM dataset, there are very few clusters (light blue) that emerge
near zero birth and annihilate early. On the other hand, for the trivial dataset, there is a continuous distribution of clusters that
creates at zero birth and annihilates. Orange and Green ovals marked in Fig. 2(d) clearly highlights such distinct topological
feature difference between topological and trivial data. The results indicate that though individual conductance data shown in
Fig. 2(b) could be hard to classify by human eye, TDA analysis can show the relationships for more than one Hamiltonian
parameters for each data class, giving us crucial information on the connectivity of varying similar Hamiltonians. Such
collective information allows us to spot feature differences and feel confident that such binary classification task is machine-
separable. More detailed insights brought by persistent cohomology analysis are shown in Supplementary Information 1.

Therefore, the persistent cohomology analysis implies that although the human eyes cannot readily distinguish the topolog-
ical MZM states from trivial states, there exists a global topological feature difference between them. Such difference builds
confidence that the MZM classification problem with ZBP is machine-separable prior to any design of machine-learning
models.

3/13



Tunneling conductance
Add noise & smearing

SemiconductC)r wire — A ANy, MWWW

Post selection

.°.o' ° * O 0 °
S-wave Superconductor . : 2° o .... . 0% . ....
o.'.'..‘o.° 0% ® o 0
e® o ° :'. e® o PY)
ee®, %% ee®, 9°
o®® e °® 0 ® Qe
Class

Topological

000 000 0000 Classification
SVM

Trivial

0 -0 -0 -0 -0

XGBoost
CNN

Figure 1. The overview of the machine learning workflow to detect Majorana zero modes (MZMs) from zero bias
peaks (ZBPs). The system consists of a 1D semiconducting nanowire coupled in proximity with an s-wave superconductor,
which resembles a 1D p-wave superconducting Hamiltonian under a parallel magnetic field B. Training data are generated by
an effective Hamiltonian approach. By modifying the on-site potential landscape, states that host topological MZMs and
topologically trivial states are generated and labeled by the topological class. The tunneling conductance dI/dV signals from
the scanning tunneling spectroscopy are further computed using the tight-binding and quantum transport approach, which are
used as input data. Optionally, noise and smearing are added to the dataset to better mimick experimental data, and a post
selection is performed to ensure the topological/trivial labels are assigned appropriately. Various machine-learning models
are established to achieve the MZM classification, with additional tests performed using existing experimental data.
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Figure 2. Persistent cohomology analysis with the training data. (a) Schematic of the principles on persistent
cohomology, using simplified 2D data as an example. Given a fixed threshold value, each original pixel can be masked to
binary black or white. Isolated black clusters and white loops are highlighted out with blue and red colors as key topological
features. As the masking threshold is tuned continuously from minimum to maximum magnitudes, these distinct topological
features emerge and die out. Only features near a centered area are colored for better visualization. (b) Typical
computationally generated tunneling conductance data used for machine learning training, for topological MZM and trivial
classes. The 2D heatmap plots are tunneling conductance dI/dV as a function of bias voltage V};,s and Zeeman energy E; (c,
d) Topological data analysis on topological MZM and trivial classes, respectively, using persistent cohomology analysis.
Panel (c) shows results for a small random subset containing conductance data shown in (b), where a distinct feature
difference can be seen; Panel (d) shows the full results for the whole topological/trivial dataset. Green and orange ovals
highlight the key feature difference between these two classes. Although the individual raw data in (b) are barely

distinguishable with bare eyes, an obvious difference is shown between the topological MZM class and the other topological
trivial classes through topological data analysis.
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Machine learning results

We employ a few machine-learning models to perform the topological MZM classification task. For the model inputs, 2D data
of tunneling conductance images with 28 x 28 pixels are flattened into 1D arrays, except for Convolutional Neural Network
(CNN) which directly receives the 2D data. As a baseline check, we first perform linear Principal Component Analysis
(PCA) analysis to compress the data dimension. We reduce the 2D and 1D datasets’ complexity to 2 dimensions for better
visualization, and the reduced result with labels O or 1 are shown in Fig. 3(a, e). On the scattered plot for the first two leading
principal components, there is no clear boundary between two separated clusters with different labels. Fig. 3(a, ) shows a
linear Support Vector Machine (SVM) boundary line that separates two regions (shaded blue and red). However, there is a
notable portion of data points crossing the boundary, indicating the limited power of linear classification at least on the PCA
dimensionality-reduced dataset (performance shown in Fig. 3(b, f)). Particularly, for 1D PCA, the prediction of data labeled
topological with 0.47 accuracy is close to random guess. Further attempts to use linear methods consistently provide lower
accuracy than 90% (see Supplementary Information 3), indicating the intrinsic data nonlinearity and calling on the necessity
of nonlinear machine learning methods.

We carry out non-linear classification methods and ensemble methods including kernel-SVM, Random forest, CNN, and
Extreme Gradient Boosting (XGBoost). The results as well as hyperparameters tuning process are described in Supplementary
Information 3. Among them, XGBoost, which combines ensemble models and improved gradient boosting, gives overall better
performance than other methods for both 1D and 2D tasks. The confusion matrix results for XGBoost training are shown in
Fig. 3(c, d, g, h) as for 2D and 1D data, with and without data noise, respectively. It is worthwhile mentioning that binary
classification with 2D tunneling conductance data for topological MZM class reaches ~ 94% accuracy, even in the presence
of data noise. Additionally, although the 1D classifier gives a ~ 28% false positive for the topological MZM class, it still
gives a high, 95% confidence in true positive, and the overall accuracy still reaches a 85%. While adding noise reduces the
accuracy of identifying trivial classes, it significantly improves the performance of detecting trivial classes from ~ 72% to
~ 86%, which may be attributed to the large data variance and better data generalization.

The success in machine learning classification agrees well with the persistent cohomology observation. Also, the intro-
duction of the Zeeman energy sweeping in 2D data outperforms the 1D data, indicating the benefit and possible necessity to
take data with sweeping Zeeman energy. Additionally, we also test the capability of our model for multi-classification. Fig.
3(i, j) shows results for ternary classification results for the most accurate XGBoost model. It shows that even for ternary
classification, the model can still perform at > 90% accuracy with at most 11% false positive rate for the Andreev class.

We also evaluate the robustness of our model by testing it against untrained categories of trivial disordered data, such
as nanowires with large disorder in g factor and superconducting gap A. We claim that the model has roughly ~ 20% false-
positive rate for these trivial testing data, indicating that it is still moderately robust(See Supplementary Information 3).

Experimental tests

For the final part, we use our trained classifiers on real experimental ZBP data from recent literature. Since our classifier
with 2D data input gives overall higher accuracy than the 1D classifier, we focus on the tests on the 2D ZBP data testing.
Additional 1D data sets are shown in Supplementary Information 3. We extract 16 ZBP data images from 10 references
during the past decade®'~*°. The images are cropped online and processed to fit properly within our model input format (see
Supplementary Information 4 for more details). Since XGBoost returns the continuous probability p € [0, 1] before the final
binary classification, here we show the probability since it carries more information than binary value, with a cutoff value
perit = 0.5. The positive result probability, i.e., the probability that the model suggests that the system hosts topologically
MZMs, for the test set is shown in Fig. 4(a). Here we only emphasize the examples that manage to pass the trial test either
with or without noise in the figure.

Four experimental samples from four prior works pass the test from the 2D model either with or without data noise. The
pattern of these samples are show in Fig. 4(b) from sample 1 to sample 4 in order>'-343%. We also included a prediction result
for another XGBoost model with noise, but trained on a larger dataset including larger Zeeman energy window, i.e. larger
max range E, = 4.48meV. The results indicate that our model prediction is somewhat robust against the choice of energy
window (See details in Supplementary Information 1). Among them, the most robust sample, upon which both models with
and without noise imply positive MZM presence, has been retracted>*. For the other 12 samples, the predicted probability
for the existence of MZMs always lies consistently below 0.5, indicating that those systems are unlikely to host MZMs. The
complete test results are shown in Supplementary Information 4. It is also worth mentioning that due to the moderate false-
positive rate for untrained disordered catagories of our model, even if an example passes the filter of our model, it might still
arise from disordered landscapes beyond our model’s consideration. Thus, we comment that the actual number of topological
MZMs is likely even less than the 4 out of 16 candidates in Fig. 4. Overall, our model predicts that a dominant portion of
experimental measurements is unlikely to host MZMs on SM-SC coupling nanowires.
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Figure 3. Machine learning classifications to identify the topological MZMs using 1D and 2D tunneling conductance
data. (a, e) PCA analysis on the generated 2D (a) and 1D (e) data projected on the first two principal components. The SVM
linear boundary roughly separates the topological MZM and trivial classes. (b, f) Confusion matrices for PCA + linear SVM
learning results for 2D (b) and 1D (f) training data. (¢, g) Confusion matrices from XGBoost for 2D (c¢) and 1D (g) training
model without noise. (d, h) Confusion matrices from XGBoost for 2D (c) and 1D (g) training model with added data noise.
Note that in all cases, the model with 2D data outperforms the model with 1D data, indicating the advantage of collect data

with Zeeman energy sweeping. (i, j) Ternary classification confusion matrices from XGBoost for 2D training model
with/without added data noise.
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Discussion

In this work, we propose a machine-learning pipeline to detect MZMs in experimentally measured differential tunneling
conductance signals. Our work constructively aligns with the recent efforts to identify the topological MZMs from trivial
states, replacing human eyes with machine-learning-based visual aids. It offers a few potential advantages, including less bias
and the possibility to quantify the performance.

It is important to note that our model is only valid under a number of assumptions. It assumes that 1. the experimental
nanowire system can be well described within the 1D s-wave Oreg-Lutchyn model framework; II. the physical mechanisms
for impurity and disorder can be mimicked by modifying the diagonal potential landscape, and they are the only false positive
sources for misleading ZBPs; IIL. the finite temperature effect can be modified by Gaussian smearing (see Supplementary
Information 1).

To summarize, though our work is still limited by various assumptions and false positives, compared to other more com-
plicated protocols where more sophisticated measurements are required, our work offers the first framework as a machine
learning attempt to identify MZMs directly from experimentally measured ZBP signals. Our classifier model could easily
be generalized to suit other quantum property predictions, as long as the system can be well captured by effective model
Hamiltonians. In the context of methodology, our machine learning model uses a mean-field approximation to capture the
topological MZM feature under the condition of suppressed quantum fluctuations. This approach, to a broader aspect, could
inspire more machine learning works integrated with experiments to tackle strongly correlated systems as a starting point.
The model could also be further generalized to conduct parameters extraction on the experimental STS data, which resembles
the philosophy of other machine-learning parameter extraction from experimental data such as time-resolved diffraction® or
neutron scattering®®. We also note a recent work extracting disorder landscape of SM/SC nanowire with machine learning®'.

Methods

Tunneling conductance simulation

The training data of our work is generated by tight-binding simulation on transport properties using the KWANT package®”.
To calculate the scattering matrix, we attach a normal SM nanowire with a lead to the end of the nanowire. The normal SM
nanowire has the same form of Hamiltonian as the SC/SM system except for the SC coupling, i.e.

Hiormal =T + Hyoc +U +Hz
h* 92
= (2m*axz l'Otgxcyﬂnormal> T+ E7 0.

Note that there is a finite difference between the normal wire and the SC/SM nanowire in a chemical potential tporma — 1 =
eVgae, Which represents the gate voltage added to the scattering region. As for the lead, the on-site Hamiltonian is the same as
the normal nanowire except for an additional potential barrier Vyaprier:

m 92

Hyormal = (_Zm*axz -

io a Gy — Unormal + Vbarrier) T+ EZGx-

All relevant physical parameters in the Hamiltonian can be found listed in Supplementary Information 1. After constructing
such a system, KWANT allows convenient calculation on the scattering matrix S on the defined scattering region, i.e., the
connecting junction on the lead.
2
)

Go(E)=2+ Y (
o,0'=1,]
where 7, and r,, are the Andreev and normal reflection amplitudes from the S matrix, respectively. The calculated tunneling
conductance is energy-dependent, and by sweeping the Zeeman energy Ez, we can obtain a diagram with dI/dV versus Ez
and bias energy(voltage) Vpias, Which finally gives an image of our 2D data. Such numerical method is extensively performed
in the relevant area of literature, and we refer readers to references like*3-#463:64 for more details.

2
oo’ /
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Data processing before training
After generating these raw data, we add Gaussian smearing by adding Gaussian function convolution to our 2D image:

F(G) ~ exp(—G?/20?)
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where ¢ = Ipixel"!. The reason for such processing are of two folds: First, such Gaussian smearing mimics the finite
temperature effect of experimental measurements based on our zero-temperature simulation (see Supplementary Information
1); Secondly, our smearing also smooths out the experimental STS measurement signal, mimicking the resolution function
resembling the Gaussian convolution.

In addition to such smearing, to ensure the robustness of our model and emulate the measurement noise we further add a
small noise to the tunneling conductance signal subject to the normal distribution §G ~ 0.2N(0, 1)e? /h.

Machine learning

Each machine learning (ML) model, depending on the design sophistication, is more suitable for some type of problems than
the others. However, especially for problems like MZM detection which are not well explored through ML perspective, it is
better to start approaching the problem with multiple model architectures. This method would not only provide us with the
best model for the job, but one can also later utilize multiple models for a better performance through boosting technique.
With that, in our study, we perform in total five ML architectures: Principle Component Analysis (PCA), Support Vector
Machine (SVM), Random Forest, eXtreme Gradient Boosting (XGBoost), and Convolutional Neural Network (CNN). All of
these essentially have the same frame work in which they are trying to search for classifying criteria that divide the input data
high-dimensional space (28 x 28) into regions of trivial, and topological labeling.

In PCA, the input got basis transform such that the first basis (principle component) represents the axis in which there is
the largest variation of data among the input data, i.e., a projection of data that separates the data by greatest distance. The
second component is the same as the first but for the remaining dimensions of the data space. The subsequent components
follow the same idea recursively. We then keep the first two components which capture two largest main features present in
the inputs. Of course, as can be seen from our result, the principle component that define the classification of the data need
not be one of the first two. In fact, there might not be one if the relation is not linear between the input and the MZM class.
After that, one can utilize any model to try to subdivide the regions into their respective labels. In this work, we use the linear
version of SVM which will be described next.

For SVM, the model focuses on finding the hyperplane in input space that can separate trivial, and topological data points.
The method is actually used in the last step of PCA. However, one can also directly apply it to the high-dimensional input
space directly. Furthermore, it is also common to transform the input with a predetermine non-linear maps, called kernel
method, which increase the potential of the method by allowing the non-linear hyperplane.

Both random forest, and XGBoost methods use ensemble of multiple decision tree models. Each decision tree is a collec-
tion of hyperplanes that are mostly perpendicular to the input space axes. Hence, each hyperplane is not as powerful as the
one from SVM. However, by having multiple of these, the collection can separate the spaces into many regions which, if fine
enough, can separate the data points into trivial, and topological accurately. The difference between these two are that random
forest performs majority voting between the trees, i.e., each tree performs the same task, while XGBoost manages each tree
to perform the smaller task that is the weakness of other trees.

Lastly, CNN model takes advantage of the input being images in which the defining feature of MZM should be captured
with some local patterns inside the images. This means that there should be local correlation between near by pixels as well as
invariant to translation. Hence, it suggests that the classifying criteria should be in the form of convolution between the input
image, and a collection of patterns (kernels). From that, the model need to find the kernel that only appear in the real MZM
data.

The methods and models mentioned are well implemented in Python open-source packages. We use the scikit-learn
package® for PCA analysis, SVM, random forest, and XGBoost classification, and we implement the Pytorch% package for
building up the simple CNN network for classification. We also include the model and hyperparameter settings in Supplemen-
tary Information 3.
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