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Abstract: In 1977, Thouless, Anderson, and Palmer (TAP) derived a system of consis-
tent equations in terms of the effective magnetization in order to study the free energy
in the Sherrington–Kirkpatrick (SK) spin glass model. The solutions to their equations
were predicted to contain vital information about the landscapes in the SK Hamiltonian
and the TAP free energy and moreover have direct connections to Parisi’s replica ansatz.
In this work, we aim to investigate the validity of the TAP equations in the generic
mixed p-spin model. By utilizing the ultrametricity of the overlaps, we show that the
TAP equations are asymptotically satisfied by the conditional local magnetizations on
the asymptotic pure states.

1. Introduction

The study of mean-field spin glasses has been one of the central objectives in Statis-
tical Physics over the past decades. Based on the replica method, this approach has
attained great achievements following Parisi’s celebrated ansatz [31–33] for the famous
Sherrington–Kirkpatrick (SK) model [34] as well as its variants, see physics literature
in [22] and recent mathematical development in [29,40,41]. In a different direction,
Thouless–Anderson–Palmer [42] proposed an approach to investigating the free energy
in the SK model by diagramatically expanding the free energy with respect to an effec-
tive magnetization and arrived at a new variational expression in terms of the TAP free
energy, which involves a novel correlation energy of the spin fluctuations in addition to
maintaining the spirit of the Gibbs variational principle and the mean-field approxima-
tion. From the first order optimality of the TAP free energy, they deduced a system of
self-consistent equations, known as the TAP equations, where the solutions were pre-
dicted to contain crucial information about the landscapes of the TAP free energy as
well as the SK Hamiltonian and have strong connections with Parisi’s replica ansatz, see
[22].
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In this paper, we aim to present an elementary derivation for the TAP equations in
the generic mixed p-spin model and show that they are asymptotically satisfied by the
local magnetization associated to the asymptotic pure states. Let β = (βp)p≥2 be a real
sequence with Cβ := ∑∞

p=2 2pβ2
p < ∞ and let h > 0 be fixed. For any N ≥ 1 and

p ≥ 2, denote by IN ,p the collection of all index vectors (i1, . . . , i p) ∈ {1, . . . , N }p of
distinct entries. Let gi1,...,i p be i.i.d. standard Gaussian for all (i1, . . . , i p) ∈ IN ,p, N ≥ 1,
and p ≥ 2. The Hamiltonian of the mixed p-spin model with (inverse) temperatures
(βp)p≥2 and an external field h is defined as

HN (σ ) =
∑

p≥2

βp

N
p−1

2

∑

(i1,...,i p)∈IN ,p

gi1,...,i pσi1 · · · σi p + h
N∑

i=1

σi , (1)

for σ = (σ1, . . . , σN ) ∈ �N := {−1, 1}N . Note that when βp = 0 for all p �= 2 and
β2 �= 0, the mixed p-spin model recovers the famous SK model. Using the indepen-
dence among gi1,...,i p , it can be computed directly that the covariance of HN is essen-
tially determined by the function ζ(s) := ∑

p≥2 β2
ps

p and the overlap R(σ 1, σ 2) :=
N−1 ∑N

i=1 σ 1
i σ 2

i , namely,
∣
∣
∣Cov

(
HN (σ 1), HN (σ 2)

) − Nζ
(
R(σ 1, σ 2)

)∣∣
∣ ≤ Cβ, ∀σ 1, σ 2 ∈ �N .

The free energy and the Gibbs (probability) measure are defined respectively by

FN = 1

N
ln ZN and GN (σ ) = eHN (σ )

ZN
,

where ZN := ∑
σ∈�N

eHN (σ ). For any measurable function f on R
k and independent

samples σ 1, . . . , σ k ∼ GN (also called the “replicas” in the physics literature), we
denote by 〈 f (σ 1, . . . , σ k)〉 the average under the Gibbs measure GN , i.e.,

〈 f (σ 1, . . . , σ k)〉 =
∑

σ 1,...,σ k

f (σ 1, . . . , σ k)GN (σ 1) · · ·GN (σ k).

It is well-known that the limiting free energy F := limN→∞ FN exists and can be
expressed as the Parisi formula (see [30,38]), a variational representation of a nonlinear
functional defined on the space of all probability measures on the interval [0, 1], in which
the optimizer, called the Parisi measure μP , exists and is unique, see [2].1

Throughout this paper, we shall assume that the mixed p-spin model is generic in
the sense that the linear span of the collection of all monomials, t p, for those p with
βp �= 0 is dense inC[0, 1] under the supremum norm. Under this assumption, this model
possesses two important properties. First of all, as N → ∞, the limiting distribution
of the overlap R(σ 1, σ 2) under E〈·〉 is described by the Parisi measure, see [27]. More
importantly, the Gibbs measure satisfies the ultrametricity [28], namely, for any three
replicas σ 1, σ 2, σ 3, we have

lim
ε↓0

lim sup
N→∞

E
〈
1{R(σ 1,σ 2)≥min(R(σ 1,σ 3),R(σ 2,σ 3))−ε}

〉 = 1. (2)

1 The Hamiltonian of the mixed p-spin model defined in [2,30,38] includes all indices (i1, . . . , i p) ∈
{1, . . . , N }p . However, the same conclusions remain valid in our setting since dropping the repeated indices
is of a smaller order term in the free energy.



On the TAP Equations via the Cavity Approach in the Generic Mixed p-Spin Models Page 3 of 43 87

As a consequence of ultrametricity, asymptotically, it allows one to decompose the
spin configuration space �N into clusters and ultimately they induce an infinitary tree
structure on �N under the set containments. In particular, the clusters at the bottom of the
tree are called the pure states in the physics literature [22] – they are essentially disjoint
balls with the same radius

√
2(1 − qP ) and the overlap between any two elements within

the same pure state is about qP , where qP = qP (β) is the largest point in the support of
μP . In addition, it is a well-known fact that if a metric space is ultrametric, then in any
ball (open or closed), every point is a center. In view of this and (2), a natural way to
construct asymptotic pure states is via the

√
2(1 − qP + ε) neighborhood of α ∼ GN ,

that is,

�α
N := {σ ∈ �N : ‖σ − α‖ ≤ √

2(1 − qP + ε)} = {σ ∈ �N : R(σ, α) > qP − ε},
(3)

where ‖x‖ := (
N−1 ∑N

i=1 |xi |2
)1/2 for any x ∈ R

N and ε may be chosen to depend on
N as long as ε = εN ↓ 0 slowly enough. We define the conditional Gibbs measure Gα

N
on the asymptotic pure state �α

N by

Gα
N (σ ) := GN (σ |σ ∈ �α

N ) = GN (σ )1�α
N
(σ )

GN (�α
N )

,

where,by slightly abusing the notation, GN (A) := ∑
σ∈A GN (σ ) is the total Gibbs

measure for any subset A ⊆ �N . The corresponding Gibbs average on �α
N is denoted

by 〈·〉α . Set the local magnetization within the asymptotic pure state �α
N as

〈σ 〉α := (〈σ1〉α, . . . , 〈σN 〉α).
For any 1 ≤ i ≤ N , let IN ,p(i) be the collection of all (i1, . . . , i p) ∈ IN ,p with ir = i
for some 1 ≤ r ≤ p. For any 1 ≤ i ≤ N , define the cavity field at site i as

XN ,β,i (σ ) =
∑

p≥2

βp

N
p−1

2

∑

(i1,...,i p)∈IN ,p(i)

gi1,...,i p

p∏

s=1:is �=i

σis , ∀σ ∈ �N .

Note that XN ,β,i (σ ) depends on all except the i-th spin. Our main result is stated as
follows:

Theorem 1.1. (TAP equations) Assume that the model is generic. Then the conditional
local magnetization 〈σ 〉α satisfies

lim
ε↓0

lim sup
N→∞

E

〈∣
∣
∣〈σN 〉α − tanh

(
XN ,β,N (〈σ 〉α) + h − ζ ′′(‖〈σ 〉α‖2)(1 − ‖〈σ 〉α‖2)〈σN 〉α

)∣
∣
∣
2〉 = 0,

(4)

where ε ↓ 0 along a sequence such that qP − ε is always a point of continuity for μP ,
i.e., μP ({qP − ε}) = 0.

By symmetry, the expectation in (4) is the same for any spin site. Hence, as long as
N is large enough, (4) implies that the local magnetization 〈σ 〉α satisfies the following
asymptotic consistency equations on average over all spin sites 1 ≤ i ≤ N ,

〈σi 〉α ≈ tanh
(
XN ,β,i (〈σ 〉α) + h − ζ ′′(‖〈σ 〉α‖2)(1 − ‖〈σ 〉α‖2)〈σi 〉α

)
. (5)
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These self-consistent equations are the TAP equations. The term ζ ′′(‖〈σ 〉α‖2
)(

1 −
‖〈σ 〉α‖2

)〈σi 〉α is called the Onsager correction term, which distinguishes the disor-
der and non-disorder spin systems, where the latter, taking the Curie-Weiss model for
example, does not involve an Onsager term in the mean-field equation for the spin
magnetizations, see, e.g., Equation (II.2) in [22].

The number of solutions to the TAP equations generally depends on the temperature.
In the high temperature regime, i.e., ζ(1) is sufficiently small, it can be shown that the
overlap R(σ 1, σ 2) between two independent samples σ 1, σ 2 ∼ GN is concentrated
around qP (see, e.g., [40]). Consequently, the pure state �α

N associated to α ∼ GN is
almost �N and GN (�α

N ) is approximately one. As a result, we see that 〈σ 〉α ≈ 〈σ 〉 and
〈σ 〉 satisfies the TAP Eq. (5) in the generic mixed p-spin model at high temperature.
This is similar to the one in the SK model established by Chatterjee [12] and Talagrand
[40].2

In contrast to the high temperature case, it is expected that the TAP equations should
have exponentially many solutions in N in the low temperature regime. Although an
argument for this remains missing in the literature, it can be argued that the TAP equa-
tions could have multiple solutions by making use of the ultrametricity (2). In fact,
it is well-known that the Parisi measure μP possesses a nontrivial distribution. Pick
q ∈ [0, qP ) in the support of μP . Note that in the generic mixed p-spin model, the
Ghirlanda–Guerra identities are valid and they ensure that for any fixed k ≥ 1, with
positive probability under EG⊗k

N , there exist distinct α1, . . . , αk with R(α�, α�′
) ≈ q

for all 1 ≤ � < �′ ≤ k (see, e.g., [29, Theorem 2.20]). From the ultrametricity, it follows

that R(σ �, σ �′
) ≈ q for any σ� ∈ �α�

N and σ�′ ∈ �α�′
N for any 1 ≤ � < �′ ≤ k,

which implies that R(〈σ 〉α�
, 〈σ 〉α�′

) ≈ q for any 1 ≤ � < �′ ≤ k. As we will
also see in Remark 3.10 below that R(〈σ 〉α�

, 〈σ 〉α�
) is approximately qP , we arrive

at ‖〈σ 〉α� −〈σ 〉α�′ ‖ ≈ √
2(qP − q) > 0. Hence, 〈σ 〉α1

, . . . , 〈σ 〉αk
are k distinct approx-

imate solutions to the TAP equations.
Our approach for Theorem 1.1 is based on the cavity method, where the computation

utilizes (2), the ultrametricity of the overlaps. This property allows us to partition the
spin configuration space into random “clusters” (CN ,α)α≥1, i.e., the pure states, where
the distribution of the weights of the pure states is characterized by the Ruelle Proba-
bility Cascades, see, e.g., [29,41]. More importantly, within each pure state, the overlap
of two spin configurations are asymptotically concentrated around qP [19,28]. When
approximating the pure states CN ,α via �α

N , this concentration enables us to establish a
central limit theorem for the cavity fields within a pure state and make our cavity compu-
tations feasible, ultimately leading to the TAP equations in (4). Overall we believe that
our approach has presented a general receipe in deriving the TAP equations for similar
local magnetizations in related spin glass models.

1.1. Related works. The TAP equations at high temperature The mathematical estab-
lishment of the TAP equations appeared firstly in Talagrand’s book [40] and Chatterjee
[12], where they showed that the spin magnetization asymptotically satisfies the TAP
equations in the SK model at sufficiently high temperature. Later Bolthausen [9] pro-
posed an iterative scheme and showed that his iteration would converge to one solution of
the TAP equations, provided the temperature and external field parameters lie inside the

2 Talagrand’s result asserts that the N TAP equations asymptotically hold simultaneously with high prob-
ability, while we establish the TAP equations in the average sense.
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de Almeida-Thouless phase transition line [17]. In a joint paper, [16], the authors showed
that Bolthausen’s iteration scheme indeed converges to the spin magnetization whenever
the overlap of two independently sampled spin configurations from the Gibbs measure
is concentrated locally uniformly in temperature. Viewing the disorders as Brownian
motions and using tools from stochastic calculus, Adhikari–Brennecke–von Soosten–
Yau [1] established the TAP equations for 〈σi 〉 and 〈σiσ j 〉−〈σi 〉〈σ j 〉 at sufficiently high
temperature for the SK model and a version of the mixed p-spin models.
The Mézard–Virasoro equations. Recently, Auffinger–Jagannath [3,4] considered the
generic mixed p-spin model and established a system of equations, discovered by
Mézard–Virasoro [23], making a connection between the local magnetizations and the
local fields. To be more precise, for each N ≥ 1, they constructed pure statesCN ,a ⊆ �N
for a ≥ 1 and defined the local magnetizations as

〈σi 〉a =
∑

σ∈CN ,a
σi GN (σ )

GN (CN ,a)
, ∀1 ≤ i ≤ N . (6)

The Mézard–Virasoro equations read

〈σN 〉a ≈ tanh
(〈
XN ,β(σ )

〉a + h − (ζ ′(1) − ζ ′(qP ))〈σN 〉a
)
. (7)

Note that it is not always the case that 〈XN ,β(σ )〉a ≈ XN ,β(〈σ 〉a). As a result, the
Mézard–Virasoro equations is different from Theorem 1.1 in nature. See also a compar-
ison of the cavity method used in [3] and in present work (Sect. 2.3).
The TAP free energy. In [13], Chen–Panchenko established a variational principal for
the free energy in terms of the classical TAP free energy and showed that the local
magnetization 〈σ 〉α is asymptotically a TAP state, i.e., an optimizer of the TAP free
energy. Later in [14], Chen–Panchenko–Subag derived a general framework for the TAP
free energy in the mixed p-spin model and from the first order optimality, it was argued
that every TAP state must satisfy the generalized TAP equations. Combining the result in
[13] and the discussion of [14, Remark 6] together, it is then expected that the classical
TAP equations, (5), should be satisfied by our local magnetization 〈σ 〉α – Theorem 1.1
provides a justification to this prediction.

In relation to the TAP equations, the TAP free energies have also received great
attention in recent years. By utilizing Parisi’s ansatz, the works of Chen–Panchenko
[13] and Chen–Panchenko–Subag [14,15] established the TAP free energy in the Ising
mixed p-spin model as well as its generalization to the zero temperature setting. In
the spherical case, Subag established the TAP free energy in the mixed p-spin model
[35] and in the multi-species model [36,37] by introducing the multisamplable overlap
property. Independently, by means of a geometric microcanonical method, the TAP free
energy involving the Plefka condition was implemented in the spherical SK model by
Belius–Kistler [8] and an upper bound for the free energy in terms of the TAP free energy
was also obtained in the mixed p-spin model with general spins by Belius [7].

1.2. Further results related to the TAP equations. The TAP equations have many impor-
tant consequences in the study of mean-field spin glass models and related applications.
First of all, based on his iteration, Bolthausen [10] performed a conditional second mo-
ment method to derive the replica symmetry formula for the limiting free energy in the
SK model at very high temperature. In a follow-up work, Brennecke–Yau [11] provided
a simplified argument for Bolthausen’s approach and extended the replica symmetry
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formula to a larger regime. In addition, the TAP equations have played a key role in
some optimization problems in spin glasses and statistical inference problems. Most im-
portantly, they naturally give rise to the so-called Approximate Message Passing (AMP)
algorithms based on Bolthausen’s iteration scheme [9]; several generalizations of the
AMP algorithms can be found in Bayati–Montanari [6] and Javanmard–Montanari [20].
By using the AMP algorithms, Montanari [24] constructed a polynomial-time random
algorithms to produce a near ground state for the SK Hamiltonian under the assumption
that the Parisi measure is full replica symmetry breaking. The same construction was
also carried out in the mixed p-spin model by El Alaoui–Montanari–Sellke [18]. In the
context of Bayesian inferences, various AMPs driven by the TAP equations have also
been popularly used, see, e.g., [21,25,26,43].

1.3. Organization of the paper. In Sect. 2, we provide a sketch of our proof beginning
with the settlement of some standard notations. Section 3 will be devoted to establishing
a cavity equation for the local magnetization 〈σ 〉α based on a univariate central limit
theorem for the cavity field, see Theorem 3.7 below. In Sect. 4, we continue to perform
some cavity computations for XN ,β,N (〈σ 〉α). In particular, noting that this quantity is
an infinite series, we shall establish some quantitative bounds for its truncation and
moments. Finally, the proof of Theorem 1.1 will be presented in Sect. 5 by translating
the cavity equation in Sect. 3 into the TAP equation. This part of the argument will rely
on a multivariate central limit theorem for multiple cavity fields, a central ingredient
throughout the entire paper.

2. Proof Sketch

Our approach adapts a similar route as [40, Theorem 1.7.7], where the TAP equations
in the SK model were established at very high temperature relying on the fact that the
overlap R(σ 1, σ 2) between two replicas σ 1, σ 2 ∼ GN is concentrated around a deter-
ministic constant. However, this concentration is no longer valid in the low temperature
regime. Our proof utilizes, instead, a conditional concentration property of the overlap,
deduced from the ultrametricity (2), that the overlap between two independently sampled
spin configurations from the conditional Gibbs measure on an approximate pure state
is concentrated around qP . In this section, we elaborate some key steps to summarize
the main ideas of our arguments. We believe that our approach is potentially applicable
to establish the TAP equations in some other mean-field spin glass models, such as the
multi-species model [5] and the perceptron model [40, Chapter 2]. First, we settle down
our standard notations.

2.1. Notations.

Notation 2.1. Recall that HN , GN , Gα
N , ZN , 〈·〉, and 〈·〉α are all dependent on the

temperature parameter β = (βp)p≥2 and the external field h. For the rest of this paper,
we will always keep h fixed and express these quantities as HN ,β , GN ,β , Gα

N ,β , ZN ,β ,

〈·〉N ,β , and 〈·〉αN ,β , respectively, to emphasize their dependence on both N and β.

Notation 2.2. In this paper, we shall always work with the cavity field associated to the
last spin, XN ,β,N . Due to the symmetry in the spin sites in the Hamiltonian HN ,β , this
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cavity field can be simplified as

XN ,β,N (σ ) =
∑

p≥2

βp
√
p!

N
p−2

2

∑

1≤i1<i2<···<i p−1≤N−1

gi1,...,i p−1,Nσi1 · · · σi p−1 .

Since it is indeed a function that does not depend on the N -th spin coordinate, for
notational simplicity, for either x ∈ [−1, 1]N−1 or x ∈ [−1, 1]N , we will simply denote
it by XN ,β(x), that is,

XN ,β(x) :=
∑

p≥2

βp
√
p!

N
p−1

2

∑

1≤i1<···<i p−1≤N−1

gi1,...,i p−1,N xi1 · · · xi p−1 . (8)

Notation 2.3. For any α ∼ GN ,β , the notations ρ and αN stand for the first N − 1 spins
and the last spin of α, respectively. When there is no ambiguity, we will generally use
τ, τ 1, τ 2, . . . ∈ �N−1 to denote the spin configurations that are sampled independently
from GN−1,β ′ or Gρ

N−1,β ′ for any β ′ = (β ′
p)p≥2 satisfying that

∑
p≥2 2pβ ′

p
2

< ∞.

Notation 2.4. For any two vectors x, y ∈ R
M for some M ≥ 1, we define R(x, y)

as the averaged inner product between x and y and ‖x‖ as the averaged �2-norm of x
respectively by

R(x, y) = 1

M

M∑

i=1

xi yi and ‖x‖ = R(x, x)1/2.

For any two sequences (aN )N≥1 and (bN )N≥1 of real numbers or random variables, we
say that aN = bN + oN (1) (or aN ≤ bN + oN (1)) if |aN − bN | ≤ cN (or aN ≤ bN + cN )
for all N ≥ 1, where (cN )N≥1 is some deterministic positive sequence that converges
to 0 as N → ∞.

2.2. Proof sketch of Theorem 1.1. First of all, by making use of the notations in Sub-
section 2.1, we rewrite (4) as

lim
ε↓0

lim sup
N→∞

E

〈[
〈σN 〉αN ,β − tanh

(
XN ,β(〈σ 〉αN ,β) + h

− ζ ′′(‖〈σ 〉αN ,β‖2)(1 − ‖〈σ 〉αN ,β‖2)〈σN 〉αN ,β

)]2〉

N ,β
= 0.

On the other hand, from the ultrametricity (2), it can be deduced (see Remark 3.10) that

lim
N→∞E

〈∣
∣‖〈σ 〉αN ,β‖2 − qP

∣
∣2
〉
N ,β

= 0.

As a result, we only need to show that

lim
ε↓0

lim sup
N→∞

E

〈[
〈σN 〉αN ,β − tanh

(
XN ,β(〈σ 〉αN ,β) + h − ζ ′′(qP )(1 − qP )〈σN 〉αN ,β

)]2〉

N ,β
= 0.

(9)

There are three key steps in our argument:
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Step 1: cavity computation. In Sect. 3, we decompose the Hamiltonian (1) into two
components. The first involves only the interactions among the first N − 1 coordinates
and the second gathers the interactions with the N -th spin. More precisely, if we fix the
last spin as the cavity coordinate, then for σ = (τ, σN ) ∈ �N−1 × �1, we can rewrite

HN ,β(σ ) = HN−1,β ′(τ ) + σN
(
XN ,β(τ ) + h

)
, (10)

where β ′ = (β ′
p)p≥2 is a modification of β defined as β ′

p = βp((N − 1)/N )(p−1)/2 for
each p ≥ 2. In this way, we can express 〈σN 〉αN ,β as a fraction of averages with respect
to the Gibbs measure associated to the reduced Hamiltonian HN−1,β ′ in terms of two
constraints, 1�α

N

(
(τ, 1)

)
and 1�α

N

(
(τ,−1)

)
. We show that when writing α = (ρ, αN ),

both of them are approximately 1�
ρ
N−1

(τ ) due to the fact that R(τ, ρ) ≈ R((τ,±1), α).
This will result in

〈σN 〉αN ,β ≈ 〈sinh(XN ,β(τ ) + h)〉ρN−1,β ′

〈cosh(XN ,β(τ ) + h)〉ρN−1,β ′
. (11)

Step 2: central limit theorem of cavity fields. We notice that for any ρ ∈ �N−1 fixed,
the disorders, gi1,...,i p−1,N , in XN ,β are independent of the conditional Gibbs measure
Gρ

N−1,β ′ and furthermore, for independent samples τ 1, τ 2 ∼ Gρ

N−1,β ′ , the overlap

R(τ 1, τ 2) is concentrated around qP , due to ultrametricity (2). These allow us to show
(see Theorem 3.7) that the first term in the following representation

XN ,β(τ ) = (
XN ,β(τ ) − 〈XN ,β(τ )〉ρN−1,β ′

)
+ 〈XN ,β(τ )〉ρN−1,β ′

is Gaussian distributed with some variance, approximately ζ ′(1) − ζ ′(qP ), independent
of τ . Consequently, we can represent

XN ,β(τ ) ≈ z
√

ζ ′(1) − ζ ′(qP ) + 〈XN ,β(τ )〉ρN−1,β ′ , for z ∼ N (0, 1).

It follows that

〈sinh(XN ,β(τ ) + h)〉ρN−1,β ′ ≈ Ez sinh(z
√

ζ ′(1) − ζ ′(qP ) + 〈XN ,β(τ )〉ρN−1,β ′ + h)

= e(ζ ′(1)−ζ ′(qP ))/2 sinh(〈XN ,β(τ )〉ρN−1,β ′ + h),

and

〈cosh(XN ,β(τ ) + h)〉ρN−1,β ′ ≈ Ez cosh(
√

ζ ′(1) − ζ ′(qP )z + 〈XN ,β(τ )〉ρN−1,β ′ + h)

≈ e(ζ ′(1)−ζ ′(qP ))/2 cosh(〈XN ,β(τ )〉ρN−1,β ′ + h),

which, combining with (11), gives

〈σN 〉αN ,β ≈ tanh(〈XN ,β(τ )〉ρN−1,β ′ + h). (12)

In establishing this Central Limit Theorem, there is a subtle issue that occurs from the
fact that α ∈ �N is not fixed (and neither is ρ ∈ �N−1) but sampled from GN ,β .
Since the Gaussian disorders gi1,...,i p−1,N appearing in XN ,β are also involved in the
Gibbs measureGN ,β , this introduces dependence between XN ,β (τ ) andGN ,β . To handle
this, we perform a change of measure for ρ, the first (N − 1) coordinates of α and
control the associated Radon-Nykodym derivative, which allows us to prove a version
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of Central Limit Theorem for the Gibbs measure conditioned on the asymptotic pure
states. This is done in Sect. 3.2, where the ultrametricity of the Gibbs measure plays a key
role, ensuring that the overlap between two independently sampled spin configurations
from the conditional Gibbs measure Gρ

N−1,β ′ on the asymptotic pure state �
ρ
N−1 is

approximately concentrated around qP . This is analogous to the concentration of the
overlap R(σ 1, σ 2) in the SK model at high temperature.
Step 3: producing the onsager correction term. In Sect. 5, we relate 〈XN ,β(τ )〉ρN−1,β ′
with XN ,β(〈σ 〉αN ,β) and show that their difference is exactly the Onsager correction
term ζ ′′(qP )(1 − qP )〈σN 〉αN ,β . Due to the infinite sum over p ≥ 2 and the product
τi1 · · · τi p−1 in XN ,β(τ ), handling the mixed-p spin model is much more involved than
the SK model. Here, we will first truncate the infinite sum over p ≥ 2 and approximate
〈XN ,β(τ )〉ρN−1,β ′ and XN ,β(〈σ 〉αN ,β), respectively, by finite sums of sufficiently many
terms; this requires controlling the moments of both quantities. With such truncation, we
are able to estimate the difference term-by-term for each p ≥ 2 fixed. More precisely,
by definition (8), each term in XN ,β(〈σ 〉αN ,β) takes the form

βp
√
p!

N (p−1)/2

∑

1≤i1<···<i p−1≤N−1

gi1,...,i p−1,N 〈σi1〉αN ,β · · · 〈σi p−1〉αN ,β . (13)

We will follow an argument similar to that in our first step to write each conditioned
local magnetization in (13) as

〈σi 〉αN ,β ≈ 〈τi cosh(XN ,β(τ ) + h)〉ρN−1,β ′

〈cosh(XN ,β(τ ) + h)〉ρN−1,β ′
,

and then use replicas to represent (13) as

〈(∑
1≤i1<...<i p−1≤N−1

βp
√
p!

N (p−1)/2 gi1,...,i p−1,N τ 1
i1

· · · τ p−1
i p−1

) ∏p−1
�=1 cosh(XN ,β(τ �) + h)

〉ρ
N−1,β ′

〈∏p−1
�=1 cosh(XN ,β(τ �) + h)

〉ρ
N−1.β ′

.

(14)

To proceed, a multivariate Central Limit Theorem (see Theorem 5.1) is needed to handle
the asymptotic behavior of the jointly Gaussian-distributed random variables in (14),
namely,

∑

1≤i1<···<i p−1≤N−1

βp
√
p!

N (p−1)/2
gi1···i p−1,N τ 1

i1 · · · τ p−1
i p−1

, XN ,β(τ 1), . . . , XN ,β(τ p−1),

(15)

which will allow us to handle the numerator and denominator in (14) separately as
in Step 2 so that (14) is essentially 〈XN ,β(τ )〉ρN−1,β ′ plus an Onsager correction term
corresponding to the pure p-spin interaction. We emphasize that this step is not needed
for deriving the TAP equation in the SK model at high temperature, e.g., [40, Theorem
1.7.7], because in this case, one only needs to deal with the p = 2 case and the collection
of Gaussian random variables in (15) reduces to a single one XN ,β(τ 1), consequently.
A univariate central limit theorem (e.g., Theorem 3.7) would suffice.
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2.3. Cavity method: a comparison. As mentioned before, [3,4] established the Mézard-
Virosoro equations. Their argument required μP ({qP }) > 0, which ensured the validity
of the pure state decomposition, (CN ,a)a≥1, with decreasing Gibbs weights, see [19,39].
Based on this, they defined the local magnetizations 〈σ 〉a through (6) and performed
a cavity argument for this quantity as follows. In view of (10), denoting by G ′

N the
Gibbs measure associated to (HN−1,β ′(τ ))τ∈�N−1 and by (C ′

N−1,a)a≥1 the pure state
decomposition according to G ′

N , they decomposed their pure states as

CN ,a ≈ C ′
N−1,π(a) × {−1, 1} (16)

under the Gibbs measure GN . The function π is a random permutation of the natural
numbers N, depending on all disorders in HN , such that the sequence (C ′

N−1,π(a) ×
{−1, 1})a≥1 would also have decreasing measures under GN . Consequently, they wrote

〈σN 〉a ≈
∫

σNνN ,a, (17)

where νN ,a was the probability measure defined as

νN ,a(τ, σN ) ∝ eσN XN ,β (τ )G ′
N−1(τ |C ′

N−1,π(a))

for (τ, σN ) ∈ �N = {−1, 1}N−1 × {−1, 1}.
Although the arguments for (17) and Eq. (11) in our Step 1 are both based on the

cavity method, their derivations are fundamentally different. In [3], the key step to jus-
tify (17) relied on establishing (16) under the Gibbs measure GN , which utilized various
properties of the pure state decomposition, including the fact that the Gibbs weights
of the pure states asymptotically form a Poisson-Dirichlet process and the assumption
μP ({qP }) > 0. In contrast, our constructions of the pure states and the local mag-
netizations are explicit so that it is easier to quantify the error estimates in the cavity
computation; our Step 1 neither needs the pure state decomposition nor the assumption
μP ({qP }) > 0.

We then proceed to Step 2 and conclude it with Eq. (12). Note that Eq. (12) already
deviates from the Mézard–Virasoro Eq. (7), where we average inside the hyperbolic tan-
gent function with respect to the (N −1)-dimensional Gibbs measure, 〈XN ,β(τ )〉ρN−1,β ′
instead of an N -dimensional Gibbs measure, 〈XN ,β(σ )〉a in (7). This is crucial, as it
allows us to further express 〈XN ,β(τ )〉ρN−1,β ′ as XN ,β(〈σ 〉α) plus the desired Onsager
correction term in Step 3. Finally, we emphasize that in [3], it is unclear how to rewrite
the term 〈XN ,β(σ )〉a in the Mézard–Virasoro equations (7) to get to the TAP equations,
but we expect that it should be possible to show that the local magnetizations in [3]
satisfy the same TAP Eq. (4) following our Steps 2 and 3.

3. The Cavity Equation for 〈σN〉α
N,β

We derive the cavity equation for 〈σN 〉αN ,β in this section. As sketched in the previous

section, for any σ = (τ, σN ) ∈ {±1}N−1 × {±1}, by symmetry, we can decompose the
Hamiltonian in (1) as

HN ,β(σ ) =
∑

p≥2

βp
√
p!

N
p−1

2

∑

1≤i1<···<i p≤N−1

gi1,...,i pσi1 · · · σi p + h
N−1∑

i=1

σi
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+ σN

(∑

p≥2

βp
√
p!

N
p−1

2

∑

1≤i1<···<i p−1≤N−1

gi1,...,i p−1,Nσi1 · · · σi p−1 + h
)

= HN−1,β ′(τ ) + σN
(
XN ,β(τ ) + h

)
,

where β ′ := (β ′
p)p≥2 with β ′

p = βp((N − 1)/N )(p−1)/2 for each p ≥ 2 and XN ,β

is defined by (8). For any τ ∈ �N−1 fixed, XN ,β(τ ) is a centered Gaussian random
variable with variance

EX2
N ,β(τ ) =

∑

p≥2

β2
p p!

N p−1

∑

1≤i1<···<i p−1≤N−1

(τi1 · · · τi p−1)
2

=
∑

p≥2

β2
p p!

N p−1

(N − 1)(N − 2) · · · (N − p + 1)

(p − 1)!

=
∑

p≥2

β2
p p

p−1∏

l=1

(
1 − l

N

)
↗

∑

p≥2

β2
p p, as N → ∞. (18)

We remark that the variance of XN ,β(τ ) is bounded uniformly for any N ≥ 1 and any
τ ∈ �N−1 by Cβ defined at the beginning. The goal of this section is to establish the
following theorem.

Theorem 3.1. (Cavity equation) Let α ∼ GN ,β and write α = (ρ, αN ). Then,

lim
ε↓0

lim sup
N→∞

E

〈(
〈σN 〉αN ,β − tanh

(
XN ,β(〈τ 〉ρN−1,β ′) + h

))2〉

N ,β
= 0,

where ε ↓ 0 along a sequence such that qP − ε is always a point of continuity for μP .

In other words, 〈σN 〉αN ,β is asymptotically a function of the vector 〈τ 〉ρN−1,β ′ , the
average with respect to the conditional Gibbs measure of an (N − 1) system. Here, the
dimension of the system in 〈·〉ρN−1,β ′ is less than that of 〈·〉αN ,β by 1. Furthermore, the last

spin αN is absent in the constrained Gibbs measure 〈·〉ρN−1,β ′ . We establish this theorem
in three subsections.

3.1. Removal of the cavity spin constraint I. The conditional Gibbs average 〈σN 〉αN ,β

can be written as

〈σN 〉αN ,β =
∑

σ∈�α
N

σNGN ,β(σ )
∑

σ∈�α
N
GN ,β(σ )

=
〈
eXN ,β (τ )+h1�α

N

(
(τ, 1)

) − e−XN ,β (τ )−h1�α
N

(
(τ,−1)

) 〉
N−1,β ′

〈
eXN ,β (τ )+h1�α

N

(
(τ, 1)

)
+ e−XN ,β (τ )−h1�α

N

(
(τ,−1)

) 〉
N−1,β ′

, (19)

and, for α = (ρ, αN ), we have

{τ ∈ �N−1 : (τ,±1) ∈ �α
N } =

{
τ ∈ �N−1 : R(τ, ρ) ≥ qP − ε +

1

N − 1
(qp − ε ∓ αN )

}
,
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Thus, by letting

Aρ
� :=

{
τ ∈ �N−1 : R(ρ, τ ) ≥ qP −

(
ε − 3

N − 1

)}
,

Aρ
⊕ :=

{
τ ∈ �N−1 : R(ρ, τ ) ≥ qP −

(
ε +

3

N − 1

)}
,

we can easily see that for all τ ∈ �N−1 and α = (ρ, αN ) ∈ �N−1 × �1,

1Aρ
�(τ ) ≤ 1�

ρ
N−1

(τ ) ≤ 1Aρ
⊕(τ ),

1Aρ
�(τ ) ≤ 1�α

N
((τ,−1)),1�α

N
((τ, 1)) ≤ 1Aρ

⊕(τ ).
(20)

We will approximate the numerator and denominator of (19) by substituting all indicators
there by 1�

ρ
N−1

(τ ). To this end, we first prepare three lemmas.
Denote by g·N the collection of all Gaussian disorders that appear in XN ,β ,

gi1,...,i p−1,N , for p = 2, 3, . . . and 1 ≤ i1 < · · · < i p−1 ≤ N − 1

and by Eg·N the expectation (only) with respect to g·N .

Lemma 3.2. Let α = (ρ, αN ) be sampled according to GN ,β and (
(ρ))ρ∈�N−1 be
a collection of nonnegative random variables, which are independent of the Gaussian
disorders appearing in XN ,β . Then we have

E
〈

(ρ)

〉
N ,β

= E

〈

(τ)

cosh
(
XN ,β(τ ) + h

)

〈cosh
(
XN ,β(τ ) + h

)〉N−1,β ′

〉

N−1,β ′

≤ e2−1 ∑
p≥2 β2

p p cosh(h)E
〈

(τ)

〉
N−1,β ′ .

Proof. Write

E
〈

(ρ)

〉
N ,β

= E

∑

τ∈�N−1


(τ)
[
GN ,β((τ, 1)) + GN ,β((τ,−1))

]

= E

∑

τ∈�N−1


(τ)GN−1,β ′(τ )
GN ,β((τ, 1)) + GN ,β((τ,−1))

GN−1,β ′(τ )
,

where the last fraction is the Radon-Nykodym derivative of the two measuresGN ,β ((·, 1))+
GN ,β((·,−1)) and GN−1,β ′(·) on �N−1. Computing the numerator and the denominator
at τ , we get

GN ,β((τ, 1)) + GN ,β((τ,−1)) = eHN−1,β′ (τ ) cosh
(
XN ,β(τ ) + h

)

∑
τ ′∈�N−1

eHN−1,β′ (τ ′) cosh
(
XN ,β(τ ′) + h

) ,

GN−1,β ′(τ ) = eHN−1,β′ (τ )

∑
τ ′∈�N−1

eHN−1,β′ (τ ′) .

Plugging these into the first display establishes the equality in our assertion. Finally,
since cosh ≥ 1, we can drop the term 〈cosh(XN ,β(τ ) + h)〉N−1,β ′ and use (18) to get

E
〈

(ρ)

〉
N ,β

≤ E
〈

(τ) cosh

(
XN ,β(τ ) + h

)〉
N−1,β ′
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= E
〈

(τ)Eg·N

[
cosh

(
XN ,β(τ ) + h

)]〉
N−1,β ′

≤ e2−1 ∑
p≥2 β2

p p cosh(h)E
〈

(τ)

〉
N−1,β ′ .

��
Lemma 3.3. For any ε such that qP − ε is a point of continuity of μP , we have that

lim sup
N→∞

E
〈
1{|R(τ 1,τ 2)−(qP−ε)|< 3

N−1 }
〉
N−1,β ′ = 0. (21)

In addition,

lim
δ↓0

lim sup
N→∞

E〈1{GN−1,β′ (Aτ�)≥δ}〉N−1,β ′ = 1, ∀ε > 0, (22)

and

lim
δ↓0

lim sup
N→∞

E
〈
1{qP+δ≥R(τ 1,τ 2)≥min(R(τ 1,τ 3),R(τ 2,τ 3))−δ}

〉
N−1,β ′ = 1. (23)

Remark 3.4. These assertions hold if β ′ is replaced by β. Indeed, under this replacement,
(22) was established in [13, Lemma 3], while (23) can be concluded from [28] and the
fact that R(τ 1, τ 2) converges to μP weakly, see [27]. The latter fact can also be used to
deduce (21).

Proof. First of all, we claim that R(τ 1, τ 2) converges toμP underEG⊗2
N−1,β ′ as N → ∞.

To see this, note that β �→ EFN (β) and β �→ EFN (β ′) are convex functions and that
there exists a constant C > 0 independent of N such that |EFN (β)−EFN (β ′)| ≤ C/N
for all N ≥ 1. Hence, EFN−1(β) and EFN−1(β

′) converge to the same limit, say F(β),

which can be represented using the Parisi formula. One of the useful consequence of
this representation is that F is partially differentiable with respect to any βp and from
Griffith’s lemma,3

lim
N→∞

βp

2

(
1 − E

〈
R(τ 1, τ 2)p

〉
N−1,β ′

) = lim
N→∞ ∂pEFN−1(β

′)

= ∂βpEF(β) = βp

2

(
1 −

∫ 1

0
q pμP (dq)

)
,

where the last equality holds due to [27]. Consequently, whenever βp �= 0, we have

lim
N→∞E

〈
R(τ 1, τ 2)p

〉
N−1,β ′ =

∫ 1

0
q pμP (dq)

and our claim follows since we assume that our model is generic.
Now we turn to the proof of (21). Let ε′ and ε′′ be any positive numbers such that

ε′ < ε < ε′′. From these, as long as N is large enough, we can bound

E
〈
1{|R(τ 1,τ 2)−(qP−ε)|< 3

N−1 }
〉
N−1,β ′

= E
〈
1{R(τ 1,τ 2)<qP−ε+ 3

N−1 }
〉
N−1,β ′ − E

〈
1{R(τ 1,τ 2)≤qP−ε− 3

N−1 }
〉
N−1,β ′

3 Girffith’s lemma: Let fN be a sequence of differentiable convex functions defined on an open interval I .
Assume that fN converges f pointwise on I . If f is differentiable at some x ∈ I, then limN→∞ f ′

N (x) =
f ′(x).
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≤ E
〈
1{R(τ 1,τ 2)≤qP−ε′}

〉
N−1,β ′ − E

〈
1{R(τ 1,τ 2)<qP−ε′′}

〉
N−1,β ′ .

Consequently, from the weak convergence of R(τ 1, τ 2) to μP under EG⊗2
N−1,β ′ , we see

that

lim sup
N→∞

E
〈
1{|R(τ 1,τ 2)−(qP−ε)|< 3

N−1 }
〉
N−1,β ′ ≤ μP ([0, qP − ε′]) − μP ([0, qP − ε′′)).

Hence, from the continuity of μP at qP − ε, after sending ε′ ↑ ε and ε′′ ↓ ε,

lim sup
N→∞

E
〈
1{|R(τ 1,τ 2)−(qP−ε)|< 3

N−1 }
〉
N−1,β ′ = 0.

As for (22) and (23), we recall that it is already known in [13, Lemma 3] that

lim
δ↓0

lim sup
N→∞

E〈1{GN−1,β (Aτ�)≥δ}〉N−1,β = 1.

Since the overlap R(τ 1, τ 2) under EG⊗2
N−1,β and EG⊗2

N−1,β ′ converges to the same

distribution μP and both of the measures EG⊗∞
N−1,β and EG⊗∞

N−1,β ′ satisfy the
extended Ghirlanda–Guerra identities, the limiting distributions of the Gram matrix
(R(τ �, τ �′

))1≤�<�′ corresponding to (τ �)�≥1 sampled from either GN−1,β or GN−1,β ′
are uniquely determined by the overlap distribution μP and are described by the Ruelle
Probability Cascades parametrized by μP , see [29]. With this, the same argument in [13,
Lemma 3] yields (22). For (23), note that the extended Ghirlanda–Guerra identities also
imply that for independent τ 1, τ 2, τ 3 ∼ GN−1,β ′ , their overlaps must be asymptotically
ultrametric due to [28]. From our claim, we also see that R(τ 1, τ 2) is asymptotically
less than qP + δ. These together complete the proof of (23). ��
Lemma 3.5. For ε = 0,±1 and any ε > 0 such that qP − ε is a point of continuity of
μP , we have

lim
N→∞E

〈( 〈eεXN ,β (τ )1Aρ
⊕(τ )〉N−1,β ′ − 〈eεXN ,β (τ )1Aρ

�(τ )〉N−1,β ′
)2
〉

N ,β
= 0.

Proof. The left hand side is equal to

E

〈
〈eεXN ,β (τ )1Aρ

⊕\Aρ
�(τ )〉2

N−1,β ′
〉

N ,β

and by Cauchy–Schwarz inequality, it is no more than

E
〈〈e2εXN ,β (τ )〉N−1,β ′ 〈1Aρ

⊕\Aρ
�(τ )〉N−1,β ′

〉
N ,β

= E〈e2εXN ,β (τ )〉N−1,β ′
〈〈1Aρ

⊕\Aρ
�(τ )〉N−1,β ′

〉
N ,β

≤
(
E〈e2εXN ,β (τ )〉2

N−1,β ′E
〈〈1Aρ

⊕\Aρ
�(τ )〉N−1,β ′

〉2
N ,β

)1/2

≤
(
E
[〈
Eg·N e

4εXN ,β (τ )
〉
N−1,β ′

]
E
〈〈1Aρ

⊕\Aρ
�(τ )〉N−1,β ′

〉
N ,β

)1/2
.

Here, using the independence between g·N and the disorder appearing in the Gibbs
expectation 〈·〉N−1,β ′ , one can get from (18) that

Eg·N e
4εXN ,β (τ ) = e8ε2Var(XN ,β (τ )) ≤ e8

∑
p≥2 pβ2

p < ∞.
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Note that this upper bound holds for ε = 0 and ±1. Thus,

E

〈〈
eεXN ,β (τ )1Aρ

⊕(τ ) − eεXN ,β (τ )1Aρ
�(τ )

〉2
N−1,β ′

〉

N ,β

≤ e4
∑

p≥2 pβ2
p

{
E

〈〈
1Aρ

⊕\Aρ
�(τ )

〉
N−1,β ′

〉

N ,β

}1/2

≤ e(4+1/4)
∑

p≥2 pβ2
p cosh(h)1/2

{
E

〈〈
1
Aτ2

⊕ \Aτ2
�

(τ 1)
〉
N−1,β ′

〉

N−1,β ′

}1/2

= e(4+1/4)
∑

p≥2 pβ2
p cosh1/2(h)

{
E
〈
1{(τ 1,τ 2): |R(τ 1,τ 2)−(qP−ε)|≤3/(N−1)}

〉
N−1,β ′

}1/2
,

where the second inequality used Lemma 3.2 and τ 1 and τ 2 are sampled from the
inner and outer Gibbs measures, respectively. Our proof is then completed by applying
(21). ��

With the help of the above three lemmas, we can now replace all the indicators in
(19) with 1�

ρ
N−1

(τ ):

Proposition 3.6. For ε > 0 such that qP − ε is a point of continuity of μP , we have that

lim
N→∞E

〈(
〈σN 〉αN ,β − 〈sinh(XN ,β(τ ) + h)〉ρN−1,β ′

〈cosh(XN ,β(τ ) + h)〉ρN−1,β ′

)2
〉

N ,β

= 0. (24)

Proof. Define

Aα := 1

2

〈
eXN ,β (τ )+h1�α

N

(
(τ, 1)

) − e−XN ,β (τ )−h1�α
N

(
(τ,−1)

) 〉
N−1,β ′ ,

Bα := 1

2

〈
eXN ,β (τ )+h1�α

N

(
(τ, 1)

)
+ e−XN ,β (τ )−h1�α

N

(
(τ,−1)

) 〉
N−1,β ′ ,

Aρ := 〈
sinh(XN ,β(τ ) + h)1�

ρ
N−1

(τ )
〉
N−1,β ′ ,

Bρ := 〈
cosh(XN ,β(τ ) + h)1�

ρ
N−1

(τ )
〉
N−1,β ′ ,

and then we can express

〈σN 〉αN ,β = Aα

Bα

and
〈sinh(XN ,β(τ ) + h)〉ρN−1,β ′

〈cosh(XN ,β(τ ) + h)〉ρN−1,β ′
= Aρ

Bρ

.

For any δ > 0, the expectation in (24) is no more than

E

〈( Aα

Bα

− Aρ

Bρ

)2
〉

N ,β

≤ CE

〈( Aα

Bα

− Aα

Bα

1{GN−1,β′ (Aρ
�)≥δ}

)2
〉

N ,β

+ CE

〈( Aα

Bα

− Aρ

Bρ

)2
1{GN−1,β′ (Aρ

�)≥δ}
〉

N ,β

+ CE

〈( Aρ

Bρ

− Aρ

Bρ

1{GN−1,β′ (Aρ
�)≥δ}

)2
〉

N ,β

.
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Using that |Aα/Bα| ≤ 1, |Aρ/Bρ | ≤ 1 and combining the first term and the third term,
we get

E

〈( Aα

Bα

− Aρ

Bρ

)2
〉

N ,β

≤ 2CE
〈
1{GN−1,β′ (Aρ

�)<δ}
〉
N ,β

+ CE

〈( Aα

Bα

− Aρ

Bρ

)2
1{GN−1,β′ (Aρ

�)≥δ}
〉

N ,β

. (25)

Since GN−1,β ′(Aρ
�) is independent of g·N for any ρ ∈ �N−1, we can use (21) to bound

E
〈
1{GN−1,β′ (Aρ

�)<δ}
〉
N ,β

≤ e
∑

p≥2
β2
p p
2 cosh(h)E〈1{GN−1,β′ (Aτ�)<δ}〉N−1,β ′ → 0

as N → ∞ and then δ ↓ 0, where the last limit used (22). As for the second expectation
in (25), we note that, on the event {GN−1,β ′(Aρ

�) ≥ δ},
∣
∣
∣
∣
Aα

Bα

− Aρ

Bρ

∣
∣
∣
∣ ≤

∣
∣
∣
∣
Aρ

Bρ

∣
∣
∣
∣
|Bα − Bρ |

Bα

+
|Aρ − Aα|

Bα

≤ |Bα − Bρ |
GN−1,β ′(Aρ

�)
+

|Aρ − Aα|
GN−1,β ′(Aρ

�)
≤ δ−1[|Bα − Bρ | + |Aρ − Aα|],

where we used that |Aρ/Bρ | ≤ 1 and that from (20),

Bα, Bρ ≥ 〈
cosh

(
XN ,β(τ ) + h

)
1Aρ

�(τ )
〉
N−1,β ′ ≥ 〈

1Aρ
�(τ )

〉
N−1,β ′ = GN−1,β ′(Aρ

�).

Thus, for any δ > 0,

E

〈( Aα

Bα

− Aρ

Bρ

)2
1{GN−1,β′ (Aρ

�)≥δ}
〉

N ,β

≤ Cδ−2
(
E
〈
(Aα − Aρ)2〉

N ,β
+ E

〈
(Bα − Bρ)2〉

N ,β

)
.

Here, from Lemma 3.5 and the inequality in (20), we have

E
〈
(Aα − Aρ)2〉

N ,β
≤ C ′

E

〈( 〈
eXN ,β (τ )+h1Aρ

⊕ (τ )
〉
N−1,β ′ − 〈

eXN ,β (τ )+h1Aρ
� (τ )

〉
N−1,β ′

)2
〉

N ,β

+ C ′
E

〈( 〈
e−XN ,β (τ )−h1Aρ

⊕ (τ )
〉
N−1,β ′ − 〈

e−XN ,β (τ )−h1Aρ
� (τ )

〉
N−1,β ′

)2
〉

N ,β

→ 0 as N → ∞.

Similarly,E
〈
(Bα−Bρ)2

〉
N ,β

→ 0. These imply that the second term in (25) also vanishes
for any δ > 0, completing our proof. ��
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3.2. Central limit theorem for the cavity field. The goal of this section is to derive a
central limit theorem for the centered cavity field defined as

Ẋρ
N ,β(τ ) := XN ,β(τ ) − 〈

XN ,β(τ )
〉ρ
N−1,β ′

=
∑

p≥2

βp
√
p!

N
p−1

2

∑

1≤i1<···<i p−1≤N−1

gi1...i p−1,N
(
τi1 · · · τi p−1 − 〈τi1 · · · τi p−1〉ρN−1,β ′

)

(26)

for any ρ, τ ∈ �N−1.

Theorem 3.7. (Central limit theorem) Assume that U is an infinitely differentiable
function on R satisfying

sup
0≤γ≤M

E|U (d)(γ z)|k < ∞, ∀d, k ∈ Z, 0 ≤ d, k, M < ∞.

Then, for any integer r ≥ 1, we have

lim
ε↓0

lim sup
N→∞

E

〈[〈
U
(
Ẋρ
N ,β(τ )

)〉ρ
N−1,β ′ − EU

(
ξ
√

ζ ′(1) − ζ ′(qP )
)]2r

〉

N ,β

= 0, (27)

where ξ ∼ N (0, 1) is independent of all other random variables.

Remark 3.8. As we will see later, this theorem is special case of the multivariate central
limit theorem stated in Theorem 5.1 below. Here we provide a standalone proof for
Theorem 3.7 to illustrate the main steps as a warm-up for the proof of Theorem 5.1.

The proof of Theorem 3.7 relies on the concentration of the overlap within the pure
state established in the following lemma.

Lemma 3.9. (Concentration of the overlap) We have that

lim
ε↓0

lim sup
N→∞

E
〈〈|R(τ 1, τ 2) − qP |〉ρN−1,β ′

〉
N−1,β ′ = 0,

lim
ε↓0

lim sup
N→∞

E
〈〈|R(τ, ρ) − qP |〉ρN−1,β ′

〉
N−1,β ′ = 0,

where in both equations, the ρ’s are sampled from the outer Gibbs measure and τ, τ 1, τ 2

are sampled from the inner one.

Proof. For any δ > 0, letting Eδ,ρ = {GN−1,β ′(�ρ
N−1) ≥ δ}, we have

E
〈〈∣
∣R(τ 1, τ 2) − qP |〉ρN−1,β ′

〉
N−1,β ′

= E
〈〈∣
∣R(τ 1, τ 2) − qP

∣
∣
〉ρ
N−1,β ′1Ec

δ,ρ

〉
N−1,β ′

+ E

〈∣∣R(τ 1, τ 2) − qP
∣
∣1�

ρ
N−1

(τ 1)1�
ρ
N−1

(τ 2)

G2
N−1,β ′(�

ρ
N−1)

1Eδ,ρ

〉

N−1,β ′

≤ 2E
〈
1Ec

δ,ρ

〉
N−1,β ′ +

1

δ2 E
〈∣
∣R(τ 1, τ 2) − qP

∣
∣1�

ρ
N−1

(τ 1)1�
ρ
N−1

(τ 2)
〉
N−1,β ′ , (28)

where in the second expectations on the right-hand side, ρ, τ 1, τ 2 are understood as
i.i.d. copies from GN−1,β ′ . From (22), the first term in (28) vanishes as N → ∞ and
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then δ ↓ 0. Next, since both R(ρ, τ 1) and R(ρ, τ 2) are at least qP − ε, it follows from
(23) that |R(τ 1, τ 2) − qP | ≤ 2ε with probability nearly one under EG⊗2

N−1,β ′ . Hence,
the second term in (28) also vanishes as ε ↓ 0, and this completes the proof of the first
assertion. As for the second one, we have

E
〈〈∣
∣R(ρ, τ ) − qP |〉ρN−1,β ′

〉
N−1,β ′

≤ 2E
〈
1Ec

δ,ρ

〉
N−1,β ′ +

1

δ
E
〈∣
∣R(ρ, τ ) − qP

∣
∣1�

ρ
N−1

(τ )
〉
N−1,β ′ .

Again the first term vanishes in the limit due to (22). From (23) and the constraint �ρ
N−1,

we see that |R(ρ, τ ) − qP | ≤ 2ε with probability nearly one under EG⊗2
N−1,β ′ . Hence

the second term also vanishes, completing our proof. ��
Remark 3.10. Following the same proof, it can also be shown that

lim
ε↓0

lim sup
N→∞

E
〈∣
∣‖〈σ 〉αN ,β‖2 − qP

∣
∣2
〉
N ,β

= lim
ε↓0

lim sup
N→∞

E
〈∣
∣
〈
R(σ 1, σ 2)

〉α
N ,β

− qP
∣
∣2
〉
N ,β

= 0.

Proof of Theorem 3.7. We prove the central limit theorem via an interpolation argument.
Fix r ≥ 1. For every integer 1 ≤ m ≤ 2r and any ρ, τm ∈ �N−1, consider the
interpolation

xmρ (t) := √
t Smρ +

√
1 − t

√
ζ ′(1) − ζ ′(qP )ξm, 0 ≤ t ≤ 1,

where the ξm’s are i.i.d copies of ξ that are also independent of everything else, and
Smρ := Ẋρ

N ,β(τm). Set

V (x) := U (x) − EU (ξ
√

ζ ′(1) − ζ ′(qP )), x ∈ R.

Recall that for any α ∈ �N , ρ ∈ �N−1 represents the first N − 1 spins. For 0 ≤ t ≤ 1,

define

φN (t) = E

〈〈 2r∏

m=1

V (xmρ (t))

〉ρ

N−1,β ′

〉

N ,β

.

Evidently the left-hand side of (27) equals φN (1).
In order to control φN (1), we introduce

ψN (t) := E

〈

cosh(XN ,β(ρ) + h)

〈 2r∏

m=1

V (xmρ (t))

〉ρ

N−1,β ′

〉

N−1,β ′
.

where ρ and (τ 1, . . . , τ 2r ) are sampled from the outer and inner Gibbs measures,
〈·〉N−1,β ′ and 〈·〉ρN−1,β ′ , respectively. Observe that ψN (0) = 0. On the other hand,

note that when t = 1, xmρ (1) = Ẋρ
N ,β(τm) and since τ 1, . . . , τ 2r are i.i.d. sampled from

〈·〉ρN−1,β ′ , it follows that

〈V (x1
ρ(1))〉ρN−1,β ′ = 〈V (x2

ρ(1))〉ρN−1,β ′ = · · · = 〈V (x2r
ρ (1))〉ρN−1,β ′ .
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Consequently,

〈 2r∏

m=1

V (xmρ (1))
〉ρ

N−1,β ′ =
(
〈V (x1

ρ(1))〉ρN−1,β ′
)2r

,

which is a nonnegative. From this, we can adopt a change of measure argument as the
one in the proof of Lemma 3.2 to bound

φN (1) = E

〈〈 2r∏

m=1

V (xmρ (1))

〉ρ

N−1,β ′

〉

N ,β

= E

〈(〈

V (xρ(1))

〉ρ

N−1,β ′

)2r〉

N ,β

≤ E

〈

cosh(XN ,β(ρ) + h)

(〈

V (xρ(1))

〉ρ

N−1,β ′

)2r〉

N−1,β ′

= E

〈

cosh(XN ,β(ρ) + h)

〈 2r∏

m=1

V (Ẋρ
N ,β(τm))

〉ρ

N−1,β ′

〉

N−1,β ′
= ψN (1). (29)

Therefore, we have

φN (1) ≤ ψN (1) =
∫ 1

0
ψ ′
N (t)dt ≤

∫ 1

0
|ψ ′

N (t)|dt,

and it suffices to estimate |ψ ′
N (t)|. To this end, we differentiate ψN and use symmetry

in m to get

ψ ′
N (t) = rE

〈〈
�N ,t (ρ, τ 1, . . . , τ 2r )

〉ρ
N−1,β ′

〉
N−1,β ′

= rE
〈〈
Eg·N ,ξ

�N ,t (ρ, τ 1, . . . , τ 2r )
〉ρ
N−1,β ′

〉
N−1,β ′ ,

where

�N ,t (ρ, τ 1, . . . , τ 2r ) := cosh(XN ,β(ρ) + h)V ′(x1
ρ(t))

(
S1
ρ√
t

−
√

ζ ′(1) − ζ ′(qP )√
1 − t

ξ1
)

2r∏

s=2

V (xsρ(t))

and Eg·N ,ξ is the expectation with respect to g·N and ξ1. Using Gaussian integration by
parts with respect to g·N and ξ1 yields that

Eg·N ,ξ
�N ,t (ρ, τ 1, . . . , τ 2r )

= Eg·N ,ξ

[
cosh(XN ,β(ρ) + h)V ′′(x1

ρ(t))
2r∏

m=2

V (xmρ (t))
](

Eg·N
[
S1
ρS

1
ρ

] − (ζ ′(1) − ζ ′(qP ))
)
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+ (2r − 1)Eg·N ,ξ

[
cosh(XN ,β(ρ) + h)V ′(x1

ρ(t))V ′(x2
ρ(t))

2r∏

m=3

V (xmρ (t))
]
Eg·N

[
S1
ρS

2
ρ

]

+
1√
t
Eg·N ,ξ

[
sinh(XN ,β(ρ) + h)V ′(x1

ρ(t))
2r∏

m=2

V (xmρ (t))
]
Eg·N

[
S1
ρXN ,β(ρ)

]
,

where the term 2r − 1 arises from the symmetry in m. Note that XN ,β(ρ) + h is a
mean-h Gaussian random variable, whose variance is uniformly bounded for all N and
all ρ ∈ �N−1, which ensures, for all k ≥ 0,

max
ρ∈�N−1

Eg·N
[

sinh2k(XN ,β(ρ) + h)
]

< ∞,

max
ρ∈�N−1

Eg·N
[

cosh2k(XN ,β(ρ) + h)
]

< ∞.

Similarly, xmρ (t) is a mean-zero Gaussian random variable, whose variance is uniformly
bounded for all N , all ρ, τm ∈ �N−1, and all 0 ≤ t ≤ 1:

0 ≤ Varg·N ,ξ
(xmρ (t))

= tVarg·N (Smρ ) + (1 − t)(ζ ′(1) − ζ ′(qP )) ≤ 4ζ ′(1) + (ζ ′(1) − ζ ′(qP )) < ∞.

With the given assumption on U , we then have that for any k, d ≥ 0 and 1 ≤ m ≤ 2r,

sup
0≤t≤1,

ρ,τm∈�N−1

Eg·N ,ξ

[
V (d)(xmρ (t))2k] < ∞.

Thus, using Hölder’s inequality, the derivative ψ ′
N (t) is bounded by

|ψ ′
N (t)| ≤ CE

〈〈 ∣
∣Eg·N

[
S1
ρS

1
ρ − (ζ ′(1) − ζ ′(qP ))

]∣
∣
〉ρ
N−1,β ′

〉
N−1,β ′ (30)

+ CE
〈〈 ∣
∣Eg·N

[
S1
ρS

2
ρ

]∣
∣
〉ρ
N−1,β ′

〉
N−1,β ′ (31)

+
C√
t
E
〈〈∣
∣Eg·N

[
S1
ρXN ,β(ρ)

]∣
∣
〉ρ
N−1,β ′

〉
N−1,β ′ (32)

for some constant C independent of N and t. If we can show that all these expectations
vanish as N → ∞ and then ε ↓ 0, our proof is complete since 1/

√
t is integrable on

(0, 1]. For the remaining of the proof, we handle the three major expectations in the
above display as follows.
Estimation of (30): Write

Eg·N
[
S1
ρ S

1
ρ − (ζ ′(1) − ζ ′(qP ))

]

=
∑

p≥2

β2
p p!

N p−1

∑

1≤i1<···<i p−1≤N−1

(
τ 1
i1 · · · τ 1

i p−1
− 〈τi1 · · · τi p−1 〉ρN−1,β ′

)2 − (ζ ′(1) − ζ ′(qP ))

=
∑

p≥2

β2
p p

[ p−1∏

l=1

( N − l

N

)
− 1

]

+

[∑

p≥2

β2
p p

N p−1

N−1∑

i1,...,i p−1=1
distinct

〈τ 1
i1 · · · τ 1

i p−1
τ 2
i1 · · · τ 2

i p−1
〉ρN−1,β ′ − ζ ′(qP )

]

− 2

[∑

p≥2

β2
p p

N p−1

N−1∑

i1,...,i p−1=1
distinct

τ 1
i1 · · · τ 1

i p−1
〈τi1 · · · τi p−1 〉ρN−1,β ′ − ζ ′(qP )

]

. (33)
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Note that each sum in (33) is bounded in absolute value byCβ , introduced at the beginning
of Sect. 1. By the dominated convergence theorem, the first sum in (33) goes to 0 as
N → ∞. The second sum in (33) is equal to

∑

p≥2

(
N − 1

N

)p−1

β2
p p

〈
Rp−1(τ 1, τ 2)

〉ρ
N−1,β ′ − ζ ′(qP ) + oN (1)

= 〈
ζ ′(R12)

〉ρ
N−1,β ′ − ζ ′(qP ) + oN (1),

where for any τ 1, τ 2 ∈ �N−1, we abbreviate R12 = R(τ 1, τ 2). For the last sum in (33),
we take the Gibbs average under 〈·〉ρN−1,β ′ and use Jensen’s inequality to get

〈∣
∣
∣
∑

p≥2

β2
p p

N p−1

N−1∑

i1,...,i p−1=1
distinct

τ 1
i1 · · · τ 1

i p−1
〈τ 2

i1 · · · τ 2
i p−1

〉ρN−1,β ′ − ζ ′(qP )

∣
∣
∣
〉ρ

N−1,β ′

≤
〈∣
∣
∣
∑

p≥2

β2
p p

N p−1

N−1∑

i1,...,i p−1=1
distinct

τ 1
i1 · · · τ 1

i p−1
τ 2
i1 · · · τ 2

i p−1
− ζ ′(qP )

∣
∣
∣

〉ρ

N−1,β ′

= 〈| ζ ′(R12) − ζ ′(qP )|〉ρN−1,β ′ + oN (1).

Thus,

E

〈〈 ∣
∣Eg·N

[
S1
ρS

1
ρ − (ζ ′(1) − ζ ′(qP ))

]∣
∣
〉ρ
N−1,β ′

〉

N−1,β ′

≤ 3E
〈〈∣
∣ζ ′(R12) − ζ ′(qP )

∣
∣
〉ρ
N−1,β ′

〉

N−1,β ′ + oN (1). (34)

Therefore, from Lemma 3.9 and the fact that for all x, y ∈ [0, 1],
|ζ ′(x) − ζ ′(y)| ≤ ζ ′′(1)|x − y|, (35)

the right hand side of (34) also vanishes in the limit N → ∞ and then ε ↓ 0.

Estimation of (31): With a similar argument as the above control, we see that
〈∣
∣Eg·N

[
S1
ρS

2
ρ

]∣
∣
〉ρ
N−1,β ′ ≤ 4

〈| ζ ′(R12) − ζ ′(qP )|〉ρN−1,β ′ + oN (1)

and Lemma 3.9 and (35) ensure that (31) vanishes in the limit.
Estimation of (32 ): Note that for any ρ ∈ �N−1,

∣
∣Eg·N

[
S1
ρXN ,β(ρ)

]∣
∣

=
∣
∣
∣
∣

∑

p≥2

β2
p p

N p−1

N−1∑

i1,...,i p−1=1
distinct

(
τ 1
i1 · · · τ 1

i p−1
− 〈τ 1

i1 · · · τ 1
i p−1

〉ρN−1,β ′
)
ρi1 · · · ρi p−1

∣
∣
∣
∣

Again, we can use Jensen’s inequality to obtain

E
〈〈∣
∣Eg·N

[
S1
ρXN ,β(ρ)

]∣
∣
〉ρ
N−1,β ′

〉
N−1,β ′

≤ E
〈〈∣
∣ζ ′(R(τ 1, ρ)) − ζ ′(R(τ 1, ρ))

∣
∣
〉ρ
N−1,β ′

〉
N−1,β ′ + oN (1).

From Lemma 3.9, this bound vanishes in the limit. ��
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3.3. Proof of Theorem 3.1. We begin by establishing the following proposition.

Proposition 3.11.

lim
ε↓0

lim sup
N→∞

E

〈[〈σN 〉αN ,β − tanh
(〈XN ,β(τ )〉ρN−1,β ′ + h

)]2
〉

N ,β
= 0,

where ε ↓ 0 along a sequence such that qP − ε is always a point of continuity for μP .

Proof. By Proposition 3.6, it is sufficient to show that

lim
ε↓0

lim sup
N→∞

E

〈[ 〈sinh(XN ,β(τ ) + h)〉ρN−1,β ′

〈cosh(XN ,β(τ ) + h)〉ρN−1,β ′
− tanh

(〈XN ,β(τ )〉ρN−1,β ′ + h
)
]2〉

N ,β

= 0.

(36)

To this end, we claim that for ε ∈ {−1, 1},

lim
ε↓0

lim sup
N→∞

E

〈[〈
eεXN ,β (τ )

〉ρ
N−1,β ′ − e

ε〈XN ,β (τ )〉ρ
N−1,β′ + 1

2 (ζ ′(1)−ζ ′(qP ))
]2
〉

N ,β

= 0.

If this is valid, then multiplying eεh to this equation leads to

lim
ε↓0

lim sup
N→∞

E

〈[〈
eε(XN ,β (τ )+h)

〉ρ
N−1,β ′ − e

ε(〈XN ,β (τ )〉ρ
N−1,β′ +h)+ 1

2 (ζ ′(1)−ζ ′(qP ))
]2
〉

N ,β

= 0.

Noting that

tanh(x) = sinh(x)

cosh(x)
= ex − e−x

ex + e−x
, | sinh(x)| ≤ cosh(x), and cosh(x) ≥ 1,

we can use the previous limit to recover (36); along the way, since (ζ ′(1) − ζ ′(qP ))/2
is a constant term, it will be cancelled and does not appear in (36).

The proof of our claim proceeds as follows. Note that Theorem 3.7 with U (x) = eεx

for ε ∈ {+1,−1} readily implies that

lim
ε↓0

lim sup
N→∞

E

〈[〈
eε Ẋρ

N ,β (τ )〉ρ
N−1,β ′ − exp

{1

2

[
ζ ′(1) − ζ ′(qP )

]}]4
〉

N ,β

= 0. (37)

For any ρ ∈ �N−1, we can decompose XN ,β(τ ) = Ẋρ
N ,β(τ ) + 〈XN ,β(τ )〉ρN−1,β ′ to get

E

〈[〈
eεXN ,β (τ )

〉ρ
N−1,β ′ − exp

{
ε
〈
XN ,β(τ )

〉ρ
N−1,β ′ +

1

2

[
ζ ′(1) − ζ ′(qP )

]}]2
〉

N ,β

= E

〈

e
2ε〈XN ,β (τ )〉ρ

N−1,β′
[〈
eε Ẋ N ,β (τ )

〉ρ
N−1,β ′ − exp

{1

2

[
ζ ′(1) − ζ ′(qP )

]}]2
〉

N ,β

≤
{

E
〈
e

4ε〈XN ,β (τ )〉ρ
N−1,β′ 〉

N ,β
E

〈[〈
eε Ẋ N ,β (τ )

〉ρ
N−1,β ′ − exp

{1

2

[
ζ ′(1) − ζ ′(qP )

]}]4
〉

N ,β

}1/2

.

Here the second term vanishes as ensured by (37). By a change of measure as in the
proof of Lemma 3.2, the first expectation is bounded by

E

[ ∑

ρ∈�N−1

GN−1,β ′(ρ)Eg·N
[
cosh(XN ,β(ρ) + h)e

4ε〈XN ,β (τ )〉ρ
N−1,β′

]]
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≤ E

∑

ρ∈�N−1

GN−1,β ′(ρ)
{
Eg·N [cosh2(XN ,β(ρ) + h)]Eg·N [e8ε〈XN ,β (τ )〉ρ

N−1,β′ ]
}1/2

≤ C

for some constant C > 0 independent of N and ε. This completes the proof of our claim.
��

We now turn to the proof of Theorem 3.1. From Proposition 3.11 and noting that
| tanh(x) − tanh(x ′)|2 ≤ 2|x − x ′|, it remains to show that

lim
ε↓0

lim sup
N→∞

E

〈∣
∣
∣XN ,β(〈τ 〉ρN−1,β ′) − 〈

XN ,β(τ )
〉ρ
N−1,β ′

∣
∣
∣
〉

N ,β
= 0. (38)

As in the proof of Lemma 3.2, we apply a change of measure to deal with the dependence
of 〈·〉N ,β on the disorders g·N ,

E

〈∣
∣
∣XN ,β

(〈
τ
〉ρ
N−1,β ′

) − 〈
XN ,β (τ )

〉ρ
N−1,β ′

∣
∣
∣
〉

N ,β

≤ E

〈
cosh(XN ,β (ρ) + h)

∣
∣
∣XN ,β

(〈
τ
〉ρ
N−1,β ′

) − 〈
XN ,β (τ )

〉ρ
N−1,β ′

∣
∣
∣
〉

N−1,β ′

≤ E

[ 〈[
Eg·N cosh2(XN ,β (ρ) + h)

]1/2{
Eg·N

[
XN ,β

(〈
τ
〉ρ
N−1,β ′

) − 〈
XN ,β (τ )

〉ρ
N−1,β ′

]2}1/2
〉

N−1,β ′

]

.

Here, uniformly in ρ ∈ �N−1,

Eg·N cosh2(XN ,β(ρ) + h) ≤ e2Cβ cosh2(h)

and

Eg·N
[
XN ,β

(〈
τ
〉ρ
N−1,β ′

) − 〈
XN ,β(τ )

〉ρ
N−1,β ′

]2

≤
∑

p≥2

β2
p p

N p−1

∑

i1,...,i p−1
distinct

(
〈
τi1
〉ρ
N−1,β ′ · · ·

〈
τi p−1

〉ρ
N−1,β ′ − 〈

τi1 · · · τi p−1

〉ρ
N−1,β ′

)2

= ζ ′(〈R1,2
〉ρ
N−1,β ′

)
+
〈
ζ ′(R1,2)

〉ρ
N−1,β ′ − 2

∑

p≥2

β2
p p

〈
R1,p R2,p · · · Rp−1,p

〉ρ
N−1,β ′ + oN (1).

where we write R�,�′ := R(τ �, τ �′
). From Lemma 3.9 and (35), we readily see that

lim
ε↓0

lim sup
N→∞

E
〈∣
∣ζ ′(〈R1,2

〉ρ
N−1,β ′

) − ζ ′(qP )
∣
∣
〉
N−1,β ′ = 0,

lim
ε↓0

lim sup
N→∞

E
〈∣
∣
〈
ζ ′(R1,2)

〉ρ
N−1,β ′ − ζ ′(qP )

∣
∣
〉
N−1,β ′ = 0.

Finally, note that

∣
∣R1,p R2,p · · · Rp−1,p − q p−1

P

∣
∣ ≤

p−1∑

l=1

|Rl,p − qP |.

It follows from Lemma 3.9 and the symmetry in l that

E

〈∣
∣
∣
∑

p≥2

β2
p p

(〈
R1,p R2,p · · · Rp−1,p

〉ρ
N−1,β ′ − q p−1

P

)∣∣
∣
〉

N−1,β ′
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≤
(∑

p≥2

β2
p p

2
)

E
〈〈∣
∣R1,2 − qP

∣
∣
〉ρ
N−1,β ′

〉
N−1,β ′ → 0,

as we send N → ∞ and ε ↓ 0. Combining these together validates (38) and completes
our proof.

4. Cavity Computation for XN,β(〈σ〉α
N,β

)

To derive the TAP equation from the cavity equation, the next step is to represent
XN ,β(〈τ 〉ρN−1,β ′) in Theorem 3.1 as the difference between XN ,β(〈σ 〉αN ,β) and the On-
sager correction term ζ ′′(qP )(1 − qP )〈σ 〉αN ,β . To this end, in this section, we will first
perform a cavity computation for XN ,β(〈σ 〉αN ,β), like we did in Proposition 3.6 for
〈σN 〉αN ,β .

First of all, write

XN ,β(〈σ 〉αN ,β) =
∑

p≥2

βp
√
p!

N
p−1

2

∑

1≤i1<···<i p−1≤N−1

gi1,...,i p−1,N 〈σi1〉αN ,β · · · 〈σi p−1〉αN ,β .

For each local magnetization on the right hand side, we can follow the same procedure
in Sect. 3 and write σ as σ = (τ, σN ) to express

〈σ j 〉αN ,β =
〈
τ j eXN ,β (τ )+h1�α

N
((τ, 1)) + τ j e−XN ,β (τ )−h1�α

N
((τ,−1))

〉
N−1,β ′

〈
eXN ,β (τ )+h1�α

N
((τ, 1)) + e−XN ,β (τ )−h1�α

N
((τ,−1))

〉
N−1,β ′

for 1 ≤ j ≤ N − 1. Due to the nested structure (20) and Lemma 3.5, one is tempted to
approximate all indicators above by 1�

ρ
N−1

(τ ) for α = (ρ, αN ) and write that

〈σ j 〉αN ,β ≈ sρ
j :=

〈
τ j cosh(XN ,β(τ ) + h)

〉ρ
N−1,β ′

〈
cosh(XN ,β(τ ) + h)

〉ρ
N−1,β ′

. (39)

for each j = 1, 2, . . . , N −1. Write sρ = (sρ
1 , . . . , sρ

N−1). The main goal in this section
is to establish this approximation and prove the following proposition.

Proposition 4.1. For any ε such that qP − ε is a point of continuity of μP , we have that

lim
N→∞E

〈[
XN ,β(〈σ 〉αN ,β) − XN ,β(sρ)

]2〉
N ,β

= 0. (40)

We will prove (40) in two steps. Firstly, we show that XN ,β(〈σ 〉αN ,β) and XN ,β(sρ) will
not differ too much if we truncate the infinite sum over p ≥ 2 to a finite sum over
2 ≤ p ≤ p0, provided that p0 is sufficiently large. This will require some moment
and truncation controls on XN ,β(〈σ 〉αN ,β) and XN ,β(sρ) that we establish in the next
subsection.
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4.1. Moment and truncation controls of XN ,β (〈σ 〉αN ,β)and XN ,β(sρ). Write XN ,β(〈σ 〉αN )

= ∑
p≥2 Aα

p and XN ,β(sρ) = ∑
p≥2 Bρ

p , where

Aα
p := βp

√
p!

N
p−1

2

∑

1≤i1<···<i p−1≤N−1

gi1,...,i p−1,N 〈σi1〉αN ,β · · · 〈σi p−1〉αN ,β , (41)

Bρ
p := βp

√
p!

N
p−1

2

∑

1≤i1<···<i p−1≤N−1

gi1,...,i p−1,N s
ρ
i1

· · · sρ
i p−1

. (42)

The following proposition provides a control on the truncation of the above two random
series.

Proposition 4.2. For any δ > 0, there exists p0 > 0 such that for all N ≥ 1 and small
enough ε > 0,

E

〈[ ∑

p>p0

Aα
p

]4
〉

N ,β

≤ δ and E

〈[ ∑

p>p0

Bρ
p

]4
〉

N ,β

≤ δ.

Recall the definitions of Aρ
� and GN−1,β ′(Aρ

�) from Sect. 3. As we have seen from
Lemma 3.3 and Remark 3.4, the Gibbs probability of the event GN−1,β ′(Aρ

�) < δ is
essentially negligible, the next proposition further shows that the second moments of
XN ,β(〈σ 〉αN ,β) and XN ,β(sρ) on this event remain negligible.

Proposition 4.3. For any ε > 0, we have that

lim
δ↓0

lim sup
N→∞

E
〈[
XN ,β(〈σ 〉αN ,β)1{GN−1,β′ (Aρ

�)<δ}
]2〉

N ,β
= 0, (43)

lim
δ↓0

lim sup
N→∞

E
〈[
XN ,β(sρ)1{GN−1,β′ (Aρ

�)<δ}
]2〉

N ,β
= 0. (44)

The proofs of Propositions 4.2 and 4.3 are deferred to Appendix A.

4.2. Removal of the cavity spin constraint II. Fix 2 ≤ p ≤ p0 and recall the definitions
of Aα

p and Bρ
p in (41) and (42). Using replicas, we may rewrite Aα

p and Bρ
p as follows.

For τ = (τ 1, . . . , τ p−1) ∈ �
p−1
N−1, define

ZN ,p(τ ) =
√
p!

N (p−1)/2

∑

1≤i1<···<i p−1≤N−1

gi1,...,i p−1,N τ 1
i1 · · · τ p−1

i p−1
. (45)

Define

Cα
p =

〈

ZN ,p(τ )

p−1∏

l=1

eXN ,β (τ l )+h1�α
N
((τ l , 1)) + e−XN ,β (τ l )−h1�α

N
((τ l ,−1))

2

〉

N−1,β ′
,

Cρ
p =

〈

ZN ,p(τ )

p−1∏

l=1

cosh(XN ,β(τ l) + h)1�
ρ
N−1

(τ l)

〉

N−1,β ′
,
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Dα
p =

〈 p−1∏

l=1

eXN ,β (τ l )+h1�α
N
((τ l , 1)) + e−XN ,β (τ l )−h1�α

N
((τ l ,−1))

2

〉

N−1,β ′
,

Dρ
p =

〈 p−1∏

l=1

cosh(XN ,β(τ l) + h)1�
ρ
N−1

(τ l)

〉

N−1,β ′
.

Then we can write

Aα
p = βp

Cα
p

Dα
p

and Bρ
p = βp

Cρ
p

Dρ
p
. (46)

Denote

ηN = E
〈〈
1Aρ

⊕\Aρ
�(τ )

〉
N−1,β ′

〉
N−1,β ′ .

As we have seen at the end of the proof of Lemma 3.5, ηN → 0 as N → ∞. Our next
Lemma bounds the errors when approximating Cα

p with Cρ
p and Dα

p with Dρ
p , which are

the main ingredients when we estimate the difference between Aα
p and Bρ

p . The proof
of the lemma is deferred to Appendix B.

Lemma 4.4. For each r ≥ 1 and p ≥ 2, there exist positive constants K (r, p, β, h) and
K ′(r, p, β, h) such that for all N ≥ 1,

E
〈
(Cα

p − Cρ
p)

2r 〉
N ,β

≤ ηN K (r, p, β, h),

E
〈
(Dα

p − Dρ
p)

2r 〉
N ,β

≤ ηN K
′(r, p, β, h).

4.3. Proof of Proposition 4.1. First, write

XN ,β(〈σ 〉αN ,β) − XN ,β(sρ)

=
(
XN ,β(〈σ 〉αN ,β) − XN ,β(sρ)

)
1{GN−1,β′ (Aρ

�)≥δ}

+
(
XN ,β(〈σ 〉αN ,β) − XN ,β(sρ)

)
1{GN−1,β′ (Aρ

�)<δ}

=
( ∑

2≤p≤p0

(
Aα
p − Bρ

p

))
1{GN−1,β′ (Aρ

�)≥δ} +
( ∑

p>p0

(
Aα
p − Bρ

p

))
1{GN−1,β′ (Aρ

�)≥δ}

+ XN ,β(〈σ 〉αN ,β)1{GN−1,β′ (Aρ
�)<δ} − XN ,β(sρ)1{GN−1,β′ (Aρ

�)<δ}.

It follows that

E
〈(
XN ,β(〈σ 〉αN ,β) − XN ,β(sρ)

)2〉
N ,β

≤ CE

〈( ∑

2≤p≤p0

(
Aα
p − Bρ

p

))2
1{GN−1,β′ (Aρ

�)≥δ}
〉

N ,β

+ CE

〈( ∑

p>p0

Aα
p

)2
〉

N ,β

+ CE

〈( ∑

p>p0

Bρ
p

)2
〉

N ,β

+ CE
〈
X2
N ,β(〈σ 〉αN ,β)1{GN−1,β′ (Aρ

�)<δ}
〉
N ,β

+ CE
〈
X2
N ,β(sρ)1{GN−1,β′ (Aρ

�)<δ}
〉
N ,β

.
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By Propositions 4.2 and 4.3, the last four terms can be made arbitrary small by choosing
δ > 0 small enough and p0 large enough. Thus, it suffices to show that for any 0 < δ < 1
and p0 ≥ 2, the first term vanishes as N → ∞, i.e.,

lim
N→∞E

〈[ ∑

2≤p≤p0

(
Aα
p − Bρ

p

)
]2

1{GN−1,β′ (Aρ
�)≥δ}

〉

N ,β

= 0. (47)

To do this, notice that from (46),

( ∑

2≤p≤p0

(
Aα
p − Bρ

p

))2 =
( ∑

2≤p≤p0

βp

(Cα
p

Dα
p

− Cρ
p

Dρ
p

))2

≤
( ∑

2≤p≤p0

β2
p

)( ∑

2≤p≤p0

(Cα
p

Dα
p

− Cρ
p

Dρ
p

)2
)

≤ 2Cβ

∑

2≤p≤p0

((Cρ
p

Dρ
p

)2(Dα
p − Dρ

p

Dα
p

)2
+
(Cα

p − Cρ
p

Dα
p

)2
)

.

Using (20) and the fact cosh x ≥ 1, we have Dα
p, D

ρ
p ≥ δ p on the event {GN−1,β ′(Aρ

�) ≥
δ} and it follows that

E

〈[ ∑

2≤p≤p0

(
Aα
p − Bρ

p

)
]2

1{GN−1,β′ (Aρ
�)≥δ}

〉

N ,β

≤ 2Cβ

δ2p0

∑

2≤p≤p0

E

〈[(Cρ
p

δ p0

)2(
Dα

p − Dρ
p

)2 +
(
Cα

p − Cρ
p

)2
]〉

N ,β

≤ 2Cβ

δ2p0

∑

2≤p≤p0

( 1

δ2p0

√

E
〈(
Cρ

p
)4〉

N ,β
E
〈(
Dα

p − Dρ
p
)4〉

N ,β
+ E

〈(
Cα

p − Cρ
p

)2〉
N ,β

)
.

(48)

By Lemma 4.4, we have for all 2 ≤ p ≤ p0,

E
〈(
Dρ

p − Dρ
p

)4〉
N ,β

≤ KηN ,

E
〈(
Cα

p − Cρ
p

)2〉
N ,β

≤ K
√

ηN ,

for all N ≥ 1, where K is a constant depending only on p0, β, h. Also, a slight mod-
ification, by dropping the indicators in (66), we can bound E〈(Cρ

p
)4〉N ,β ≤ K ′ for

2 ≤ p ≤ p0, where K ′ is a constant depending on p, β, h. Plugging these into (48) and
then sending N → ∞ yields (47) and thus completes the proof of (40).

5. From Cavity to TAP Equations

We will complete the proof of Theorem 1.1 in this section. At the current stage, we have
seen that XN ,β(〈σ 〉αN ,β) asymptotically equals XN ,β(sρ) = ∑

p≥2 Bρ
p following from

Proposition 4.1, where Bρ
p is defined in (42). Our next step is to handle this sum, via an

argument similar to the proof of Proposition 3.11, by adapting a multivariate central limit
theorem for the Gaussian fields, XN ,β(τ 1), . . . , XN ,β(τ p−1), and ZN ,p(τ ) appearing in
Cρ

p and Dρ
p , see (46). We establish this limit theorem in the first subsection.



87 Page 28 of 43 W.-K. Chen, S. Tang

5.1. A multivariate central limit theorem for the cavity fields. Let ξ = (ξ0, . . . , ξp−1)
T

be a centered Gaussian (column) vector of length p with covariance matrix

E(ξξ T ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p(1 − q p−1
P ) βp pq

p−2
P (1 − qP ) βp pq

p−2
P (1 − qP ) · · · βp pq

p−2
P (1 − qP )

βp pq
p−2
P (1 − qP ) ζ ′(1) − ζ ′(qP ) 0 · · · 0

βp pq
p−2
P (1 − qP ) 0 ζ ′(1) − ζ ′(qP ) · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

βp pq
p−2
P (1 − qP ) 0 0 · · · ζ ′(1) − ζ ′(qP )

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

that is, ξ1, . . . , ξp−1 are i.i.d. N (0, ζ ′(1) − ζ ′(qP )) and ξ0 ∼ N (0, p(1 − q p−1
P )) that

has covariance βp pq p−2(1 − q) with each of ξ1, . . . , ξp−1. Note that this multivariate
Gaussian distribution is well-defined. To see this, consider i.i.d. standard normal ran-
dom variables z0, z1, . . . , z p−1, and ξ can be constructed via linear combinations of
z0, z1, . . . , z p−1 as follows:

ξi = √
ζ ′(1) − ζ ′(qP )zi , i = 1, . . . , p − 1,

ξ0 = βp pq
p−2
P (1 − qP )

√
ζ ′(1) − ζ ′(qP )

p−1∑

i=1

zi + z0

√

p(1 − q p−1
P ) − β2

p p
2(p − 1)q2p−4

P (1 − qP )2

ζ ′(1) − ζ ′(qP )
,

where the quantity in the last square root is always nonnegative because

p(1 − q p−1
P )(ζ ′(1) − ζ ′(qP )) − β2

p p
2(p − 1)q2p−4

P (1 − qP )2

≥ p(1 − q p−1
P ) · β2

p p(1 − q p−1
P ) − β2

p p
2(p − 1)q2p−4

P (1 − qP )2

= β2
p p

2((1 − q p−1
P )2 − (p − 1)q2p−4

P (1 − qP )2)

= β2
p p

2(1 − qP )2((1 + qP + · · · + q p−2
P )2 − (p − 1)q2p−4

P

) ≥ 0.

For ρ ∈ �N−1, recall from (26) that

Ẋρ
N ,β(τ 1), . . . , Ẋρ

N ,β(τ p−1), ∀τ 1, . . . , τ p−1 ∈ �N−1

are defined as

Ẋρ
N ,β(τ l) =

∑

p≥2

βp
√
p!

N (p−1)/2

∑

1≤i1<···<i p−1≤N−1

gi1,...,i p−1,N
(
τ li1 · · · τ li p−1

− 〈
τ li1 · · · τ li p−1

〉ρ
N−1,β ′

)
. (49)

Recall ZN ,p from (45). We set the centralized ZN ,p(τ ) as

Żρ
N ,p(τ ) =

√
p!

N (p−1)/2

∑

1≤i1<···<i p−1≤N−1

gi1,...,i p−1,N
(
τ 1
i1 · · · τ p−1

i p−1
− 〈

τ 1
i1 · · · τ p−1

i p−1

〉ρ
N−1,β ′

)
.

(50)

Now we are ready to state the central limit theorem.
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Theorem 5.1. (Multivariate central limit theorem) Fix p ≥ 2. Let F0, . . . , Fp−1 be
infinitely differentiable functions on R such that for z ∼ N (0, 1), any M > 0 and
integers m, k ≥ 0,

sup
0≤γ≤M

max
(
E|F (m)

0 (γ z)|k, . . . ,E|F (m)
p−1(γ z)|k

)
< ∞.

Then, for any integer r ≥ 1 fixed, we have

lim
ε↓0

lim sup
N→∞

E

〈[〈
U
(
Żρ
N ,p(τ ), Ẋρ

N ,β(τ 1), . . . , Ẋρ
N ,β(τ p−1)

)〉ρ
N−1,β ′ − EU (ξ)

]2r 〉

N ,β
= 0,

(51)

where U (x0, . . . , xp−1) := F0(x0)F1(x1) · · · Fp−1(xp−1) for x = (x0, . . . , xp−1) ∈
R

p.

Proof. The proof utilizes a similar idea as that of Theorem 3.7. The main difference is
that here we need to deal with the 2r -th moment of a multivariate function depending
on (p − 1) spin replicas. Thus, we will further consider 2r independent copies of these
(p − 1) spins, (τ 1, τ 2, . . . , τ p−1), and denote them by

τm = (τm,1, . . . , τm,p−1), m = 1, 2, . . . , 2r,

where (τm,l)1≤m≤2r,1≤p≤p−1 are independently sampled from Gρ

N−1,β ′ . For 1 ≤ m ≤
2r , define

Smρ = (Sm,0
ρ , Sm,1

ρ , . . . , Sm,p−1
ρ ) = (

Żρ
N ,p(τ

m), Ẋρ
N ,β(τm,1), . . . , Ẋρ

N ,β(τm,p−1)
)
.

Let ξm = (ξm0 , ξm1 , . . . , ξmp−1) be i.i.d. copies of ξ and be independent of everything
else. For 0 ≤ t ≤ 1, consider the interpolation

φN (t) := E

〈〈 2r∏

m=1

V
(
xmρ (t)

)
〉ρ

N−1,β ′

〉

N ,β

where

xmρ (t) = (
xm,0
ρ (t), . . . , xm,p−1

ρ (t)
) := √

tSmρ +
√

1 − t ξm

and V : Rp → R is defined as

V (x0, . . . , xp−1) = U (x0, . . . , xp−1) − EU (ξ0, . . . , ξp−1).

Note that the left-hand side of (51) equals φN (1) and φN (0) = 0. Following the same
argument as (29), we have φN (1) ≤ ψN (1), where

ψN (t) :=E

〈

cosh(XN ,β(ρ) + h)

〈 2r∏

m=1

V
(
xmρ (t)

)
〉ρ

N−1,β ′

〉

N−1,β ′
.

It suffices to show that limε↓0 lim supN→∞ ψN (1) = 0. To justify this limit, observe
that ψN (0) = 0 and we thus aim at showing

lim
ε↓0

lim sup
N→∞

∫ 1

0
|ψ ′

N (t)|dt = 0. (52)
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First of all, by chain rule, ψ ′
N (t) is equal to

2r∑

m=1

p−1∑

l=0

E

〈

cosh(XN ,β (ρ) + h)

〈
∂V

∂xl
(xmρ (t))

1

2

( Sm,l
ρ√
t

− ξml√
1 − t

) 2r∏

m′=1
m′ �=m

V
(
xm

′
ρ (t)

)
〉ρ

N−1,β ′

〉

N−1,β ′
.

Note that the Gibbs measures GN−1,β ′ and Gρ

N−1,β ′ do not depend on g·N , and thus, as
before, we can compute this derivative by first taking the expectation (inside the Gibbs
averages 〈·〉N−1,β ′ and 〈·〉ρN−1,β ′ ) only with respect to g·N and (ξml )0≤l≤p−1,1≤m≤2r and
then using the Gaussian integration by parts. With these, for fixed m and l, the relevant
terms in the above display become

Eg·N ,ξ

[

cosh(XN ,β(ρ) + h)
∂V

∂xl
(xmρ (t))

1

2

( Sm,l
ρ√
t

− ξml√
1 − t

) 2r∏

m′=1
m′ �=m

V
(
xm

′
ρ (t)

)
]

= (I) + (II) + (III),

where

(I) := Eg·N ,ξ

[

sinh(XN ,β(ρ) + h)
∂V

∂xl
(xmρ (t))

2r∏

m′=1
m′ �=m

V
(
xmρ (t)

)
]

· 1

2
√
t
Eg·N

[
Sm,l
ρ XN ,β(ρ)

]
,

(II) :=
p−1∑

l ′=0

Eg·N ,ξ

[

cosh(XN ,β(ρ) + h)
∂2V

∂xl∂xl ′
(xmρ (t))

2r∏

m′=1
m′ �=m

V
(
xm

′
ρ (t)

)
]

· 1

2
Eg·N ,ξ

[( Sm,l
ρ√
t

− ξml√
1 − t

)
xm,l ′
ρ (t)

]
,

and

(III) :=
2r∑

m′=1
m′ �=m

p−1∑

l ′=0

Eg·N ,ξ

[

cosh(XN ,β(ρ) + h)
∂V

∂xl
(xmρ (t))

∂V

∂xl ′
(xm

′
ρ (t))

2r∏

m′′=1
m′′ �=m,m′

V
(
xm

′′
ρ (t)

)
]

· 1

2
Eg·N ,ξ

[( Sm,l
ρ√
t

− ξml√
1 − t

)
xm

′,l ′
ρ (t)

]
.

Here Eg·N ,ξ is the expectation with respect to g·N and (ξml )0≤l≤p−1,1≤m≤2r . To handle
these terms, we first note that for any (τm,l)1≤m≤2r,1≤l≤p−1 sampled from GN−1,β ′ ,
coordinates of Smρ are mean-zero Gaussian random variables with uniformly bounded
variance for any N ≥ 1, and so are the coordinates of xmρ (t) for any 0 ≤ t ≤ 1.
Consequently, from the given assumptions on the functions F0, . . . , Fp−1 and the Hölder
inequality, the first expectations in (I), (II), and (III) are bounded by an absolute constant
independent of N , t , and (τm,l)1≤m≤2r,1≤l≤p−1. Furthermore, in (II) and (III), using
Gaussian integration by parts implies that for all 0 < t < 1, 1 ≤ m,m′ ≤ 2r , and
0 ≤ l, l ′ ≤ p − 1,

Eg·N ,ξ

[( Sm,l
ρ√
t

− ξml√
1 − t

)
xm

′,l ′
ρ (t)

]
= Eg·N

[
Sm,l
ρ Sm

′,l ′
ρ

] − E
[
ξml ξm

′
l ′
]
.
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From these, we conclude that there exists a positive constant K0 independent of N and
t such that

|ψ ′
N (t)| ≤ K0√

t

2r∑

m=1

p−1∑

l=0

E

〈〈∣
∣Eg·N

[
Sm,l
ρ XN ,β(ρ)

]∣
∣
〉ρ
N−1,β ′

〉

N−1,β ′ (53)

+ K0

2r∑

m,m′=1

p−1∑

l,l ′=0

E

〈〈∣
∣Eg·N

[
Sm,l
ρ Sm

′,l ′
ρ

] − E
[
ξml ξm

′
l ′
]∣
∣
〉ρ
N−1,β ′

〉

N−1,β ′ . (54)

Note that t−1/2 is integrable on (0, 1]. It remains to show that the expectations in (53)
and (54) vanish in the limit as N → ∞ and then ε → 0, which implies in (52).
Estimation of (53 ): We claim that for any 1 ≤ m ≤ 2r and 0 ≤ l ≤ p − 1,

lim
ε↓0

lim sup
N→∞

E

〈〈∣
∣Eg·N

[
Sm,l
ρ XN ,β(ρ)

]∣
∣
〉ρ
N−1,β ′

〉

N−1,β ′ = 0. (55)

If l �= 0, then recalling Sm,l
ρ = Ẋ N ,β(τm,l), the same argument as that used in the

estimation of (32) in the proof of Theorem 3.7 yields (55). As for l = 0, from Sm,0
ρ =

Żρ
N ,p(τ ), we compute

Eg·N
[
Sm,0
ρ XN ,β(ρ)

]

= βp p

N p−1

N−1∑

i1,...i p−1=1
distinct

(
τ
m,1
i1

· · · τm,p−1
i p−1

− 〈
τ
m,1
i1

· · · τm,p−1
i p−1

〉ρ
N−1,β ′

)
ρi1 · · · ρi p−1

= βp p
(
R(τm,1, ρ) · · · R(τm,p−1, ρ) − 〈

R(τm,1, ρ) · · · R(τm,p−1, ρ)
〉ρ
N−1,β ′

)
+ oN (1).

Since τm,1, . . . , τm,p−1 ∼ Gρ

N−1,β ′ , we always have R(τm,1, ρ), . . . , R(τm,p−1, ρ) ≥
qP − ε. This combining with (23) implies that

lim sup
N→∞

E

〈〈∣
∣Eg·N

[
Sm,0
ρ XN ,β(ρ)

]∣
∣
〉ρ
N−1,β ′

〉

N−1,β ′ ≤ βp p
(
(qP + ε)p−1 − (qP − ε)p−1)

≤ 2βp p(p − 1)ε.

Sending ε ↓ 0 yields (55).
Estimation of (54 ): We claim that for any 1 ≤ m,m′ ≤ 2r and 0 ≤ l, l ′ ≤ p − 1,

lim
ε↓0

lim sup
N→∞

E
〈〈∣
∣Eg·N

[
Sm,l
ρ Sm

′,l ′
ρ

] − E
[
ξml ξm

′
l ′
]∣
∣
〉ρ
N−1,β ′

〉
N−1,β ′ = 0. (56)

First consider l, l ′ �= 0. Note that, in this case,

Sm,l
ρ = Ẋρ

N ,β(τm,l) and Sm
′,l ′

ρ = Ẋρ
N ,β(τm

′,l ′).

In view of the proof of Theorem 3.7, when m = m′ and l = l ′, the control of
Eg·N

[
Sm,l
ρ Sm

′,l ′
ρ

]
has been implemented in the Estimation of (30); ifm �= m′, or l �= l ′, or

both, this expectation can also be controlled by the Estimation of (31). As a conclusion,
we readily see that (56) holds under these two cases. It remains to consider the scenarios
when at least one of the l, l ′ is equal to 0. Without loss of generality, we assume l = 0
and divide our discussion into two cases:
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Case 1: m �= m′. Note that E
[
ξm0 ξm

′
0

] = 0.

(1a) When l ′ = 0,
∣
∣Eg·N [Sm,0

ρ Sm
′,0

ρ ]∣∣ = ∣
∣Eg·N [Żρ

N ,p(τ
m)Żρ

N ,p(τ
m′

)]∣∣

≤ p
∣
∣
∣

p−1∏

�=1

R(τm,�, τm
′,�) − q p−1

P

∣
∣
∣ + p

∣
∣
∣

p−1∏

�=1

〈
R(τm,�, τm

′,�)
〉ρ
N−1,β ′ − q p−1

P

∣
∣
∣

+ p

∣
∣
∣
∣

N−1∑

i1,...,i p−1=1
distinct

τ
m,1
i1

· · · τm,p−1
i p−1

〈
τ
m′,1
i1

· · · τm′,p−1
i p−1

〉ρ
N−1,β ′ − q p−1

P

∣
∣
∣
∣

+ p

∣
∣
∣
∣

N−1∑

i1,...,i p−1=1
distinct

τ
m′,1
i1

· · · τm′,p−1
kp−1

〈
τ
m,1
i1

· · · τm,p−1
i p−1

〉ρ
N−1,β ′ − q p−1

P

∣
∣
∣
∣ + oN (1).

Taking Gibbs average with respect to Gρ

N−1,β ′ and using Jensen’s inequality, we
get

〈∣
∣Eg·N [Sm,0

ρ Sm
′,0

ρ ]∣∣〉ρN−1,β ′ ≤ 4p

〈∣
∣
∣
∣

p−1∏

�=1

R(τ 1,�, τ 2,�) − q p−1
P

∣
∣
∣
∣

〉ρ

N−1,β ′
+ oN (1).

(1b) If l ′ �= 0, then

∣
∣Eg·N [Sm,0

ρ Sm
′,l ′

ρ ]∣∣ = ∣
∣Eg·N [Żρ

N ,p(τ )Ẋρ
N ,β (τm

′,l ′ )]∣∣

≤ βp p
∣
∣
∣

p−1∏

�=1

R(τm,�, τm
′,l ′ ) − q p−1

P

∣
∣
∣ + βp p

∣
∣
∣

p−1∏

�=1

〈
R(τm,�, τm

′,l ′ )
〉ρ
N−1,β ′ − q p−1

P

∣
∣
∣

+ βp p

∣
∣
∣
∣

N−1∑

i1,...,i p−1=1
distinct

τ
m,1
i1

· · · τm,p−1
i p−1

〈
τ
m′,l ′
i1

· · · τm′,l ′
i p−1

〉ρ
N−1,β ′ − q p−1

P

∣
∣
∣
∣

+ βp p

∣
∣
∣
∣

N−1∑

i1,...,i p−1=1
distinct

τ
m′,l ′
i1

· · · τm′,l ′
i p−1

〈
τ
m,1
i1

· · · τm,p−1
i p−1

〉ρ
N−1,β ′ − q p−1

P

∣
∣
∣
∣ + oN (1)

and thus,

〈∣
∣Eg·N [Sm,0

ρ Sm
′,l ′

ρ ]∣∣〉ρN−1,β ′ ≤ 4βp p

〈∣
∣
∣
∣

p−1∏

�=1

R(τ 1,�, τ 2,l ′) − q p−1
P

∣
∣
∣
∣

〉ρ

N−1,β ′
+ oN (1).

Case 2: m = m′.

(2a) If l ′ = 0, then E[ξm0 ξm0 ] = p(1 − q p−1
P ), and

〈∣
∣Eg·N [Sm,0

ρ Sm,0
ρ ] − E[ξm0 ξm0 ]∣∣〉ρN−1,β ′ =

〈∣
∣
∣Eg·N

[
Żρ
N ,p(τ )2] − p(1 − q p−1

P )

∣
∣
∣
〉ρ

N−1,β ′

≤ 3p

〈∣
∣
∣

p−1∏

�=1

R(τ 1,�, τ 2,�) − q p−1
P

∣
∣
∣

〉ρ

N−1,β ′
+ oN (1).
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(2b) If l ′ �= 0, then E[ξm0 ξml ′ ] = βp pq
p−2
P (1 − qP ), and

〈∣
∣Eg·N [Sm,0

ρ Sm,l ′
ρ ] − E[ξm0 ξml ′ ]∣∣〉ρN−1,β ′

=
〈∣
∣
∣Eg·N

[
Żρ
N ,p(τ )Ẋρ

N ,β(τm,l ′)
] − βp pq

p−2
P (1 − qP )

∣
∣
∣
〉ρ

N−1,β ′

≤ βp p

〈∣
∣
∣

p−1∏

�=1
��=l ′

R(τm,�, τm,l ′) − q p−2
P

∣
∣
∣

〉ρ

N−1,β ′

+ 3βp p

〈∣
∣
∣

p−1∏

�=1

R(τ 1,�, τ 2,l ′) − q p−1
P

∣
∣
∣

〉ρ

N−1,β ′
+ oN (1).

From (1a), (1b), (2a), and (2b), we can use the concentration of the overlap in Lemma 3.9
to conclude that (56) holds as long as one of the l, l ′ equals zero. This completes our
proof. ��

5.2. Derivation of the Onsager correction term. Recall sρ from (39). We proceed to
show that XN ,β(sρ) is asymptotically equal to the sum of the cavity field XN ,β (〈τ 〉ρN−1,β ′)
and the Onsager term ζ ′′(qP )(1 − qP )〈σN 〉αN ,β by using the multivariate central limit
theorem, Theorem 5.1. This is the first place in our derivation that gives rise to the
Onsager correction term.

Proposition 5.2. We have

lim
ε↓0

lim sup
N→∞

E

〈[
XN ,β(sρ) − XN ,β(〈τ 〉ρN−1,β ′) − ζ ′′(qP )(1 − qP )〈σN 〉αN ,β

]2
〉

N ,β

= 0.

We establish the proof of Proposition 5.2 in this subsection. Recall that XN ,β(sρ)

= ∑
p≥2 Bρ

p , where Bρ
p is defined in (42). Write

XN ,β(〈τ 〉ρN−1,β ′) + ζ ′′(qP )(1 − qP )〈σN 〉αN ,β

=
∑

p≥2

(
Eρ
p + β2

p p(p − 1)q p−2
P (1 − qP )〈σN 〉αN ,β

)
,

where

Eρ
p := βp

√
p!

N (p−1)/2

∑

1≤i1<···<i p−1≤N−1

gi1...i p−1N 〈τi1〉ρN−1,β ′ · · · 〈τi p−1〉ρN−1,β ′ .

Thus, to prove Proposition 5.2, we will show that each Bρ
p is approximately equal to

Eρ
p + β2

p p(p− 1)q p−2
P (1 − qP )〈σN 〉αN ,β , for each p ≥ 2 fixed. To begin with, we firstly

show that the infinite sum in XN ,β(〈τ 〉ρN−1,β ′) can be approximated by a finite sum of

Eρ
p , similar to what we have done for XN ,β(〈σ 〉αN ,β) in Proposition 4.2.
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Proof of Proposition 5.2. Recall the expression Bρ
p , Żρ

N ,p, and Ẋρ
N ,β from(46), (50),

and (49), respectively. Noticing that

βp ZN ,p(τ ) = βp Ż
ρ
N ,p(τ ) + Eρ

p,

we can write

Bρ
p = βp

Cρ
p

Dρ
p

= βp

〈
ZN ,p(τ )

∏p−1
l=1 cosh(XN ,β(τ l) + h)

〉ρ
N−1,β ′

〈∏p−1
l=1 cosh(XN ,β(τ l) + h)

〉ρ
N−1,β ′

= Eρ
p + βp

〈
Żρ
N ,p(τ )

∏p−1
l=1 cosh(XN ,β(τ l) + h)

〉ρ
N−1,β ′

〈∏p−1
l=1 cosh(XN ,β(τ l) + h)

〉ρ
N−1,β ′

. (57)

For the numerator in the second term of (57), we can use the relations

XN ,β(τ l) = Ẋρ
N ,β(τ l) +

〈
XN ,β(τ l)

〉ρ
N−1,β ′ and cosh x = 1

2

∑

ε=±1

eεx

to rewrite it as

〈
Żρ
N ,p(τ )

p−1∏

l=1

cosh
(
Ẋρ
N ,β(τ l) +

〈
XN ,β(τ l)

〉ρ
N−1,β ′ + h

)〉ρ

N−1,β ′

= 1

2p−1

∑

ε

exp
( p−1∑

l=1

εl
(〈
XN ,β(τ l)

〉ρ
N−1,β ′ + h

))〈
Żρ
N ,p(τ )

p−1∏

l=1

eεl Ẋ
ρ
N ,β (τ l )

〉ρ

N−1,β ′ ,

where ε = (ε1, . . . , εp−1) ∈ �p−1. Applying Theorem 5.1 to the last term with the
choices of functions F0(x) = x and Fl(x) = eεl x for l = 1, 2, . . . , p − 1, we get, for
each ε ∈ �p−1,

lim
ε↓0

lim sup
N→∞

E

〈[〈
Żρ
N ,p(τ )

p−1∏

l=1

eεl Ẋ
ρ
N ,β (τ l )

〉ρ

N−1,β ′ −βp pq
p−2
P (1 − qP )e

p−1
2 (ζ ′(1)−ζ ′(qP ))

p−1∑

l=1

εl

]4
〉

N ,β

= 0,

where the second term comes from

E
(
F0(ξ0) · · · Fp−1(ξp−1)

)
= E

(
ξ0

p−1∏

l=1

eεlξl
)

=
p−1∑

l=1

εlE(ξ0ξl)E(eε1ξ1) · · ·E(eεp−1ξp−1)

= βp pq
p−2
P (1 − qP )e

p−1
2 (ζ ′(1)−ζ ′(qP ))

p−1∑

l=1

εl .

Denote

Qρ
N ,p := 1

2p−1

∑

ε∈�p−1

exp
( p−1∑

l=1

εl
(〈
XN ,β(τ l)

〉ρ
N−1,β ′ + h

))
E

(
ξ0

p−1∏

l=1

eεlξl
)
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= βp p(p − 1)q p−2
P (1 − qP )e

p−1
2 (ζ ′(1)−ζ ′(1))

· sinh
(〈
XN ,β(τ )

〉ρ
N−1,β ′ + h

)
coshp−2(〈XN ,β(τ )

〉ρ
N−1,β ′ + h

)
.

It then follows from the Cauchy–Schwarz inequality that

{

E

〈[〈
Żρ
N ,p(τ )

p−1∏

l=1

cosh
(
XN ,β(τ l) + h

)〉ρ

N−1,β ′ − Qρ
N ,p

]2〉

N ,β

}2

≤ 1

2p−1

∑

ε∈�p−1

E

〈
exp

(
4
p−1∑

l=1

εl
(〈
XN ,β(τ l)

〉ρ
N−1,β ′ + h

))〉

N ,β

· 1

2p−1

∑

ε∈�p−1

E

〈[〈
ŻN ,p(τ )

p−1∏

l=1

eεl X
ρ
N ,β (τ l )

〉ρ

N−1,β ′

− βp pq
p−2
P (1 − qP )e

p−1
2 (ζ ′(1)−ζ ′(qP ))

p−1∑

l=1

εl

]4
〉

N ,β

,

where on the right-hand side, the last expectation vanishes as N → ∞ and then ε ↓ 0.
The first expectation equals

E

〈 p−1∏

l=1

cosh4(〈XN ,β(τ l)
〉ρ
N−1,β ′ + h

)
〉

N ,β

≤ E

〈

cosh(XN ,β(ρ) + h)

p−1∏

l=1

cosh4(〈XN ,β(τ l)
〉ρ
N−1,β ′ + h

)
〉

N−1,β ′
,

where again we adapted a change of measure for GN ,β as in Lemma 3.2. Applying
Hölder’s inequality to decompose the product inside 〈·〉N−1,β ′ and taking the expectation
with respect to g·N first, we see this term stays bounded for all N ≥ 1 and small enough
ε > 0; this is because XN ,β(τ ) has a variance uniformly bounded by Cβ for all N , β

and τ ∈ �N−1. We thus conclude that

lim
ε↓0

lim sup
N→∞

E

〈[〈
Żρ
N ,p(τ )

p−1∏

l=1

cosh
(
XN ,β(τ l) + h

)〉ρ

N−1,β ′ − Qρ
N ,p

]2〉

N ,β
= 0, (58)

which takes care of the numerator in the second term of (57). For the denominator
there, applying Theorem 5.1 to the last term with F0(x) = 1 and Fl(x) = eεl x for
l = 1, 2, . . . , p − 1 and mimicking the computation for the numerator, we will get

lim
ε↓0

lim sup
N→∞

E

〈[〈 p−1∏

l=1

cosh
(
XN ,β(τ l) + h

)〉ρ

N−1,β ′ − Q̃ρ
N ,p

]2
〉

N ,β

= 0, (59)

where

Q̃ρ
N ,p := 1

2p−1

∑

ε∈�p−1

exp
{ p−1∑

l=1

εl
(〈
XN ,β(τ l)

〉ρ
N−1,β ′ + h

)}
E

( p−1∏

l=1

eεlξl
)
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= e
p−1

2 (ζ ′(1)−ζ ′(qP )) coshp−1(〈XN ,β(τ )
〉ρ
N−1,β ′ + h

)
.

Furthermore, by Proposition 3.11,

lim
ε↓0

lim sup
N→∞

E

〈∣
∣
∣
Qρ

N ,p

Q̃ρ
N ,p

− βp p(p − 1)q p−2
P (1 − qP )〈σN 〉αN ,β

∣
∣
∣
2
〉

N ,β

= βp p(p − 1)q p−2
P (1 − qP )

· lim
ε↓0

lim sup
N→∞

E

〈∣
∣ tanh

(〈
XN ,β(τ )

〉ρ
N−1,β ′ + h

) − 〈σN 〉αN ,β

∣
∣2
〉

N ,β
= 0.

(60)

Therefore,

E
〈[
Bρ
p − Eρ

p − β2
p p(p − 1)q p−2

P (1 − qP )〈σN 〉αN ,β

]2〉
N ,β

= β2
pE

〈[
〈
ŻN ,p(τ )

∏p−1
l=1 cosh(XN ,β (τ l ) + h)

〉ρ
N−1,β ′

〈∏p−1
l=1 cosh(XN ,β (τ l ) + h)

〉ρ
N−1,β ′

− βp p(p − 1)q p−2
P (1 − qP )〈σN 〉αN ,β

]2
〉

N ,β

≤ Cβ2
pE

〈[
〈
ŻN ,p(τ )

∏p−1
l=1 cosh(XN ,β (τ l ) + h)

〉ρ
N−1,β ′

〈∏p−1
l=1 cosh(XN ,β (τ l ) + h)

〉ρ
N−1,β ′

−
Qρ
N ,p

Q̃ρ
N ,p

]2
〉

N ,β

+ Cβ2
pE

〈[ Qρ
N ,p

Q̃ρ
N ,p

− βp p(p − 1)q p−2
P (1 − qP )〈σN 〉αN ,β

]2
〉

N ,β

The second term vanishes as N → ∞ and ε ↓ 0 due to (60). From (58), (59), and the
fact that cosh(XN ,β(τ ) + h) ≥ 1 and Q̃ρ

N ,β ≥ e(p−1)(ζ ′(1)−ζ ′(qP ))/2, the first term also
vanishes. As a conclusion, this proves for each p ≥ 2,

lim
ε↓0

lim sup
N→∞

E
〈[
Bρ
p − Eρ

p − β2
p p(p − 1)q p−2

P (1 − qP )〈σN 〉αN ,β

]2〉
N ,β

= 0. (61)

Finally, write

XN ,β(sρ) − XN ,β

(〈τ 〉ρN−1,β ′
) − ζ ′′(qP )(1 − qP )〈σN 〉αN ,β

=
∑

2≤p≤p0

(
Bρ
p − Eρ

p − β2
p p(p − 1)q p−2

P (1 − qP )〈σN 〉αN ,β

)

+
∑

p>p0

Bρ
p −

∑

p>p0

(
Eρ
p + β2

p p(p − 1)q p−2
P (1 − qP )〈σN 〉αN ,β

)
,

where the first sum vanishes as N → ∞ and ε ↓ 0 for any p0 due to (61), and the
last two sums can be made arbitrarily small by choosing p0 sufficiently large, due to
Proposition 4.2 and Lemma 5.3 below (proof deferred to Appendix C), respectively.
This completes our proof. ��
Lemma 5.3. For any δ > 0, there exists p0 > 0 such that for all N ≥ 1 and any ε > 0,

E

〈[ ∑

p>p0

Eρ
p

]4〉

N ,β

≤ δ.
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5.3. Proof of Theorem1.1. From Theorem 3.1, Proposition 5.2, and the fact that | tanh(x)−
tanh(x ′)|2 ≤ 2|x − x ′| for all x, x ′ ∈ R, we readily have

lim
ε↓0

lim sup
N→∞

E
〈∣
∣〈σN 〉αN ,β − tanh

(
XN ,β(sρ) + h − ζ ′′(qP )(1 − qP )〈σN 〉αN ,β

)∣
∣2
〉
N ,β

= 0,

where ε ↓ 0 along a sequence such that qP − ε is always a point of continuity for μP .
Finally, from Proposition 4.1, (9) holds and we are done.
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Appendix A. Proofs of Propositions 4.2 and 4.3

The proofs of Propositions 4.2 and 4.3 are based on the following lemma:

Lemma A.1. There exists a constant K = K (β, h) > 0 such that for all N ≥ 1 and
small ε > 0,

∑

p≥2

(
E
〈|Aα

p|4
〉
N ,β

) 1
4 ≤ K and

∑

p≥2

(
E
〈|Bρ

p |4
〉
N ,β

) 1
4 ≤ K .

Proof. For notation simplicity, we suppress the superscript α and write Aα
p as Ap. We

handle the series of Ap first. Note that for each p, we only need to consider the case,
N ≥ p, otherwise Ap = 0 by the definition (41). Write

E
〈
A4
p

〉
N ,β

= E

〈( β2
p p!

N p−1

)2( ∑

1≤i1<···<i p−1≤N−1

gi1,...,i p−1,N 〈σi1〉αN ,β · · · 〈σi p−1〉αN ,β

)4
〉

N ,β

=
( β2

p p!
N p−1

)2 ∑

α∈�N

∑

i1,...,i4

E

[
GN ,β(α)

4∏

l=1

gil ,N

p−1∏

k=1

〈σil,k 〉αN ,β

]
, (62)

where the second sum is over all il = (il,1, · · · , il,p−1), for l = 1, 2, 3, 4 that are
(p − 1)-tuples with strictly increasing coordinates from {1, 2, . . . , N − 1}p−1. We note
that there are

(N−1
p−1

)
choices for each il . Write gil,1,...,il,p−1,N as gil ,N and let �p :=

βp
√
p!N−(p−1)/2. We have

�2
p

(
N − 1

p − 1

)

= β2
p p!

N p−1

(N − 1)(N − 2) · · · (N − (p − 1))

(p − 1)!
= β2

p p
N − 1

N
· N − 2

N
· · · N − (p − 1)

N
≤ β2

p p.
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Also, there exists a constant C > 0 independent of p, N , i such that for any 0 ≤
k1, k2, k3, k4 ≤ 4, if we let d = k1 + k2 + k3 + k4, then

∣
∣
∣∂k1

gi1,N
∂k2
gi2,N

∂k3
gi3,N

∂k4
gi4,N

GN ,β(α)

∣
∣
∣ ≤ C�d

pGN ,β(α) ≤ C�d
p(p − 1)dGN ,β(α) (63)

and

∣
∣
∣∂k1

gi1,N
∂k2
gi2,N

∂k3
gi3,N

∂k4
gi4,N

4∏

l=1

p−1∏

k=1

〈σil,k 〉αN ,β

∣
∣
∣ ≤ C�d

p(p − 1)d . (64)

These can be established by an induction argument on d. Now we divide the collection
of (i1, i2, i3, i4) into three cases and compute, respectively, an upper bound for the
summand in (62) under each case. In the following discussion, C1,C ′

1,C2,C ′
2, . . . are

absolute constants independent of N and p.

• Case I: all 4 tuples are distinct. Applying Gaussian integration by part and the
chain rule, we get

∣
∣
∣EGN ,β(α)gi1,N gi2,N gi3,N gi4,N

4∏

l=1

p−1∏

k=1

〈σil,k 〉αN ,β

∣
∣
∣ ≤ C1�

4
p(p − 1)4

EGN ,β(α).

Since the number of choices for (i1, i2, i3, i4) in Case I are no more than
(N−1
p−1

)4
, the

summation in (62) for Case I is bounded by

�4
p

∑

α∈�N

∑

Case I

∣
∣
∣EGN ,β(α)gi1,N gi2,N gi3,N gi4,N

4∏

l=1

p−1∏

k=1

〈σil,k 〉αN ,β

∣
∣
∣

≤ �4
p ·

(
N − 1

p − 1

)4

· C1�
4
p(p − 1)4 ≤ C1β

8
p p

8.

• Case II: there are three distinct tuples in (i1, i2, i3, i4). Without loss of generality,
suppose i1 = i2 and they are both different from distinct i3, i4. In this case, again
using Gaussian integration by part twice and the chain rule, each summand in (62)
is bounded in absolute value by

∣
∣
∣EGN ,β(α)g2

i1,N gi3,N gi4,N

4∏

l=1

p−1∏

k=1

〈σil,k 〉αN ,β

∣
∣
∣ ≤ C2�

2
p(p − 1)2

Eg2
i1,NGN ,β(α).

It follows that

�4
p

∑

α∈�N

∑

Case II

∣
∣
∣EGN ,β(α)gi1,N gi2,N gi3,N gi4,N

4∏

l=1

p−1∏

k=1

〈σil,k 〉αN ,β

∣
∣
∣

≤ C ′
2�

4
p ·

(
N − 1

p − 1

)3

· �2
p(p − 1)2 · Eg2

i1,N

≤ C ′
2�

6
p

(
N − 1

p − 1

)3

(p − 1)2 ≤ C ′
2β

6
p p

5
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• Case III: there are no more than two distinct tuples. In this case, we have three
possibilities, each bounded in absolute value respectively as follows:

∣
∣
∣EGN ,β(α)g2

i1,N g
2
i2,N

4∏

l=1

p−1∏

k=1

〈σil,k 〉αN ,β

∣
∣
∣ ≤ EGN ,β(α)g2

i1,N g
2
i2,N ,

∣
∣
∣EGN ,β(α)g1

i1,N g
3
i2,N

4∏

l=1

p−1∏

k=1

〈σil,k 〉αN ,β

∣
∣
∣ ≤ EGN ,β(α)

∣
∣
∣g1

i1,N g
3
i2,N

∣
∣
∣ ,

∣
∣
∣EGN ,β(α)g4

i1,N

4∏

l=1

p−1∏

k=1

〈σil,k 〉αN ,β

∣
∣
∣ ≤ EGN ,β(α)g4

i1,N .

Consequently,

�4
p

∑

α∈�N

∑

Case III

∣
∣
∣EGN ,β(α)gi1,N gi2,N gi3,N gi4,N

4∏

l=1

p−1∏

k=1

〈σil,k 〉αN ,β

∣
∣
∣

≤ C3�
4
p ·

(
N − 1

p − 1

)2

·
[
Eg2

i1,N g
2
i2,N + E

∣
∣
∣g1

i1,N g
3
i2,N

∣
∣
∣ + Eg4

i1,N

]

≤ C ′
3�

4
p ·

(
N − 1

p − 1

)2

≤ C ′
3β

4
p p

2.

Combining all three cases, we have

E
〈
A4
p

〉
N ,β

≤ C4
(
β4
p p

2 + β6
p p

5 + β8
p p

8).

Since
∑

p≥2 2pβ2
p < ∞, we have β2

p = o(2−p) as p → ∞. Choosing p0 large enough

such that βp ≤ 2−p/2 and p2 < 2p/4 for all p > p0, it follows that
∑

p>p0

(
E
〈
A4
p

〉
N ,β

)1/4 ≤ C4

∑

p>p0

(
β4
p p

2 + β6
p p

5 + β8
p p

8)1/4 ≤ 3C4

∑

p>p0

βp p
2

≤ 3C4

∑

p>p0

2−p/2 p2 ≤ 3C4

∑

p>p0

2−p/4 < ∞.

For the summability for the series of Bρ
p , the proof is essentially the same; the only

change is that in (62), 〈σ j 〉αN ,β will be replaced by sρ
j . Notice that |sρ

j | ≤ 1 and any

partial derivatives of sρ
j of degree d ≤ 4 with respect to the variables (gi,N )i are bounded

by �d
p up to an absolute constant independent of p, N and i. For example,

∣
∣
∣
∣

∂sρ
j

∂gi,N

∣
∣
∣
∣ =

∣
∣
∣
∣�p

〈
τ jτi1 · · · τi p−1τN sinh(XN ,β(τ ) + h)

〉ρ
N−1,β ′

〈
cosh(XN ,β(τ ) + h)

〉ρ
N−1,β ′

− �p

sρ
j

〈
τi1 · · · τi p−1τN sinh(XN ,β(τ ) + h)

〉ρ
N−1,β ′

〈
cosh(XN ,β(τ ) + h)

〉ρ
N−1,β ′

∣
∣
∣
∣ ≤ 2�p.

More general partial derivatives can be controlled by an induction argument on the
number of differentiations. This implies that (64) with 〈σ j 〉αN ,β replaced by sρ

j is also
valid. We omit the rest of the details. ��
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Proof of Proposition 4.2. Similar to (65), we have

E

〈[ ∑

p>p0

Aα
p

]4
〉

N ,β

≤
( ∑

p>p0

(
E
〈
A4
p

〉
N ,β

) 1
4
)4

.

Since
(
E
〈
A4
p

〉
N ,β

)1/4 is summable, as proved in Lemma A.1, the right hand side can
be made arbitrarily small by choosing p0 sufficiently large. The other assertion can be
treated similarly. ��
Proof of Proposition 4.3. Note that for any p1, p2, p3, p4 ≥ 2, using Hölder’s inequal-
ity yields

E
〈
Aα
p1
Aα
p2
Aα
p3
Aα
p4

〉
N ,β

≤
(
E
〈|Aα

p1
|4〉N ,β

E
〈|Aα

p2
|4〉N ,β

E
〈|Aα

p3
|4〉N ,β

E
〈|Aα

p4
|4〉N ,β

) 1
4
,

which implies that

E
〈[
XN ,β

(〈σ 〉αN ,β

)]4〉
N ,β

= E

〈(∑

p≥2

Aα
p

)4
〉

N ,β

≤
(∑

p≥2

(
E
〈|Aα

p|4
〉
N ,β

) 1
4
)4

. (65)

By the Cauchy–Schwarz inequality and Lemma A.1,

E
〈[
XN ,β(〈σ 〉αN ,β)1{GN−1,β′ (Aρ

�)<δ}
]2〉

N ,β
≤
(
E
〈
X4
N ,β(〈σ 〉αN ,β)

〉
N ,β

E
〈
1{GN−1,β′ (Aρ

�)<δ}
〉
N ,β

)1/2

≤ √
K
(
E
〈
1{GN−1,β′ (Aρ

�)<δ}
〉
N ,β

)1/2
.

Thus, (43) follows from (22). The proof of (44) is exactly the same. ��

Appendix B. Proof of Lemma 4.4

Proof of Lemma 4.4. Fist of all, for any τ ∈ �N−1, τ = (τ 1, . . . , τ p−1) ∈ �
p−1
N−1, XN ,β

and ZN ,p are centered Gaussian random variables with variances bounded by Cβ and p
respectively, which result in

Eg·N
〈|ZN ,p(τ )|k 〉N−1,β ′ ≤ pk/2(k − 1)!!,

Eg·N
〈
coshk(XN ,β(τ ) + h)

〉
N−1,β ′ ≤ eCβk2/2 coshk(h),

Eg·N coshk(XN ,β(τ ) + h) ≤ eCβk2/2 coshk(h).

Using the nested structure (20) and the Hölder inequality with p conjugate exponents
2r(p − 1), 2r(p − 1), . . . , 2r(p − 1), and 2r/(2r − 1), we have

|Dα
p − Dρ

p |2r ≤
〈 p−1∏

l=1

cosh(XN ,β (τ l) + h)

( p−1∏

l=1

1Aρ
⊕ (τ l) −

p−1∏

l=1

1Aρ
� (τ l)

)〉2r

N−1,β ′

≤ 〈
cosh2r(p−1)(XN ,β (τ ) + h)

〉
N−1,β ′

〈( p−1∏

l=1

1Aρ
⊕ (τ l) −

p−1∏

l=1

1Aρ
� (τ l)

) 2r
2r−1

〉2r−1

N−1,β ′

≤ 〈
cosh2r(p−1)(XN ,β (τ ) + h)

〉
N−1,β ′

〈 p−1∏

l=1

1Aρ
⊕ (τ l) −

p−1∏

l=1

1Aρ
� (τ l)

〉

N−1,β ′
,
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where the last inequality holds since
∏p−1

l=1 1Aρ
⊕(τ l) − ∏p−1

l=1 1Aρ
�(τ l) ∈ {0, 1}. Since

p−1∏

l=1

1Aρ
⊕(τ l) −

p−1∏

l=1

1Aρ
�(τ l) ≤

p−1∑

l=1

1Aρ
⊕\Aρ

�(τ l),

we have

|Dα
p − Dρ

p|2r ≤ (p − 1)
〈
cosh2r(p−1)(XN ,β(τ ) + h)

〉
N−1,β ′

〈
1Aρ

⊕\Aρ
�(τ )

〉
N−1,β ′ .

From this, by a change of measure for α = (ρ, αN ) ∼ GN ,β as in Lemma 3.2 and the
Cauchy–Schwarz inequality, we obtain the second assertion,

E
〈
(Dα

p − Dρ
p)

2r 〉
N ,β

≤ E

[∑

ρ

GN−1,β ′(ρ)
〈
1Aρ

⊕\Aρ
�(τ )

〉
N−1,β ′

· Eg·N
[
cosh(XN ,β(ρ) + h)

〈
cosh2r(p−1)(XN ,β(τ ) + h)

〉
N−1,β ′

]]

≤ ηN pe(4r2 p2+1)Cβ cosh2rp(h).

For the first assertion, we similarly have

|Cα
p − Cρ

p |2r ≤
〈
Z2
N ,p(τ )

〉r

N−1,β ′

〈 p−1∏

l=1

cosh2(XN ,β (τ l ) + h)

( p−1∏

l=1

1Aρ
⊕ (τ l ) −

p−1∏

l=1

1Aρ
� (τ l )

)2〉r

N−1,β ′

≤ (p − 1)
〈
Z2r
N ,p(τ )

〉r
N−1,β ′

〈
cosh2r(p−1)(XN ,β (τ ) + h)

〉
N−1,β ′

〈
1Aρ

⊕\Aρ
� (τ )

〉
N−1,β ′ ,

where the first inequality used the Cauchy–Schwarz inequality and the second inequality
was obtained by an analogous argument for |Dα

p − Dρ
p|2r . Via a change of measure for

GN ,β as above, we can then apply the Hölder inequality in the expectation Eg·N with
thee conjugates exponents 3, 3, 3 to get the desired bound,

E
〈|Cα

p − Cρ
p |2r

〉
N ,β

≤ E

[∑

ρ

GN−1,β ′(ρ)
〈
1Aρ

⊕\Aρ
�(τ l)

〉
N−1,β ′

· Eg·N
[
cosh(XN ,β(ρ) + h)

〈
Z2r
N ,p(τ )

〉
N−1,β ′

〈
cosh2r(p−1)(XN ,β(τ ) + h)

〉
N−1,β ′

]]

≤ ηN (p − 1)pr
[
(6r − 1)!!]1/3

e(3/2+6r2 p2)Cβ cosh2rp(h).

(66)

��

Appendix C. Proof of Lemma 5.3

Proof of Lemma 5.3. The proof is essentially the same as that for Proposition 4.2. First
of all, we claim that there exists a constant K = K (β, h) > 0 such that for all N ≥ 1
and any small ε > 0,

∞∑

p=2

(
E〈|Eρ

p |4〉N ,β

)1/4 ≤ K . (67)
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This part of the argument is analogous to the proof of Lemma A.1, but in a slightly
simpler manner. We begin by rewriting

E
〈|Eρ

p |4
〉
N ,β

= E

〈( β2
p p!

N p−1

)2
( N−1∑

1≤i1<···<i p−1≤N−1

gi1,...,i p−1,N 〈σi1 〉ρN ,β ′ · · · 〈σi p−1 〉ρN−1,β ′

)4〉

N ,β

=
( β2

p p!
N p−1

)2 ∑

α∈�N

∑

i1,...,i4

E

[
GN ,β (α)

4∏

l=1

gil ,N

p−1∏

k=1

〈σil,k 〉ρN−1,β ′
]
.

When applying Gaussian integration by parts to control the last equation, we only need
to differentiate GN ,β(α) with respect to gil ,N and the bounds of the partial derivatives of
GN ,β(α) given by (63). An identical argument as in the proof of Lemma 4.2 implies our

claim (67), the summability of
(
E〈|Eρ

p |4〉N ,β

)1/4. With this claim, our assertion follows
immediately since, similar to (65),

E

〈[ ∑

p>p0

Eρ
p

]4〉

N ,β

≤
( ∑

p>p0

(
E〈|Eρ

p |4〉N ,β

)1/4
)4

,

and the right hand side can be made arbitrarily small by choosing p0 sufficiently large. ��
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