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Abstract: In 1977, Thouless, Anderson, and Palmer (TAP) derived a system of consis-
tent equations in terms of the effective magnetization in order to study the free energy
in the Sherrington—Kirkpatrick (SK) spin glass model. The solutions to their equations
were predicted to contain vital information about the landscapes in the SK Hamiltonian
and the TAP free energy and moreover have direct connections to Parisi’s replica ansatz.
In this work, we aim to investigate the validity of the TAP equations in the generic
mixed p-spin model. By utilizing the ultrametricity of the overlaps, we show that the
TAP equations are asymptotically satisfied by the conditional local magnetizations on
the asymptotic pure states.

1. Introduction

The study of mean-field spin glasses has been one of the central objectives in Statis-
tical Physics over the past decades. Based on the replica method, this approach has
attained great achievements following Parisi’s celebrated ansatz [31-33] for the famous
Sherrington—Kirkpatrick (SK) model [34] as well as its variants, see physics literature
in [22] and recent mathematical development in [29,40,41]. In a different direction,
Thouless—Anderson—Palmer [42] proposed an approach to investigating the free energy
in the SK model by diagramatically expanding the free energy with respect to an effec-
tive magnetization and arrived at a new variational expression in terms of the TAP free
energy, which involves a novel correlation energy of the spin fluctuations in addition to
maintaining the spirit of the Gibbs variational principle and the mean-field approxima-
tion. From the first order optimality of the TAP free energy, they deduced a system of
self-consistent equations, known as the TAP equations, where the solutions were pre-
dicted to contain crucial information about the landscapes of the TAP free energy as
well as the SK Hamiltonian and have strong connections with Parisi’s replica ansatz, see
[22].
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In this paper, we aim to present an elementary derivation for the TAP equations in
the generic mixed p-spin model and show that they are asymptotically satisfied by the
local magnetization associated to the asymptotic pure states. Let 8 = (8,) p>2 be areal
sequence with Cg := Z;ozz 21’,312, < oo and let & > 0 be fixed. For any N > 1 and
p = 2, denote by Ty, the collection of all index vectors (i1, ...,i,) € {1,..., N}? of
distinctentries. Let g;, ., bei.i.d. standard Gaussianforall (i1, ... i) € Iy p, N = 1,
and p > 2. The Hamiltonian of the mixed p-spin model with (inverse) temperatures
(Bp) p>2 and an external field 4 is defined as

N

B
Hy(o)=) —rr Y g iy0n--0i,+h Yy o, (1)

p=2 N2 Gy ey, i=1

foro = (oy,...,05) € Ty := {—1, 1}"V. Note that when Bp = Oforall p # 2 and
B2 # 0, the mixed p-spin model recovers the famous SK model. Using the indepen-

dence among g;,.. . 9 it can be computed directly that the covariance of Hy is essen-
tially determined by the function ¢(s) := ) =2 ﬂ[%s” and the overlap R(o!, 0?) =

N1 Z,N=1 ol.l al.z, namely,
[Cov(Hy (@), Hy (@) = Ne (R o) = G, Vo', 0? e 3y

The free energy and the Gibbs (probability) measure are defined respectively by
oHN (@)

ZyN

’

1
FN = NIHZN and GN(O') =

where Zy := ZMEN efIN(@) For any measurable function f on R¥ and independent

samples ol,....of ~ Gy (also called the “replicas” in the physics literature), we
denote by (f (ol, ..., oF )) the average under the Gibbs measure Gy, i.e.,
(flol o= 3 f'....d"Cn") - Gn (o).
ol, ..ok
It is well-known that the limiting free energy F' := limy_. Fn exists and can be

expressed as the Parisi formula (see [30,38]), a variational representation of a nonlinear
functional defined on the space of all probability measures on the interval [0, 1], in which
the optimizer, called the Parisi measure p p, exists and is unique, see [2].1

Throughout this paper, we shall assume that the mixed p-spin model is generic in
the sense that the linear span of the collection of all monomials, #”, for those p with
Bp # Oisdensein C[0, 1] under the supremum norm. Under this assumption, this model
possesses two important properties. First of all, as N — oo, the limiting distribution
of the overlap R(c', 52) under E(-) is described by the Parisi measure, see [27]. More
importantly, the Gibbs measure satisfies the ultrametricity [28], namely, for any three

replicas o I 02, o3, we have
lim lim sup E<1{R(ol ,02)>min(R(c! ,(73),R((72,(f3))7€}) =1. (2)
0 Nooo
' The Hamiltonian of the mixed p-spin model defined in [2,30,38] includes all indices (i, ..., p) €
{1,..., N}”. However, the same conclusions remain valid in our setting since dropping the repeated indices

is of a smaller order term in the free energy.
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As a consequence of ultrametricity, asymptotically, it allows one to decompose the
spin configuration space Xy into clusters and ultimately they induce an infinitary tree
structure on X under the set containments. In particular, the clusters at the bottom of the
tree are called the pure states in the physics literature [22] — they are essentially disjoint
balls with the same radius +/2(1 — g p) and the overlap between any two elements within
the same pure state is about g p, where gp = gp(f) is the largest point in the support of
wp. In addition, it is a well-known fact that if a metric space is ultrametric, then in any
ball (open or closed), every point is a center. In view of this and (2), a natural way to
construct asymptotic pure states is via the /2(1 — gp + €) neighborhood of @« ~ Gy,
that is,

Xy i={oeXy:llo—all <y2(1 —gp+e)}={0 € Ey : R(o,a) > qp — €},
3

where || x| := (N_l Z[N:l | x; |2)1/2 for any x € RY and € may be chosen to depend on
N aslong as € = ey | 0 slowly enough. We define the conditional Gibbs measure G%,
on the asymptotic pure state X3 by

Gy () 1xg (0)

Y(0):=Gn(olo € %) = G (Z%)

s

where,by slightly abusing the notation, Gy (A) = ZUE 4 Gn (o) is the total Gibbs
measure for any subset A C Xy. The corresponding Gibbs average on X is denoted
by (-)%. Set the local magnetization within the asymptotic pure state X}, as

(@) == ({o)*, ..., (on)").

Forany 1 <i < N, let Iy ,(i) be the collection of all (i1, ...,ip) € Iy p withi, =i
forsome 1 <r < p.Forany 1 <i < N, define the cavity field at site i as

p
XN,ﬂ,i(U):Z ﬂé Z &it...mip H oi,, Yo € Zy.

p=2 IV 2 (i i) () s=liig i

Note that Xy g (o) depends on all except the i-th spin. Our main result is stated as
follows:

Theorem 1.1. (TAP equations) Assume that the model is generic. Then the conditional
local magnetization (o)“ satisfies

2> _o,
“4)

where € |, 0 along a sequence such that qp — € is always a point of continuity for up,
ie, up({gp —€}) =0.

tim tim sup | () — tanh (X v ((0)) + = & (140)“1) (1 = 1) IP) o))

€0 N>oo

By symmetry, the expectation in (4) is the same for any spin site. Hence, as long as
N is large enough, (4) implies that the local magnetization (o )“ satisfies the following
asymptotic consistency equations on average over all spin sites | <i < N,

(1) ~ tanh (X (0)) +h = (1@ IP) (1 = 1@ ) {0)?).  (5)
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These self-consistent equations are the TAP equations. The term ¢”(|[(o)*[I?)(1 —

||(o)°‘||2)(0i>“ is called the Onsager correction term, which distinguishes the disor-
der and non-disorder spin systems, where the latter, taking the Curie-Weiss model for
example, does not involve an Onsager term in the mean-field equation for the spin
magnetizations, see, e.g., Equation (I1.2) in [22].

The number of solutions to the TAP equations generally depends on the temperature.
In the high temperature regime, i.e., {(1) is sufficiently small, it can be shown that the
overlap R(a1 , 02) between two independent samples ocl,o? ~ G N 1s concentrated
around gp (see, e.g., [40]). Consequently, the pure state X% associated to @ ~ Gy is
almost Xy and G N(E%) is approximately one. As a result, we see that (o)* ~ (o) and
(o) satisfies the TAP Eq. (5) in the generic mixed p-spin model at high temperature.
This 2is similar to the one in the SK model established by Chatterjee [12] and Talagrand
[40].

In contrast to the high temperature case, it is expected that the TAP equations should
have exponentially many solutions in N in the low temperature regime. Although an
argument for this remains missing in the literature, it can be argued that the TAP equa-
tions could have multiple solutions by making use of the ultrametricity (2). In fact,
it is well-known that the Parisi measure pp possesses a nontrivial distribution. Pick
q € [0, gp) in the support of 1 p. Note that in the generic mixed p-spin model, the
Ghirlanda—Guerra identities are valid and they ensure that for any fixed k > 1, with
positive probability under EG&F , there exist distinct !, ..., o with R (o/, ae/) ~ g
foralll <€ < €' <k (see, e.g., [29, Theorem 2.20]). From the ultrametricity, it follows

that R(O’Z,O'Z/) ~ q for any ot e/ Z%Z and o € E% forany 1 < ¢ < ¢/ <k,
which implies that R((o)“{, (0)“{) ~ gforany 1 < £ < € < k. As we will
also see in Remark 3.10 below that R((o)"‘l, (a)“l) is approximately gp, we arrive

at (o) — (o) || & V2(qp —q) > 0. Hence, (o), ..., (o)%" are k distinct approx-
imate solutions to the TAP equations.

Our approach for Theorem 1.1 is based on the cavity method, where the computation
utilizes (2), the ultrametricity of the overlaps. This property allows us to partition the
spin configuration space into random “clusters” (Cy .o )o>1, 1.€., the pure states, where
the distribution of the weights of the pure states is characterized by the Ruelle Proba-
bility Cascades, see, e.g., [29,41]. More importantly, within each pure state, the overlap
of two spin configurations are asymptotically concentrated around gp [19,28]. When
approximating the pure states Cy , via X}, this concentration enables us to establish a
central limit theorem for the cavity fields within a pure state and make our cavity compu-
tations feasible, ultimately leading to the TAP equations in (4). Overall we believe that
our approach has presented a general receipe in deriving the TAP equations for similar
local magnetizations in related spin glass models.

1.1. Related works. The TAP equations at high temperature The mathematical estab-
lishment of the TAP equations appeared firstly in Talagrand’s book [40] and Chatterjee
[12], where they showed that the spin magnetization asymptotically satisfies the TAP
equations in the SK model at sufficiently high temperature. Later Bolthausen [9] pro-
posed an iterative scheme and showed that his iteration would converge to one solution of
the TAP equations, provided the temperature and external field parameters lie inside the

2 Talagrand’s result asserts that the N TAP equations asymptotically hold simultaneously with high prob-
ability, while we establish the TAP equations in the average sense.
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de Almeida-Thouless phase transition line [17]. In a joint paper, [16], the authors showed
that Bolthausen’s iteration scheme indeed converges to the spin magnetization whenever
the overlap of two independently sampled spin configurations from the Gibbs measure
is concentrated locally uniformly in temperature. Viewing the disorders as Brownian
motions and using tools from stochastic calculus, Adhikari—-Brennecke—von Soosten—
Yau [1] established the TAP equations for (0;) and {(0;0;) — (0;){0;) at sufficiently high
temperature for the SK model and a version of the mixed p-spin models.

The Mézard—Virasoro equations. Recently, Auffinger—Jagannath [3,4] considered the
generic mixed p-spin model and established a system of equations, discovered by
Mézard—Virasoro [23], making a connection between the local magnetizations and the
local fields. To be more precise, foreach N > 1, they constructed pure states Cy , € X
for a > 1 and defined the local magnetizations as

2 ocCy, OGN (0)

(o1)" = Gn(Cra) , VI <i <N. (©6)
The Mézard—Virasoro equations read
(on)* ~ tanh (X5 (@) +h = ') = ' (gr)(ow)*). 7)

Note that it is not always the case that (Xy g(0))* ~ Xy g({0)?). As a result, the
Mézard—Virasoro equations is different from Theorem 1.1 in nature. See also a compar-
ison of the cavity method used in [3] and in present work (Sect.2.3).

The TAP free energy. In [13], Chen—Panchenko established a variational principal for
the free energy in terms of the classical TAP free energy and showed that the local
magnetization (o)® is asymptotically a TAP state, i.e., an optimizer of the TAP free
energy. Later in [14], Chen—Panchenko—Subag derived a general framework for the TAP
free energy in the mixed p-spin model and from the first order optimality, it was argued
that every TAP state must satisfy the generalized TAP equations. Combining the result in
[13] and the discussion of [14, Remark 6] together, it is then expected that the classical
TAP equations, (5), should be satisfied by our local magnetization (o')* — Theorem 1.1
provides a justification to this prediction.

In relation to the TAP equations, the TAP free energies have also received great
attention in recent years. By utilizing Parisi’s ansatz, the works of Chen—Panchenko
[13] and Chen—Panchenko—Subag [14,15] established the TAP free energy in the Ising
mixed p-spin model as well as its generalization to the zero temperature setting. In
the spherical case, Subag established the TAP free energy in the mixed p-spin model
[35] and in the multi-species model [36,37] by introducing the multisamplable overlap
property. Independently, by means of a geometric microcanonical method, the TAP free
energy involving the Plefka condition was implemented in the spherical SK model by
Belius—Kistler [8] and an upper bound for the free energy in terms of the TAP free energy
was also obtained in the mixed p-spin model with general spins by Belius [7].

1.2. Further results related to the TAP equations. The TAP equations have many impor-
tant consequences in the study of mean-field spin glass models and related applications.
First of all, based on his iteration, Bolthausen [10] performed a conditional second mo-
ment method to derive the replica symmetry formula for the limiting free energy in the
SK model at very high temperature. In a follow-up work, Brennecke—Yau [11] provided
a simplified argument for Bolthausen’s approach and extended the replica symmetry



87 Page 6 of 43 W.-K. Chen, S. Tang

formula to a larger regime. In addition, the TAP equations have played a key role in
some optimization problems in spin glasses and statistical inference problems. Most im-
portantly, they naturally give rise to the so-called Approximate Message Passing (AMP)
algorithms based on Bolthausen’s iteration scheme [9]; several generalizations of the
AMP algorithms can be found in Bayati-Montanari [6] and Javanmard—Montanari [20].
By using the AMP algorithms, Montanari [24] constructed a polynomial-time random
algorithms to produce a near ground state for the SK Hamiltonian under the assumption
that the Parisi measure is full replica symmetry breaking. The same construction was
also carried out in the mixed p-spin model by El Alaoui—-Montanari—Sellke [18]. In the
context of Bayesian inferences, various AMPs driven by the TAP equations have also
been popularly used, see, e.g., [21,25,26,43].

1.3. Organization of the paper. In Sect.2, we provide a sketch of our proof beginning
with the settlement of some standard notations. Section 3 will be devoted to establishing
a cavity equation for the local magnetization (o )“ based on a univariate central limit
theorem for the cavity field, see Theorem 3.7 below. In Sect. 4, we continue to perform
some cavity computations for Xy g y({c)*). In particular, noting that this quantity is
an infinite series, we shall establish some quantitative bounds for its truncation and
moments. Finally, the proof of Theorem 1.1 will be presented in Sect.5 by translating
the cavity equation in Sect. 3 into the TAP equation. This part of the argument will rely
on a multivariate central limit theorem for multiple cavity fields, a central ingredient
throughout the entire paper.

2. Proof Sketch

Our approach adapts a similar route as [40, Theorem 1.7.7], where the TAP equations
in the SK model were established at very high temperature relying on the fact that the
overlap R(al, 02) between two replicas o l'62~G N 1s concentrated around a deter-
ministic constant. However, this concentration is no longer valid in the low temperature
regime. Our proof utilizes, instead, a conditional concentration property of the overlap,
deduced from the ultrametricity (2), that the overlap between two independently sampled
spin configurations from the conditional Gibbs measure on an approximate pure state
is concentrated around ¢gp. In this section, we elaborate some key steps to summarize
the main ideas of our arguments. We believe that our approach is potentially applicable
to establish the TAP equations in some other mean-field spin glass models, such as the
multi-species model [5] and the perceptron model [40, Chapter 2]. First, we settle down
our standard notations.

2.1. Notations.

Notation 2.1. Recall that Hy, Gy, G‘I"V, Zn, (), and (-)* are all dependent on the
temperature parameter 8 = (8,) p>2 and the external field /. For the rest of this paper,
we will always keep h fixed and express these quantities as Hy g, Gn g, Gtzlv, e Zn.g,

()., and ()} L respectively, to emphasize their dependence on both N and .

Notation 2.2. In this paper, we shall always work with the cavity field associated to the
last spin, X g n. Due to the symmetry in the spin sites in the Hamiltonian Hy g, this
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cavity field can be simplified as

Xypn@) =) 'Bpg >

p=2 N2

8it,.cip—1,NOiy =" 0j,_y.
I<iy<ip<--<ip-1=N-1

Since it is indeed a function that does not depend on the N-th spin coordinate, for
notational simplicity, for either x € [—1, V-"Yorx e [—1, 11V, we will simply denote
itby Xy g(x), thatis,

Bp/ P!
Xnpx) = Z = Z 8iteonip-1 NXiy = Xip_y- ®)

p>2 N2 I<ij<--<ip-1=N—1

Notation 2.3. For any o ~ Gy, g, the notations p and ay stand for the first N — 1 spins
and the last spin of «, respectively. When there is no ambiguity, we will generally use

r,t!, 7%, ... € Zy_ to denote the spin configurations that are sampled independently

from Gy_; g or Gﬁ/,l)ﬂ/ for any g/ = (ﬁ;,)pzz satisfying that 2122 21’;‘3;,2 < 00.

Notation 2.4. For any two vectors x,y € RM for some M > 1, we define R(x,y)
as the averaged inner product between x and y and ||x|| as the averaged £;-norm of x
respectively by

M
1
R, y) = 2> xiyi and x| = R(x, 0)'2.

i=1

For any two sequences (ay)n>1 and (by)n>1 of real numbers or random variables, we
say thatay = by +on (1) (oray < by +on(1))if lay —by| < cny (oray < by +cpy)
for all N > 1, where (cy)y>1 is some deterministic positive sequence that converges
to0as N — oo.

2.2. Proof sketch of Theorem 1.1. First of all, by making use of the notations in Sub-
section 2.1, we rewrite (4) as

lim lim supE<[(GN)‘fv’ﬂ - tanh(XN,ﬂ((a)‘}‘v’ﬂ) +h

€0 N oo

2
= ") 51D = @)% s1Dom ) ) =0.

N.B -
On the other hand, from the ultrametricity (2), it can be deduced (see Remark 3.10) that
. o 2 2 —

Jim E{[I(0)% 6 I* = ar[ )y 5 =0

As a result, we only need to show that

2
lgigh];n%s;plﬁ([<w>?v,ﬁ —tanh (Xup(0)% ) +h = ¢"(@p)(1 = ap) o)y 5 )] )M8 ~0.
)

There are three key steps in our argument:
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Step 1: cavity computation. In Sect.3, we decompose the Hamiltonian (1) into two
components. The first involves only the interactions among the first N — 1 coordinates
and the second gathers the interactions with the N-th spin. More precisely, if we fix the
last spin as the cavity coordinate, then for o = (7, 0x) € Xy_1 X X, we can rewrite

Hy g(0) = Hy_1,p/(t) + on(Xn,p(7) + 1), (10)

where 8’ = (8),) p>2 is a modification of g defined as f, = B,((N — 1) JN)P=D/2 for
each p > 2. In this way, we can express (oN)‘l"\,’ pasa fraction of averages with respect
to the Gibbs measure associated to the reduced Hamiltonian Hy_; g in terms of two
constraints, ]].2% ((r, 1)) and 12% ((1’, —l)). We show that when writing « = (p, an),
both of them are approximately 12;’,71 (7) due to the fact that R(t, p) =~ R((t, 1), @).
This will result in

(sinh(Xn, g(7) + h))ﬁ,,l,,g/
{cosh(Xp,p(2) + M)y 5

Y

(UN>‘1Y\7,;5 ~

Step 2: central limit theorem of cavity fields. We notice that for any p € X y_; fixed,
the disorders, g;,,...; p 1N in Xy g are independent of the conditional Gibbs measure

G]’i,_l’ Py and furthermore, for independent samples 1,72 ~ Gﬁ,_l, g the overlap

R(z', 72) is concentrated around ¢ p, due to ultrametricity (2). These allow us to show
(see Theorem 3.7) that the first term in the following representation

Xnp(t) = (Xnp(r) — <XN,ﬁ(T)>§/,1,/3/) + (XN,ﬁ(T»ﬁ/,l,ﬂ/

is Gaussian distributed with some variance, approximately ¢’(1) — ¢’(gp), independent
of t. Consequently, we can represent

Xnp(0) & 2/T' (1) = ¢ (gp) + (XN (D)5, o forz~ N, 1).
It follows that
(sinh(Xn,p(2) + )y, g ~ Ezsinh(zy/¢'(1) = £'(gp) + (XN p(D)y_ g +h)
— &= (gr))/2 Sinh((XN,ﬁ(T»ﬁ;_l,ﬂr +h),
and
{cosh(Xn,g(1) + M)y 5 & Ercosh(v/&'(1) = £'(gp)z+ (Xn,p (D) _y 5 + )
~ &' (D=L (gp))/2 COSh((XN,ﬁ(T»ﬁ;,]”g/ +h),
which, combining with (11), gives
(on)Np ™ tanh((XN‘/g(‘L'))'X]_l,ﬂ, +h). (12)

In establishing this Central Limit Theorem, there is a subtle issue that occurs from the
fact that @ € X is not fixed (and neither is p € Xy_1) but sampled from Gy g.
Since the Gaussian disorders g;, .. ; » 1N appearing in Xy g are also involved in the
Gibbs measure G y g, this introduces dependence between X y g(7) and G v g. To handle
this, we perform a change of measure for p, the first (N — 1) coordinates of o and
control the associated Radon-Nykodym derivative, which allows us to prove a version
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of Central Limit Theorem for the Gibbs measure conditioned on the asymptotic pure
states. This is done in Sect. 3.2, where the ultrametricity of the Gibbs measure plays a key
role, ensuring that the overlap between two independently sampled spin configurations
from the conditional Gibbs measure Gﬁ,_l’ p on the asymptotic pure state Ef,_l is
approximately concentrated around gp. This is analogous to the concentration of the
overlap R(c', 02) in the SK model at high temperature.

Step 3: producing the onsager correction term. In Sect.5, we relate (XN»ﬂ(T»'XI—l,ﬁ’
with Xy g({0)%, ﬁ) and show that their difference is exactly the Onsager correction
term ¢"(gp)(1 — gp)(on)y N.p- Due to the infinite sum over p > 2 and the product
Tiy - Ti,_, in Xy g(7), handling the mixed-p spin model is much more involved than
the SK model. Here, we will first truncate the infinite sum over p > 2 and approximate
(XN,,g(t))ﬁ,_Lﬂ, and XN,ﬂ(W)?v,ﬁ)’ respectively, by finite sums of sufficiently many
terms; this requires controlling the moments of both quantities. With such truncation, we
are able to estimate the difference term-by-term for each p > 2 fixed. More precisely,
by definition (8), each term in Xy ﬁ((a)‘j‘v’ /3) takes the form

Bp/P! )3

NpP—1/2

1<iy <w<ip_1=<N-1

8itymip- 1, N0 )N g 0i, )N (13)
We will follow an argument similar to that in our first step to write each conditioned

local magnetization in (13) as

(7i cosh(Xy g(7) + h))N W
(cosh(Xpy, g (1) + h)>N—1,ﬁ’

’

(01')7\/, g
and then use replicas to represent (13) as

Bpv/P!
<(215i1<...<i,,,151v 1 No- 1)/2811 Sip-1.NT, 11 T, 1) 1= COSh(XN,ﬁ(T£)+h))i,,Lﬂ/
(1‘[[=l cosh(Xy g(z¢) + h))N_]'ﬂ,

(14)

To proceed, a multivariate Central Limit Theorem (see Theorem 5.1) is needed to handle
the asymptotic behavior of the jointly Gaussian-distributed random variables in (14),
namely,

BpN/D! - -
Z AL Lo Xy p(th), ..., XypP™h,

N—D28iwip1. Nty = Ty
I<ij<--<ip-1=N-1

15)

which will allow us to handle the numerator and denominator in (14) separately as
in Step 2 so that (14) is essentially <XNa/3(T)>§/71,,3’ plus an Onsager correction term
corresponding to the pure p-spin interaction. We emphasize that this step is not needed
for deriving the TAP equation in the SK model at high temperature, e.g., [40, Theorem
1.7.7], because in this case, one only needs to deal with the p = 2 case and the collection
of Gaussian random variables in (15) reduces to a single one Xy, ,3(1:1), consequently.
A univariate central limit theorem (e.g., Theorem 3.7) would suffice.
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2.3. Cavity method: a comparison. As mentioned before, [3,4] established the Mézard-
Virosoro equations. Their argument required pp({gp}) > 0, which ensured the validity
of the pure state decomposition, (Cx 4)4>1, With decreasing Gibbs weights, see [19,39].
Based on this, they defined the local magnetizations ()¢ through (6) and performed
a cavity argument for this quantity as follows. In view of (10), denoting by G’ the
Gibbs measure associated to (Hy_1 g/(t))rexy_, and by (C;\_Lu)az] the pure state

decomposition according to G',, they decomposed their pure states as
Cng & C§V—1,n(a) x {—1, 1} (16)

under the Gibbs measure G y. The function 7 is a random permutation of the natural
numbers N, depending on all disorders in Hy, such that the sequence (C},_, 7@ X
{—1, 1})4>1 would also have decreasing measures under G . Consequently, they wrote

(on)" ~ fGNVN,a, a7
where vy , was the probability measure defined as
VN,a(T,oN) X eaNXN’ﬁ(T)G/N—l(r|C;V—1,rr(a))

for (t,o0y) € Ty = {—1, I}V x {—1, 1}.

Although the arguments for (17) and Eq. (11) in our Step 1 are both based on the
cavity method, their derivations are fundamentally different. In [3], the key step to jus-
tify (17) relied on establishing (16) under the Gibbs measure G y, which utilized various
properties of the pure state decomposition, including the fact that the Gibbs weights
of the pure states asymptotically form a Poisson-Dirichlet process and the assumption
up({gp}) > 0. In contrast, our constructions of the pure states and the local mag-
netizations are explicit so that it is easier to quantify the error estimates in the cavity
computation; our Step 1 neither needs the pure state decomposition nor the assumption
up({gp}) > 0.

We then proceed to Step 2 and conclude it with Eq. (12). Note that Eq. (12) already
deviates from the Mézard—Virasoro Eq. (7), where we average inside the hyperbolic tan-
gent function with respect to the (N — 1)-dimensional Gibbs measure, (X y g(t ))Z, 1L
instead of an N-dimensional Gibbs measure, (Xy g(c))¢ in (7). This is crucial, as it
allows us to further express <XNsﬂ(T)>§I—1,/S’ as Xy g((0)%) plus the desired Onsager
correction term in Step 3. Finally, we emphasize that in [3], it is unclear how to rewrite
the term (X g (0))? in the Mézard—Virasoro equations (7) to get to the TAP equations,
but we expect that it should be possible to show that the local magnetizations in [3]
satisfy the same TAP Eq. (4) following our Steps 2 and 3.

3. The Cavity Equation for (aN)"](,, 8

We derive the cavity equation for (on)%, P in this section. As sketched in the previous

section, for any o = (t, oy) € {£1}V!

Hamiltonian in (1) as

N-1
Bp~/ p!
Hy g(o) = Z L - Z 8ityeunipOiy "+ 0iy + h Z i
i=1

p=2 N7 i<ij<o<ip<N—1

x {£1}, by symmetry, we can decompose the
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Bp/ 1!
+oy b= 8ilyoip_1,NOiy " 0Oj,_ +h
[ P P

p=2 N7 i<ij<o<i, 1<N-1
= Hy_1,p(t) +on(Xnp(T) + ),
where ' := (B,) =2 with B, = B,((N — 1)/N)P~D/% for each p > 2 and Xy g

is defined by (8). For any T € Xy fixed, Xy g(7) is a centered Gaussian random
variable with variance

B2 p!
EXyp@ =3 w2 @)’
p>2 I<ij<--<ip_1<N—1
_y Bop! (N—D(N—2)---(N—p+1)
_ - —
N (p—1)!
p—1 l
=L T1(1-5) 7 Lsir w9
p>2 I=1 p=2

We remark that the variance of Xy g(7) is bounded uniformly for any N > 1 and any
T € X n_1 by Cg defined at the beginning. The goal of this section is to establish the
following theorem.

Theorem 3.1. (Cavity equation) Let o ~ Gy g and write a = (p, ay). Then,

=0,

2
lim lim sup E(((GNﬁjﬁ — tanh (XN)ﬁ((ﬂpN—l,ﬁ’) + h)) >N '

€0 N oo
where € |, 0 along a sequence such that gp — € is always a point of continuity for wp.

In other words, ((7}\1)‘7\,, 8 is asymptotically a function of the vector (T)'X,_L B the
average with respect to the conditional Gibbs measure of an (N — 1) system. Here, the
dimension of the system in Hﬁ/—l, g is less than that of (- 7v 8 by 1. Furthermore, the last
spin «y is absent in the constrained Gibbs measure (-)'X]_ LB We establish this theorem
in three subsections.

3.1. Removal of the cavity spin constraint I. The conditional Gibbs average (on)%, P
can be written as

-~ 2Loesy ONGN,p(0)
NIN,g = Z

vesy GNp(@)

<eXN,/S(T)+h ]]-E% ((‘L', 1)) _ e—XN,/S(T)—h]]_E% (('L', _1)) )N_l’ﬁ’

= = = , (19)
(R Ly (5 ) e PO L (=) g
and, for o = (p, ay), we have
1
(reSy:(mED e s = [t e By RE P Zgr — e+ gy e Fan)].
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Thus, by letting

3
AP :_—{ Xy_1:R(p,T) > —< __)},
o TE€XN-1:R(p,T)>¢qp — (€ N1

A'g9 = {r € Xy—1:R(p, 1) >¢qp — <6+ N3—1)}’

we can easily see that forall 7 € ¥y_j and o = (p,an) € Ty—_1 X X,
Ly () < 1gp () < 14 (0),

(20)
Lap (7) = Lgg ((r, =), Lgg (7, 1) = 1y (7).

We will approximate the numerator and denominator of (19) by substituting all indicators
there by 112;\7/ B (). To this end, we first prepare three lemmas.

Denote by g.n the collection of all Gaussian disorders that appear in Xy g,
8itseoip 1N forp=2,3,...and1 <ij <---<ip 1 <N-1
and by [E, , the expectation (only) with respect to g.y.

Lemma 3.2. Let o = (p, ay) be sampled according to Gy g and (I'(p)) pesy_, be
a collection of nonnegative random variables, which are independent of the Gaussian
disorders appearing in X g. Then we have

cosh (Xn,p(t) +h) >
(cosh (Xn,g(7) +h))n—1,p IN-1.B

<& L2l cosh(WE[T (1)), o

EL(0)y 5 = E(r(@)

Proof. Write

E(C(p))y 5 =E Z F(@)[Gn,p((z, D) + G p((z, =1))]

TEXN_]
Gnp((r, 1)+ Gy p((t, —1))
:E F G — 4 ’
N P

where the last fraction is the Radon-Nykodym derivative of the two measures Gy g ((-, 1))+
Gn,p((-, —1))and G y_1 g(-) on . Computing the numerator and the denominator
at T, we get

efv-1.8® cosh (Xn.p(x)+h)
Zr/eZN,l eMv-1.8T) cogh (XN,ﬂ(r’) + h) '

eHn—1,5(0)

Gnp((t. )+ Gy p((r, =) =

Gy_1.5(1) = .
N-1,8/(T) 1y ()
‘E/EEN_l

Plugging these into the first display establishes the equality in our assertion. Finally,
since cosh > 1, we can drop the term (cosh(Xy g(t) +h))y—_1,5 and use (18) to get

E(F(p)>N,ﬂ < E(F(r) cosh (XN,;S(T) + h))N_l,,s/
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= E(I'(1)E,, [cosh (Xn (1) + 1)])

N-1,p
<& T2 Bi? cosh(E[T (1)), o
O
Lemma 3.3. For any € such that qp — € is a point of continuity of 1 p, we have that
hAI/n_)S;lOp]E(]lHR(r],rz)f(qpfe)|<ﬁ}>N—l,/3’ =0. o2y
In addition,
lim li E(1 r g =1V 0, 22
Slf(} IZ\IJILS:OP (LiGy_, pr(AL)=8)IN—1.8 , Ve > (22)
and
lim lim sup E<1{qp+52R(r',rz)Zmin(R(rl,r3),R(r2,r3))78}>N71,5/ =1. (23)

810 Nooo

Remark 3.4. These assertions hold if 8’ is replaced by 8. Indeed, under this replacement,
(22) was established in [13, Lemma 3], while (23) can be concluded from [28] and the
fact that R(t ) converges to i p weakly, see [27]. The latter fact can also be used to
deduce (21).

Proof. Firstofall, we claimthat R(z', %) converges to 1 p under EG%Z_L/S, asN — oo.

To see this, note that 8 — EFy(B8) and B — EFy(B’) are convex functions and that
there exists a constant C > 0 independent of N such that |EFy (8) —EFy(B8)| < C/N
forall N > 1. Hence, EFy_1(B) and EFy_1(B8’) converge to the same limit, say F(B),
which can be represented using the Parisi formula. One of the useful consequence of
this representation is that F' is partially differentiable with respect to any 8, and from
Griffith’s lemma,>

lim ’32—”(1 —E(R(<", rz)f’)N_l’ﬁ/) = Nh—r>noo dpEFN_1(8)

N—o00

1
,EF ) =2 (1 - /O 9" 1p(dg)),

where the last equality holds due to [27]. Consequently, whenever 8, # 0, we have

1
. 1 _2\p — 14
lim B[R, 7 >N_1,ﬁ/_/0 9" 1p(dg)

and our claim follows since we assume that our model is generic.
Now we turn to the proof of (21). Let ¢’ and €” be any positive numbers such that
€’ < € < €”. From these, as long as N is large enough, we can bound

E(]]'{|R(T1,T2)—(qp—e)|<%}>N_1’ﬁ/
= Bl cqp-eopiliotg ~ Elligiet rzape oot

3 Girffith’s lemma: Let [~ be a sequence of differentiable convex functions defined on an open interval /.
Assume that f converges f pointwise on /. If f is differentiable at some x € I, then limy_, ~; f 1,\/ (x) =

.
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= E<1{R(r],rz)fqpfe/}>1v—1,,9/ - E<1{R(r',r2)<qpfe”})1v—1,ﬁ“

®2

N_1,p Wesee

Consequently, from the weak convergence of R(t!, 72) to up under EG
that
lim sup E<1{|R(rl,r2)—(qP—e)|<%})N—1,ﬂ/ = MP([Os qp — 6,]) - MP([Oa qp — 6//))-

N—o0
Hence, from the continuity of up at gp — €, after sending €’ 1 € and €” | ¢,

lim sup E(IL =0.

N {|R(r1,r2>—<qp—e)|<ﬁ}>1v—1,ﬂ/

As for (22) and (23), we recall that it is already known in [13, Lemma 3] that

lim 111\5njllop]EUI{GN,I_,S(AIG)Z(S})N—L& =1
Since the overlap R(z!', t%) under EG}%z_Lﬂ and EG%{I p converges to the same
distribution pp and both of the measures ]EG%O_OL g and IEG%"_Ol g satisfy the
extended Ghirlanda—Guerra identities, the limiting distributions of the Gram matrix
(R(zt, tz/))1§g<g/ corresponding to (‘L'e)gzl sampled from either Gy 1,5 or Gn_1 g
are uniquely determined by the overlap distribution p p and are described by the Ruelle
Probability Cascades parametrized by u p, see [29]. With this, the same argument in [13,
Lemma 3] yields (22). For (23), note that the extended Ghirlanda—Guerra identities also
imply that for independent t!, 72, 3 ~ G N—1,p’» their overlaps must be asymptotically

ultrametric due to [28]. From our claim, we also see that R(t!, 7?) is asymptotically
less than gp + 6. These together complete the proof of (23). O

Lemma 3.5. For ¢ = 0, £1 and any € > 0 such that qp — € is a point of continuity of
np, we have

. Xy p(T)  1oEXN (D) ,2> —
Nh_r)nooﬂ*:(((e Lye (T))n-1.p — (e Laz (W)n-1.5) vg O

Proof. The left hand side is equal to

X 2
E((ee N,ﬂ(f)]lA%\Ag(‘L'))N_l’lg/)N’ﬂ

and by Cauchy-Schwarz inequality, it is no more than
2eX
E{(e% N,ﬁ(f))Nil’ﬁ/(]lAg\A/é(T»N*Lﬁ/)N,ﬁ
_ ]E(ezst’ﬁ(T>>N—l,ﬁ,<(1A%\Ag(T))N_l”glbv’ﬂ

2 1/2
< (]E(eZSXN‘ﬁ(I))%v_l,ﬂ/]E(UlAg\Ag(T»N*lsﬁ’)/\l,ﬁ)

1/2
< (]E[(Eg‘Ne“SXN,ﬂ(f))Nil’ﬂ,]E«]lA%\A/é (t)>N71’ﬂ/>N,ﬂ> .

Here, using the independence between g.n and the disorder appearing in the Gibbs
expectation (-) y_1, g/, one can get from (18) that

2 2
EgANeAlEXN"B(t) — eSs Var(Xy (7)) < eSZPZZ rB; < 00,
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Note that this upper bound holds for ¢ = 0 and +1. Thus,

v-rs)
N-1,p N.B

1/2
e )

@+1/8)Y - P> 172 : "
<e 2p=2PPp cosh(h)!/ {]E«]lAg\A’@Z (r ))N71,ﬁ/>N_1’ﬁ/ }

E (e 001y (1) = X051 ()

4+1/4 ~y PB3 1/2 172
= e( +1/ )Zp_z PB; cosh / (h){E(]l{(Tl,TZ)Z\R(Tl,'L’z)—(qp—E)\§3/(N—1)}>N_1’ﬂ’ } s

where the second inequality used Lemma 3.2 and 7! and 72 are sampled from the
inner and outer Gibbs measures, respectively. Our proof is then completed by applying
21). O

With the help of the above three lemmas, we can now replace all the indicators in
(19) with ]121/371 (7):

Proposition 3.6. For € > 0 such that qp — € is a point of continuity of i p, we have that

(sinh(Xn6(0) + M)y 4 2>
lim E @ : =0. 24
N0 <<<UN)N’/’ <cosh(XN,ﬁ(r>+h>>§_l,,3,> v e

Proof. Define

B

1
a = e O M g (1) — e O g (0 = D) Jy_y

1 _ _
B, = E(eXN'ﬁ(th]E% ((r, 1)) +e Xnp® h]lilj'(, ((T’ _]))>
A, = (sinh(Xy g(1) +h)lge (T)>N—l,ﬁ”
B, = (cosh(XN,ﬂ(T) +h)l):§,71(r))N—l,ﬁ”

N—I,IB”

and then we can express

o A, - (sinh(X y,g(7) +h)>1’i/71,/3/ Ap
N _ o = .
NET B (coshXn g (D) +M)N_y 5 By

For any § > 0, the expectation in (24) is no more than

Ag  Ap\2 Ae A 2
E(_a__ﬂ) <CE (—"‘——"’16 Ap>5)
Ba  By/ [y By By Ov-rptde)=d)

A Ap\2
+ CE<<—a — _p) IL{GNlﬂ,(Ag)>5}>
B, B, . ~np

N.p

A A 2
+CE<<—'O — _p:[]‘{GN : /(AP)>5}) >
B, By “hre N,
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Using that |[Ay/By| < 1,|A,/B,| < 1 and combining the first term and the third term,
we get

()]
Aw A,

2
= 2CE(IL{GN,1.5,(A§)<5})N,,3 + CE<(B_O, - B_p) 1{6N115,(Ag)35}>N’ﬂ - (25

N.p

Since GN_l’ﬁr(Ag) is independent of g.y for any p € X _1, we can use (21) to bound

830
E(Ligy , paly<siln.p = eXr=23 cosh(h) E(LG,_, 4 (az)<sy)n-1,0 = 0

as N — oo and then § | 0, where the last limit used (22). As for the second expectation
in (25), we note that, on the event {G y_1 g (Ag) > 6§},

Aa _Ap| _|Ap|IBa =Byl |4y — Adl
B, B, B, B, By
|Bot_B,0| |Ap_A<x|

<87 |By — By| +|A, — Ayll,
S Al Gy S0 1B Byl 14, — Aull

where we used that |A,/B,| < I and that from (20),
By, B, > (cosh (X p(7) +h)]lAg(t))N_Lﬂ, > <11Ape(r)>N_l’ﬂ, = Gy_1,p(AD).

Thus, for any § > 0,

E<(Aa Ap>211 >
— - p
B, B, {Gy_1 p(A)28} N

< C(S‘z(IE((Aa =A%)y 5 +E((Ba = Bp)?)y 4 )-
Here, from Lemma 3.5 and the inequality in (20), we have

_ (eXN,/S(T)+h lAg (7)

E((Aa . AP)2>N,ﬁ < C/]E<(<eX;\/,ﬂ(r)+h]lAg (r)>N—1,ﬁ’

)y,

+ CE(([e O™ 40 @)y g — (™90 40 (1)

2
N—1.p' )N—l,ﬁ’) )N’ﬂ

— 0 as N — oo.

Similarly, E((By — B,)?) s — 0.These imply that the second term in (25) also vanishes
for any § > 0, completing our proof. O
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3.2. Central limit theorem for the cavity field. The goal of this section is to derive a
central limit theorem for the centered cavity field defined as

Xy (0 = Xnp(@) = (Xnp(O)_, 5

By /7!
=y = > 8iript N (T Tipey = (T T Wy )

p=2 N7 i<ij<o<i, 1 <N—1

(26)
forany p, v € Zny_1.

Theorem 3.7. (Central limit theorem) Assume that U is an infinitely differentiable
Sfunction on R satisfying

sup EUD(y2)f <00, Vd,keZ, 0<d, k,M < cc.
O<y=<Mm

Then, for any integer r > 1, we have
. 2
lim lim supE<[(U(X§, ﬂ(r)))ﬁ,f1 , —EU (/¢ (1) —74’(51,;))] r> =0, (27)
€0 Noo ' o’ N.B
where & ~ N (0, 1) is independent of all other random variables.

Remark 3.8. As we will see later, this theorem is special case of the multivariate central
limit theorem stated in Theorem 5.1 below. Here we provide a standalone proof for
Theorem 3.7 to illustrate the main steps as a warm-up for the proof of Theorem 5.1.

The proof of Theorem 3.7 relies on the concentration of the overlap within the pure
state established in the following lemma.

Lemma 3.9. (Concentration of the overlap) We have that

liinlimsupE<<|R(tl,r2) —qp|> =0,
€

P )
_ / _ ’
0 N N-1,8IN-1,p

lglin lim sup E<<|R(T3 10) - qP')ﬁ/—l,ﬂ’)N—l,ﬁ’ = 07

0 N>oo

where in both equations, the p’s are sampled from the outer Gibbs measure and t, t', T2

are sampled from the inner one.
Proof. Forany § > 0, letting & , = {GN—I,;‘}/(EKI_l) > §}, we have
1 .2 4
E<(|R(T T = qP')N—l,ﬂ’)N—l,ﬁ’
_ 122y L ¢
_]E(<|R(r ,T) qP|>N—1,ﬁf155,p)N—1,ﬂ/
[R(x'. 1) —qp[lsy (tDHlsp (%)
+E = = ]15“
N-1,8

2 0
Gy_1p(Ey_1)

< 2E(1g: ) +iJE(|R(z‘ ™) —qp|lye (Hlge () (28)
= 5&/) N—l,ﬂ’ (32 ’ CIP ):x_] 2]’\’/_] N—l,ﬂ”

where in the second expectations on the right-hand side, p, 71, 72 are understood as

i.i.d. copies from Gy_1 g. From (22), the first term in (28) vanishes as N — oo and
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then § | 0. Next, since both R(p, 1) and R(p, 72) are at least qp — €, it follows from
(23) that |R(t', 72) — gp| < 2€ with probability nearly one under EG%Z_] g Hence,
the second term in (28) also vanishes as € |, 0, and this completes the proofﬁof the first
assertion. As for the second one, we have

E((‘R(p’ T) — ‘1P|>;)v—1,ﬂ/)N—1,ﬁ’

1
< 2]E(115§‘p)N_1,ﬁ, + gIE(|R(p, 7) — qp|112571(r))N_1’ﬁ,.

Again the first term vanishes in the limit due to (22). From (23) and the constraint ) f,_ 1

we see that |[R(p, 7) — gp| < 2¢ with probability nearly one under EG®? No1p Hence
the second term also vanishes, completing our proof. O
Remark 3.10. Following the same proof, it can also be shown that
2
hmhmsupIE(||| Nﬂ||2—qp| )N —hmhmsupE(\(R(a o )) N —qp| > =0.
€0 N>oo B €l Noo

Proof of Theorem 3.7. We prove the central limit theorem via an interpolation argument.
Fix r > 1. For every integer | < m < 2r and any p,t™ € Xy_i, consider the
interpolation

X = ISy AT =1/ (1) = ' (gp)E™, 0<1 <1,

where the §™’s are i.i.d copies of & that are also independent of everything else, and
sn = X@ﬁﬂ(zm). Set

Vx) :=Ux) -EUGEV (D) = ¢'(gp)), x R

Recall that for any o € Xy, p € X y_1 represents the first N — 1 spins. For0 <7 <1,

define
2}’ P
¢N<r)=E<<HV<x;"<r)>> > :
N-1,8 N

m=1

Evidently the left-hand side of (27) equals ¢ (1).
In order to control ¢ (1), we introduce

Yn () == IE<COSh(XN g(p) +h)< 1—[ V(xm(t))> >
N-1,p

N-1p
where p and (z',..., %) are sampled from the outer and inner Gibbs measures,
(-Yn-1,p and (- )2 N—1.p respectively. Observe that {5 (0) = 0. On the other hand,
note that whenr = 1, x;”(l) = Xﬁ,,ﬂ(r’") and since 7!, ..., ¥ arei.i.d. sampled from
(-)71,71 g it follows that

(VO Oy g = (VOGN g == (V& DYy e
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Consequently,

2r

(TTvegan), = (vabami )"

m=1

which is a nonnegative. From this, we can adopt a change of measure argument as the
one in the proof of Lemma 3.2 to bound

2r o
¢n (1) = << I1 V(x'"(l))> >
N—1,8

N.p

2r
]E<< V(xp(l)) ) >
N—-1,p N.B
0 2r
E<cosh(XN/3(p)+h) <<V(xp(1))> ) >
N—1,8 N—1.p

2r

=E osh(XNﬂ<p)+h><]"[V<X ﬁ(rm>)> > =yn(D). (29
-1 /3 N lﬂ/

m=1

Therefore, we have

1 1
v (D) swml):/o w;v<t)drs/0 Wl (Dldr,

and it suffices to estimate |1p](, (t)]. To this end, we differentiate ¥/ and use symmetry
in m to get

Yy (1) = rE((®n. (o, o 12’))'; | ﬁ,>N 1B
= rB((Egy  Pn.i(p, T TN B vt B

where

Sl /e (1) — &/
Dy (p, Tl ..., ) = cosh(Xn g(p) +h)V’(x;(r))<7i — %gg

2r
[[vesen
s=2

and E, , ¢ is the expectation with respect to g.y and &', Using Gaussian integration by
parts with respect to g.y and £ yields that
Egy.®ni(o. ! . T%)

2r

= Eg e [cosh(Xn(0) + MV (b)) TT VO] (Be [Sh55] = ') = ')

m=2
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2r
+Q2r— DEq e [cosh(XN,,g(,o) V' WV @20) [ V(x;?(t))]IEg_N[S})SIZ)]
m=3
1 2r
+ =By g [sinh (X g (0) + V' ch0) T VOl B o [S) X (0]

NG

where the term 2r — 1 arises from the symmetry in m. Note that Xy g(p) + h is a
mean-h Gaussian random variable, whose variance is uniformly bounded for all N and
all p € X y_1, which ensures, for all k > 0,

m=2

p;nzax IEgAN[sinhzk(XN’ﬂ(p) + h)] < 00,
N—1

max EgAN[costh(XN,;g(p) +h)] < 0.
PEXN-]

Similarly, xZ‘ (t) is a mean-zero Gaussian random variable, whose variance is uniformly

bounded for all N, all p, t™" € Ty_1,andall0 <z < 1:
0 < Varg, , (¥ (1))
= tVarg , (S)) + (1 = 0)(¢"(1) = ¢'(gp)) < 42" (D) +(¢'(1) = ¢ (gp)) < oo
With the given assumption on U, we then have that for any k,d > 0 and 1 <m < 2r,

sup B e[VOQD1)*] < oo.
0<r<l,
p,T"eTN

Thus, using Holder’s inequality, the derivative ¥y, (f) is bounded by

Wy @] < CE(([Egy[SpS) — @D =" @) Ry plyorp GO
+ CE(( By [S,82] V1 v (31)

C
+ E]E(”E&N [S;XNﬁ(p)]D'X/—l,ﬂ’)N—l,ﬁ/ (32)

for some constant C independent of N and z. If we can show that all these expectations
vanish as N — oo and then € | 0, our proof is complete since 1/+/7 is integrable on
(0, 1]. For the remaining of the proof, we handle the three major expectations in the
above display as follows.
Estimation of (30): Write

Eon[S)Sh— ('(1) = ¢'(qp))]

B5p! 2
=2 o > (CREES A CTRERE M LA e (A VR L CT9))
p=2 I<ij<--<ip-1=N-1
p—1 2 N-1
N -1 Byp
2 P 1 12 2
= Zﬁpp[ l_[( N ) - 1] + [Z NPT Z (T Ty T T M 4/(41’)}
p>2 I=1 p>2 ity 1 =1
distinct
,32]7 N-1
P 1 1
_ z[z TS e e, iy - ;’@,P)]. (33)
p=2 iseip-1=1

distinct



On the TAP Equations via the Cavity Approach in the Generic Mixed p-Spin Models Page 21 of 43 87

Note that each sumin (33) is bounded in absolute value by Cg, introduced at the beginning
of Sect. 1. By the dominated convergence theorem, the first sum in (33) goes to 0 as
N — oo. The second sum in (33) is equal to

N -1 P 2 —1,._1 _2\\P /
Z(—) Bap(RP' t)e_, o — £ (gp) +on (D)

N
p>2
= (¢ (R))_ 5 — &' (ap) +on (D),

where for any 2 ¢ Y N_1, we abbreviate Rjp = R(rl, r2). For the last sum in (33),
we take the Gibbs average under (~)'X,71 B and use Jensen’s inequality to get

Bip A o
p 1 1,2 2 \p /
(Evs X aeea @ oy e,

p=2 I1yeeny ip—1=1
distinct
Byp IS 1 1 2 P r
/
§<‘ZNP1 Z T, ...rip_]ril "'.[i[)—l —-¢ (QP)‘> /
p=2 i1yeenip_1=1 N—1,8
distinct
=(1£'(Ri2) = £'(gp)l)y_; g +on (D).
Thus,
1 ¢l P
E({[Eer[58) — €O =@l i),
<3E <(|§/(R12) — g“/(qp)|)§,_1,ﬂ,>N_1,ﬂ/ +on(1). (34)

Therefore, from Lemma 3.9 and the fact that for all x, y € [0, 1],

£ ='Wl = ¢"(Dlx =yl (35)

the right hand side of (34) also vanishes in the limit N — oo and then € | 0.
Estimation of (31): With a similar argument as the above control, we see that

([Een[SpSo1y_1p = 41 ¢/ (Ri2) =" @p)I)y_y 5 +on(D)

and Lemma 3.9 and (35) ensure that (31) vanishes in the limit.
Estimation of (32 ): Note that for any p € n_1,

B [SpXn.60)]]
ﬂZP N—-1
= Z Nﬁ_l Z (‘L'l»ll ce Ti],,fl - (‘Cill - ‘[1.1’}71 >Il.i’71,ﬂ/)'0il S Piy
p=2 ilseeip_1=1

distinct

Again, we can use Jensen’s inequality to obtain
E<(|Eg-w [S:)XNvﬁ(p)]|);—l,ﬂ’>N—l,ﬁ’
< E((|¢"(RG", ) = &' (R, oDy gy pr +on (D

From Lemma 3.9, this bound vanishes in the limit. O
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3.3. Proof of Theorem 3.1. We begin by establishing the following proposition.
Proposition 3.11.

=0,

lim lim supE<[(0N)‘7v,,3 — tanh (<XN’/3(T)>1€/—1,/3’ + h)]2>1v I

€10 Nooo
where € | 0 along a sequence such that qp — € is always a point of continuity for Lp.

Proof. By Proposition 3.6, it is sufficient to show that

lim lim sup E

(X MY _1p 2
<|: (sinh(Xn,p(T) + M)y _y p — tanh ((XN,/S(T))IX’—LIS' " h)] > -
N.B

€0 Nooo (cosh(Xn g(7) +h))'1.i]_1,,3'
(36)
To this end, we claim that for ¢ € {—1, 1},
P 1 _ 2
i im supE<[<est,ﬁ<z>m_Lﬂ/ N ) c(qp»] > o,
N—o0 N.B
If this is valid, then multiplying ¢*” to this equation leads to
P 1irl 1y s’ 2
i SupE<|:<e£(XN,,5(r)+h)>§]_l’ﬁ/ A D=5 )] > _o.
N—o00 N.B
Noting that
sinh(x) e* —e™* .
tanh(x) = = , |sinh(x)| < cosh(x), and cosh(x) > 1,

cosh(x) e* +e~*

we can use the previous limit to recover (36); along the way, since (¢'(1) — ¢'(gp))/2
is a constant term, it will be cancelled and does not appear in (36).

The proof of our claim proceeds as follows. Note that Theorem 3.7 with U (x) = ¢®*
for ¢ € {+1, —1} readily implies that

. . eX” (7) 1 / 1 4
E?&lﬁ]j:opE“(e XN g )ﬁ’—l,ﬁ’ — exp {5[; N —¢ (qp)]}] >N’ﬁ =0. 37

For any p € X1, we can decompose Xy (1) = f(}%yﬂ(r) + (XN,/g(‘L’))'Xlil’ﬁ, to get

1 2
eXy g(D\P _ P [/ =¢’
E<[<e MO N EXp{g(XN’ﬂ(r»N*Lﬂ/ aldm=e (qp)]}] >N,ﬂ

& )" ; 1., , 2
_ E<62 (XnpO)y_y g [<€8XN'ﬂ(t)>§/—l,ﬁ’ — exp [E[{ 1) —-¢ (qp)]” >N ;

P

Xy (0 R 1 4 1/2
< {E(e4 Pt ’>N+ﬁ/)N3ﬁE<[(68X~vﬂ<f>>,@_1,ﬂ, —exp{3[¢'() — ¢'am]}] > } :
N.B

Here the second term vanishes as ensured by (37). By a change of measure as in the
proof of Lemma 3.2, the first expectation is bounded by

p
IE[ > Gnorp (0B, [cosh(x,v,ﬂ(p) + h)e4£<XN’ﬁ(r))N—1,ﬁ’]:|
PEXN-I
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12

e(X

<E Y Gyop(0) {Egyleosh® (X p(p) + 1By e o] <
PEEN-I

for some constant C > 0 independent of N and €. This completes the proof of our claim.
O

We now turn to the proof of Theorem 3.1. From Proposition 3.11 and noting that
| tanh(x) — tanh(x")|> < 2|x — x|, it remains to show that

limlim sup E <‘XN,,3((T>Z,1,;;/) - (XN,ﬁ(T))zpir—l,ﬁ'

€l Nooo

)N’ﬂ —0. (38)

As in the proof of Lemma 3.2, we apply a change of measure to deal with the dependence
of (-)n,p on the disorders g.y,
)N, B

< ]E<COSh(XN,ﬂ(,0) +h)‘XN,ﬁ(<f)ﬁ,_1, p) — (XN gl g

E(‘XN,I‘;((T)]%_L&) - (XN,ﬂ(T))]’il—l,ﬂ’

>N—l,ﬁ’
1/2 211/2
< E[<[E§W cosh2 Xy () + )] By [ o)~ s @y o) >N_1 ﬁ/]
Here, uniformly in p € Ty_1,

Eqg, cosh>(Xy g(0) + h) < €6 cosh?(h)

and
P P 2
Egn [ Xnp (71 ) = Xns @)y ]

.3[2717 P P P ?
= Z N1 Z <fi1)1v—1,,3/ ) "<Tip—1)N—1,ﬁ' —{u, "'Tip—l)zv—l,,s/

p=2 l'la“'#ip*l
distinct

=¢'((Ri2)y_ 1/3/) <§/(R1,2)>7i/,1,/3/ -2

Zﬁpp RipRyp--- Rp—l,py)N_l’ﬂ/ +on(1).
p=2

where we write Ry o 1= R(z¢, 7). From Lemma 3.9 and (35), we readily see that
leifollgn sup E(|¢" (R, 2>N 1 ,3) f/(qP)DN—l,ﬁ' =0,
P —
hf(}lgnj;PE(l(C/(Rl,z)>N_1,,s/ —8'@pP)|)y_1p =0

Finally, note that

|Rl,pR2,p p 1,p — | <Z|Rlp qpl.
It follows from Lemma 3.9 and the symmetry in / that

E(| X A p((RipRey - Rpipliy g —ap ), L,
p=2 7
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< (S8 ez~ el b1 O

p=2

as we send N — oo and € | 0. Combining these together validates (38) and completes
our proof.

4. Cavity Computation for X y g ((a)‘z"v’ ﬂ)

To derive the TAP equation from the cavity equation, the next step is to represent
XN,,g((t)]’i,i1 ﬁ’) in Theorem 3.1 as the difference between XN,ﬂ((O’)?lv’ﬁ) and the On-

sager correction term ¢”(gp)(1 — ¢ pP)o)y B To this end, in this section, we will first
perform a cavity computation for Xy, /3((0)‘1"\,, /3), like we did in Proposition 3.6 for
(on )?lv’ﬁ-

First of all, write

Bo /P! 3

&it,nip-1,N 0N g 01, )N g

p=2 N7 l<ij<w<i, 1<N—1

For each local magnetization on the right hand side, we can follow the same procedure
in Sect. 3 and write o as 0 = (7, on) to express

(zjeX V8O e (2. 1)) + 1je 06O g (1, 1))

(XN ge (7. 1) + e WO Mg (1, -1)))

N—1,p

(Uj)(zxv,,s =
N—1,p

for1 < j < N — 1. Due to the nested structure (20) and Lemma 3.5, one is tempted to
approximate all indicators above by 1121/:] B (t) for o = (p, ay) and write that

7jcosh(Xy g(7) +h) o
(o)) p st = s ’ ZN o (39)
' J (cosh(XN,/g(f)+h))N,1,,3/

foreach j = 1,2,..., N — 1. Write s” = (s7, ..., sh_,). The main goal in this section
is to establish this approximation and prove the following proposition.

Proposition 4.1. For any € such that qp — € is a point of continuity of | p, we have that
. 2
Jim E([Xx5(0)% ) = Xwp (6" )y 5 = 0. (40)

We will prove (40) in two steps. Firstly, we show that Xy g (<0>‘11v, ﬁ) and Xy g(s”) will
not differ too much if we truncate the infinite sum over p > 2 to a finite sum over
2 < p < po, provided that pg is sufficiently large. This will require some moment
and truncation controls on Xy, ﬂ((o)?[v, /3) and Xy g(s”) that we establish in the next
subsection.
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4.1. Moment and truncation controls of X y g ((o)‘}‘\,yﬂ) and X g(s?). Write Xy g((0)%)
=) =2 A% and Xy p(s”) = 3_ -, By, where

oL IBP\/F Z

Af F=) 8it,mip-, N0 N g (0i )y g (4D
N7 <ij<w<i, 1<N-1
,Bp\/ p!

B[’,’ = Z g,‘l’_“,,‘pfl,Nsi‘j -~-si‘;_1. (42)

N7 j<ij<e<ip 1<N-1

The following proposition provides a control on the truncation of the above two random
series.

Proposition 4.2. For any § > 0, there exists po > 0 such that for all N > 1 and small
enough € > 0,

]E<[ 3 A‘;‘,]4> <68 and ]E<[ 3 Bg]4> <.

P>Dpo N.B P>Dpo N.B

Recall the definitions of Ag and Gy_1, ﬁ/(Ag) from Sect.3. As we have seen from

Lemma 3.3 and Remark 3.4, the Gibbs probability of the event Gy_1, /5/(Ag) < §is
essentially negligible, the next proposition further shows that the second moments of
XN,ﬁ((a)‘}‘V,ﬁ) and X g(s”) on this event remain negligible.

Proposition 4.3. For any € > 0, we have that

. . o 2 —

limlim sup ([ Xy ()5, )Ly, a2 <0 lv.p = 0 (43)
lim lim sup B([ Xy (s”) 1 sy s =0. (44)
510 Ne>oo ’ { N—l,ﬂ’( 9)< } N,B

The proofs of Propositions 4.2 and 4.3 are deferred to Appendix A.

4.2. Removal of the cavity spin constraint Il. Fix 2 < p < po and recall the definitions
of A‘[", and B;,) in (41) and (42). Using replicas, we may rewrite A‘[’; and B;,) as follows.

_ —1
Fort = (t!,..., P71 € =", define

vV p! 1 -1
vy = GoiE DL ST T @45)

ip—l
I<ij<--<ip—1=N—1

Define

p—1 eXN,ﬂ(fl)'FhIlE%((rl’ 1)) +€7XN-ﬂ(rl)7h]].2%((Tl, _1))>
N-1p

cY = <ZN,p(r) I1 5

=1

p—1
Ch = <zN,,,(1) ]_[ cosh(Xy g(zh) +)lgp (r[)>N "
=1 -
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D¢ =

<p—1 eXN’ﬂ(Tl)-'—hlE?\‘[((Tl, D)+ e_XN'ﬁ(Tl)_h]lZaN((Tl, _1))>
P
N-1,8'

2

N—1,p’

=1
p—1

= < [TeoshXnpeh +m1sp (r’)>
=1

Then we can write

o Cg p Cp
Apzﬂpﬁ and B _,Bpr. (46)
P

Denote

v = E{{Laz\az O)y_y ply—1.p-

As we have seen at the end of the proof of Lemma 3.5, ny — 0 as N — oo. Our next
Lemma bounds the errors when approximating C g with Cf,’ and Dz with Dﬁ, which are

the main ingredients when we estimate the difference between A‘I"7 and Bg . The proof
of the lemma is deferred to Appendix B.

Lemma 4.4. For eachr > 1 and p > 2, there exist positive constants K (r, p, B, h) and
K'(r, p, B, h) such that for all N > 1,

E((Ch — Cp)¥ )y 5 < inK (. p, B, 1),
E((Dz - D§)2r>N’ﬂ S UNK (rv P ﬂv h)

4.3. Proof of Proposition 4.1. First, write
Xnp(o)y g) — Xn,p(s”)
= (Xn.p(0)5p) = Xnp M) LGy | canes)
+ (Xnp(@50) = Xup6M) ) L6, | aty<s)

= ( > (A5 - Bﬁ)ﬁ{GN,.,ﬁ/(Ag)za} + ( > (A5 - 35))]1{GN71,,3/<A5>25}

2<p=<po P> Ppo

+ XN 0NN LGy, paty<s) = XNBE G, | al)<s)-
It follows that

E((Xn.p((0)y 5) — XNﬂ(Sp))z)N,ﬁ

2
Bp)) LGy, pat )>8}>
2<p<po N.B

(X
+ CIE< >N’ﬂ + CIE<< 3 B§)2>

P>po N.B

< C]E<

2
+C]E(XN ﬂ( W LGy, Al 2y<s))w. +CE<XN,ﬂ(sp)]l{GN,Lﬁ/(Ag)d})N,,s-
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By Propositions 4.2 and 4.3, the last four terms can be made arbitrary small by choosing
6 > 0 small enough and p large enough. Thus, it suffices to show thatforany 0 < § < 1
and po > 2, the first term vanishes as N — oo, i.e.,

2
lim E<[ > (A% - Blg)} ﬂ{GNl_ﬁ,(Ag)>5}>N = 0. (47)

N—o00
2=p=po

To do this, notice that from (46),

0
2<p=<po 2<p<po b5 p
ce CcP\2
2 P P
(XA G-5))
2<p=<po 2<p<py P P
“c Z CpN2/ Dy —Dp\2 Co —Cpy2
= B F De + D .
2<p=<po p p P

Using (20) and the fact cosh x > 1, we have DS, D}, > 87 ontheevent {Gy_1 g/ (A%) >
8} and it follows that

2
]E<[ Z (A(;_BS)] l{GNl,ﬁ/(Ag)za}>Nﬂ

2<p=<po
2Cg C;;) 2 2 2
S (CCEEIRCE
ZCﬁ 1 4 4 2
= 2w 2 (s D B0 = D)y B = B )
=P=Po

By Lemma 4.4, we have for all 2 < p < po,

E(Df — D})')y 5 < Knw.

2
E((C; - CZ’) )N,ﬂ = KV,
for all N > 1, where K is a constant depending only on py, S, k. Also, a slight mod-
ification, by dropping the indicators in (66), we can bound E((C 5)4) nNpg < K’ for

2 < p < po, where K’ is a constant depending on p, B, h. Plugging these into (48) and
then sending N — oo yields (47) and thus completes the proof of (40).

5. From Cavity to TAP Equations

We will complete the proof of Theorem 1.1 in this section. At the current stage, we have
seen that Xy g((0)% ﬁ) asymptotically equals Xy g(s”) = > p>2 Bﬁ following from
Proposition 4.1, where Bg is defined in (42). Our next step is to handle this sum, via an
argument similar to the proof of Proposition 3.11, by adapting a multivariate central limit
theorem for the Gaussian fields, Xy g h, ..., XnNp (zP~1), and Zn,p () appearing in

Cﬁ and D,p,, see (46). We establish this limit theorem in the first subsection.



87 Page 28 of 43 W.-K. Chen, S. Tang

5.1. A multivariate central limit theorem for the cavity fields. Let§ = (&, ...,&,1 )T
be a centered Gaussian (column) vector of length p with covariance matrix

-1 -2 -2 -2
p(L—gb™)  Bppgh “(1—gqp) Bpras (1 —gqp) -+~ Bppgh ~(1 —qp)

ﬂppqﬁ_z(l —qp) ()~ (qp) 0 0
E&E") = | Bppap (1 —aqp) 0 ¢ -¢'gp) - 0

Bprah 21— qp) 0 0 () = (gp)
that is, &1, ..., &, are i.i.d. N(0,¢'(1) — ¢'(gp)) and & ~ N(O, p(1 — qﬁfl)) that
has covariance 8, pq? ~2(1 — ¢) with each of &1, ..., & p—1. Note that this multivariate
Gaussian distribution is well-defined. To see this, consider i.i.d. standard normal ran-
dom variables zo, z1,...,2p—1, and & can be constructed via linear combinations of
20,21, - - - » Zp—1 as follows:

E=VT)—Cgpa, i=1,....p—1,

— Bypah (1 —qp) pi zi + zo\/p(l gt B2p>(p — gy’ (1 — qp)?
() —¢'(qp) = r /(1) = ¢'(qp)

&o

where the quantity in the last square root is always nonnegative because
-1 2p—4
p(l—gh HE' () = ¢'(gp)) = Bop*(p — D (1 —qp)*
-1 -1 2p—4
>p(l—qh ) Bop(l—qp )= Bop*(p— gy (1 —qp)*
~1 2p—4
=Br* (1 —gb ) = (p— g’ (1 —qp)?)
-2 2p—4
=B p*(L—qp)*((L+gp+--+qp )*—(p—Dgp” ") = 0.
For p € ¥ y_1, recall from (26) that
XQ,B(#),...,X@’IQ(IP*), vel, P e sn

are defined as

: !
Xxylg(fl) — Z ﬂp\/p_

NpP—1/2

2o Sy (T (T ) (49)

I<ij<--<ip-1=N-1

p=2

Recall Zy , from (45). We set the centralized Zy ,(7) as

gir.ip ¥ (T "'Til,:l —(z “'Til,z;])ﬁ/—l,ﬁ’)‘

ooy

NP-1/2

I<ij<-<ip_1=N—1

ZN (0 =

(50)

Now we are ready to state the central limit theorem.
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Theorem 5.1. (Multivariate central limit theorem) Fix p > 2. Let Fy, ..., Fp_1 be
infinitely differentiable functions on R such that for z ~ N(0, 1), any M > 0 and
integers m, k > 0,

sup max(ElFém)(yz)lk E|F(m1()/2)| ) <
O<y=M

Then, for any integer r > 1 fixed, we have

2r
7P P 1 4 P—1y)\° _ —
hi%h;,n_f:opEd(U(ZN,p(T)’XN,ﬂ(r )""’XN,ﬁ(T ))>N—1,/3’ ]EU(E)] >N,,3_O’
(51
where U(xo, ..., xp—1) := Fo(xo)F1(x1)--- Fp_1(xp—1) for x = (x0,...,Xxp—1) €
RP?.

Proof. The proof utilizes a similar idea as that of Theorem 3.7. The main difference is
that here we need to deal with the 2r-th moment of a multivariate function depending
on (p — 1) spin replicas. Thus, we will further consider 2r independent copies of these
(p — 1) spins, (<!, 2, ..., 7P~1), and denote them by

" = (rm’l,...,r’"‘pfl), m=1,2,...,2r,

where (rm*l)lfmfznlfpfp_l are independently sampled from Glﬁl—l,ﬁ/' Forl <m <
2r, define

Sy = (S0, Syt LSy Thy = (25, @M, XY gL X EPTh).

Let §" = (&7, &/"..... & Z‘_l) be i.i.d. copies of & and be independent of everything
else. For 0 <t < 1, consider the interpolation

(1) :=E<<1‘[v X} (1) >N 1,3>

x(t) = (x50, . xPTN) = VST VT — 1 g
and V : R?” — R is defined as
V(-x()v ey -x])fl) = U(x()a LR xpfl) - EU(EOa ey Ep,]).

Note that the left-hand side of (51) equals ¢ (1) and ¢ (0) = 0. Following the same
argument as (29), we have ¢y (1) < ¥y (1), where

N’ﬂ

where

2r o
Un (1) :=E <cosh(xN,ﬁ(p) + h)< ]_[ v(x;’(t))> > )
1,/ IN—1,8

m=1 N—

It suffices to show that lim¢ o lim supy_, o, ¥n (1) = 0. To justify this limit, observe
that ¥y (0) = 0 and we thus aim at showing

hmhm sup/ [y (0)|dt = 0. (52)

€0 Nsoo
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First of all, by chain rule, ¥}, (¢) is equal to

QZr

m=1 [=

p—1

- Sml Em 2r , P
E{ cosh(Xn g( )+h)<—(x’"(t)) Vi(x™ (1) > .
T G- o) )

N—

m;ﬁm

Note that the Gibbs measures Gy _1, g and G* N_1.p do not depend on g.y, and thus, as
before, we can compute this derivative by first taking the expectation (inside the Gibbs
averages () y—_1,p and (- )N | /3’) only with respect to g.y and (Sl )o<i<p—1,1<m<2r and
then using the Gaussian integration by parts. With these, for fixed m and [/, the relevant
terms in the above display become

OV L, LeSpl g 2 o
Eq .| CoSXnp(0) + M 305 (- - =) 1‘[ (™ 1))
m;ﬁm
= (D) + (I) + (III),
where
2r 1
) _EgNﬁ[Slnh(XN ﬂ(/’)"‘h)*(xm(t)) 1—[ (x (f))]'TﬁEg-N[SZLIXN,ﬁ(P)],
m'=1
p—1 2r )
() := EZEQNE[COQKXN;KP)+h) (meD I1 V(xﬂ(ﬂ)]
= "
1 SZ1J glm m,l
: EE!ZN'SI:(7 - m)xp (t)]v
and
2r p—1 2 )
am = > ZEgNs[cosmeﬁ(pnh)—(x (r))—(x ‘o) ] vy (t))]
m'=11'=0 =1
m;ém m" #m,m’

L (B - )

Here E, , ¢ is the expectation with respect to g.y and (él’”)ofzs p—1,1<m=<2r- To handle

these terms, we first note that for any (t”"l)lgmfzr,lflsp_l sampled from Gy_1 g,
coordinates of S’[’} are mean-zero Gaussian random variables with uniformly bounded
variance for any N > 1, and so are the coordinates of x’;’ () forany 0 < ¢ < 1.
Consequently, from the given assumptions on the functions Fo, ..., F,_1 and the Holder
inequality, the first expectations in (I), (IT), and (III) are bounded by an absolute constant
independent of N, ¢, and (z™! )1<m<2r,1</<p—1. Furthermore, in (II) and (III), using
Gaussian integration by parts implies that for all 0 < ¢t < 1, 1 < m,m’ < 2r, and
0<Ll'<p-—1,

e (B - )] =Ly - wlerer ]
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From these, we conclude that there exists a positive constant K independent of N and
t such that

2r p—1
/ Ko
VNl = ﬁrg §E< B[S Xn.5(0)] )y 1,3>N_1’ﬁ, (53)
2r p—1
+ Ky Z Z <|Eg/v SmlSm l] [El EZ/ ]|>N 1'3/> g 54)
mm'=11,I'=

Note that =1/ is integrable on (0, 1]. It remains to show that the expectations in (53)
and (54) vanish in the limit as N — oo and then € — 0, which implies in (52).
Estimation of (53 ): We claim that forany 1 <m <2rand0 <[ < p — 1,

N P _
lelln hjsn_)sup]E«]EgN[Sm XN, ﬁ(p)]|>N*]’ﬁ/>N—1,ﬁ’ =0. (55)

If I # 0, then recalling Sl’)"*l = XN,B(T’”’I), the same argument as that used in the
estimation of (32) in the proof of Theorem 3.7 yields (55). As for [ = 0, from S;”*O =
Z.ﬁ,yp(r), we compute

B[S0 X p(0)]

N—1
_ ﬂpl) m,1 m,p=1 1 m,1 m,p—1\p ) )
= Nr—1 Z (7} T, (z Tipi )Nfl,ﬂ’)'o’l Pipi
iyeip—1=1
distinct

:'Bpp(R('L'm’l,p)..~R(1:m’p71,p)—(R(tm’l P+ RE™P p))o 1ﬁ>+01\/(l).

Since t™-1, ... Pl ~ Gﬁ,_l g0 We always have R(z™1, P)yenns R(z™-P~1 p) >
qgp — €. This combining with (23) implies that

h}{,n_f:opE«mg-N [Sg’OXN,ﬁ(Io)]’)1’1171,,3/>N_Lﬁ, <Bpp(gp+e)" " —(qgp — )P")

<2B,p(p — De.

Sending € | 0 yields (55).
Estimation of (54 ): We claim that forany | <m,m’ <2rand0<[,I'<p—1,

hinhmsuP]E(”EgN[SmlSm T - Efgry ]|)N lﬁ)N e =0 (56)

N—o00

First consider [, I’ # 0. Note that, in this case,
Syt = X5 g™ and S50 = X4 ).

In view of the proof of Theorem 3.7, when m = m’ and [ = [, the control of
Eg [S;"’IS;",’I/] has been implemented in the Estimation of (30);if m % m’,orl # I’, or
both, this expectation can also be controlled by the Estimation of (31). As a conclusion,
we readily see that (56) holds under these two cases. It remains to consider the scenarios
when at least one of the [, I’ is equal to 0. Without loss of generality, we assume [ = 0
and divide our discussion into two cases:
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Case 1: m # m'. Note that E[/"&/" ] = 0
(la) When!' =0,

By [S20S0)| = |Eq [ 25 ,(x™ 25, ,(x™)]|
—1
’ 1 1
<p‘HR(r’” "t —gh” ‘+p‘l_[ (R™,© me))Nlﬂ, qp )
=1
N—1

m,1 m,p—1/_m’,1 m',p—1\p p—1

+p Z Ty T, <Ti1 T >N—1~ﬂ’ qp

i1,enip_1=1
distinct
N-1
m',1 m',p—1/_m,1 m,p—1\p p—1
+p E T Ty (7 T >N7],ﬁ’ —d4p
i15enip—1=1
distinct

+on(1).

Taking Gibbs average with respect to Gﬁ/,l, B and using Jensen’s inequality, we

get
’ p-l 1 L
(Eeatsp oSy < oo TT R 20 =g ) eonin
=1 -

(1b) If I’ # 0, then

By [Sp 0S| = B y (25, (D) XG5 ()]
p—1

<ﬂpp\HR(r”" oy~ qh” 1)+ﬂpp(ﬂ (R O —ah™|

=1
N—-1
m,1 m,p—1;_m' I’ m'I'\p p—1
+,3pp‘ Z Ty T, (z "'Ti,._1>N—1,ﬁ’ qp
iyeees ip-1=1
distinct
N—-1
m'\l' m',l'|_m,1 m,p—1\p p—1
+Bpp Z T "'T,‘p,l(fn T, )N—l,ﬂ’_qP +on(1)
Il yeees ip—1=1
distinct

and thus,

p—1
e 2,0 1
[TRE >0 —qp”

=1

0
(}]EgAN[Sg’OSZ’ ! ]’)ilfl,ﬂ’ = 4'3PP< > +on(D).
N-1,8

Case2:m =m'.

(2a) If I/ = 0, then B[] = p(1 — b "), and

(Bl 08301 = Blggei )y o = ([Ben 25, @] = p1=af D)) 5

p—1

1

- 3p<’ [T RG22 — g ’> +on(D).
=1 N-Lp
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(2b) If ' # 0, then E[£]'&] = B,pgh >(1 — gp), and
m,0 om,l’ memi[\P
([Egn (S5 085" 1 = EIET &M _y 4

= (|Ben[25,,@%5 4] = Bppap (1 = qp))

p—1

< ,Bpp<‘ 1_[ R(IM,E’ 'L'm’l,) _ q£2‘>
=1
£

P
N—1,p
P

N-1,p

p—1 P
/ -1
+3ﬂpp<} l—[ R(zHE, 220 _qg ‘> +opn(1).
=1 N-1.p

From (1a), (1b), (2a), and (2b), we can use the concentration of the overlap in Lemma 3.9
to conclude that (56) holds as long as one of the [, I’ equals zero. This completes our
proof. O

5.2. Derivation of the Onsager correction term. Recall s? from (39). We proceed to
show that X v g(s”) is asymptotically equal to the sum of the cavity field X v g ((t)ﬁ,_1 ﬂ,)

and the Onsager term ¢”(gp)(1 — gp)(on)y 8 by using the multivariate central limit
theorem, Theorem 5.1. This is the first place in our derivation that gives rise to the
Onsager correction term.

Proposition 5.2. We have

2
lim lim supE([XN,ﬂM) = XNy ) = £ ar) (1 = gp) o)y ] > —0.
€10 Noo ’ N.B

We establish the proof of Proposition 5.2 in this subsection. Recall that Xy g(s”)
= ZpZZ Bg, where B;,) is defined in (42). Write
Xnp(D) gy 50+ 6" (@P) (L —qp)(on) g

=Y (Ep+B2p(p — Dah 2 = ap)ion)y )
p>2

where

o . ﬂlﬂ/ﬁ Z

Ey = Noor

I<ij<--<ip—1=N-1

o 0
gil...ip71N<ti1>N,Lﬂ/ e (Tip71>N,1"3/-

Thus, to prove Proposition 5.2, we will show that each B,’,) is approximately equal to
Ep+Bip(p— 1)q;;*2(1 —qp){(on)y g foreach p > 2 fixed. To begin with, we firstly
show that the infinite sum in Xy g( (r)ﬁ,_1 ﬁ’) can be approximated by a finite sum of
Eﬁ, similar to what we have done for XN,ﬁ((o)‘}‘v’ﬂ) in Proposition 4.2.
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Proof of Proposition 5.2. Recall the expression B, Z'f\),’ ,» and X K,’ 5 from(46), (50),
and (49), respectively. Noticing that

ﬁpZN,p(T) ﬂp (T)+Ep’

we can write

; Cp (Zn,p(T) ]_[ll:l1 cosh(Xy p(t)) +h))7i/_17,3/
B, = ,3p =Bp 1 ] o
D} (TT/Z, cosh(Xn,p(z )+h))N7Lﬁ/
(24 (@ [17- cosh(Xy 5 (<)) + Wiy 1 g

( ]_[11:11 cosh(Xy g(t!) + h))ﬁ,flgﬂ/

=Ep+Pp

(57)

For the numerator in the second term of (57), we can use the relations

. 1
Xy p(t) = X3 5+ (Xw @)y, 5 and coshr == 5 7 e
e==%x1

to rewrite it as

P
N—1,p

p—1
<Z'1pv,p(r) [ [ cosh(x% 4z + <XN,;3(TI))§/—1,/S’ * h)>
I=1

1 L axt |z
—N—_I;exp(gez Xy g\ gt ))( (r)nelx v )>N v

where € = (¢1,...,€p-1) € X,_1. Applying Theorem 5.1 to the last term with the
choices of functions Fy(x) = x and Fj(x) = ¢~ forl = 1,2,..., p — 1, we get, for
eache € ¥, 1,

N—oo

p—l p=l -4
. . o X? ( ) p—2 p=l s D=¢’
lelir&hmsupE<|:< Np(r)l_[ 1 Xy 5 >N ]ﬁ’_ﬂppqp (1 —gp)e T EMH="@rn ; £,j| > =0,
— N

where the second term comes from

-1

E(Fo(6) -+ Fp1(6p-1)) = (&0 1 )

=1

p—1
= eE(s)EE ) - E(etr6)

=1

— ﬂpqu;_2(1 t]P)e o2 L&' ()=¢'(qp)) Zel

p—1

Qﬁ,,p = 2% Z exp (pifsl (Xn g} No1p )]E(go eezéz)

LD =1 =1
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=10 /
= Bpp(p — Dgh 2(1 —gp)e’ T €' D=

: o -2 o
. smh((XN,ﬂ(r))N_]’ﬂ/ + h) cosh?” (<XN’}3(‘L')>N_1’ﬂ, + h).
It then follows from the Cauchy—Schwarz inequality that

p—1

{E<[< » () Hcosh Xnp(T )+h)>N Ly Qﬁl,p]z>N’ﬂ}2

% Z E<exp(4,§€l XNﬁ(f)N Lp h)>>N,B
=1

€€X )|

—1
1 5 aXx? H\P
ol Z <[<ZN p(T) H " >N—1,ﬁ’

€€ =1
— Bopah i1 — gpre'T (- ;(qp))zgl] > ’

where on the right-hand side, the last expectation vanishes as N — oo and then € |, 0.
The first expectation equals

p—1
IE< [ ] cosh*(xwph)y_, ¥ h)>
: g

=1

p—1
< E< cosh(Xy p(p) +h) [ | cosh*((Xnp(xh)}_, P h)> ,
=1 ’ N—1p

where again we adapted a change of measure for Gy g as in Lemma 3.2. Applying
Holder’s inequality to decompose the productinside (-) y—1, g and taking the expectation
with respect to g. first, we see this term stays bounded for all N > 1 and small enough
€ > 0; this is because Xy g(7) has a variance uniformly bounded by Cg for all N, 8
and T € Xy_1. We thus conclude that

p—1 o 2
lim 12nj:opE<[( £, E cosh(X .5 (t") +h)>N_Lﬁ, -05,] )N’ﬁ —0, (58

which takes care of the numerator in the second term of (57). For the denominator
there, applying Theorem 5.1 to the last term with Fy(x) = 1 and Fj(x) = €°* for
I =1,2,..., p— 1 and mimicking the computation for the numerator, we will get

p—1 5
lim lim sup E [( cosh(X (r)+h> —OF ] > =0, (59
ipyimsup &{[{ [T eom(xusch el -4, )
where

o, _zp;— > exp{piez (XnvpED)y 1 g h)}E(l_[ez?zE/)

€€, =1 =1
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p—1

= "7 WL @) coshP =1 (X y 4())]

N_Lp +h).

Furthermore, by Proposition 3.11,

Qp
hmhmsup]E<‘ 5 — Bpp(p— Dgh™ (1 —gp) (o) Nﬁ‘ >

€40 N—o00 N,p N.B
60
= Bpp(p — Dah (1 = gp) (60)
« 2\ _
hinhz{/n s;lop]E<| tanh((XN 5(T)>N_1’ﬂ/ +h) — (UN>N’/3‘ >N,/3 =0.

Therefore,

E([Bf — Ep — B2p(p — Dap > (= ap)on)% s )y 5

— 2
— Bpp(p = Dah (1 = ap)on) 4] >

. —1
_ 3E<[(ZNJ,(1) [17-, cosh(Xy g(z)) + h)),’(,flyﬂ,
(T17=! cosh(X . p(zh) L) N.B

ZN »(7) p-l cosh(X . @ +n)y , 0o*
- Cﬂﬁ <[( N.p@TTZ N.B )N—l,ﬁ N,p]2>
N.B

(1172 cosh(Xy p(x!) + D) oN

p
N.,p

2 4 a 2
+CﬁpE<[Q — Bpp(p = Db 21— ap)on) 4 >Nﬂ
N.p ,

The second term vanishes as N — oo and € | 0 due to (60). From (58), (59), and the
fact that cosh(Xy g(t) + h) > 1 and Qp > (P=DE(=¢"(4P)/2 the first term also
vanishes. As a conclusion, this proves for each p=>2,

lim lim sup E([ B — E, — ﬂf,p(p — 1)q§*2(1 - qp)(oNyjfv,ﬂ]z)N,/3 =0. (61)

0 Nooo

Finally, write
XN,ﬁ(Sp) - XN‘ﬂ(<r)§]_1,/3/) - é‘”(qP)(l - qP)(UNﬁlV,ﬂ
= Y (Bp—Ef—Bip(p—Dap 21 —ar)on)y ;)

2=p=po
-2
+ 3 By =Y (Ep+B2p(p = Dah (1= ap)ion)yg).
P>P0 P>P0

where the first sum vanishes as N — oo and € | O for any pgy due to (61), and the
last two sums can be made arbitrarily small by choosing p¢ sufficiently large, due to
Proposition 4.2 and Lemma 5.3 below (proof deferred to Appendix C), respectively.
This completes our proof. O

Lemma 5.3. For any § > 0, there exists pg > 0 such that forall N > 1 and any € > 0,

Az 1), =

P>Ppo N.p



On the TAP Equations via the Cavity Approach in the Generic Mixed p-Spin Models Page 37 of 43 87

5.3. ProofofTheorem 1.1. From Theorem 3.1, Proposition 5.2, and the fact that | tanh (x)—
tanh(x")|? < 2|x — x'| for all x, x’ € R, we readily have

. . 7 2

lim lim sup E{| (on)y p — tanh (X p(s”) +h — " (gp)(1 — qp)(oN>7v!ﬂ)| by 5 =0,
€0 Noo ’

where € | 0 along a sequence such that gp — € is always a point of continuity for uwp.
Finally, from Proposition 4.1, (9) holds and we are done.
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Appendix A. Proofs of Propositions 4.2 and 4.3
The proofs of Propositions 4.2 and 4.3 are based on the following lemma:

Lemma A.1. There exists a constant K = K (B, h) > 0 such that for all N > 1 and
small € > 0,

1

Z(E(|A%|4)N’ﬂ)1 <K and ) (E(1BpI%)y ,)* < K.

p=2 p>2

Proof. For notation simplicity, we suppress the superscript « and write A% as A,. We
handle the series of A, first. Note that for each p, we only need to consider the case,
N > p, otherwise A, = 0 by the definition (41). Write

4 ﬁ%p! 2 o « \*
E(AP)N,;B =E (Np—l) ( Z gil,.-.,ip—l,N<Ui1>N,ﬂ"'(Gip_1>N,ﬂ) N

I<ij<--<ip-1=N-1

(N,H) > Z [Gwﬁ(a)]_[gl,zv]—[ al,kNﬁ] (62)

B

aEXN if,...,1 k=1
where the second sum is over all ij = (i1, ,1,p—1), for [ = 1 2,3, 4 that are
(p — 1)-tuples with strictly increasing coordinates from {1, 2, ... —1}7~1. We note

that there are (1[\)’:11) choices for each i;. Write g, ._.i, ,_; N as gil,N and let Ap
ﬁp«/p!N’(p’l)/z. We have

(N1 Bpt (W DN =2) (N = (p = 1)
P\p—-1) Npr-l (p—D!

o N-1 N-2 N-(p-1
=Py TN N

<Bp
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Also, there exists a constant C > 0 independent of p, N,1i such that for any 0 <
ki,ky, k3, kg < 4,if weletd = ki + ko + k3 + kq, then

(a"l gke gk ks GN,ﬂ(a)’SCA;’,GN,,S(a)SCA;’,(p—1)dGN,,3(a) 63)

8i,N ~8ip,N ~8i3,N ~8iy,
and

4 p—-1
ki gk gk d
‘ag.llzvaglzzzv Dgin g141v1_[1_[ Ty ) Nﬁ) < CAY(p— 1. (64)
I=1 k=1

These can be established by an induction argument on d. Now we divide the collection
of (i1, ip, i3,1i4) into three cases and compute, respectively, an upper bound for the
summand in (62) under each case. In the following discussion, C1, C{, C2, C, ... are
absolute constants independent of N and p.

e Case I: all 4 tuples are distinct. Applying Gaussian integration by part and the
chain rule, we get

4 p-1
EG v p(0)8iy. N 8in. N 8is N &ia | | H(Gn,kﬁ‘v,,e‘ < C1AL(p = D*EGy,p(@).
I=1 k=1

. . e e e e N
Since the number of choices for (i, iy, i3, i4) in Case I are no more than (1[\: _11) , the
summation in (62) for Case I is bounded by

4 p-1
ALY ‘EGN,,s(a)gil,Ngiz,Ngig,Ngu,N1_[H(Giz.k)(fv,ﬁ‘
aeXy Case I =1 k=1

4
<A4-(N_1) At (p— ) < 1SS
i P =S1PpP

e Case II: there are three distinct tuples in (i1, is, i3, i4). Without loss of generality,
suppose i; = iy and they are both different from distinct i3, is. In this case, again
using Gaussian integration by part twice and the chain rule, each summand in (62)
is bounded in absolute value by

4 p-1

‘EGN,ﬁ(a)gizl,Ngh,Ngu,N I ]_[(on,ﬁ%‘/,ﬂ‘ < CA%(p — D’Egi, yGup@).
=1 k=1

It follows that

4 p-1
NS ’EGN,ﬁ(a)gil,Ngiz,zvgig,zvgu,zvl_[H(Giz,kﬁv,ﬁ‘
aeXy Case 11 =1 k=1

3
< CLAY. N-1 CAZ(p —1)2 . Eg?
= ¥25p p—1 p\P 8i;,N

< GHAS, (Z 1) (p—1*=<Cyp%p
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e Case III: there are no more than two distinct tuples. In this case, we have three
possibilities, each bounded in absolute value respectively as follows:

4 p—1

B p(@ed vt v [T [Tt 6| = EGrp@l nh v
I=1 k=1
4 p-l1
B sl ngdn [T TT(0% 5| < EG.p(@)
=1 k=1
4 p-1
[BG st v [TTT(00n% 6| = EGnp(@gi -

=1 k=1

1 3
8i;,.N8iy, N

’

Consequently,
4 p-1
NI ‘]EGN,/S(a)gi1,Ngiz,Ngi3,Ngi4,N1_[ (CTiz.k)(/xv,ﬁ‘
=1 1

aeXy Case III k=

N — 1)\’
< G0, ( > B8l vehn +E

1 3 4
é’il,Ngiz,N‘ + ]Egil,zv]

p—1
4 (N-1Y? 4 2
SCéAP.(p—l) < CiB,p"

Combining all three cases, we have
E(AL)y 5 < Ca(Bpp® +Byp° + By %)

Since szz 21’/35 < 00, we have ,312, = 0(27P) as p — o0o. Choosing pg large enough
such that 8, < 27P/2 and p? < 2P/* forall p > py, it follows that

> (EAd)y ) = Y (B 850+ B50Y) <3¢ Y Bpp?

P>Po P>Dpo P>Ppo
<3Cy Y 27PPpr <30y Y 2P < oo
P>Po P>Dpo

For the summability for the series of B/, the proof is essentially the same; the only
change is that in (62), <Gj>?lv,ﬁ will be replaced by sf. Notice that |sf| < 1 and any
partial derivatives of sf of degree d < 4 with respect to the variables (g; v )i are bounded

by Af, up to an absolute constant independent of p, N and i. For example,

‘ asf (tjTiy -+ 7i,_ v sinh(Xy g (1) +h))§/—l.ﬂ’
dgiN ! {cosh(Xn,p(r) + M)y, 4
p . ... ) 1 p
~ A,,Sj (tiy -+ i, Tv sinh (X g (7) + h)>N71,f}/ <an,

{cosh(Xy g (1) + h)xi/—l,ﬂ’

More general partial derivatives can be controlled by an induction argument on the
number of differentiations. This implies that (64) with (o j)‘/"v B replaced by s;.) is also
valid. We omit the rest of the details. O
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Proof of Proposition 4.2. Similar to (65), we have

E<[ 2. AZ]4> (X (E(A‘;)N’ﬁ)%){

P>po N.B P>Do

Since (]E(A‘},) N ﬂ)l/ s summable, as proved in Lemma A.1, the right hand side can

be made arbitrarily small by choosing pg sufficiently large. The other assertion can be
treated similarly. O

Proof of Proposition 4.3. Note that for any p1, p2, p3, pa > 2, using Holder’s inequal-
ity yields

BlA% 49,A% A%) o < (B{1A%, 1)y HBl1A% 11y sE14% 1), ElAs 1), )
which implies that
4 1\4
il a0 o) g =B{(245) ) = (Z @z )l 9
p=2 N.B p=2

By the Cauchy—Schwarz inequality and Lemma A.1,

2 12
E([XN,ﬂ((0)7\/,,3)H{GN,]ﬁ,(Ag)d}] )N,,s = <E<X?\’,ﬂ(<a)‘11V,/3)>N,/3E(1{GN,,W(A’é)<8}>N,,B>

12
= \/E(EQ{GN,W(Ag)<a}>zv.,s> :

Thus, (43) follows from (22). The proof of (44) is exactly the same. O

Appendix B. Proof of Lemma 4.4

Proof of Lemma 4.4. Fistofall,foranyt € ¥y_1, T = (rl, A rp_l) € El"\’,__l], Xnp
and Zy , are centered Gaussian random variables with variances bounded by Cg and p
respectively, which result in

Egw(1Znp@F)y_y p = P2 =D,
Eg{cosh*(Xn,p (@) + 1))y, 4 < €12 coshk (h),
Eg coshk(XN,;g(t) +h) < ecﬁkz/2 cosh* (h).

Using the nested structure (20) and the Holder inequality with p conjugate exponents
2r(p— 1D, 2r(p—1),...,2r(p — 1), and 2r/(2r — 1), we have

p—1 p—1 p—1
|D% — DA < < [ cosh(xn.p(z" +h)( I1 ]lAg;(rl) -T1 ]lAg(rl)>>
=1 =1 =1

2r

N—1.p

p—l p-l 2\ 2r=1
< <c0sh2r(p*l)(XN,,3(r) +h))N71 ﬂ,<< l_[ ]lAé () - 1_[ ﬂAg(Tl)> >
I=1 I=1

N-1p'

p—1 p—1
< (cosh? P~V (X y g(1) + h))N_l,ﬂ,< I ﬂAé(z’) - ]lA/é(r])>
=1 1

,
- N-Lp
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where the last inequality holds since ]_[f;ll IlAg;(rl) - ;7:—11 ﬂAg(rl) € {0, 1}. Since

p—1 p—1 p—1
1 1 1
[Tra@) = [TLanh =" 1anian @),
=1 =1 =1
we have
D — Dyl < (p = Dcosh P DXy () + b))y _y glLazae )y -

From this, by a change of measure for « = (p, ay) ~ Gy g as in Lemma 3.2 and the
Cauchy—Schwarz inequality, we obtain the second assertion,

E((Dy — D))y 4 < E[Z Grn-1,8ONLaz a2, D)y 4
0

‘Eg y [cosh(Xn g () + )| cosh” P~V (X s (1) + ), ﬁ,]]
< UNpe(4’2p2+1)Cﬂ cosh?? (h).
For the first assertion, we similarly have

2\ r

r p—1 p—1 p—1
ce — P < (z}vyp(r)>N71’ﬂ/ < E cosh?(Xy 4 (') +h)< E 1y (2 ]j 1y (r’)) >

<(p- 1)<Zzzvr,p(f)>;/_1,ﬁ'<COShzr(/H)(XN,ﬂ(T) +W)y_y g <1A" \A2, Oy 1

N-1,8'

where the first inequality used the Cauchy—Schwarz inequality and the second inequality
was obtained by an analogous argument for | D7 — Dg |*". Via a change of measure for
Gy, p as above, we can then apply the Holder inequality in the expectation E, , with
thee conjugates exponents 3, 3, 3 to get the desired bound,

E<|C;’ B Cglzr)zv,ﬂ

< E[Z Gy_1p (P)(lAg)\Ag (tl))N—l,ﬁ’
P

By [cosh(Xn 5 (0) + MZE @)y, pleosh® PD Xy p@) + 1))y, 4 ]]

< v (p = Dp"[(6r — ]G0 PICh osh? ().
(66)

O

Appendix C. Proof of Lemma 5.3

Proof of Lemma 5.3. The proof is essentially the same as that for Proposition 4.2. First
of all, we claim that there exists a constant K = K (8, h) > 0 such that forall N > 1
and any small € > 0,

o0
S (EGEL ) < K. (67)
p=2
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This part of the argument is analogous to the proof of Lemma A.1, but in a slightly
simpler manner. We begin by rewriting

N-1

o4 Byp!\? o p )
E(IE*)y 5 = E <Np71> > 8it.eip-1.N(Oir Dy g+ (01,1 Ny yp

I<ij<-<ip-1=N—1

B2 2 4 p—l
= (N;—l> Z Z E[GN,ﬂ(Of)l_[gi/,N H(G"M)ﬁ’*lvﬁ']'
=1 k=1

QEXN i1,...,04

When applying Gaussian integration by parts to control the last equation, we only need
to differentiate G v () with respect to gj,, v and the bounds of the partial derivatives of
Gy () given by (63). An identical argument as in the proof of Lemma 4.2 implies our

claim (67), the summability of (IE( |E g |4) N, 5) 1 4. With this claim, our assertion follows
immediately since, similar to (65),

]E<[ 3 E;;T) < ( > (E<|E;,’|4>N,,s)”4>4,

P>po N.B P>po

and the right hand side can be made arbitrarily small by choosing pg sufficiently large. O
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