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Abstract

We study the universality of superconcentration for the
free energy in the Sherrington—Kirkpatrick model. In [10],
Chatterjee showed that when the system consists of NV spins
and Gaussian disorders, the variance of this quantity is
superconcentrated by establishing an upper bound of order
N/log N, in contrast to the O(N) bound obtained from the
Gaussian—Poincaré inequality. In this paper, we show that
superconcentration indeed holds for any choice of centered
disorders with finite third moment, where the upper bound
is expressed in terms of an auxiliary nondecreasing func-
tion f that arises in the representation of the disorder as
f(g) for g standard normal. Under an additional regularity
assumption on f, we further show that the variance is of
order at most N/ log N.
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1 | INTRODUCTION AND MAIN RESULTS

The Sherrington—Kirkpatrick (SK) model is an important mean-field spin glass that was introduced to
explain some unusual magnetic behaviors of certain alloys. For a given disorder (random variable) &
with finite second moment, a given (inverse) temperature § > 0, and any integer N > 1, its Hamiltonian
is defined as

—Hy(o) = Zhua,aj, oce{-1,1}",

\/_IJ—
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where (4;)1<;j<y are i.i.d. copies of 4. One of the main objectives in the study of the SK model is to
understand the limit of the free energy,

Fy(B)=log ), e,

ce{-1,1}¥

which has attracted a lot of attention in physics as well as in mathematics communities, see, for
instance, [17, 18, 21-23].

This paper is concerned with the order of fluctuation for the free energy. When # is standard
Gaussian, it can be checked directly from the Gaussian—Poincaré inequality that Var(Fy(f)) = OV).
It is natural to ask whether one can improve this bound as Var(Fy(f)) = o(N), a phenomenon
called superconcentration, introduced in the pioneering work of Chatterjee [10, 11]. In light of this
notion, superconcentration was established with the bound that for any g > 0, there exists a constant
C = C(p) > 0 such that

VarFy(8) < N YN 2 2. )
logN

When g <1/ \/5, much sharper bounds were also obtained in the literature. In the case of f < 1/ \/5,
[2] showed that Fyy(p) satisfies a central limiting theorem, and their result implies that Var(Fy(f)) =
oM. Atp =1/ \/5, it was predicted by [4, 19] that a sharp phase transition should occur, namely,
Var(Fy(f)) = ©(log N). Along this conjecture, a partial result Var(Fy(8)) = O((log N)?) was known
by the authors, see [14]. Interestingly, if one now considers the SK model in the presence of an external
field, that is, replacing —Hy(c) with —Hy (o) + eri]a,- for some r > 0 in the free energy, then it
was known in [13] that the corresponding free energy obeys a central limit theorem and Var(Fy(f)) =
®(N), agreeing with the rate obtained from the Gaussian—Poincaré inequality instead of exhibiting
superconcentration.

While the aforementioned results addressed superconcentration assuming that the disorder is Gaus-
sian, we aim to investigate this phenomenon for more general choice of disorders. Note that for an
arbitrary i with finite second moment, the Efron—Stein inequality readily implies Var(Fy(f)) = O(N).
In contrast to this bound, we say that the free energy is superconcentrated if Var(Fy(f)) = o(N).

To state our main results, we assume that Ei = 0 and EA?> = 1. We express & = f(g) for some
nondecreasing function f and a standard Gaussian random variable g. Let g', g% be independent copies
of g. For 0 <r < 1, define

w(t) = Ef (81)f (),

where

gl = Vig+V1-1,
g =g+ V1-1g 2)

Note that w(f) — 1 as ¢t 1 1 if we further assume E|i|> < oo. Indeed, since f is nonde-
creasing, f(g!)f(g?) converges to f(g)* almost surely as ¢t 1 1 and for any M > 0, denoting

!'For two nonnegative sequences (ay)ys; and (by)ys1, denote by ay = O(by) if there exist constants ¢, C > 0 such that cby <
ay < Cby forall N > 1.
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Em, = {Igf1. 1871 < M}, |f(g)f (8P)I1E,,, is uniformly bounded for all € [0, 1]. Consequently, from
the bounded convergence theorem,

im E|[/(e1)/(6) = £ |+ Eus| = 0. v > 0.
On the other hand, from the Holder inequality and using the union bound,

E||f(g)f (gt
tiﬁ)ﬁ] Hf(g ) (g7)

C 2 3 C
;E,,M] < (Elf@P)*”? sup P(ES, )3
1€[0,1]

Bap(gl > M) = 0 as M — .

< (ElnP)
These together yield the desired limit. With this, our first main result shows that superconcentration
for the free energy holds for any 4 with a finite third moment, where the upper bound for the variance
is related to the rate of convergence of w(¢) at 1.

Theorem 1. There exist positive constants ¢c,K > 0 depending only on f such that
whenever h satisfies Eh = 0, Eh* = 1, and E|h|? < o0, we have

e/l 1
Var(FN(ﬂ))sK(E|h|3+1)N<1—w((logN) /loel) +10gN>, VN > 2.

In the next main result, we let f be an arbitrary absolutely continuous function and take & = f(g).
Note that now f is not necessarily nondecreasing. If we make the assumption that Ei = 0, EA? = 1,
and E|f'(g)|*> < oo, then we can obtain superconcentration for the free energy in the same rate as (1).

Theorem 2. There exists a constant K > 0 depending only on f such that whenever h
satisfies that Eh = 0, Eh*> = 1, and f is absolutely continuous with E|f'(g)|* < oo, we
have

Var(Fy(B) < K (1 + (]E[f’(g)|3)2> %, VN > 2. 3)

A few remarks are in order.

Remark 1. We do not expect to obtain the bound N/log N in Theorem 2 directly from
Theorem 1. Nevertheless, if in Theorem 1 we assume additionally that f is differentiable
and E|f'(g)|> < co, then one can bound 1 — w(?) < (1 — HE|f’(g)|?, which follows from
the mean value theorem and the fact that w’ is nondecreasing, see (8) below. As a result,

1= (Gog N/ "=Y) < BIf ()1 - Qog /") < Bl (g P A REN

and this implies that Var(Fy(f#)) = O(N loglog N/ log N).

Remark 2. Under the assumption that the first four moments of 4 agree with those of g
and & has a finite fifth moment, one can manage to match the first and second moments
of the free energies associated to 4 and g asymptotically by using the approximate Gaus-
sian integration by parts, which will lead to Var(Fy) = O(N/logN) as (1) and (3), see,
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270 Wl LEY CHEN AND LAM

for example, [9]. Our main results address superconcentration by reducing the moment
assumption as much as possible.

Remark 3. In a more general framework, one can consider the mixed even p-spin model,
whose Hamiltonian is defined as

[*)

by
)= ZIW Z hil"“’izpail " Oy
p=

10y, ... igy <N

where hi,,...,iz,, forall 1 <ij, ... ,i < Nandall p > 1 arei.i.d. copies of & and (f,)p>1 is
a real sequence with Z;"ZIZP B7 < oo. In [10], Chatterjee showed that the corresponding
free energy is again superconcentrated as long as 4 is standard normal. We point out that
the same results in Theorems 1 and 2 also hold in this setting by the same proofs.

We now discuss three applications of Theorems 1 and 2.

Example 1. Iff is either a polynomial or a Lipschitz function so that Ei = 0 and EA? = 1,
then Theorem 2 holds.

Example 2 (Uniform distribution). Let & be a uniform random variable on the interval

[—\/5, \/5]. In this case, one can write h = f(g) = \/3(2@(57) — 1), where ®(x) :=
Qn)~'2[* e=*/? da for x € R is the CDF of g. It can be checked that the assumptions
in Theorem 2 are satisfied and thus, we have Var(Fy(#)) = O(N/ log N).

Example 3 (Two-point distribution). Let ¢ < 0 < b and p € (0,1) satisfy
ap + b(1 — p) = 0 and a’p + b*(1 — p) = 1. Suppose that P(h = a) = p = 1 — P(h = b).
Note that Es = 0, Eh? = 1 and E|2|*> < co. We claim that

loglog N >

Var(Fy(p)) = O(N logN

To show this, we use Theorem 1 by expressing & = f(g) for

_Ja ifg<o(p),
)= {b if g> @ (),

where @ is the CDF of g. Note that f is nondecreasing. Denote y = ®~!(p). A direct
computation shows that

w(t) = 2abP (g,l <y.g> y) +d’P (g,1 <y, g < y) + b°P (g,1 >y,8 > y) .

To compute these probabilities, we write
P(g! Sy,g?>y)=IP><\/;g+v1—tgl Sr,\/;g+v1—tg2>y)
e~ HA)/2
// tx<y \/—g<\/ y> dx dy
X

<y}
/ / / Vi-y—y —zz/(2l) e~ @WH)/2
dx dy =: Q(2).
{x<y} \/_tx y V 271' 2”
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On the other hand,

P(g! <y,87 <7)=p—Q0),
P(g! > 7.8t >7)=(1-p)— Q).

From these and using a’p + b*(1 — p) = 1, we arrive at

_ -2 +y?)/2
w(t)=1—(a—b)29(t)21—\/1—t(a—b)2/ Y=X ¢ "7 dxdy.
{x<y} \/2xt 2m

Thus, we can find a constant d > 0 such that if # is sufficiently close to 1,
wt)y>1—-dy\1-—1.

Theorem 1 then implies that for some constants C, ¢ > 0 and for N large,

Var(Fy(f)) < CN < V1= (log N)—</ 10N 4 mézv)

and our claim follows by noting that

1 — (log Ny™/1oeN = | — eXp<_610g10gN> < cloglogN'

logN logN

Proof Sketch. Our proof is based on Chatterjee’s interpolation argument (see [10, 11]) in proving
superconcentration for the free energy in the SK model with Gaussian disorder # = g. The argu-
ment starts by noting that Fyy(f) is a function of i.i.d. standard Gaussian g = (g;)1<;j<v and writing
Var(Fy(8)) = ¢(1) — ¢(0), where for independent copies g' and g2 of g,

¢ :=EF(g)F@g), 0<t<1

for

g = Vig+ V-1,
g =g+ V1-1g, 4)

and F' = Fy(p). The first key step uses Gaussian integration by parts inductively to show that y(a) =
@' (e™*) for a > 0 is a completely monotone function, and from the Bernstein theorem, this function can
be represented as y(a) = f[o’m) e~ u(ds) for some positive measure u. Consequently, from Holder’s
inequality, forall 0 < s < < 1,

logt

') < ¢'(S)E_§:¢'(1)1_ e &)

In the second step, one relates ¢’ (¢) to the second moment of the cross overlap associated to the inter-
polated spin system. In particular, by employing the so-called Latala argument (see [11], Lemma 10.4),
it can be shown that ¢’(s) = O(1) as long as s is small enough, where the fact that g is symmetric was
heavily used. On the other hand, the above inequality makes it possible to get ¢ (f) = O(N'~10g!/logs)
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272 Wl LEY CHEN AND LAM

whenever ¢ > 5. With these, one readily obtains the desired bound O(N/ log N) utilizing the relation
1
Var(Fy(8)) = [, ¢'(0) dr.

In our argument, we adapt the following interpolation

() =EF(f(g) )F(f(g}), 0<t<1l

Now the terms in ¢’ () involve f” (see (12) below). While (5) remains valid, the main difficulty arises
in obtaining an useful bound for ¢’(s) with small s. To this end, for technical purposes, we adapt the
convexity argument in [14] by considering the coupled free energy (15) instead of using the Latala
approach. Our control in some sense relies on an approximate Gaussian integration by parts argument
throughout.

Universality of superconcentration in other models. Superconcentration does not only exhibit
in mean-field spin glass models, but also in random growth models on the integer lattice such as
first-passage percolation [15], directed polymers [3], frog model [8].

For first-passage percolation, after a series of work [6, 7, 15], it is shown that under a 2 + log
moment assumption, the model exhibits superconcentration, and it does not depend on the distribution
of the disorder. Similar results hold for many related models. In [12], Chatterjee shows that supercon-
centration holds in a certain type of “surface growth models”, which includes directed last-passage
percolation and directed polymers, under the assumption that the disorder is a Lipschitz function of a
Gaussian random variable.

The approach to superconcentration for growth models relies on the idea in [7], which consists
of two components: one is the L!-L? bound by Talagrand (or its variants), and the other is the trans-
lation invariance of the model. Even though the superconcentration results look very similar in both
mean-field spin glasses and random growth models (the upper bounds for the variances are also of
order N /log N), this approach does not seem to work in mean-field spin glass models in any obvious
way, due to the fact that spin glass models and growth models are very different in nature.

2 | PROOF OF THEOREM 1

2.1 | Some auxiliary lemmas

In this subsection, we shall gather three elementary lemmas that will be used in our main controls later.
Letg = (g1, .. ,8), 8 = (g}, ... ,g}),and g> = (g3, ... , g7) bei.i.d. standard normal. For0 <t < 1,
let g and g? be defined as in (4). The first lemma controls the derivative of the expectation associated
to this interpolation. Although the proof has appeared in [10], we still provide a proof for completeness.
We say that F : RF — R is of moderate growth if limy e |[F(x)|e~“ I = 0 for all a > 0.

Lemma 1. Assume that F : R* — R is smooth and all of its partial derivatives are of
moderate growth. Define

() =EF(@gHF(g’), 0<t<1.

Then forany 0 <t < 1,

k
¢'(1) = ) B, F(g)o, F(g) (6)
i=1
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andforany0<s<t<1,

gt

F0) < P (D) ™

Proof. By symmetry,

¢(r>—ZE<\[—\/_>a F(g))- F(g).

Using Gaussian integration by part yields

1
i 8i
E( £L - 0 F(g) - F(gh) = Ed, F(g)) - 0, F(g})
\/; V1I—t
and this gives (6). As for the second assertion, note that each term in ¢’(¢) is of the same
form as that of ¢(7). Hence, we can apply induction to show that

k
¢ = Y Eoy . F@g)o ., Flg)

iy enriy=1

k

- Y E [E[axil..AxinF(g})lgr

iy riy=1

®)

Here, if we set w(a) = ¢'(e™®) for 0 < a < oo, then y is completely monotone, that is,
(—D)"w™(a) > 0 forall 0 < a < oo and n > 0. From this and the Bernstein theorem (see
for instance [16], Sec. XII1.4), one can express y(a) = f e~ u(dx) for all @ > 0 by some
finite positive measure u on [0, o). From the Holder inequality, for any 0 < a < b,

: s
@ < ( / o #(dX)> < / lﬂ(dX)> =y (0)

and this is equivalent to (7). [

Lemma 2. Assume that Y, X, X, are random variables with finite second moment and
EY = 0. Assume that L : R*> — R is a differentiable function with uniformly bounded
partial derivatives. Then

1
EYL(X) = / E[0,, L(sX)X1 Y + 0,,L(sX)X,Y] ds,
0

where X = (X1, X3).

Proof. Write L(x) = L(0) + fol VL(sx) - x ds. From this and EY = 0, putting x = X,
multiplying by Y and taking expectation on both sides complete our proof. (]

Lemma 3. Let y be a differentiable function on R and be of moderate growth. Then

Elw(g)ly'(g) < %Elglw(g)z-
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274 Wl LEY CHEN AND LAM

Proof. LetI' = {x € R : w(x) = 0}. Since y is continuous, I is closed and we can write
I’ as a disjoint union of open intervals | 1er(@i, by), where I C N is some index set. Here,
on each (ay, b)), w takes a fixed sign, and on {ay, b1, as, b, ... }, w = 0. From this, we can
rewrite

Elw(@)ly'(©) = Y wiBw(@w'(@)1(,5)(2) ©)

lel

for some sequence {w;};e; with w; = 1 or —1. Now, we compute directly

b
1 r_
Ew (@' (&)1w,5)(8) = Wor 2y (! (x) dx
TJda
1 2 —xz/2 / 2 —x2/2
= w(x)e xy(x)“e dx
24/2n 24/2x
1
= EEgW(g)zlm,,bl)(g).
From (9), the assertion follows. =

2.2 | Main controls

Throughout this entire subsection, we assume that f satisfies the following:

(A) : f is nondecreasing and smooth with Ef(g) = 0, E f(g)*> = 1,and

E|f(g)|> < oo, and its derivatives of all orders are of moderate growth.

Let h = f(g). Let g = (gy)1<ij<n- 8' = (g}j)lSiJsN, and g* = (g,'zj)lsiJgN be i.i.d. standard Gaussian. For
any 0 <t <1, set

= \/;g+ Vl_tgl’
=g+ V1 -1

Define
(1) = Elog Z! log Z2, (10)

where for Z =1, 2,

N
th = Z CXP(\/ﬁNZf(gfij)GiO'j>, (11)
o ij=1

e{-1,1}¥

and g/ ; is the (i, j)-th entry of g/ . From (6),

py=L Z]Ef (815 (82 (G077 (12)

lJ]
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CHEN AND LAM WI LEY 275

Here, (-); is the Gibbs expectation associated to the following Gibbs measure

N N
1 B 1 i 2
1{(6,1)6-}6’(1)( (gt,--)ai6j>exp< (gt,")TiTj .
7'z} ) } \/Ni;f ! \/Ni;f !

o,re€{-1,1}N

Recall that w(r) = Ef(g!)f(g?). From Lemma 1, we also have w'(t) = Ef’(g})f’(¢?). Finally, for
0,7 € {—1,1}V, we define R(c,7) = N"' TV 0,1:.

Lemma 4. Under the assumption (A), we have for 0 < t < 1 that
@' (1) < fPNW (OE(R(o,7)*), + 4B°N'?Ro (1),

where
2BE|P +1

Ro(?) := 1=,

Proof. Let X; = f(g!) and X» = f(g?). Denote U = f"(g})f’(¢?). Since f’ is nonnegative,

EIX,|U = E[If(gHlf (g (gD)]
=E[Eq [IfeHIf'(¢D)] f'(gD)]

< E[Eq (18" [/(sh?] /(&
2\/:[g[lglf(g)]f(g)]

1
= E [f(g)*lg'If' (g}
; T—t [Fe)1g' I (gD)]

SE [FeH’1g"1g°f(gD)] .

2(1

where the inequality used Lemma 3 for E, [|f(g))|f'(3/)] and the last equality used
Gaussian integration by parts with respect to gZ. From the Holder inequality and indepen-
dence, it follows that

EIXi|U < 20 - S B ) ™ (Blglrehr)
2(1 5 Elhl )(E|g|3/2)2/3(1E|g| )3
< 2(1 SEINE - Elg)? = = t]E|h|3.

The same bound is also valid for E|X;|U. From these, putting Y = U —IEU, and using the
fact that f* > 0, we have

1/3
ElX,Y| <EIX|U+E|X||-EU < IZ—IEVIP + W' (1),

1/3
E|X,Y| <E|[X;|U +E|X,| - EU < %]E|h|3 +w ().
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Using Gaussian integration by parts and the Cauchy—Schwarz inequality,
W) = 7 Be'¢f (e)f (gD
< 1—(E|g1f<g 1) ElgrehP)
= (Elg' P ElfeP) " (BIgP  ElehiP) ' = - (13)
It follows that
max (E| X, Y|, E|X,Y|) < % =: Ro(?).
From these and Lemma 2, for X := (X;,X,) and twice differentiable L with
maxg=12 |0, L|lw <y, we arrive at
EULX) = EU - EL(X) + EYL(X)
=EU-ELX) + /0 IE [(0, L(sX)X1 + 0y, L(sX)X3) Y] ds
<WOELX) +y (E|X Y| + E[X>Y])
< W OELX) + 2yRo(1). (14)

Now for fixed i, j, conditionally on g! and g? except g}y and giy, we express (0;0;7;7;); as
L(X) in distribution. A direct computation gives

aX]L(-xlsXZ) <61 / 1 1(6 6 _O- O- )>t9

\/_
B

VN
where (¢!, 7!) and (62, 72) are i.i.d. samples from the Gibbs measure associated to (-),.

From these, max/—1 ||0, Ll < 28N~'/2. Consequently, from (14) and using conditional
expectation,

O, L(x1,x0) = (al-lajlf Yz} T - 77 7 )

4
Y (g}, (6, o077 = ElEx, x [ULCON < W (OB (oieyriny) + 0 Ro(0).
Summing these up over all i, j completes our proof. ]

Lemma 5. Assume that (A) holds. There exists a constant K depending only on f such
that whenever t € [0, 1) satisfies

1
46%log — < 1,
ﬁogl_l

we have

E(R(O' T) >t = \/—
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where

3
V2 + E"f' L ;YR |
V1-4p2log L -1

Proof. Fort € [0,1] and A > 0, consider

Ri(¥) :=K|log

0, 2) :=Elog Z exp< \/_Z (f(gtoio; +f(82)TiT) + AP*NR(o, 7)2> (15)

O'TE

Denote by (-);, the Gibbs average with respect to the i.i.d. samples (67, 77)s»; from the
Gibbs measure associated to this free energy Q. A direct differentiation and Gaussian
integration by parts yield that

1
8ii 8
0,0(t, A) = E v _” '(g1,/)0i0) + (” - —L ’(g?,,-»)rir~>
lJZ_ << \/_ ’ ] \/— ’ ! t,A

2
_ fvzl Bf i)' &) {ole] () = 7)),
ij=

In the same manner as the proof of Lemma 4, if we let X; = f(g;;), X2 = f(g;;), and
U = f'(g},)f'(g};) we can express (o]0} (7/7) — 7777) >z,/1 as L(X;, X) in distribution.
In this case,

O, L(x1,x2) = ! (Tl-lrjl - )(a o; +0' —20’ o; )>

p
7N,_<Ui10'j
lqjl (Til?jl - lerlz) (z} ‘L' + 77 T - 21'31'3)>“l

B
W

Therefore, from (14), for D(¢) := 163Ry(¢), we have

t,A°

Ox, L(x1,x0) =

9,0(t, 2) < f*Nw (DE(R(c',7")* = R(c',7%)?), , + VND().
From this, whenever 0 < w(f) < 4,

9, (O(t, A — w(1))) = 9,0(t, A — w(1)) — W (1)9;0(t, A — w(?))
< —fNWOE(R@ . *7), . + VND(®) < VNDG.

which implies that
01, A = w(t) — 00, 1) = Q(t, A = w(®)) = 0(0, 2 — w(0)) < VND().

Let Ag > 0 such that 224y < 1. For any ¢ > 0 satisfying 22(4y + w(t)) < 1, if we plug
A = Ao + w(?) into the above inequality, then

Q(t. 4) < Q(O, Ao + w(n)) + VND(). (16)
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Finally, since Q(¢, ) is convex in 4,

JoB*NE(R(o,7)*), = 200;0(t,0)
< 0, A) — O(,0)
< 0(0, 49 + w(t)) — 0(0,0) + VND(), (17)

where the third inequality used (16) and the fact that QO(#,0) = Q(0,0). Here, Q(z,0) =
0(0,0) holds because, recalling the definition Z{ from (11), Q(t,0) = Elog(Z!Z?) =
ElogZ! + ElogZ? = Elog Z} + Elog Z = 0(0,0).

In order to bound the right-hand side of the last inequality, our next step is to show that
we can essentially replace f (glj) and f ( gl]) in Q(0, -) by i.i.d. standard normal random vari-

ables by using approximate Gaussian integration by parts. Let ( ) d (Z~2~

1<ij<N U) 1<ij<N

be i.i.d. standard normal independent of g, g', g>. Define

p(A) = Elog Z exp( \/_ Z lea,a] + Z,jrl'r,) + AB’NR(o, r)2>
O'Te

IJ—

This is essentially the same as Q(0, A) with the replacement of (f (g5) ./ (¢5)) by (2§, 27) -
Denote thz =f (g}l) and wizj =f (gi) . For any 0 < s < 1, set the interpolated free
energy

N
p(s, 4) = Elog 2 eXP<\/ﬁN2<<\/EW;j+ V1 —sz,!j)aioj
W ij=1

o,re{-1,1}

+ (\/Ew?j +V1- szé)rm) + AﬂzNR(a, 1')2>.

Similar to the Gibbs expectation (-), ;, we let (-); be the Gibbs expectation with respect to
the i.i.d. (67,77 )¢>1 sampled from the Gibbs measure associated to the free energy p(s, 4).
It follows that

%P(S, A) = ZE(WUO',UJ + w; T,TJ> 2E<Zl]6l0’j + Zgjrifjx,

Sz,/ 1 N(l—

Here, the second term can be computed by the usual Gaussian integration by parts,

ZE<ZUO-10-] +Zl TITJ> E<2 R(U o ) — R(TI,T2)2>;.

\/N(l -5

As for the first term, note that Bz = 0, Eh?> = 1, and E|A]? < o0, we can use approximate
Gaussian integration by parts (see, e.g., [5], Lemma 2.2) to obtain

L) LA

2
PVig( - ole) )| <3 88 gy = 2Pgyp

~G~G TTTT
VN
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Summing over all i,j yields that

24/ Ns ij=1 2
Consequently, we arrive at

10,p(s, A)] < 68> V/NE|h]?,

which implies that

100, 4) = p(0, D] = |p(1, 1) = p(0, )| < 65°VNE|h[’.
This together with (17) implies that
AoB*NE(R(0, 7)), < (0, dg + w(®)) — 0(0,0) + VND(1)
< p(0, Ao + (1) = p(0.0) + VN (126°Elhl* + D(1))
In the last step, note that

p(0, Ao + w(1)) — p(0,0) = Elog (exp f*(Ao + w(t))NR(c, r)2>;
< log E{exp f2(Ao + w(D)NR(c, 7)*),.
Observe that due to the symmetry of (zilj) and (zl-zj), under the expectation E(-)(,, NR(c, 7)

equals X; + - - - + X for Xy, ... , Xy i.i.d. Rademacher(1/2) random variables in distribu-
tion. Consequently, as long as

2ﬁ2<ﬂo+logﬁ) <1,

we have

N

i=1

N 2
E(exp B2 (Ao + w(?))NR(o, 1')2>(,) =Eexp M <2Xi>

1

<
T V1 =220 + w(t)
1

\/1—2ﬁ2 </10+10gi>

where recalling (13), the last inequality used the bound

’

t
w(t) = / w'(s) ds < logi.
o -1

N 2
b Y E{wjoio; + witit;). — ﬁ—NE(Z ~ R, 0% —R(',7)?)'| < 65> VNE|n[*.
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It follows that
3 3
E(Ro.2)), < 7775 log ! P REEIESDO g
’ \/1 -2 <ﬂo + log l%f) \/N’loﬁ
Recalling that
3
D(r) = 168°Ro(1) = 16—ﬂt (2'PEln® +1)
and taking Ao = 1/(4$%), whenever ¢ satisfies
4 log —— < 1
g 1—; )
we have
644> (2'PE[P + 1 SE(I3
E(R(c,7)*); < 4 log V2 + 7 || ) L 488 E|A[*
N 1-4p10g L VNG - 1) JN
This completes our proof. .

2.3 | Proof of Theorem 1

Smooth case: First, we show that Theorem 1 holds under the assumption (A). Recall ¢ from (10).
It suffices to bound ¢(1) — ¢(0). Denote (1) = E(R(c, 7)*),. For 0 < r < 1, write

r 1
¢(1)—¢(0)=/¢'(I) dt+/ @' (1) dt.
0 r

By Lemma 4 and integration by parts, the first term is bounded above by

/ r(,b’(t) dt < p°N / rw'(t)n(t) dt + 4p°N'/? / rRo(t) dt
0 0 0
= ﬁ2N<w(r)n(r) — w(0)(0) — / rw(t)n/(t) dt) +4p3N'/? / rRo(t) dt
0 0

< B*Nn(r) + 4p°N'/? / rRo(t) dt,
0

where we dropped w(0)#(0) and forw(t)n’ (#) dt since they are both nonnegative, which follow by noting
that the summand of the Gibbs expectation in 5(?) is of the form F(g!)F(g?) for some bounded smooth
function F.

On the other hand, observe that ¢/ (r) < f2Nw'(¢). It follows that

1
/ @' () dt < FANw(1) — w(r)).
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Combining these yields that

4B

$(1) - $(0) < ﬁ2N<n(r) i

Ro(t) dt+w(l)— w(r)).

Next, from Lemma 5, we fix 0 < s < 1 such that

Ri(s)

\/_

n(s) <

By using (7), for any r satisfying s < r < 1,

log r logr log r logr log r

n(r) < (i) (n(1))’ e <n(s)eer SN oo Ry(s)ler <N 2oes (1 + Ri(s)). 19)

Consequently, there exists some K’ > 0 depending only on # such that for any r satisfying s < r < 1,

¢(1) — (0) < ﬁ2N<N_%(1 + Ri(s)) + 4/3N_% Ro(t) dt +w(l) - W(r)>
< K'Eln] + 1)N<N +N"/ T )= w(r)> (20)

To control the right-hand side, let N > 2 and take

2logs

r = (log N)wen |

Note that s < < 1 and thatif a = 1 —r, then 1 —a = (log N)2!ogs/1ogN — (Jog N)~2legs™)/logN [sing
the bound 1 — cx < (1 —x)° for all x € [0, 1] and ¢ > 1 implies that

I_M_(l_a)%_ 1 )
2log(s~1) logN

It follows that

-1
|—pmgy Hog™ ) () 1
logN logN

and thus, there exists some C depending only on s such that

ldtt log - S CloglogN. (21)
On the other hand, from our choice of r,
N = 22
2logs — .
log N 22)

Putting (21) and (22) back into (20) yields that

Var(Fy () = ¢(1) — ¢(0) < K" (E[n]* + 1) N<w(1) — () + 11>
og N
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where K" is a constant depending only on #. This proves Theorem 1 under assumption (A).

General case: Assume that 4 satisfies Eh = 0,[Eh*> = 1 and E|#|> < oo and & can be written as
h = f(g) for some nondecreasing f, where g is a standard normal random variable. For any integer
n > 1, set f,(x) = max(min(f(x), n), —n). Let h, =fn(g) for

_ 1)~ Ef(g)
v/ Var(f,(g))

Note that Ek, = 0 and Eh3 = 1. Also, we have |f,(g)| < |f(g)| for all n, and hence by the dominated
convergence theorem, E|f,(g)—f(g)|*> = 0asn — co. Thus, E|h, —h|* = 0and Ef, (g} )f ,(g?) = w(?)
as n — oo. From these, if we can show that 4, enjoys the inequality in Theorem 1, then so does A. To
this end, for any fixed n, sincefn is bounded and nondecreasing, we can construct a sequence of smooth
and nondecreasing functions (]?n,k)kzl of moderate growth (for instance, takefn!k(x) =Ef,(x+g/ \/%))
SO thatfn!k satisfies the condition (A) and for A, ::fn’k(g), E|h, — h,l’k|3 — 0 as k — oo. Since &,
satisfies the upper bound in Theorem 1 for any k£ > 1, we can pass to the limit k — oo to obtain the
same bound for £,,, completing our proof.

fn(x) :

3 | PROOF OF THEOREM 2

Smooth case: Assume that f satisfies the extra assumption that f is smooth and its derivatives of all
orders are of moderate growth. Recall ¢(¢) from (10). Note that in the proof of Lemma 4, we can bound

E|X:|U < E[RP)'PEI e D) < E[h1)PEL ()2

by the Holder inequality. Thus, the statement of Lemma 4 is valid with the replacement of Ry(¢) by the
constant

Co := EIRP)'PEIF (91 +Ef (9)%
that is,
@' (1) < FANW (tn(0) + N> Co, (23)

where we recall that 7(f) = E(R(c, 7)*);. From this bound, it can also be checked directly that (18)
holds with D(f) being replaced by Dy = 16 Cy. Moreover, as long as

2ﬂ2</10+10g %r) <1,

we have
1 + 1283E|h|? + Dy

\/1 =25 (Ao +log - ) VNP2

1
1) < 1
n()_N/lOﬂ2 og

Letting Ay = 1/(44%), this inequality then implies that whenever

1
46%log — < 1,
ﬁogl_l
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we have

[S10)]

n(t) < (24)

for

Ci(t) = 4log V2 +483E|A + 4Dy,
Now, by using (23), for any 0 < s < 1,
Var(Fy(8) = (1) — ¢(0) = /0 W dr
< /0 N one) + AN ) di
< FANW (1) /0 o) di+ FYNC,
< F*NEf'(g)* <n(s> + / o dr) + VNG,

where the last inequality used monotonicity of #. Here, we can select and fix s satisfying that
4p%1log (1 —s5)~! < 1 so that we can apply (24) to bound #(s) < C;(s)N~'/2. In a similar manner as
that of (19), we can bound that for any s < r < 1,

log r
n(r) <N 2ee (14 Ci(s)),
which implies that

log(s D
og N

)

1
/ n(r) dr<(l+C1(s))/ N~ le dr <2(1 + Cy(9))

where the second inequality used the bound that for any x > 1,

/lxlogr = 1— 1+logx < 1 < 1
s I+logx = I+logx ~ logx

Putting these together, we arrive at

Var(Ey(9) < ﬂzNEf’(g)2< C\l/%) +2(1 4 Cis )>l°g(s )> + FPYNG,

< KEf'(®)* (1 +Elh]* + EIf'(@)1* + E|r)' PE (9)1)?) —— ogV

for some universal constant K depending only on f. Note that the following Gaussian-Poincaré
inequality holds (see, e.g., [20], Eq. (2.5)),

Eln]’ = Elf ()’ < CEIf'(9)F,
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where C is a universal constant independent of f. We can bound each E|4|* in our main control
above by E|f'(g)|3. Together with the trivial bound Ef'(g)> < 1 + E|f’(g)|?, we obtain the desired
inequality (3).

General case: We continue to handle the general case in Theorem 2. First of all, we argue
that without loss of generality, we can assume that f is uniformly bounded on R. Indeed, con-
sider the absolutely continuous function fy; = max(—M,min(M,f)) for M > 1. We see that
Ifir(x)| < |f(x)| for all x and |f},(x)] < |f'(x)| a.e. Since E|f(g)|* and E|f'(g)|* are both finite, if
we define

7 = ) = Efu(s)
VVariu(s)

then hy := f,,(g) satisfies the assumption in Theorem 2. On the other hand, by the dominated con-
vergence theorem, we also have that E|fi,(g) — f(g)|> = 0 and E|f},(g) — f'(g)|> — 0, which in turn
implies that E| iy —h|*> — 0 and ]E[f;,,(g) —f'(g)|> = 0. Hence, in proving Theorem 2, we shall further
assume that f is uniformly bounded from now on.

Let (a,) and (b,) be two real sequences with a, < b,, a, -» —o0, and b, — 0. For each n, let f,
be an absolute continuous function defined as f, = f on [a,, b, ], f, = 0 outside [a, — 1,b, + 1], and
linear otherwise. Since E|f(g)|* and E|f’(g)|* are both finite and f is uniformly bounded, it can be
checked that

lim E[f,(8) —f(®)I* = 0.
lim EIf;(9) = f'(g)I” = 0. (25)

In addition, because f, is compactly supported, |f,|? is integrable on R with respect to the Lebesgue

measure. Since a.e.

fo ) = O, 51 + fan)lia,~1.4,) =G, b, 4115

we also have

2

/ i) dx < [f@)l? + [fb)]P + V2re S PR (9)]? < .

With these, for any n > 1, there exists a sequence of smooth functions (¢, «)«>1 With compact support
such that ¢, — f, and @], — f; as k — co under the L*-norm with respect to the Lebesgue measure
on R (see, for instance, [1], Corollary 3.23). This readily implies that

kli_P;]El‘bn,k(g) _fn(g)|3 =0,
lim El,4(2) = fa(@)I” = 0. (26)

Now, let

¢n,k (x) — IE‘i)n,k (€3] .
Var(¢x(g))

fn,k (.X) =
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From (25), (26), Ef(g) =0, and Ef(g)? = 1,

lim lim E[f,,.(¢) —f(&)I* =0,

n—-o00 k—o0

lim 1im E[f, ;(¢) = ') = 0.

Here, the first limit readily implies that the variance of the free energy associated tofmk(g) converges
to that associated to % in the limit k — oo and then n — oo, while the second limit leads to

lim lim EIf,,(9)]’ = EIf'(9)I’.

Since A 1= fn’k(g) satisfies all the assumptions in Theorem 2 and the derivatives offn,k of all orders
are of moderate growth by the compact supportiveness of ¢, x, from the smooth case above, the inequal-
ity (3) holds for A,,x, from which sending the limit in the order k — oo and then n — oo completes our
proof.
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