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Abstract
We study the universality of superconcentration for the

free energy in the Sherrington–Kirkpatrick model. In [10],

Chatterjee showed that when the system consists of N spins

and Gaussian disorders, the variance of this quantity is

superconcentrated by establishing an upper bound of order

N∕ log N, in contrast to the O(N) bound obtained from the

Gaussian–Poincaré inequality. In this paper, we show that

superconcentration indeed holds for any choice of centered

disorders with finite third moment, where the upper bound

is expressed in terms of an auxiliary nondecreasing func-

tion f that arises in the representation of the disorder as

f (g) for g standard normal. Under an additional regularity

assumption on f , we further show that the variance is of

order at most N∕ log N.
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1 INTRODUCTION AND MAIN RESULTS

The Sherrington–Kirkpatrick (SK) model is an important mean-field spin glass that was introduced to

explain some unusual magnetic behaviors of certain alloys. For a given disorder (random variable) h
with finite second moment, a given (inverse) temperature 𝛽 > 0, and any integer N ≥ 1, its Hamiltonian

is defined as

−HN(𝜎) =
𝛽√
N

N∑

i,j=1

hij𝜎i𝜎j, 𝜎 ∈ {−1, 1}N ,
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268 CHEN AND LAM

where (hij)1≤i,j≤N are i.i.d. copies of h. One of the main objectives in the study of the SK model is to

understand the limit of the free energy,

FN(𝛽) = log

∑

𝜎∈{−1,1}N

e−HN (𝜎),

which has attracted a lot of attention in physics as well as in mathematics communities, see, for

instance, [17, 18, 21–23].

This paper is concerned with the order of fluctuation for the free energy. When h is standard

Gaussian, it can be checked directly from the Gaussian–Poincaré inequality that Var(FN(𝛽)) = O(N).
It is natural to ask whether one can improve this bound as Var(FN(𝛽)) = o(N), a phenomenon

called superconcentration, introduced in the pioneering work of Chatterjee [10, 11]. In light of this

notion, superconcentration was established with the bound that for any 𝛽 > 0, there exists a constant

C = C(𝛽) > 0 such that

Var(FN(𝛽)) ≤
CN

log N
, ∀N ≥ 2. (1)

When 𝛽 ≤ 1∕
√

2, much sharper bounds were also obtained in the literature. In the case of 𝛽 < 1∕
√

2,

[2] showed that FN(𝛽) satisfies a central limiting theorem, and their result implies that Var(FN(𝛽)) =
Θ(1)1. At 𝛽 = 1∕

√
2, it was predicted by [4, 19] that a sharp phase transition should occur, namely,

Var(FN(𝛽)) = Θ(log N). Along this conjecture, a partial result Var(FN(𝛽)) = O((log N)2) was known

by the authors, see [14]. Interestingly, if one now considers the SK model in the presence of an external

field, that is, replacing −HN(𝜎) with −HN(𝜎) + r
∑N

i=1
𝜎i for some r > 0 in the free energy, then it

was known in [13] that the corresponding free energy obeys a central limit theorem and Var(FN(𝛽)) =
Θ(N), agreeing with the rate obtained from the Gaussian–Poincaré inequality instead of exhibiting

superconcentration.

While the aforementioned results addressed superconcentration assuming that the disorder is Gaus-

sian, we aim to investigate this phenomenon for more general choice of disorders. Note that for an

arbitrary h with finite second moment, the Efron–Stein inequality readily implies Var(FN(𝛽)) = O(N).
In contrast to this bound, we say that the free energy is superconcentrated if Var(FN(𝛽)) = o(N).

To state our main results, we assume that Eh = 0 and Eh2 = 1. We express h = f (g) for some

nondecreasing function f and a standard Gaussian random variable g. Let g1, g2
be independent copies

of g. For 0 ≤ t ≤ 1, define

w(t) = Ef (g1
t )f (g2

t ),

where

g1
t =

√
tg +

√
1 − tg1,

g2
t =

√
tg +

√
1 − tg2. (2)

Note that w(t) → 1 as t ↑ 1 if we further assume E|h|3 < ∞. Indeed, since f is nonde-

creasing, f (g1
t )f (g2

t ) converges to f (g)2 almost surely as t ↑ 1 and for any M > 0, denoting

1
For two nonnegative sequences (aN )N≥1 and (bN )N≥1, denote by aN = Θ(bN ) if there exist constants c,C > 0 such that cbN ≤

aN ≤ CbN for all N ≥ 1.
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CHEN AND LAM 269

EM,t = {|g1
t |, |g2

t | ≤ M}, |f (g1
t )f (g2

t )|1EM,t is uniformly bounded for all t ∈ [0, 1]. Consequently, from

the bounded convergence theorem,

lim
t↑1

E

[|||f (g
1
t )f (g2

t ) − f (g)2|||;EM,t

]
= 0, ∀M > 0.

On the other hand, from the Hölder inequality and using the union bound,

sup

t∈[0,1]
E

[|||f (g
1
t )f (g2

t )
|||;E

c
t,M

]
≤

(
E|f (g)|3

)2∕3

sup

t∈[0,1]
P(Ec

M,t)1∕3

≤
(
E|h|3

)2∕3(2P(|g| > M))1∕3 → 0 as M → ∞.

These together yield the desired limit. With this, our first main result shows that superconcentration

for the free energy holds for any h with a finite third moment, where the upper bound for the variance

is related to the rate of convergence of w(t) at 1.

Theorem 1. There exist positive constants c,K > 0 depending only on 𝛽 such that
whenever h satisfies Eh = 0, Eh2 = 1, and E|h|3 < ∞, we have

Var(FN(𝛽)) ≤ K
(
E|h|3 + 1

)
N
(

1 − w
(
(log N)−c∕ log N) + 1

log N

)
, ∀N ≥ 2.

In the next main result, we let f be an arbitrary absolutely continuous function and take h = f (g).
Note that now f is not necessarily nondecreasing. If we make the assumption that Eh = 0, Eh2 = 1,

and E|f ′(g)|3 < ∞, then we can obtain superconcentration for the free energy in the same rate as (1).

Theorem 2. There exists a constant K > 0 depending only on 𝛽 such that whenever h
satisfies that Eh = 0, Eh2 = 1, and f is absolutely continuous with E|f ′(g)|3 < ∞, we
have

Var(FN(𝛽)) ≤ K
(

1 +
(
E|f ′(g)|3

)2
) N

log N
, ∀N ≥ 2. (3)

A few remarks are in order.

Remark 1. We do not expect to obtain the bound N∕ log N in Theorem 2 directly from

Theorem 1. Nevertheless, if in Theorem 1 we assume additionally that f is differentiable

and E|f ′(g)|2 < ∞, then one can bound 1 − w(t) ≤ (1 − t)E|f ′(g)|2, which follows from

the mean value theorem and the fact that w′ is nondecreasing, see (8) below. As a result,

1 − w
(
(log N)−c∕ log N)

≤ E|f ′(g)|2(1 − (log N)−c∕ log N) ≤ E|f ′(g)|2 c log log N
log N

and this implies that Var(FN(𝛽)) = O(N log log N∕ log N).

Remark 2. Under the assumption that the first four moments of h agree with those of g
and h has a finite fifth moment, one can manage to match the first and second moments

of the free energies associated to h and g asymptotically by using the approximate Gaus-

sian integration by parts, which will lead to Var(FN) = O(N∕ log N) as (1) and (3), see,
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270 CHEN AND LAM

for example, [9]. Our main results address superconcentration by reducing the moment

assumption as much as possible.

Remark 3. In a more general framework, one can consider the mixed even p-spin model,

whose Hamiltonian is defined as

−HN(𝜎) =
∞∑

p=1

𝛽p

N(p−1)∕2

∑

1≤i
1
,… ,i

2p≤N
hi

1
,… ,i

2p𝜎i
1
· · · 𝜎i

2p ,

where hi
1
,… ,i

2p for all 1 ≤ i1, … , i2p ≤ N and all p ≥ 1 are i.i.d. copies of h and (𝛽p)p≥1 is

a real sequence with
∑∞

p=1
2

p𝛽2
p < ∞. In [10], Chatterjee showed that the corresponding

free energy is again superconcentrated as long as h is standard normal. We point out that

the same results in Theorems 1 and 2 also hold in this setting by the same proofs.

We now discuss three applications of Theorems 1 and 2.

Example 1. If f is either a polynomial or a Lipschitz function so that Eh = 0 and Eh2 = 1,

then Theorem 2 holds.

Example 2 (Uniform distribution). Let h be a uniform random variable on the interval

[−
√

3,
√

3]. In this case, one can write h = f (g) =
√

3(2Φ(g) − 1), where Φ(x) ∶=
(2𝜋)−1∕2∫

x
−∞e−a2∕2 𝑑a for x ∈ R is the CDF of g. It can be checked that the assumptions

in Theorem 2 are satisfied and thus, we have Var(FN(𝛽)) = O(N∕ log N).

Example 3 (Two-point distribution). Let a < 0 < b and p ∈ (0, 1) satisfy

ap + b(1 − p) = 0 and a2p + b2(1 − p) = 1. Suppose that P(h = a) = p = 1 − P(h = b).
Note that Eh = 0, Eh2 = 1 and E|h|3 <∞. We claim that

Var(FN(𝛽)) = O
(

N
√

log log N
log N

)
.

To show this, we use Theorem 1 by expressing h = f (g) for

f (g) =

{
a if g ≤ Φ−1(p),
b if g > Φ−1(p),

where Φ is the CDF of g. Note that f is nondecreasing. Denote 𝛾 = Φ−1(p). A direct

computation shows that

w(t) = 2abP
(
g1

t ≤ 𝛾, g2
t > 𝛾

)
+ a2

P
(
g1

t ≤ 𝛾, g2
t ≤ 𝛾

)
+ b2

P
(
g1

t > 𝛾, g2
t > 𝛾

)
.

To compute these probabilities, we write

P(g1
t ≤ 𝛾, g2

t > 𝛾) = P

(√
tg +

√
1 − tg1

≤ 𝛾,
√

tg +
√

1 − tg2 > 𝛾

)

=
∫ ∫{x<y}

P

(√
1 − tx ≤ 𝛾 −

√
tg <

√
1 − ty

) e−(x2+y2)∕2

2𝜋
𝑑x 𝑑y

=
∫ ∫{x<y} ∫

√
1−ty−𝛾

√
1−tx−𝛾

e−z2∕(2t)
√

2𝜋t
𝑑z e−(x2+y2)∕2

2𝜋
𝑑x 𝑑y =∶ Ω(t).
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CHEN AND LAM 271

On the other hand,

P(g1
t ≤ 𝛾, g2

t ≤ 𝛾) = p − Ω(t),
P(g1

t > 𝛾, g2
t > 𝛾) = (1 − p) − Ω(t).

From these and using a2p + b2(1 − p) = 1, we arrive at

w(t) = 1 − (a − b)2Ω(t) ≥ 1 −
√

1 − t(a − b)2
∫ ∫{x<y}

y − x
√

2𝜋t
⋅

e−(x2+y2)∕2

2𝜋
𝑑x 𝑑y.

Thus, we can find a constant 𝑑 > 0 such that if t is sufficiently close to 1,

w(t) ≥ 1 − 𝑑
√

1 − t.

Theorem 1 then implies that for some constants C, c > 0 and for N large,

Var(FN(𝛽)) ≤ CN
(√

1 − (log N)−c∕ log N + 1

log N

)

and our claim follows by noting that

1 − (log N)−c∕ log N = 1 − exp

(
−c log log N

log N

)
≤

c log log N
log N

.

Proof Sketch. Our proof is based on Chatterjee’s interpolation argument (see [10, 11]) in proving

superconcentration for the free energy in the SK model with Gaussian disorder h = g. The argu-

ment starts by noting that FN(𝛽) is a function of i.i.d. standard Gaussian g = (gij)1≤i,j≤N and writing

Var(FN(𝛽)) = 𝜙(1) − 𝜙(0), where for independent copies g1
and g2

of g,

𝜙(t) ∶= EF(g1

t )F(g2

t ), 0 ≤ t ≤ 1

for

g1

t =
√

tg +
√

1 − tg1,

g2

t =
√

tg +
√

1 − tg2, (4)

and F = FN(𝛽). The first key step uses Gaussian integration by parts inductively to show that 𝜓(a) =
𝜙′(e−a) for a ≥ 0 is a completely monotone function, and from the Bernstein theorem, this function can

be represented as 𝜓(a) = ∫[0,∞) e−as 𝜇(𝑑s) for some positive measure 𝜇. Consequently, from Hölder’s

inequality, for all 0 < s ≤ t < 1,

𝜙′(t) ≤ 𝜙′(s)
log t
log s𝜙′(1)1−

log t
log s . (5)

In the second step, one relates 𝜙′(t) to the second moment of the cross overlap associated to the inter-

polated spin system. In particular, by employing the so-called Latala argument (see [11], Lemma 10.4),

it can be shown that 𝜙′(s) = O(1) as long as s is small enough, where the fact that g is symmetric was

heavily used. On the other hand, the above inequality makes it possible to get 𝜙′(t) = O(N1−log t∕ log s)
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272 CHEN AND LAM

whenever t ≥ s. With these, one readily obtains the desired bound O(N∕ log N) utilizing the relation

Var(FN(𝛽)) = ∫
1

0
𝜙′(t) 𝑑t.

In our argument, we adapt the following interpolation

𝜙(t) = EF(f (g1

t ))F(f (g2

t )), 0 ≤ t ≤ 1.

Now the terms in 𝜙′(t) involve f ′ (see (12) below). While (5) remains valid, the main difficulty arises

in obtaining an useful bound for 𝜙′(s) with small s. To this end, for technical purposes, we adapt the

convexity argument in [14] by considering the coupled free energy (15) instead of using the Latala

approach. Our control in some sense relies on an approximate Gaussian integration by parts argument

throughout.

Universality of superconcentration in other models. Superconcentration does not only exhibit

in mean-field spin glass models, but also in random growth models on the integer lattice such as

first-passage percolation [15], directed polymers [3], frog model [8].

For first-passage percolation, after a series of work [6, 7, 15], it is shown that under a 2 + log

moment assumption, the model exhibits superconcentration, and it does not depend on the distribution

of the disorder. Similar results hold for many related models. In [12], Chatterjee shows that supercon-

centration holds in a certain type of “surface growth models”, which includes directed last-passage

percolation and directed polymers, under the assumption that the disorder is a Lipschitz function of a

Gaussian random variable.

The approach to superconcentration for growth models relies on the idea in [7], which consists

of two components: one is the L1
–L2

bound by Talagrand (or its variants), and the other is the trans-

lation invariance of the model. Even though the superconcentration results look very similar in both

mean-field spin glasses and random growth models (the upper bounds for the variances are also of

order N∕ log N), this approach does not seem to work in mean-field spin glass models in any obvious

way, due to the fact that spin glass models and growth models are very different in nature.

2 PROOF OF THEOREM 1

2.1 Some auxiliary lemmas

In this subsection, we shall gather three elementary lemmas that will be used in our main controls later.

Let g = (g1, … , gk), g1 = (g1

1
, … , g1

k), and g2 = (g2

1
, … , g2

k) be i.i.d. standard normal. For 0 ≤ t ≤ 1,

let g1

t and g2

t be defined as in (4). The first lemma controls the derivative of the expectation associated

to this interpolation. Although the proof has appeared in [10], we still provide a proof for completeness.

We say that F ∶ Rk → R is of moderate growth if lim||x||→∞ |F(x)|e−a||x||2 = 0 for all a > 0.

Lemma 1. Assume that F ∶ Rk → R is smooth and all of its partial derivatives are of
moderate growth. Define

𝜙(t) = EF(g1

t )F(g2

t ), 0 ≤ t ≤ 1.

Then for any 0 ≤ t ≤ 1,

𝜙′(t) =
k∑

i=1

E𝜕xi F(g
1

t )𝜕xi F(g
2

t ) (6)
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CHEN AND LAM 273

and for any 0 < s < t ≤ 1,

𝜙′(t) ≤ 𝜙′(s)
log t
log s𝜙′(1)1−

log t
log s . (7)

Proof. By symmetry,

𝜙′(t) =
k∑

i=1

E

(
gi√

t
−

g1

i√
1 − t

)

𝜕xi F(g
1

t ) ⋅ F(g2

t ).

Using Gaussian integration by part yields

E

(
gi√

t
−

g1

i√
1 − t

)

𝜕xi F(g
1

t ) ⋅ F(g2

t ) = E𝜕xi F(g
1

t ) ⋅ 𝜕xi F(g
2

t )

and this gives (6). As for the second assertion, note that each term in 𝜙′(t) is of the same

form as that of 𝜙(t). Hence, we can apply induction to show that

𝜙(n)(t) =
k∑

i
1
,… ,in=1

E𝜕xi1
···xin

F(g1

t )𝜕xi1
···xin

F(g2

t )

=
k∑

i
1
,… ,in=1

E

[
E

[
𝜕xi1

···xin
F(g1

t )|g
]2
]
≥ 0. (8)

Here, if we set 𝜓(a) = 𝜙′(e−a) for 0 ≤ a < ∞, then 𝜓 is completely monotone, that is,

(−1)n𝜓 (n)(a) ≥ 0 for all 0 < a < ∞ and n ≥ 0. From this and the Bernstein theorem (see

for instance [16], Sec. XIII.4), one can express 𝜓(a) = ∫ e−ax 𝜇(𝑑x) for all a > 0 by some

finite positive measure 𝜇 on [0,∞). From the Hölder inequality, for any 0 < a < b,

𝜓(a) ≤
(

∫
e−bx 𝜇(𝑑x)

) a
b
(

∫
1 𝜇(𝑑x)

)1− a
b

= 𝜓(b)
a
b𝜓(0)1−

a
b

and this is equivalent to (7). ▪

Lemma 2. Assume that Y ,X1,X2 are random variables with finite second moment and
EY = 0. Assume that L ∶ R2 → R is a differentiable function with uniformly bounded
partial derivatives. Then

EYL(X) =
∫

1

0

E[𝜕x
1
L(sX)X1Y + 𝜕x

2
L(sX)X2Y] 𝑑s,

where X = (X1,X2).

Proof. Write L(x) = L(0) + ∫ 1

0
∇L(sx) ⋅ x 𝑑s. From this and EY = 0, putting x = X,

multiplying by Y and taking expectation on both sides complete our proof. ▪

Lemma 3. Let 𝜓 be a differentiable function on R and be of moderate growth. Then

E|𝜓(g)|𝜓 ′(g) ≤ 1

2
E|g|𝜓(g)2.
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274 CHEN AND LAM

Proof. Let Γ = {x ∈ R ∶ 𝜓(x) = 0}. Since 𝜓 is continuous, Γ is closed and we can write

Γc
as a disjoint union of open intervals

⋃
l∈I(al, bl), where I ⊆ N is some index set. Here,

on each (al, bl), 𝜓 takes a fixed sign, and on {a1, b1, a2, b2, …}, 𝜓 = 0. From this, we can

rewrite

E|𝜓(g)|𝜓 ′(g) =
∑

l∈I
wlE𝜓(g)𝜓 ′(g)1(al,bl)(g) (9)

for some sequence {wl}l∈I with wl = 1 or −1. Now, we compute directly

E𝜓(g)𝜓 ′(g)1(al,bl)(g) =
1√
2𝜋∫

bl

al

e−x2∕2𝜓(x)𝜓 ′(x) 𝑑x

= 1

2

√
2𝜋
𝜓(x)2e−x2∕2|||

bl

al
+ 1

2

√
2𝜋∫

bl

al

x𝜓(x)2e−x2∕2 𝑑x

= 1

2
Eg𝜓(g)21(al,bl)(g).

From (9), the assertion follows. ▪

2.2 Main controls

Throughout this entire subsection, we assume that f satisfies the following:

(A) ∶ f is nondecreasing and smooth with Ef (g) = 0,E f (g)2 = 1, and

E|f (g)|3 < ∞, and its derivatives of all orders are of moderate growth.

Let h = f (g). Let g = (gij)1≤i,j≤N , g1 = (g1

ij)1≤i,j≤N , and g2 = (g2

ij)1≤i,j≤N be i.i.d. standard Gaussian. For

any 0 ≤ t ≤ 1, set

g1

t =
√

tg +
√

1 − tg1,

g2

t =
√

tg +
√

1 − tg2.

Define

𝜙(t) = E log Z1
t log Z2

t , (10)

where for 𝓁 = 1, 2,

Z𝓁t =
∑

𝜎∈{−1,1}N

exp

(
𝛽√
N

N∑

i,j=1

f (g𝓁t,ij)𝜎i𝜎j

)

, (11)

and g𝓁t,ij is the (i, j)-th entry of g𝓁t . From (6),

𝜙′(t) = 𝛽2

N

N∑

i,j=1

Ef ′(g1

t,ij)f ′(g2

t,ij)⟨𝜎i𝜎j𝜏i𝜏j⟩t. (12)
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CHEN AND LAM 275

Here, ⟨⋅⟩t is the Gibbs expectation associated to the following Gibbs measure

1

Z1
t Z2

t

∑

𝜎,𝜏∈{−1,1}N

1{(𝜎,𝜏)∈⋅} exp

(
𝛽√
N

N∑

i,j=1

f (g1

t,ij)𝜎i𝜎j

)

exp

(
𝛽√
N

N∑

i,j=1

f (g2

t,ij)𝜏i𝜏j

)

.

Recall that w(t) = Ef (g1
t )f (g2

t ). From Lemma 1, we also have w′(t) = Ef ′(g1
t )f ′(g2

t ). Finally, for

𝜎, 𝜏 ∈ {−1, 1}N
, we define R(𝜎, 𝜏) = N−1

∑N
i=1
𝜎i𝜏i.

Lemma 4. Under the assumption (A), we have for 0 < t < 1 that

𝜙′(t) ≤ 𝛽2Nw′(t)E
⟨

R(𝜎, 𝜏)2
⟩

t + 4𝛽3N1∕2R0(t),

where

R0(t) ∶=
2

1∕3
E|h|3 + 1

1 − t
.

Proof. Let X1 = f (g1
t ) and X2 = f (g2

t ). Denote U = f ′(g1
t )f ′(g2

t ). Since f ′ is nonnegative,

E|X1|U = E
[
|f (g1

t )|f ′(g1
t )f ′(g2

t )
]

= E
[
Eg1

[
|f (g1

t )|f ′(g1
t )
]

f ′(g2
t )
]

≤
1

2

√
1 − t

E
[
Eg1

[
|g1|f (g1

t )2
]

f ′(g2
t )
]

= 1

2

√
1 − t

E
[
f (g1

t )2|g1|f ′(g2
t )
]

= 1

2(1 − t)
E
[
f (g1

t )2|g1|g2f (g2
t )
]
,

where the inequality used Lemma 3 for Eg1

[
|f (g1

t )|f ′(g1
t )
]

and the last equality used

Gaussian integration by parts with respect to g2. From the Hölder inequality and indepen-

dence, it follows that

E|X1|U ≤
1

2(1 − t)
(
E|f (g1

t )2g2|3∕2
)2∕3(

E|g1f (g2
t )|3

)1∕3

= 1

2(1 − t)
(E|h|3)(E|g|3∕2)2∕3(E|g|3)1∕3

≤
1

2(1 − t)
E|h|3 ⋅ (E|g|3)2∕3 = 2

1∕3

1 − t
E|h|3.

The same bound is also valid for E|X2|U. From these, putting Y = U−EU, and using the

fact that f ′ ≥ 0, we have

E|X1Y| ≤ E|X1|U + E|X1| ⋅ EU ≤ 2
1∕3

1 − t
E|h|3 + w′(t),

E|X2Y| ≤ E|X2|U + E|X2| ⋅ EU ≤ 2
1∕3

1 − t
E|h|3 + w′(t).
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276 CHEN AND LAM

Using Gaussian integration by parts and the Cauchy–Schwarz inequality,

w′(t) = 1

1 − t
Eg1g2f (g1

t )f (g2
t )

≤
1

1 − t
(
E|g1f (g2

t )|2
)1∕2(

E|g2f (g1
t )|2

)1∕2

= 1

1 − t
(
E|g1|2 ⋅ E|f (g2

t )|2
)1∕2(

E|g2|2 ⋅ E|f (g1
t )|2

)1∕2 = 1

1 − t
. (13)

It follows that

max (E|X1Y|,E|X2Y|) ≤ 2
1∕3

E|h|3 + 1

1 − t
=∶ R0(t).

From these and Lemma 2, for X ∶= (X1,X2) and twice differentiable L with

max𝓁=1,2 ||𝜕x𝓁L||∞ ≤ 𝛾, we arrive at

EUL(X) = EU ⋅ EL(X) + EYL(X)

= EU ⋅ EL(X) +
∫

1

0

E
[(
𝜕x

1
L(sX)X1 + 𝜕x

2
L(sX)X2

)
Y
]
𝑑s

≤ w′(t)EL(X) + 𝛾 (E|X1Y| + E|X2Y|)
≤ w′(t)EL(X) + 2𝛾R0(t). (14)

Now for fixed i, j, conditionally on g1

t and g2

t except g1

t,ij and g2

t,ij, we express ⟨𝜎i𝜎j𝜏i𝜏j⟩t as

L(X) in distribution. A direct computation gives

𝜕x
1
L(x1, x2) =

𝛽√
N
⟨𝜎1

i 𝜎
1

j 𝜏
1

i 𝜏
1

j (𝜎1

i 𝜎
1

j − 𝜎2

i 𝜎
2

j )⟩t,

𝜕x
2
L(x1, x2) =

𝛽√
N
⟨𝜎1

i 𝜎
1

j 𝜏
1

i 𝜏
1

j (𝜏1

i 𝜏
1

j − 𝜏2

i 𝜏
2

j )⟩t,

where (𝜎1, 𝜏1) and (𝜎2, 𝜏2) are i.i.d. samples from the Gibbs measure associated to ⟨⋅⟩t.

From these, max𝓁=1,2 ||𝜕x𝓁L||∞ ≤ 2𝛽N−1∕2.Consequently, from (14) and using conditional

expectation,

Ef ′(g1

t,ij)f ′(g2

t,ij)⟨𝜎i𝜎j𝜏i𝜏j⟩t = E[EX
1
,X

2
[UL(X)]] ≤ w′(t)E⟨𝜎i𝜎j𝜏i𝜏j⟩t +

4𝛽

N1∕2
R0(t).

Summing these up over all i, j completes our proof. ▪

Lemma 5. Assume that (A) holds. There exists a constant K depending only on 𝛽 such
that whenever t ∈ [0, 1) satisfies

4𝛽2
log

1

1 − t
< 1,

we have

E⟨R(𝜎, 𝜏)2⟩t ≤
R1(t)√

N
,
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CHEN AND LAM 277

where

R1(t) ∶= K
⎛
⎜
⎜
⎝
log

√
2

√
1 − 4𝛽2 log

1

1−t

+ E|h|3 + 1

1 − t
+ E|h|3

⎞
⎟
⎟
⎠
.

Proof. For t ∈ [0, 1] and 𝜆 ≥ 0, consider

Q(t, 𝜆) ∶= E log

∑

𝜎,𝜏∈{−1,1}N

exp

(
𝛽√
N

N∑

i,j=1

(
f (g1

t,ij)𝜎i𝜎j + f (g2

t,ij)𝜏i𝜏j
)
+ 𝜆𝛽2NR(𝜎, 𝜏)2

)

. (15)

Denote by ⟨⋅⟩t,𝜆 the Gibbs average with respect to the i.i.d. samples (𝜎𝓁 , 𝜏𝓁)𝓁≥1 from the

Gibbs measure associated to this free energy Q. A direct differentiation and Gaussian

integration by parts yield that

𝜕tQ(t, 𝜆) =
𝛽

2

√
N

N∑

i,j=1

E

⟨(
gij√

t
−

g1

ij√
1 − t

)

f ′(g1

t,ij)𝜎i𝜎j +

(
gij√

t
−

g2

ij√
1 − t

)

f ′(g2

t,ij)𝜏i𝜏j

⟩

t,𝜆

= 𝛽2

N

N∑

i,j=1

Ef ′(g1

t,ij)f ′(g2

t,ij)
⟨
𝜎1

i 𝜎
1

j
(
𝜏1

i 𝜏
1

j − 𝜏2

i 𝜏
2

j
)⟩

t,𝜆.

In the same manner as the proof of Lemma 4, if we let X1 = f (g1

t,ij), X2 = f (g2

t,ij), and

U = f ′(g1

t,ij)f ′(g2

t,ij), we can express
⟨
𝜎1

i 𝜎
1

j
(
𝜏1

i 𝜏
1

j − 𝜏2

i 𝜏
2

j
)⟩

t,𝜆 as L(X1,X2) in distribution.

In this case,

𝜕x
1
L(x1, x2) =

𝛽√
N

⟨
𝜎1

i 𝜎
1

j
(
𝜏1

i 𝜏
1

j − 𝜏2

i 𝜏
2

j
)
(𝜎1

i 𝜎
1

j + 𝜎2

i 𝜎
2

j − 2𝜎3

i 𝜎
3

j )
⟩

t,𝜆,

𝜕x
2
L(x1, x2) =

𝛽√
N

⟨
𝜎1

i 𝜎
1

j
(
𝜏1

i 𝜏
1

j − 𝜏2

i 𝜏
2

j
)
(𝜏1

i 𝜏
1

j + 𝜏2

i 𝜏
2

j − 2𝜏3

i 𝜏
3

j )
⟩

t,𝜆.

Therefore, from (14), for D(t) ∶= 16𝛽3R0(t), we have

𝜕tQ(t, 𝜆) ≤ 𝛽2Nw′(t)E
⟨

R(𝜎1, 𝜏1)2 − R(𝜎1, 𝜏2)2
⟩

t,𝜆 +
√

ND(t).

From this, whenever 0 ≤ w(t) ≤ 𝜆,

𝜕t (Q(t, 𝜆 − w(t))) = 𝜕tQ(t, 𝜆 − w(t)) − w′(t)𝜕𝜆Q(t, 𝜆 − w(t))

≤ −𝛽2Nw′(t)E
⟨

R(𝜎1, 𝜏2)2
⟩

t,𝜆−w(t) +
√

ND(t) ≤
√

ND(t),

which implies that

Q(t, 𝜆 − w(t)) − Q(0, 𝜆) = Q(t, 𝜆 − w(t)) − Q(0, 𝜆 − w(0)) ≤
√

ND(t).

Let 𝜆0 > 0 such that 2𝛽2𝜆0 < 1. For any t ≥ 0 satisfying 2𝛽2(𝜆0 + w(t)) < 1, if we plug

𝜆 = 𝜆0 + w(t) into the above inequality, then

Q(t, 𝜆0) ≤ Q(0, 𝜆0 + w(t)) +
√

ND(t). (16)
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278 CHEN AND LAM

Finally, since Q(t, 𝜆) is convex in 𝜆,

𝜆0𝛽
2NE⟨R(𝜎, 𝜏)2⟩t = 𝜆0𝜕𝜆Q(t, 0)

≤ Q(t, 𝜆0) − Q(t, 0)

≤ Q(0, 𝜆0 + w(t)) − Q(0, 0) +
√

ND(t), (17)

where the third inequality used (16) and the fact that Q(t, 0) = Q(0, 0). Here, Q(t, 0) =
Q(0, 0) holds because, recalling the definition Z𝓁t from (11), Q(t, 0) = E log(Z1

t Z2
t ) =

E log Z1
t + E log Z2

t = E log Z1

0
+ E log Z2

0
= Q(0, 0).

In order to bound the right-hand side of the last inequality, our next step is to show that

we can essentially replace f (g1

ij) and f
(
g2

ij
)

in Q(0, ⋅) by i.i.d. standard normal random vari-

ables by using approximate Gaussian integration by parts. Let
(
z1

ij
)

1≤i,j≤N and
(
z2

ij
)

1≤i,j≤N
be i.i.d. standard normal independent of g, g1, g2. Define

𝜌(𝜆) = E log

∑

𝜎,𝜏∈{−1,1}N

exp

(
𝛽√
N

N∑

i,j=1

(
z1

ij𝜎i𝜎j + z2

ij𝜏i𝜏j
)
+ 𝜆𝛽2NR(𝜎, 𝜏)2

)

.

This is essentially the same as Q(0, 𝜆)with the replacement of
(
f
(
g1

ij
)
, f

(
g2

ij
))

by
(
z1

ij, z2

ij
)
.

Denote w1

ij = f
(
g1

ij
)

and w2

ij = f
(
g2

ij
)
. For any 0 ≤ s ≤ 1, set the interpolated free

energy

𝜌(s, 𝜆) = E log

∑

𝜎,𝜏∈{−1,1}N

exp

(
𝛽√
N

N∑

i,j=1

((√
sw1

ij +
√

1 − sz1

ij

)
𝜎i𝜎j

+ (
√

sw2

ij +
√

1 − sz2

ij)𝜏i𝜏j

)
+ 𝜆𝛽2NR(𝜎, 𝜏)2

)
.

Similar to the Gibbs expectation ⟨⋅⟩t,𝜆, we let ⟨⋅⟩′s be the Gibbs expectation with respect to

the i.i.d. (𝜎𝓁 , 𝜏𝓁)𝓁≥1 sampled from the Gibbs measure associated to the free energy 𝜌(s, 𝜆).
It follows that

𝜕

𝜕s
𝜌(s, 𝜆) = 𝛽

2

√
Ns

N∑

i,j=1

E
⟨

w1

ij𝜎i𝜎j + w2

ij𝜏i𝜏j
⟩′

s −
𝛽

2

√
N(1 − s)

N∑

i,j=1

E
⟨

z1

ij𝜎i𝜎j + z2

ij𝜏i𝜏j
⟩′

s.

Here, the second term can be computed by the usual Gaussian integration by parts,

𝛽

2

√
N(1 − s)

N∑

i,j=1

E
⟨

z1

ij𝜎i𝜎j + z2

ij𝜏i𝜏j
⟩′

s =
𝛽2N

2
E
⟨

2 − R(𝜎1, 𝜎2)2 − R(𝜏1, 𝜏2)2
⟩′

s.

As for the first term, note that Eh = 0,Eh2 = 1, and E|h|3 < ∞, we can use approximate

Gaussian integration by parts (see, e.g., [5], Lemma 2.2) to obtain

|||||
E
⟨

w1

ij𝜎i𝜎j + w2

ij𝜏i𝜏j
⟩′

s −
𝛽
√

s
√

N
E
⟨
(2 − 𝜎1

i 𝜎
1

j 𝜎
2

i 𝜎
2

j − 𝜏1

i 𝜏
1

j 𝜏
2

i 𝜏
2

j )
⟩′

s

|||||
≤

3

2
⋅

8s𝛽2

N
⋅ E|h|3 = 12𝛽2s

N
E|h|3.
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CHEN AND LAM 279

Summing over all i, j yields that

||||||

𝛽

2

√
Ns

N∑

i,j=1

E
⟨

w1

ij𝜎i𝜎j + w2

ij𝜏i𝜏j
⟩′

s −
𝛽2N

2
E
⟨

2 − R(𝜎1, 𝜎2)2 − R(𝜏1, 𝜏2)2
⟩′

s

||||||
≤ 6𝛽3

√
NE|h|3.

Consequently, we arrive at

|𝜕s𝜌(s, 𝜆)| ≤ 6𝛽3

√
NE|h|3,

which implies that

|Q(0, 𝜆) − 𝜌(0, 𝜆)| = |𝜌(1, 𝜆) − 𝜌(0, 𝜆)| ≤ 6𝛽3

√
NE|h|3.

This together with (17) implies that

𝜆0𝛽
2NE⟨R(𝜎, 𝜏)2⟩t ≤ Q(0, 𝜆0 + w(t)) − Q(0, 0) +

√
ND(t)

≤ 𝜌(0, 𝜆0 + w(t)) − 𝜌(0, 0) +
√

N
(
12𝛽3

E|h|3 + D(t)
)
.

In the last step, note that

𝜌(0, 𝜆0 + w(t)) − 𝜌(0, 0) = E log
⟨

exp 𝛽2(𝜆0 + w(t))NR(𝜎, 𝜏)2
⟩′

0

≤ log E
⟨

exp 𝛽2(𝜆0 + w(t))NR(𝜎, 𝜏)2
⟩′

0
.

Observe that due to the symmetry of (z1

ij) and (z2

ij), under the expectation E⟨⋅⟩′
0
, NR(𝜎, 𝜏)

equals X1 + · · · +XN for X1, … ,XN i.i.d. Rademacher(1∕2) random variables in distribu-

tion. Consequently, as long as

2𝛽2

(
𝜆0 + log

1

1 − t

)
< 1,

we have

E
⟨

exp 𝛽2(𝜆0 + w(t))NR(𝜎, 𝜏)2
⟩′

0
= E exp

⎛
⎜
⎜
⎝

𝛽2(𝜆0 + w(t))
N

( N∑

i=1

Xi

)2⎞
⎟
⎟
⎠

≤
1√

1 − 2𝛽2(𝜆0 + w(t))

≤
1√

1 − 2𝛽2

(
𝜆0 + log

1

1−t

) ,

where recalling (13), the last inequality used the bound

w(t) =
∫

t

0

w′(s) 𝑑s ≤ log
1

1 − t
.
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280 CHEN AND LAM

It follows that

E⟨R(𝜎, 𝜏)2⟩t ≤
1

N𝜆0𝛽2
log

1√
1 − 2𝛽2

(
𝜆0 + log

1

1−t

) +
12𝛽3E|h|3 + D(t)

√
N𝜆0𝛽2

. (18)

Recalling that

D(t) = 16𝛽3R0(t) =
16𝛽3

1 − t
(
2

1∕3
E|h|3 + 1

)

and taking 𝜆0 = 1∕(4𝛽2), whenever t satisfies

4𝛽2
log

1

1 − t
< 1,

we have

E⟨R(𝜎, 𝜏)2⟩t ≤
4

N
log

√
2

√
1 − 4𝛽2 log

1

1−t

+
64𝛽3

(
2

1∕3
E|h|3 + 1

)

√
N(1 − t)

+ 48𝛽3E|h|3
√

N
.

This completes our proof. ▪

2.3 Proof of Theorem 1

Smooth case: First, we show that Theorem 1 holds under the assumption (A). Recall 𝜙 from (10).

It suffices to bound 𝜙(1) − 𝜙(0). Denote 𝜂(t) = E⟨R(𝜎, 𝜏)2⟩t. For 0 < r < 1, write

𝜙(1) − 𝜙(0) =
∫

r

0

𝜙′(t) 𝑑t +
∫

1

r
𝜙′(t) 𝑑t.

By Lemma 4 and integration by parts, the first term is bounded above by

∫

r

0

𝜙′(t) 𝑑t ≤ 𝛽2N
∫

r

0

w′(t)𝜂(t) 𝑑t + 4𝛽3N1∕2

∫

r

0

R0(t) 𝑑t

= 𝛽2N
(

w(r)𝜂(r) − w(0)𝜂(0) −
∫

r

0

w(t)𝜂′(t) 𝑑t
)
+ 4𝛽3N1∕2

∫

r

0

R0(t) 𝑑t

≤ 𝛽2N𝜂(r) + 4𝛽3N1∕2

∫

r

0

R0(t) 𝑑t,

where we dropped w(0)𝜂(0) and ∫
r

0
w(t)𝜂′(t) 𝑑t since they are both nonnegative, which follow by noting

that the summand of the Gibbs expectation in 𝜂(t) is of the form F(g1

t )F(g2

t ) for some bounded smooth

function F.

On the other hand, observe that 𝜙′(t) ≤ 𝛽2Nw′(t). It follows that

∫

1

r
𝜙′(t) 𝑑t ≤ 𝛽2N(w(1) − w(r)).
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CHEN AND LAM 281

Combining these yields that

𝜙(1) − 𝜙(0) ≤ 𝛽2N
(
𝜂(r) + 4𝛽

N1∕2∫

r

0

R0(t) 𝑑t + w(1) − w(r)
)
.

Next, from Lemma 5, we fix 0 < s < 1 such that

𝜂(s) ≤ R1(s)√
N
.

By using (7), for any r satisfying s ≤ r < 1,

𝜂(r) ≤ (𝜂(s))
log r
log s (𝜂(1))1−

log r
log s ≤ 𝜂(s)

log r
log s ≤ N− log r

2 log s R1(s)
log r
log s ≤ N− log r

2 log s (1 + R1(s)). (19)

Consequently, there exists some K′ > 0 depending only on 𝛽 such that for any r satisfying s ≤ r < 1,

𝜙(1) − 𝜙(0) ≤ 𝛽2N
(

N− log r
2 log s (1 + R1(s)) + 4𝛽N− 1

2

∫

r

0

R0(t) 𝑑t + w(1) − w(r)
)

≤ K′(E|h|3 + 1)N
(

N− log r
2 log s + N− 1

2

∫

r

0

𝑑t
1 − t

+ w(1) − w(r)
)
. (20)

To control the right-hand side, let N ≥ 2 and take

r = (log N)
2 log s
log N .

Note that s ≤ r ≤ 1 and that if a = 1− r, then 1− a = (log N)2 log s∕ log N = (log N)−2 log(s−1)∕ log N
. Using

the bound 1 − cx ≤ (1 − x)c for all x ∈ [0, 1] and c ≥ 1 implies that

1 − a log N
2 log(s−1)

≤ (1 − a)
log N

2 log(s−1) = 1

log N
.

It follows that

1 − r = a ≥ 2 log(s−1)
log N

(
1 − 1

log N

)

and thus, there exists some C depending only on s such that

∫

r

0

𝑑t
1 − t

= log
1

1 − r
≤ C log log N. (21)

On the other hand, from our choice of r,

N− log r
2 log s = 1

log N
. (22)

Putting (21) and (22) back into (20) yields that

Var(FN(𝛽)) = 𝜙(1) − 𝜙(0) ≤ K′′ (
E|h|3 + 1

)
N
(

w(1) − w(r) + 1

log N

)
,

 10982418, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21183 by U

N
IV

ER
SITY

 O
F M

IN
N

ESO
TA

 170 W
ILSO

N
 LIB

R
A

R
Y

, W
iley O

nline Library on [01/07/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



282 CHEN AND LAM

where K′′
is a constant depending only on 𝛽. This proves Theorem 1 under assumption (A).

General case: Assume that h satisfies Eh = 0,Eh2 = 1 and E|h|3 < ∞ and h can be written as

h = f (g) for some nondecreasing f , where g is a standard normal random variable. For any integer

n ≥ 1, set fn(x) = max(min(f (x), n),−n). Let hn = f n(g) for

f n(x) ∶=
fn(x) − Efn(g)√

Var(fn(g))
.

Note that Ehn = 0 and Eh2
n = 1. Also, we have |fn(g)| ≤ |f (g)| for all n, and hence by the dominated

convergence theorem, E|fn(g)− f (g)|3 → 0 as n → ∞. Thus, E|hn−h|3 → 0 and Ef n(g1
t )f n(g2

t )→ w(t)
as n → ∞. From these, if we can show that hn enjoys the inequality in Theorem 1, then so does h. To

this end, for any fixed n, since f n is bounded and nondecreasing, we can construct a sequence of smooth

and nondecreasing functions (f n,k)k≥1 of moderate growth (for instance, take f n,k(x) = Ef n(x+g∕
√

k))
so that f n,k satisfies the condition (A) and for hn,k ∶= f n,k(g), E|hn − hn,k|3 → 0 as k → ∞. Since hn,k
satisfies the upper bound in Theorem 1 for any k ≥ 1, we can pass to the limit k → ∞ to obtain the

same bound for hn, completing our proof.

3 PROOF OF THEOREM 2

Smooth case: Assume that f satisfies the extra assumption that f is smooth and its derivatives of all

orders are of moderate growth. Recall 𝜙(t) from (10). Note that in the proof of Lemma 4, we can bound

E|X1|U ≤ (E|h|3)1∕3(E|f ′(g1
t )f ′(g2

t )|3∕2)2∕3
≤ (E|h|3)1∕3(E|f ′(g)|3)2∕3

by the Hölder inequality. Thus, the statement of Lemma 4 is valid with the replacement of R0(t) by the

constant

C0 ∶= (E|h|3)1∕3(E|f ′(g)|3)2∕3 + Ef ′(g)2,

that is,

𝜙′(t) ≤ 𝛽2Nw′(t)𝜂(t) + 𝛽3N1∕2C0, (23)

where we recall that 𝜂(t) = E⟨R(𝜎, 𝜏)2⟩t. From this bound, it can also be checked directly that (18)

holds with D(t) being replaced by D0 = 16𝛽3C0. Moreover, as long as

2𝛽2

(
𝜆0 + log

1

1 − t

)
< 1,

we have

𝜂(t) ≤ 1

N𝜆0𝛽2
log

1√
1 − 2𝛽2

(
𝜆0 + log

1

1−t

) +
12𝛽3E|h|3 + D0√

N𝜆0𝛽2

.

Letting 𝜆0 = 1∕(4𝛽2), this inequality then implies that whenever

4𝛽2
log

1

1 − t
< 1,
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CHEN AND LAM 283

we have

𝜂(t) ≤ C1(t)√
N

(24)

for

C1(t) = 4 log

√
2

√
1 − 4𝛽2 log

1

1−t

+ 48𝛽3
E|h|3 + 4D0.

Now, by using (23), for any 0 < s < 1,

Var(FN(𝛽)) = 𝜙(1) − 𝜙(0) =
∫

1

0

𝜙′(t) 𝑑t

≤
∫

1

0

(𝛽2Nw′(t)𝜂(t) + 𝛽3

√
NC0) 𝑑t

≤ 𝛽2Nw′(1)
∫

1

0

𝜂(t) 𝑑t + 𝛽3

√
NC0

≤ 𝛽2NEf ′(g)2
(
𝜂(s) +

∫

1

s
𝜂(t) 𝑑t

)
+ 𝛽3

√
NC0,

where the last inequality used monotonicity of 𝜂. Here, we can select and fix s satisfying that

4𝛽2
log (1 − s)−1 < 1 so that we can apply (24) to bound 𝜂(s) ≤ C1(s)N−1∕2

. In a similar manner as

that of (19), we can bound that for any s ≤ r ≤ 1,

𝜂(r) ≤ N− log r
2 log s (1 + C1(s)),

which implies that

∫

1

s
𝜂(r) 𝑑r ≤ (1 + C1(s))

∫

1

s
N− log r

2 log s 𝑑r ≤ 2(1 + C1(s))
log(s−1)

log N
,

where the second inequality used the bound that for any x > 1,

∫

1

s
xlog r 𝑑r = 1 − s1+log x

1 + log x
≤

1

1 + log x
≤

1

log x
.

Putting these together, we arrive at

Var(FN(𝛽)) ≤ 𝛽2NEf ′(g)2
(

C1(s)√
N
+ 2(1 + C1(s))

log(s−1)
log N

)

+ 𝛽3

√
NC0

≤ KEf ′(g)2
(
1 + E|h|3 + E|f ′(g)|2 + (E|h|3)1∕3(E|f ′(g)|3)2∕3

) N
log N

for some universal constant K depending only on 𝛽. Note that the following Gaussian-Poincaré

inequality holds (see, e.g., [20], Eq. (2.5)),

E|h|3 = E|f (g)|3 ≤ CE|f ′(g)|3,
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284 CHEN AND LAM

where C is a universal constant independent of f . We can bound each E|h|3 in our main control

above by E|f ′(g)|3. Together with the trivial bound Ef ′(g)2 ≤ 1 + E|f ′(g)|3, we obtain the desired

inequality (3).

General case: We continue to handle the general case in Theorem 2. First of all, we argue

that without loss of generality, we can assume that f is uniformly bounded on R. Indeed, con-

sider the absolutely continuous function fM = max(−M,min(M, f )) for M ≥ 1. We see that

|fM(x)| ≤ |f (x)| for all x and |f ′M(x)| ≤ |f ′(x)| a.e. Since E|f (g)|3 and E|f ′(g)|3 are both finite, if

we define

f M(x) =
fM(x) − EfM(g)√

Var(fM(g))
,

then hM ∶= f M(g) satisfies the assumption in Theorem 2. On the other hand, by the dominated con-

vergence theorem, we also have that E|fM(g) − f (g)|3 → 0 and E|f ′M(g) − f ′(g)|3 → 0, which in turn

implies that E|hM−h|3 → 0 and E|f ′M(g)− f ′(g)|3 → 0.Hence, in proving Theorem 2, we shall further

assume that f is uniformly bounded from now on.

Let (an) and (bn) be two real sequences with an < bn, an → −∞, and bn → ∞. For each n, let fn
be an absolute continuous function defined as fn ≡ f on [an, bn], fn ≡ 0 outside [an − 1, bn + 1], and

linear otherwise. Since E|f (g)|3 and E|f ′(g)|3 are both finite and f is uniformly bounded, it can be

checked that

lim
n→∞

E|fn(g) − f (g)|3 = 0,

lim
n→∞

E|f ′n(g) − f ′(g)|3 = 0. (25)

In addition, because fn is compactly supported, |fn|3 is integrable on R with respect to the Lebesgue

measure. Since a.e.

f ′n(x) = f ′(x)1[an,bn] + f (an)1[an−1,an) − f (bn)1(bn,bn+1],

we also have

∫

∞

−∞
|f ′n(x)|3 𝑑x ≤ |f (an)|3 + |f (bn)|3 +

√
2𝜋e(a2

n+b2

n)∕2
E|f ′(g)|3 < ∞.

With these, for any n ≥ 1, there exists a sequence of smooth functions (𝜙n,k)k≥1 with compact support

such that 𝜙n,k → fn and 𝜙′n,k → f ′n as k → ∞ under the L3
-norm with respect to the Lebesgue measure

on R (see, for instance, [1], Corollary 3.23). This readily implies that

lim
k→∞

E|𝜙n,k(g) − fn(g)|3 = 0,

lim
k→∞

E|𝜙′n,k(g) − f ′n(g)|3 = 0. (26)

Now, let

f n,k(x) =
𝜙n,k(x) − E𝜙n,k(g)√

Var(𝜙n,k(g))
.
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CHEN AND LAM 285

From (25), (26), Ef (g) = 0, and Ef (g)2 = 1,

lim
n→∞

lim
k→∞

E|f n,k(g) − f (g)|3 = 0,

lim
n→∞

lim
k→∞

E|f ′n,k(g) − f ′(g)|3 = 0.

Here, the first limit readily implies that the variance of the free energy associated to f n,k(g) converges

to that associated to h in the limit k →∞ and then n →∞, while the second limit leads to

lim
n→∞

lim
k→∞

E|f n,k(g)|3 = E|f ′(g)|3.

Since hn,k ∶= f n,k(g) satisfies all the assumptions in Theorem 2 and the derivatives of f n,k of all orders

are of moderate growth by the compact supportiveness of𝜙n,k, from the smooth case above, the inequal-

ity (3) holds for hn,k, from which sending the limit in the order k →∞ and then n →∞ completes our

proof.
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