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Abstract— This paper introduces a novel discrete-time
control barrier function (DCBF) that stems directly from
discrete-time set invariance theory. The proposed DCBF
provides necessary and sufficient conditions for certifying
control invariance and can be used to synthesize a con-
strained control policy. Moreover, the DCBF can be con-
structed for arbitrary sets of state and input constraints by
taking advantage of maximal output admissible set theory.
The resulting DCBF-based controller is proven to be safe
and recursively feasible. Numerical examples showcase the
effectiveness of the scheme by comparing it to existing
constrained control approaches.

Index Terms— Constrained control, Control barrier func-
tions, Optimal control, Predictive control for linear systems,
Predictive control for nonlinear systems.

I. INTRODUCTION

CONTROL barrier functions (CBFs) have recently gar-
nered attention from the constrained control community

by serving as both a certificate of safety and a tool for
synthesizing constrained control laws [1]. The principle behind
CBF-based control is to select an input that is as close as
possible to a nominal control action while also guaranteeing
constraint enforcement. Due to their conceptual simplicity,
computational efficiency, and overall performance, CBF-based
controllers have been implemented successfully on a wide
variety of applications [2]–[5].

The main challenge associated with this approach is that
identifying CBFs for arbitrary constraint sets is challenging.
As a result, it is common practice to rely on “candidate” CBFs,
i.e., scalar functions that ensure constraint satisfaction when
positive, but are not guaranteed to remain positive in the future.
Unfortunately, this myopic approach can cause the CBF-based
optimization problem to become infeasible, especially as the
number of state and input constraints increases. As a result, the
systematic design of CBFs is still an open research question.
In [6], the authors introduce control-sharing barrier functions
which are groups of CBFs that retain their validity even when
superimposed. Nonetheless, finding functions with the control-
sharing property is also difficult. In [7], [8], the authors show
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how to construct a CBF by introducing a prestabilizing con-
troller (called the backup policy) and integrating the resulting
closed-loop dynamics backwards in time to construct a valid
CBF. Unfortunately, the constructed CBF may not have a
closed-form expression since the ordinary differential equation
is often solved numerically. Another common constrained
control approach is based on barrier Lyapunov functions [9].
These approaches, while providing sufficient conditions for
safety, are rarely necessary as in the case of CBFs and may
lead to more conservative performance.

This paper proposes a paradigm shift to the discrete-time
domain, where we leverage the well-established maximal
output admissible set (MOAS) theory [10] to systematically
design suitable CBFs. The main contributions are as follows:
a) we define a discrete-time control barrier function (DCBF)
that provides necessary and sufficient conditions for control
invariance, b) we show how to systematically construct a
DCBF for general nonlinear systems subject to arbitrary state
and input constraints, c) we formulate a recursively feasible
DCBF-based constrained controller, d) we specialize the pro-
posed framework to the linear case, where we present closed-
form expressions for all results.

The DCBFs presented in this paper differ from the discrete-
time exponential CBFs (DECBFs) proposed in [11], which
provide only sufficient conditions for set invariance by re-
placing the differential conditions of continuous-time CBFs
with difference equations. Although DECBFs have been suc-
cessfully implemented in discrete-time applications [12], [13],
they suffer from similar drawbacks as continuous-time CBFs:
finding a DECBF for arbitrary constraint sets is challenging,
and resorting to candidate DECBFs can lead to infeasibility
issues in the DECBF-based program.

The remainder of the paper is organized as follows: Section
II provides a brief overview of the theory behind CBFs and
DECBFs; Section III introduces the new DCBF formulation
and the associated DCBF-based program; Section IV shows
how, given arbitrary state and input constraints, DCBFs can
be obtained by projecting the MOAS onto the state-space.
The approach is then specialized to the linear case, where the
MOAS can be obtained in closed form; Section V compares
the performance of our approach with existing constrained
control strategies, namely: DECBFs [11], model predictive
control (MPC) [14], and command governors (CGs) [15].



II. PRELIMINARIES

This section summarizes existing results in CBF literature.
Please note we modified some notation with respect to its
original reference to ensure cohesiveness throughout the paper.

A. Continuous-time Control Barrier Functions
Consider a continuous-time system ẋ = f(x,u), with f

locally Lipschitz, x ∈ Rn, and u ∈ U ⊆ Rm. Nagumo’s
Theorem [16] states that a compact set C ⊆ Rn is control
invariant if and only if

∀x ∈ ∂C, ∃u ∈ U : f(x,u) ∈ TC(x), (1)

where TC(x) is the tangent cone to C in x [16, Def. 3.1]. In
essence, (1) states that, whenever x belongs to the boundary of
the set C, there exists an input u ∈ U such that the vector field
f does not point towards the exterior of C. Since this condition
is defined only on the boundary ∂C and provides no insight
whenever x ∈ Int(C), modern CBF literature developed an
equivalent condition that spans the entirety of the set whenever
C is given as the superlevel set of some function h : Rn → R:

C = {x ∈ Rn | h(x) ≥ 0}. (2)

Definition 1: [17, Def. 2] A continuously differentiable
function h ∈ C1 : Rn → R is a control barrier function
(CBF) on the open set D ⊆ Rn for the set C ⊂ D satisfying
(2) if there exists an extended class K function α such that

sup
u∈U

[
ḣ(x,u)

]
≥ −α

(
h(x)

)
, ∀x ∈ D, (3)

where ḣ(x,u) = ∇h(x)f(x,u).
Proposition 1: [1, Cor. 2] The set C ⊂ Rn given in (2) is

control invariant if and only if h(x) is a CBF.
A CBF certifies the existence of an input u(t) ∈ U that
ensures x(t) ∈ C. A common approach for finding such an
input is to use CBF-based programs [1]. However, given an
arbitrary state constraint set X ⊆ Rn, the literature provides
few methods for systematically designing CBFs. In fact, even
when X is not control invariant, it is common practice to take
C = X and design a function h(x) that satisfies (2), but may
not satisfy (3). We call such a function a candidate CBF [8].
Since candidate CBFs cannot certify control invariance, they
are vulnerable to infeasibility issues when used in CBF-based
programs, especially under input constraints.

In this paper, we show that the discrete-time domain offers
a new perspective for the systematic design of CBFs given
arbitrary sets of state and input constraints. We will do so by
proposing a new discrete-time CBF formulation, which differs
from the one currently found in the literature and summarized
in the next subsection.

B. Discrete-time Exponential Control Barrier Functions
Consider a discrete-time system

x+ = f(x,u), (4)

where x ∈ Rn, u ∈ U ⊆ Rm, and f : Rn × Rm → Rn is
a continuous function. The following definition was proposed
as an extension to continuous-time CBFs.

Definition 2: [11, Def. 4] A continuous function h ∈ C0 :
Rn → R is a discrete-time exponential control barrier function
(DECBF) for the closed set C ⊆ Rn satisfying (2) if there
exists a positive scalar λ ∈ (0, 1] such that

sup
u∈U

[
∆h(x,u)

]
≥ −λh(x), ∀x ∈ C, (5)

where ∆h(x,u) ≜ h
(
f(x,u)

)
− h(x).

Proposition 2: [11] The closed set C ⊆ Rn given in (2) is
control invariant if h(x) is a DECBF.
These results were obtained by replacing the continuous-
time CBF condition (3) with a difference equation. Given an
arbitrary state constraint set X ⊆ Rn, however, they provide
no guidance on how to construct a DECBF. In practice, the
approach is implemented by proposing a candidate DECBF
and tuning λ ∈ (0, 1] to help ensure xk ∈ X , ∀k ≥ 0.
Furthermore, DECBFs provide only sufficient conditions for
control invariance as opposed to the stronger necessary and
sufficient conditions provided by continuous-time CBFs.

In this paper, we provide a definition for discrete-time
control barrier functions (DCBFs) that is both necessary and
sufficient for the control invariance of a set C. Then, given
arbitrary state constraints X , we show how to construct a
control invariant subset C ⊆ X and find an associated DCBF.

III. DISCRETE-TIME CONTROL BARRIER FUNCTIONS

Consider the discrete-time system (4) and a set C ⊆ Rn. As
detailed in [16], C is control invariant if and only if

∀x ∈ C, ∃u ∈ U : f(x,u) ∈ C. (6)

Notice that the discrete-time control invariance condition (6)
is defined on the entirety of the set C, as opposed to only its
boundary ∂C as in the continuous-time case (1). With this in
mind, consider the following definition and its consequence.

Definition 3 (Discrete-time Control Barrier Function): A
continuous function h ∈ C0 : Rn → R is a DCBF for the
closed set C ⊆ Rn satisfying (2) if

sup
u∈U

[
h
(
f(x,u)

)]
≥ 0, ∀x ∈ C. (7)

Proposition 3: The closed set C ⊆ Rn given in (2) is
control invariant if and only if h(x) is a DCBF.

Proof: Let C be control invariant. It follows from (2) and
(6) that for all x ∈ C, there exists a control input u ∈ U such
that h

(
f(x,u)

)
≥ 0. Therefore, h is a DCBF. Conversely, let

h be a DCBF. It follows from (2) and (7) that for all x ∈ C,
there exists a control u ∈ U such that f(x,u) ∈ C. Therefore,
C is a control invariant set.
Note that, unlike the continuous-time case, h(x) does not need
to be continuously differentiable. As a result, it is simple to
obtain h(x) whenever C is defined by the the intersection of
multiple state constraints.

Remark 1: Given the set C = {x ∈ Rn | g(x) ≥ 0},
where g ∈ C0 : Rn → Rnc , condition (2) is satisfied by
the continuous function h(x) = min

(
g(x)

)
.

Remark 2: Given the polyhedral set C= {x ∈ Rn | Hx ≤
c}, with H ∈ Rnc×n and c ∈ Rnc , condition (2) is satisfied
by the continuous function h(x) = min(c−Hx).



A. Safe Control Invariant Sets

Given an arbitrary state constraint set X ⊆ Rn, Proposition
3 has two consequences: (i) If the set X is control invariant,
then any DCBF h(x) is also a DECBF that satisfies (5) with
λ = 1; (ii) if the set X is not control invariant, then it is
impossible to find a DCBF for it. The second consequence
can be addressed by finding a control invariant subset C ⊂ X
and finding a DCBF for C.

Definition 4 (Safe Control Invariant Set): Given the con-
straint set X ⊆ Rn, a control invariant set C ⊆ Rn is safe
if C⊆X .

Based on Definitions 3 and 4, the design of a suitable DCBF
for arbitrary state constraints X can be achieved by identifying
a closed safe control invariant set C ⊆ X . We give guidance for
finding such a set C in Section IV. The following subsection
explains how the resulting DCBF can be used to develop a
control law that guarantees constraint satisfaction.

B. Discrete-time Control Barrier Function-based
Programs

Similar to CBFs [1], the proposed DCBFs can be used as
an add-on unit that bestows safety properties to a nominal
controller κ(x) by solving the DCBF-based program

min
u∈U

∥u− κ(x)∥2 (8)

s.t. h
(
f(x,u)

)
≥ 0.

The closed-loop system filtered by the DCBF-based program
has the following properties.

Theorem 1 (Recursive Feasibility and Safety): Given the
state constraint set X ⊆ Rn, let C ⊆ X be a safe control
invariant set and let h ∈ C0 : Rn → R be an associated
DCBF. Moreover, given a nominal controller κ : Rn → Rm

and the update equations xk+1 = f(xk,uk), let u(x) be the
solution to the DCBF-based program (8) at x. Then, given
the initial condition x0 ∈ C, the control law uk = u(xk) is
such that:

1) The DCBF-based program (8) is feasible for all k ≥ 0;
2) The closed-loop response satisfies xk ∈ X , ∀k ≥ 0.

Proof: Given xk ∈ C, it follows by Definition 3 that the
DCBF-based program (8) is feasible at xk. Since the solution
exists, the one-step update xk+1 = f

(
xk, u(xk)

)
is guaranteed

to satisfy h(xk+1) ≥ 0, and (2) implies xk+1 ∈ C. Recursive
feasibility then follows directly from the requirement x0 ∈ C.
As for safety, it is sufficient to note that, due to Definition 4,
the set C is such that xk ∈ C ⇒ xk ∈ X .

Although (8) is generally a nonlinear program, given a
control-affine system f(x,u) = fx(x) + fu(x)u and poly-
hedral constraints U = {Mu ≤ b}, C = {Hx ≤ c}, the
DCBF-based program (8) reduces to a quadratic program (QP)

min
u

∥u− κ(x)∥2 (9)

s.t. Hfu(x)u ≤ c−Hfx(x),

Mu ≤ b.

IV. CONSTRUCTING SAFE INVARIANT SETS

In this section, we leverage the rich literature on maximal
output admissible sets (MOASs) to construct a safe control
invariant set for arbitrary safety sets under input constraints.
We first introduce the approach for general nonlinear systems
and then specialize it to linear systems.

A. Maximal Output Admissible Sets
Let the nonlinear system in (4) be stabilizable, and x̄ : Rl →

Rn and ū : Rl → Rm be two C0 functions such that

x̄(r) = f
(
x̄(r), ū(r)

)
, ∀r ∈ Rl. (10)

By construction, r ∈ Rl is a parametrization of all the possible
equilibrium points of the system. It can also be treated as the
reference for a prestabilizing control law π : Rn × Rl → Rm

such that the sequence of maps

Πk+1(x, r) = fπ
(
Πk(x, r), r

)
, (11)

with Π0(x, r) = x, and fπ(x, r) ≜ f
(
x, π(x, r)

)
, satisfies

lim
k→∞

Πk(x, r) = x̄(r). (12)

Notably, the map Πk : Rn × Rl → Rn takes any state x to
the k-th step of its closed-loop trajectory under the feedback
policy π, subject to a constant reference r. Given a C0 output
function c : Rn×Rm → Rp, define a set of output constraints
Y ⊆ Rp that captures all the state and input constraints, i.e.

c(x,u) ∈ Y ⇐⇒ (x,u) ∈ X × U , (13)

let cπ(x, r) ≜ c
(
x, π(x, r)

)
, be the output constraint function

of the prestabilized system.
Definition 5 (Maximal Output Admissible Set): Given the

nonlinear system (4) subject to output constraints c(x,u) ∈ Y ,
let π(x, r) be a prestabilizing control law such that (11)-(12)
hold. Then, the MOAS of the prestabilized system is

O∞ ≜ {(x, r) ∈ Rn×Rl | cπ
(
Πk(x, r), r

)
∈ Y, ∀k ∈ N}.

Since the size and shape of the MOAS depends on the
prestabilizing control law, the choice of π(x, r) influences the
degree to which O∞ is an inner approximation of C. Note
that, if the nominal control law κ(x) is stabilizing, it is always
possible to set π(x, r) = κ(x).

B. MOAS-based Safe Control Invariant Sets
Let ProjxO∞ ⊆ Rn be the projection of O∞ ⊆ Rn × Rl

onto the state-space Rn. That is,

ProjxO∞ = {x ∈ Rn | ∃r ∈ Rl, (x, r) ∈ O∞}. (14)

Then, we have the following result.
Proposition 4: ProjxO∞ is a safe control invariant set.

Proof: Let x ∈ ProjxO∞. Then, there exists a
r ∈ Rl such that (x, r) ∈ O∞. By definition of O∞,
cπ
(
Π0(x, r), r

)
= cπ(x, r) = c

(
x, π(x, r)

)
∈ Y . By (13),

it follows that x ∈ X and, thus, ProjxO∞ ⊆ X . Let
u = π(x, r) and note that c(x,u) ∈ Y implies u ∈ U .
Further, f(x,u) = fπ(x, r) = fπ

(
Π0(x, r), r

)
= Π1(x, r).

It follows by definition of O∞ that
(
f(x,u), r

)
∈ O∞. Thus,



f(x,u) ∈ ProjxO∞ and ProjxO∞ is control invariant by (6).

It follows from Proposition 3 that any continuous function
h ∈ C0 : Rn → R such that ProjxO∞ = {x | h(x) ≥ 0}
is a DCBF for ProjxO∞. This observation serves as a bridge
between the rich literature on MOASs and the emerging CBF
literature. While computing the MOAS for general nonlinear
systems is difficult, methods for estimating it for certain
classes of nonlinear systems can be found in [18], [19]. The
following section specializes these results to linear systems,
for which the MOAS can be computed in closed form.

Remark 3: The idea of constructing a CBF by prestabilizing
the system and finding the associated invariant set has been
previously explored in the so-called “backup” CBF literature
[7], [8]. This approach differs from ours in two significant
points: First, backup CBFs have only been proposed in
continuous-time, which not only makes it more challenging to
compute h(x), since it requires solving a differential equation,
but also because it requires the ability to compute its derivative
ḣ(x,u); second, backup CBFs prestabilize the system around
the target reference (e.g., the origin), as opposed to letting r
be a free variable that parametrizes all the possible references
of the prestabilizing control law. Therefore, as illustrated in
Fig. 1, the control invariant set ProjxO∞ is larger than the
invariant sets featured in [7], [8].

C. Linear Systems

Consider the discrete-time, linear system

xk+1 = Axk +Buk, (15)

where x ∈ Rn, u ∈ Rm, and the pair (A,B) is stabilizable.
Let the state X ⊆ Rn and input U = {Mu ≤ b} constraint
sets be polyhedral. Then, there exist matrices C ∈ Rp×n and
D ∈ Rp×m such that we can define outputs yk = Cxk+Duk,
and a set of output constraints Y = {y ∈ Rp : Ly ≤ a}, with
appropriately sized matrix L and a, such that Cx + Du ∈
Y ⇐⇒ (x,u) ∈ X × U . Let Gx ∈ Rn×m and Gu ∈ Rm×m

be such that G = [G⊤
x G⊤

u ]
⊤ is a basis for null(

[
A− In B

]
).

Consider the prestabilizing policy π(x, r) = Gur − K(x −
Gxr), with gain matrix K ∈ Rm×n. We can define the closed-
loop matrices Aπ = A − BK, Bπ = B(Gu +KGx), Cπ =
C −DK and Dπ = D(Gu +KGx). With this, the map Πk :
Rn × Rm → Rn has a closed-form expression:

Πk(x, r) = Ak
πx+

(
k−1∑
i=0

Ai
π

)
Bπr, k ∈ {0, 1, 2, . . .}.

Note that Π0(x, r) = x. As detailed in [10], the MOAS of the
prestabilized linear system is

O∞ = {(x, r) : CπΠk(x, r) +Dπr ∈ Y, ∀k ∈ N}. (16)

For the considered polyhedral constraint sets X and U , O∞
is a polyhedron [10]. Furthermore, if Aπ is Schur, (Aπ, Cπ)
is observable, and Y is compact, then O∞ is compact and the
following inner approximation is finitely determined [20]:

Oϵ
∞ ≜ O∞ ∩ (Rn ×Rϵ), (17)

Fig. 1. Example of the strictly output admissible set Oϵ
∞ ⊂ R2 × R

and its projection ProjxOϵ
∞ ⊂ R2. Also plotted is the control invariant

set associated to the prestabilized origin (see Remark 3). This particular
example refers to the constrained double integrator system detailed in
Example 1.

where Rϵ ≜ {r ∈ Rm : L(CGx +DGu)r ≤ (1− ϵ)a} is the
strictly steady-state admissible reference set for some small
ϵ ∈ (0, 1). The set Oϵ

∞ is called the strictly output admissible
set and can be computed using [10, Algorithm 3.2]. As before,
we consider the projection onto the state-space

ProjxOϵ
∞ = {x ∈ Rn : ∃r ∈ Rϵ, (x, r) ∈ Oϵ

∞}. (18)

Following the same process as in Proposition 4, it can be
shown that ProjxOϵ

∞ is also a safe control invariant set. In
addition, when ϵ → 0, we recover ProjxO∞. See Fig. 1 for
an example of Oϵ

∞ and its projection.
Under the previously stated assumptions, Oϵ

∞ is a finitely
determined polyhedron. Thus, we can find a matrix H ∈
Rnc×n and vector c ∈ Rnc for some finite integer nc > 0
such that ProjxOϵ

∞ = {x ∈ Rn : Hx ≤ c}. Because this
set is control invariant, it follows from Proposition 3 that
h(x) = min(c − Hx) is a DCBF. Let κ : Rn → Rm be a
nominal controller with desired performance properties. Then,
we can formulate the following DCBF-based QP

min
u

∥u− κ(x)∥2 (19a)

s.t. HBu ≤ c−HAx, (19b)
Mu ≤ b, (19c)

where (19b) is equivalent to h(Ax + Bu) ≥ 0 and (19c)
ensures u ∈ U .

V. EXAMPLES

We present two examples to demonstrate the usefulness of
DCBFs synthesized from the MOAS. The first example is a
double integrator system and the second is a pitch pointing
control problem for a fixed-wing F-16 aircraft. For each
example, we provide a comparison with MPC [14], CG [15],
and DECBF-based control [11]. In all examples, we let ϵ =
0.05 and solve the optimization problems in MATLAB using
YALMIP [21] with MOSEK [22]. Projections are computed
with MPT3 [23]. All computations are performed in a laptop



PC running Windows 10 with an Intel i5 @ 1.60 GHz CPU
and 16 GB RAM.

TABLE I
OPTIMIZATION PROBLEM SOLVE TIMES

Double integrator F-16 pitch pointing
Avg [ms] Max [ms] Avg [ms] Max [ms]

CG 0.98 1.24 1.41 1.68
DECBF 0.93 1.08 1.25 1.77

MPC 2.71 6.33 3.22 4.45
DCBF 1.41 2.15 1.49 2.01

Example 1: Consider a double integrator system x =
[x ẋ]⊤, u = ẍ, with sampling time 0.1 seconds and system
matrices

A =

[
1 0.1
0 1

]
, B =

[
0
0.1

]
.

The state constraint set is X = {x : |x| ≤ 1} and the
input constraint set is U = {u : |u| ≤ 1.5}. The initial
condition is x0 = [0 0]⊤ and the nominal controller is
κ(x) = −26.8(x−1.1)−12.6ẋ, which stabilizes the system to
the unsafe point [1.1 0]⊤. We choose prestabilizing controller
π(x, r) = −2(x − r) − 2.2ẋ. The candidate DECBFs are
b1(x) = 0.25−0.25x−0.1ẋ and b2(x) = 0.25+0.25x+0.1ẋ.
We tuned the parameters λi in the DECBF-condition (5) to be
close to 1 (high performance) while retaining feasibility of the
DECBF-based program, this led to λ1 = λ2 = 0.42.

Fig. 2 compares the closed-loop behavior of the differ-
ent control strategies. As expected, CG exhibits the slowest
response, whereas MPC achieves the fastest response. Our
approach outperforms DECBFs and achieves comparable re-
sults with MPC while being less computationally intensive
(see Table I). It is also worth noting that, given a different
initial condition x0, the DECBF-based program may become
infeasible, whereas the DCBF-based program is guaranteed to
remain recursively feasible whenever x0 ∈ ProjxOϵ

∞ ⊂ X .
Example 2: Consider the pitch dynamics model of an F-16

aircraft given in [24] and let us discretize it with a sampling
time of 0.1 seconds. The state vector is x = [θ q α δe δf ]

⊤

which collects the pitch, pitch rate, angle of attack, elevator
deflection and flaperon deflection, respectively. The input
vector is u = [δec δfc]

⊤ which collects the elevator and
flaperon deflection commands, respectively. The state and
input matrices are

A =


1 0.1 0.2 −0.1 0
0 1.1 4.2 −0.8 −0.1
0 0.1 1.1 −0.1 0
0 0 0 0.1 0
0 0 0 0 0.1

 , B =


0 0
−1 −0.1
−0.1 0
0.9 0
0 0.9

 .

Pitch pointing control requires mild angle of attack variations
and the control surface deflections are usually limited [24].
The set of safe states is X = {x : |α| ≤ 4π/180, |δe| ≤
25π/180, |δf | ≤ 20π/180} and there are no input constraints
as they are virtual commands (i.e., U = R2). In this example,
we consider the same nominal and prestabilizing controllers
(i.e., π = κ) and design them via LQR with state and input
weight matrices Q = diag([10 0 10 0 0]) and R = 10−3I2,
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Fig. 2. Simulation of the double integrator model. It can be seen that all
approaches successfully enforce the safety constraints on the position
x and input u and the system converges to a safe point close to the
desired reference. The bottom plot shows the state-space trajectory
each approach follows and it can be seen that the system under the
DCBF travels along the boundary of ProjxOϵ

∞.

respectively. Given the candidate DECBFs b1(x) = π/45−α,
b2(x) = 5π/36 − δe, b3(x) = π/9 − δf , b4(x) = π/45 + α,
b5(x) = 5π/36 + δe and b6(x) = π/9 + δf , we were unable
to identify suitable parameters λi ∈ (0, 1], i = 1, . . . , 6, that
retain feasibility of the DECBF-based program when using the
input weight matrix R = 10−3I2. Thus, we designed a milder
nominal controller for the DECBF approach by increasing the
input weight matrix to RDECBF = 0.09I2, which then enabled
us to select λi = 0.9, i = 1, . . . , 6. Although this ad-hoc
solution works for the given initial conditions, there is no
guarantee that the DECBF will be recursively feasible for other
x0. In contrast, the DCBF proposed in this paper requires no
such tuning and is guaranteed to work for any x0 ∈ ProjxOϵ

∞.

Fig. 3 compares the closed-loop response of each method
when tasked with reaching a reference pitch θr = π/20 and
flight path angle γr = 13π/360, with γ = θ − α. Similar
to the previous example, our approach achieves comparable
results with MPC with faster solve times (Table I). In this case,
the CG outperforms the DECBF since we had to detune the



control law to retain feasibility of the DECBF-based program.
It is also worth noting that, since we took π = κ, the MOAS
used for the CG and the DCBF is the same, which explains
their similar solvetimes (see Table I).
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Fig. 3. Simulation of the F-16 aircraft model. It can be seen that all
approaches successfully enforce the safety constraints on the angle of
attack α and control surfaces deflection δe, δf . Furthermore, the pitch
θ and flight path angle γ converge to the desired references.

VI. CONCLUSION

In this paper, we introduced a new definition of discrete-
time control barrier functions and provided necessary and
sufficient conditions for control invariance. We then showed
that the DCBF can be obtained for arbitrary state and input
constraints by finding a prestabilizing controller and project-
ing the maximal output admissible set onto the state space.
Numerical simulations showed that, in addition to being safe
and recursively feasible, the proposed DCBF-based controller
can achieve performances comparable to MPC while incurring

lower computational costs. In future work, we will explore the
relationship between the prestabilizing control policy and the
associated MOAS.
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