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Abstract—We introduce a new class of fuzzy discrete event
systems called stochastic fuzzy discrete event systems (SFDES),
which is significantly different from the probabilistic fuzzy
discrete event systems (PFDES) in the literature. It offers an
effective modeling framework for applications that are unsuitable
for the PFDES framework. A SFDES is comprised of multiple
fuzzy automata that occur randomly one at time with different
occurrence probabilities. It uses either the max-product fuzzy
inference or the max-min fuzzy inference. This paper focuses on
single-event SFDES - each of the fuzzy automata of such a SFDES
has one event. Assuming nothing is known about a SFDES, we
develop an innovative technique capable of determining number
of fuzzy automata and their event transition matrices as well as
estimating their occurrence probabilities. The technique, called
Prerequired-Pre-Event-State-Based Technique, creates and uses
merely N particular pre-event state vectors of dimension N to
identify event transition matrices of M fuzzy automata, involving
a total of MN2 unknown parameters. One necessary and suffi-
cient condition and three sufficient conditions are established for
the identification of SFDES with different settings. The Technique
does not have any adjustable parameter or hyperparameter to
set. A numerical example is provided to concretely illustrate the
Technique.

Index Terms—fuzzy automaton, fuzzy discrete event systems,
stochastic systems, system identification

I. INTRODUCTION

The theory of fuzzy discrete event systems (FDES) is an
extension of the theory of discrete event systems (DES), which
is introduced in the 1980s [1][2][3]. A DES consists of discrete
states, discrete events, and transitions from states to states as
events occur in a sequence. The theory of DES can be used
to effectively model a class of practical systems that cannot
be modeled in the traditional system theory using differential
or difference equations. DES are driven by occurrences of
events. An event records substantial qualitative changes in
the system, which is a distinctive characteristic common to
DES. One branch of the DES theory is the supervisory control
developed in the 1980s [1-5]. Fundamental concepts such as
controllability [1] and observability [2] are introduced that pro-
vide a necessary and sufficient condition for the existence of a
supervisor. Since then, other topics, including online control,
robust control, hierarchical control, decentralized control, and
limited-lookahead control, have been investigated. Supervisory
control of DES has been applied to manufacturing systems,
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communication networks, computer systems, power systems,
transportation systems, and other practical systems.

In DES, states are binary (1 or 0, yes or no). However,
many event-driven systems in practice have states that are not
binary, but continuous (both yes and no to a certain degree
at the same time). This is especially true in healthcare, where
health state of a person is often ambiguous and subjective. We
cannot say that a person’s health is excellent for certain, rather
we can only say that his health is excellent to an extent.

The best way to describe and model ambiguity and sub-
jectivity is by fuzzy sets and fuzzy logic [6]. Therefore, we
generalize DES by introducing FDES to describe event-driven
systems whose states are ambiguous and subjective [7]. This is
done by using fuzzy automata rather than (crisp) automata. In
a fuzzy automaton, “state” and “event” are extended to “fuzzy
state” and “fuzzy event”. Formally, a fuzzy automaton can be
represented mathematically as

G = (Q,Σ, ϕ,qo). (1)

The elements of G are as follows. Q is the fuzzy state vector
space of dimension N that all fuzzy state vectors belong to.
qo is the initial fuzzy state vector, representing the fuzzy state
before the occurrence of any event (pre-event). Σ is the set of
fuzzy events. Each event is given by an N×N event transition
matrix. ϕ : Q × Σ → Q is the event transition mapping
executed by fuzzy inference. Either the max-product fuzzy
inference or the max-min fuzzy inference can be used.

FDES generalizes a binary state to a fuzzy state by allowing
the values of the elements in a state vector to be in the interval
of [0, 1], rather than either 0 or 1 as in DES. Furthermore,
elements of an event transition matrix in FDES are also
allowed to be in [0, 1] rather than {0, 1} as in DES. In this
way, fuzzy state and fuzzy event can have partial memberships.
The event transition mapping is also generalized using the
max-product fuzzy inference or the max-min fuzzy inference.
It is not difficult to see that FDES/fuzzy automaton contain
DES/automaton as a special case. Besides fuzzy automata,
we also investigate observability, optimal control, and parallel
composition of FDES in [7].

Since the publication of [7], other researchers have extended
the theory of FDES in a number of important directions,
including supervisory control [8][9][11][31], state-feedback
control [18], decentralized control [12][13][34], state-based
control [17], online control [16], diagnosability [13][14][15],
detectabilities [45], predictability [32], prognosis [25][48],
opacity [35], and others [49][50]. Furthermore, the FDES with
type-1 fuzzy sets are extended to those with type-2 fuzzy sets



that can better handle ambiguity [19]. Relationship between
controllability of FDES and that of DES is investigated [30].
A generalized theory of FDES is also proposed [30]. We
also apply the FDES theory to decision making [20]. In
particular, we investigate how to use the FDES theory in
optimal regimen selection in HIV/AIDS treatments and obtain
good retrospective clinical results [21][22]. Other researchers
apply the FDES theory to air conditioning system [41][42],
mobile robots [27][29][33], and other areas. For a recent
survey of results in FDES, the reader is referred to [40].

One key element in a fuzzy automaton is the event transi-
tion matrix. It tells how the system changes states after the
occurrence of an event. It also determines observability [10],
predictability [32], and other properties of the system. One
way to generate the event transition matrix is for the modeler to
ask domain experts (e.g., physicians) for a specific application
in hand and then translate the domain knowledge to the making
of the matrix. This is done, for example, in [21][22]. However,
manual generation of event transition matrices is a challenging
and time-consuming task. It is often the bottleneck in applying
the FDES theory to real-world problems.

To overcome this bottleneck, stochastic-gradient-descent-
based online learning algorithms are recently developed to
generate event transition matrices using pre- and post-event
state vector pairs and their associated variables. Depending on
what data are available in practice, four learning algorithms
are developed. The first algorithm can be used when true
pre- and post-event states are available [24]. The second
algorithm can be employed when true post-event state is
available and true pre-event state is not but is known to be
somehow associated with (input) variables whose values are
available [23][24]. The third algorithm can be utilized when
true pre-event state is available, but true post-event state is not.
However, each of the individual post-event states is known to
be somehow associated with a (output) variable whose value
is available [38]. The fourth algorithm can be used when both
true pre-event state and true post-event state are unavailable
but they are somehow associated with variables whose values
are available [46]. Learning algorithms to learn multi-event
transition matrices simultaneously when a sequence of events
occurs is also developed [43]. To the best of our knowledge,
these are the only results on the identification of FDES in the
current literature.

In all the works mentioned above, the FDES considered are
deterministic in the sense that post-event state vector is com-
puted using pre-event state vector and event transition matrix
without any randomness involved in the process. There are
only limited works on nondeterministic FDES and probabilis-
tic FDES (PFDES for short). For example, nondeterministic
FDES in studied in [26] and PFDES is investigated in [44]

In this paper, our study is focused on a new and innovative
class of probabilistic FDES, which is called the stochastic
FDES (SFDES for short). A SFDES is comprised of multiple
fuzzy automata, each of which represents a fuzzy event and
has its own occurrence probability. Given a pre-event state
vector, we do not know the post-event state vector beforehand
because it depends on which fuzzy event will happen. It is
a random process. Of course, the post-event state vector can

be computed using the event transition matrix of the fuzzy
automaton representing the event, if available, after the event
is known to occur.

While both SFDES and PFDES [44] handle randomness,
they are substantially different as they are created for modeling
different types of applications. A PFDES consists of only one
fuzzy automaton; which one of multiple event trajectories will
take place next from current state is probabilistic. In contrast, a
SFDES can be comprised of many fuzzy automata; which one
to occur is random and depends on its occurrence probability.
This capability represents a significant advantage of SFDES
over PFDES and makes the former more suitable for certain
applications that are difficult to be tackled by the latter. To
the best of our knowledge, the notion of SFDES has never
been proposed or mentioned in the literature. It is one of the
novelties of this paper.

A logical question to follow is how to identify the model
of a SFDES? In this paper, we develop an identification
technique called the Prerequired-Pre-Event-State-Based Tech-
nique. It creates and employs only N particular pre-event state
vectors for complete identification of M randomly-occurring
fuzzy automata in a single-event SFDES, each of which is
represented by an N × N event transition matrix. The total
number of matrix elements to be identified is MN2.

In the next section, we will formally introduce SFDES
and single-event SFDES. We will then present our identifi-
cation technique, and establish two necessary and sufficient
conditions and two sufficient conditions for it to identify
single-event SFDES under different settings in Section III. A
numerical example is supplied to demonstrate how exactly the
Technique works in Section IV. Section V concludes the paper.

II. INTRODUCTION TO STOCHASTIC FUZZY DISCRETE
EVENT SYSTEMS

A SFDES consists of M fuzzy automata (M > 1), each
acts only according to its own occurrence probability that
is independent of system’s pre-event state or anything else.
A fuzzy automaton model [7] has N individual fuzzy states
whose membership values are all in [0, 1]. The membership
values form an 1 × N vector to collectively represent the
overall state of the automaton, which is referred as the system
state. After an event has happened, the system will transfer
from pre-event state (first such state is initial state), through
its N × N event transition matrix Ψ̃, to a new, post-event
system state. Formally, a SFDES is given by

SFDES = {(Gk, pk) : k = 1, 2, ...,M}, (2)

where Gk is a fuzzy automaton and pk is the probability of
the occurrence of Gk. It is required that p1+p2+...+pM = 1.

In this paper, we focus on one important class of the SFDES,
which is the single-event SFDES, and will develop an iden-
tification technique for it. By “single event”, we mean there
is no consecutive events occurring for any fuzzy automaton
in a SFDES. In other words, each fuzzy automaton has one
and only one event. Events of different fuzzy automata are
all independent of one another in terms of when they will
occur. Occurrence order of the events is random and the same



event may take place repeatedly and/or consecutively. From
application standpoint, single-event SFDES can be useful to
model practical processes and systems, including those in
biomedicine (e.g., diagnosis and treatment of various diseases).
For example, progression of many diseases can be treated as
single events and they are highly uncertain in a stochastic
sense. Because of this, outcome of disease treatment, as
measured by patient clinical state, is often difficult to predict
with a high degree of certainty.

The SFDES definition (2) is broader and covers more
than the single-event SFDES. It covers multi-event SFDES,
in which two or more events of a fuzzy automaton can
occur consecutively in a random fashion. Identification of
such SFDES is desirable but seems to be technically more
challenging. It is an interesting open research question. The
work presented in this paper will be helpful in a future study
of this and other related questions.

To identify a single-event SFDES is to identify the event
matrices of the M fuzzy automata and determine their oc-
currence probabilities. Denote the event matrix for the k-th
automaton as

Ψ̃k =


a11k a12k ... a1Nk

a21k a22k ... a2Nk

...
aN1k aN2k ... aNNk


where all the elements fall in [0, 1]. Note that the memberships
in a row (or a column) of Ψ̃k are not required to be summed
to 1. Denote the probability of Ψ̃k occurring as pk.

Suppose there are H pre-event fuzzy state vectors, which
are defined as:

Θh = [Sh
1 Sh

2 ... Sh
N ], h = 1, 2, ...,H.

Suppose also that event represented by Ψ̃k occurs when pre-
event state is Θh. The post-event fuzzy state, denoted as Θ̂h

k ,
can be computed by using the compositional rule of inference
in fuzzy logic theory:

Θ̂h
k = Θh ◦ Ψ̃k

= [Sh
1 Sh

2 ... Sh
N ] ◦


a11k a12k ... a1Nk

a21k a22k ... a2Nk

...
aN1k aN2k ... aNNk


= [Ŝh

1k Ŝh
2k ... Ŝh

Nk].

The symbol ◦ denotes fuzzy inference operation, which can
be the popular max-product operation or max-min operation.
If the max-product inference is used,

Ŝh
jk = max(Sh

1 a1jk, S
h
2 a2jk, ..., S

h
NaNjk), (3)

or if the max-min inference is employed,

Ŝh
jk =max(min(Sh

1 , a1jk),min(Sh
2 , a2jk))

...,min(Sh
N , aNjk)).

(4)

III. PREREQUIRED-PRE-EVENT-STATE-BASED
TECHNIQUE

Suppose there is a single-event SFDES, which can be
in various form (e.g., mathematical formulations, computer
program, physical systems). For this SFDES, its event tran-
sition matrices, how many of them, and their occurrence
probabilities, are all assumed to be unknown. Note that N
is not an inherent parameter of a SFDES. Rather it is a design
parameter whose value needs to be chosen by the model
developer according to the nature of the application of interest.

The tasks of our identification technique consist of: (1)
creating and applying pre-event state vectors to the SFDES
and recording their corresponding post-event state vectors,
and (2) utilizing the the resulting pairs of the pre- and
post-event state vectors to determine the event matrices and
estimate their occurrence probabilities. We name the technique
the Prerequired-Pre-Event-State-Based Technique because it
creates N peculiar pre-event state vectors and reply on them
to achieve SFDES model identification.

Let’s first consider a special SFDES that consists of only
one fuzzy automaton. This actually is a FDES and there is
no randomness caused by multiple automata. Only one event
matrix, Ψ̃1, is to be identified. We create a series of N 1×N
special pre-event state vectors:

Θ1 = [1 0 ... 0]

Θ2 = [0 1 ... 0]

...
ΘN = [0 0 ... 1].

(5)

We feed them one at a time to FDES in the same order as
shown in (5) (i.e., Θ1, Θ2,. . . ,ΘN). Completion of feeding
all of them constitutes one round of feeding. We state the
identification outcome as follows:
Theorem 1: A necessary and sufficient condition for identify-
ing Ψ̃1 of a FDES that uses either max-product or max-min
fuzzy inference method is to apply all the N pre-event state
vectors in (5) to the FDES one at a time in any order.
Proof : We first prove the sufficiency. One round of the feeding
of the N pre-event state vectors in the same order as listed
in (5) will produce Θ̂1

1 = [a111 a121 ... a1N1], Θ̂2
1 =

[a211 a221 ... a2N1], ..., Θ̂N
1 = [aN11 aN21 ... aNN1],

which are the N rows of the event matrix being identified,
from the first row to the last row. This is the case regardless
which of the two fuzzy inference methods mentioned above
is used because the value of Ŝh

jk produced by (3) or (4) is
identical. By making and applying these particular N pre-
event state vectors once, one can completely identify the event
matrix simply through observing the post-event state vectors.
This holds true regardless of the feeding order of the N pre-
event state vectors to the FDES (there are a total of N !
different ways of feeding).

The necessity of the condition is obvious - the matrix cannot
be completely identified if at least one pre-event state vector
in (5) is not fed to the FDES. QED

Now let’s us deal with the general case and assume that
there are M (M > 1) fuzzy automata in a single-event SFDES



and we do not know them. Nor do we know the value of M and
occurrence probabilities of the automata. To identify the event
transition matrices, we apply the N pre-event state vectors in
(5), Θ1, . . . ,ΘN, one at a time orderly to the SFDES. Which
fuzzy automaton will produce post-event vector in response
to any one of these pre-state vectors is purely random and
obeys the occurrence probabilities of the fuzzy automata. We
repeatedly feed these state vectors to the SFDES round after
round. Sufficiently many rounds of feeding will produce M
different Θ̂h

k , for any specific k, and they will occur at different
probabilities (which is an assumed condition) that resemble
the underlying probabilities pk of the fuzzy automata. First,
selecting the N Θ̂h

k , h = 1, 2, ..., N , that have the same or
very similar probability, and then use them to form the event
matrix Ψ̃1 (its h-th row is the selected Θ̂h

k). Repeating this
process M −2 times will lead to construction/identification of
all the remaining M − 1 fuzzy automata in the SFDES.

Then, we can estimate the occurrence probability of each
fuzzy automaton by retrospectively using the same data that
has just been employed to determine the M event matrices.
From the data, we can determine which post-event state vector
is produced by which event matrix. Let fsk be the number of
post-event state vectors yielded by Ψ̃k after s-th round of the
feeding of the pre-event state vectors. We can consequently
calculate the corresponding estimated occurrence probability
of each event matrix, p̂sk, by using the following formula:

p̂sk =
fsk∑m
k=1 f

s
k

, k = 1, 2, . . . ,M. (6)

This probability is an estimation of the underlying occurrence
probability. The more rounds of feeding of pre-event state
vectors, the closer the computed probability will be to the
underlying probability. The model identification is considered
successful and the identification process will end once changes
of all the estimated occurrence probabilities are less than a
modeler-specified error bound ε:

|p̂sk − p̂s−1k | < ε, k = 1, 2, . . . ,M. (7)

The corresponding s rounds of vector-feeding is designated
as s∗(ε), which is a function of ε. We use this function-like
notation on purpose to explicitly indicate the dependence of
the total number of rounds of the vector feeding needed on ε.
Generally speaking, the smaller the ε, the larger the s∗(ε).

Because Θ̂h
k will be the same no matter which one of

the two fuzzy inference methods is used, this identification
technique works for SFDES with either inference method.

The above identification process can be summarized in the
following algorithm.

Algorithm 1: Input: SFDES = {(Gk, pk) : k =
1, 2, ...,M}, error bound ε, minimum number of iteration
so

Output: M , Ψ̃k and p̂k, k = 1, 2, ...,M
1: for h = 1, 2, ..., N do
2: Θh = [0 ... 1 ... 0] (the h-th element = 1);
3: end for
4: s = 1;
5: for h = 1, 2, ..., N do
6: Input Θh to SFDES;

7: Obtain output Θ̂h
s from SFDES;

8: end for
9: s = s+ 1;

10: if s < so then
11: Go to Line 5;
12: else
13: M = the number of distinct Θ̂h

s ;
14: Θ̂h

k = the k-th distinct Θ̂h
s ;

15: fsk = the number of the k-th distinct Θ̂h
s ;

16: Ψ̃k = [(Θ̂1
k)′ ... (Θ̂N

k )′]′;
17: p̂sk =

fs
k∑m

k=1 fs
k

;
18: if |p̂sk − p̂

s−1
k | ≥ ε then

19: Go to Line 5;
20: else
21: p̂k = p̂sk;
22: Go to Line 25;
23: end if
24: end if
25: End.

An alternative stopping criterion is to do a pre-determined
number of rounds of vector feeding regardless whether (7) is
met or not.

The theorem below summarizes the results.
Theorem 2: A sufficient condition for identifying Ψ̃k of a
single-event SFDES and determining its estimated occurrence
probabilities that satisfy a modeler-specified error bound ε is
s∗(ε) rounds of feeding of the pre-event state vectors (5) to
the SFDES. This holds true regardless of which of the two
fuzzy inference methods is employed.
Proof : The work presented above establishes the correctness
of this conclusion. QED

We now extend our investigation to cover the situation when
two or more fuzzy automata of a single-event SFDES have an
identical occurrence probability. When this is the case, one
will become aware of it when selecting N Θ̂h

k to assemble
the event matrices involved. For instance, suppose a SFDES
consists of six fuzzy automata and two of them occur with
an identical occurrence probability. At the stage of deciding
which N Θ̂h

k have the same (or very similar) probabilities and
hence belong to the same event matrix, one would encounter,
for any given h, two different Θ̂h

k that have same (or very
similar) probabilities. Thus, there is no way to know for sure
which Θ̂h

k is for which of the two event matrices.
Without loss of generality, assume there are m out of M

fuzzy automata that have the same occurrence probability
(m ≤M ). Following the identifying process mentioned above,
we have identified, row by row, a total of M × N rows of
elements, m×N of which are for the m event matrices. Also,
we know which m obtained rows correspond to which specific
row of the m event matrices. The only problem is that we
do not know how to assign the m rows correctly to the m
event matrices, one row for each of them. We now present an
approach to matching the rows with the event matrices.

For convenience, we refer arbitrarily the m event matrices as
the first, second, ..., m-th event matrix when we consider them
sequentially. For the first event matrix, there are m possible
assignments for any row vector. Therefore, there are a total



of m ×N possible assignment combinations for the N rows
in the matrix. For the second event matrix, there are m − 1
possible assignments for any row vector, and thus a total of
(m − 1) × N possible assignment combinations, and so on.
Consequently, for the m event matrices, the total number of
different row assignment combinations is: Ω = m×N+(m−
1)×N + (m− 2)×N + · · ·+ 2N . Ω is expected to be rather
modest because m is usually small. For instance, if N = 10
and m = 3, Ω = 50.

The matching process proceeds as follows. We first create a
series of statistically unbiased random pre-event state vectors.
A pre-event state vector is deemed statistically unbiased if
each of the N elements of the vector can be treated as
a uniform random number in [0, 1]. Otherwise, the vector
is said to be statistically biased. A set of state vectors is
statistically unbiased if, and only if, all the vectors in the set
are statistically unbiased. Whether a given set is biased can
be judged. One empirical way is that if the set is unbiased,
numbers like 0, 0.5, and 1 (or values close to them) should not
be missing and also the average value of the same individual
state membership across H pre-event state vectors should be
around 0.5. This is a simpler test, and there are more rigorous
statistical tests in the literature for this purpose.

We then feed these pre-event state vectors one at a time
to the SFDES being identified. The post-event state vector
and the corresponding pre-event state vector form a pair as a
result. We create many such pairs of pre- and post-event state
vectors. By “many,” we mean each of the fuzzy automata with
an identical probability produces at least one, but preferably
multiple, pair of pre- and post-event state vector. We isolate
those pairs that are produced by the m fuzzy automata from
the rest of the pairs through the differences in the occurrence
frequencies. The pairs found will be used as test pairs. We
write a computer program that will implement only the fuzzy
automata with the identical occurrence probability. We run the
program that starts with any one of the Ω combinations of row
element assignment. The program will read in the pre-event
state vectors of the test pairs one at a time and calculate the
post-event state vector. It will then compare the result with the
post-event state vector of the test pair. If they are the same, this
process will repeat and the program will read in the next pre-
event state vector. If they are different, it means this particular
combination of row element assignment being tested does
not represent the true m fuzzy automata. The program will
abandon this combination and use any one of the remaining
combinations to start the process again. The program will
stop when all the post-event state vectors produced by the
event matrices formed by one of the Ω combinations of row
element assignment are found to be exactly the same as those
in the test pairs. At that point, the m event matrices have been
successfully identified.

In what follows, we present this matching process in a
mathematically rigorous manner.

Denote the set of all different row assignment combinations
as

Y = {(Ψ̃i
1, ..., Ψ̃

i
m) : i = 1, 2, ...,Ω}.

Denote the set of statistically unbiased test pairs as

X = {(Θj , Θ̂j) : j = 1, 2, ...,Γ}. (8)

We say that a test pair x = (Θj , Θ̂j) satisfies a combination
y = (Ψ̃i

1, ..., Ψ̃
i
m) if there exists an event matrix Ψ̃i

k in y such
that Θ̂j = Ψ̃i

k ◦Θj . In other words,

(∃Ψ̃i
k ∈ y)Θ̂j = Θj ◦ Ψ̃i

k.

Theorem 3: Assume that Ψ̃k and pk of a single-event
SFDES using either fuzzy inference are to be identified, where
k = 1, 2, . . . ,m, pi = pj , and 1 ≤ i, j ≤ m. If the test set
X is large enough such that there exists one and only one
combination y = (Ψ̃i

1, ..., Ψ̃
i
m) ∈ Y that is satisfied by all

the test pairs x ∈ X , then Ψ̃i
1, ..., Ψ̃

i
m are the true m event

matrices to be identified.
Proof : Assume that the test set X is large enough such
that there exists one and only one combination y =
(Ψ̃i

1, ..., Ψ̃
i
m) ∈ Y that is satisfied by all the test pairs x ∈ X .

We prove that Ψ̃i
1, ..., Ψ̃

i
m are the m event matrices to be

identified by contradiction.
Suppose that Ψ̃i

1, ..., Ψ̃
i
m are not the m event matrices to be

identified. Since we assume that all the rows of all the matrices
have been correctly identified through the identifying process
described before Theorem 2 is introduced and Y contains all
the possible combinations, there exists one combination y′ =

(Ψ̃′
i

1, ..., Ψ̃
′i
m) ∈ Y such that Ψ̃′

i

1, ..., Ψ̃
′i
m are the m event

matrices to be identified and y′ 6= y.
Since Ψ̃′

i

1, ..., Ψ̃
′i
m are the m event matrices to be identified,

it must be satisfied by all the test pairs x ∈ X . Since y =
(Ψ̃i

1, ..., Ψ̃
i
m) ∈ Y is also satisfied by all test pairs x ∈ X ,

we have two different combinations, namely y and y′, both of
which are satisfied by all the test pairs x ∈ X . This contradicts
the assumption that there exists one and only one combination
y = (Ψ̃i

1, ..., Ψ̃
i
m) ∈ Y that is satisfied by all the test pairs

x ∈ X .
The estimated occurrence probability for the identical oc-

currence probability shared by the m event matrices, denoted
as p̂, is determined through the mean of the m individual p̂skk :

p̂ =

∑m
k=1 p̂

sk
k

m
(9)

where p̂skk is calculated by (6). QED
Generally speaking, the larger the m and/or N , the larger

the set of test pairs X should be.
We comment that to identify a SFDES containing fuzzy

automata with rather similar (i.e., about the same but not
identical) occurrence probabilities, one may also use this test-
pairs technique to perform the row assignment task. Finally,
even if all the fuzzy automata of a SFDES appear to have
distinctively different occurrence probabilities, one may still
use this technique to further validate the matrices identified
through Theorem 2, if desired. In either case, it is an optional
step.

Combining Theorems 2 and 3, we arrive at the following
conclusion on identification of any single-event SFDES
regardless of event occurrence probabilities of its automata:
Corollary 1: A sufficient condition for identifying Ψ̃k



and estimating pk of a single-event SFDES, where
k = 1, 2, . . . ,M , is performing sufficient rounds of feeding
of the pre-event state vectors (5) and applying enough test
pairs (8) to the SFDES. This holds true regardless of which
of the two fuzzy inference methods is employed.

IV. NUMERICAL EXAMPLE

Correctness of the Prerequired-Pre-Event-State-Based Tech-
nique can be clearly seen and systematically verified in a
mathematical and rigorous manner, as shown in the previous
section. Thus, simulation is not warranted for this purpose.

Alternatively, we chose to provide a numerical example to
concretely show, step-by-step, how the Technique functions.
For brevity, we choose to use a hypothetical, but representa-
tive, single-event SFDES model that consists of the following
three fuzzy automata:

Ψ̃1 =

 0.551 0.946 0.209
0.857 0.184 0.439
0.681 0.591 0.421


Ψ̃2 =

 0.810 0.317 0.144
0.416 0.321 0.869
0.380 0.621 0.961


Ψ̃3 =

 0.466 0.313 0.391
0.756 0.183 0.838
0.988 0.691 0.343


with underlying p1 = 0.15, p2 = 0.35, p3 = 0.5. Either
the max-product fuzzy inference (3) or the max-min fuzzy
inference (4) can be used; they produce the same result, as
explained earlier.

Table I shows in detail how the Technique feeds the three
pre-event state vectors in Column 1 to the SFDES randomly
one at a time to get the post-event state vectors listed in Col-
umn 2, which are actually the rows of the event transition ma-
trices. The Technique then assigns them correctly to the fuzzy
automata based on the similar event occurrence frequencies
(i.e., f100r in the table). At the end, the Technique identifies
all the three matrices correctly - the matrices identified in the
fourth column of the table are exactly the same as the true
matrices above.

The last column of the table shows how these frequen-
cies are utilized to estimate the underlying event occurrence
probabilities. The results are p1 = 0.157, p2 = 0.34, and
p3 = 0.503, which are slightly different from the given under-
lying probabilities. If more accurate estimations are desired,
they can be achieved by feeding each of the three pre-event
state vectors more times (e.g., 500 times instead of the 100
times).

V. CONCLUSION

We introduce a new and innovative class of FDES models
called stochastic fuzzy discrete event systems (SFDES), which
can be used to model practical systems in various industries
that are unsuitable for the PFDES modeling framework. Fo-
cusing on single-event SFDES, we study how to identify such

a model without any a priori knowledge, and develop the
Prerequired-Pre-Event-State-Based Technique. It works with
single-event SFDES that uses either the max-product fuzzy
inference or the max-min fuzzy inference. Two necessary and
sufficient conditions (Theorems 1 and 3) and two sufficient
conditions (Theorem 2 and Corollary 1) are established for the
identification of single-event SFDES with different settings. A
numerical example is provided to more concretely illustrate the
Technique.

While single-event SFDES is a stochastic model, the Tech-
nique is deterministic and, better yet, does not have any
adjustable parameter to set or hyperparameter to experiment
with.
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