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Set-coloring Ramsey numbers and error-correcting codes
near the zero-rate threshold

David Conlon* Jacob Fox! Huy Tuan Pham?! Yufei Zhao®

Abstract

For positive integers n,r, s with r > s, the set-coloring Ramsey number R(n;r, s) is the minimum N
such that if every edge of the complete graph K n receives a set of s colors from a palette of r colors, then
there is a subset of n vertices where all of the edges between them receive a common color. If n is fixed
and Z is less than and bounded away from 1 — ﬁ7 then R(n;r,s) is known to grow exponentially in r,
while if 2 is greater than and bounded away from 1 — ﬁ, then R(n;r,s) is bounded. Here we prove

S

bounds for R(n;7,s) in the intermediate range where 2 is close to 1 — ﬁ by establishing a connection
to the maximum size of error-correcting codes near the zero-rate threshold.

1 Introduction

Two of the central problems in discrete mathematics are that of estimating the maximum size of error-
correcting codes with given parameters and that of estimating Ramsey numbers. Here, building on recent
work by an overlapping set of authors [7], we find a close connection between these two problems. More
precisely, we show that the problem of estimating set-coloring Ramsey numbers, a natural generalization
of the usual Ramsey numbers, and that of estimating the size of error-correcting codes near the zero-rate
threshold are essentially the same problem.

To say more, let A,(m,d) be the maximum size of a code C' C [¢]™ of length m in which any two
codewords have Hamming distance at least d, i.e., they differ in at least d coordinates. Such a code is called
a g-ary code of length m and distance d. The rate of the code is then defined as (log, [C[)/m. A result
going back to work of Plotkin [16], who treated the binary case, says that there are codes of positive rate,
that is, with exponentially many elements, if d < (1 —1/q — €)m for any fixed € > 0 and no such codes if
d > (1 —1/q)m. That is, there is a threshold at distance (1 — 1/¢q)m where the rate becomes zero.

On the other hand, for any positive integers n,r, s with » > s, we define the set-coloring Ramsey number
R(n;r,s) to be the minimum N such that if every edge of K receives a set of s colors from a palette of
r colors, then there is guaranteed to be a monochromatic clique on n vertices, that is, a copy of K,, whose
edges all share a common color. As a shorthand, it will be convenient for us to refer to such a set-coloring
as an (r, s)-coloring of Ky.

A priori, it is not clear that these quantities should have anything to do with one another. However,
in [7], it was shown how to use the Gilbert—Varshamov bound, a standard lower bound for the size of codes,
to show that for any € > 0 there exists ¢ > 0 such that R(n;r,s) > 2°" for any r and s with er < s < (1—¢)r
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Figure 1.1: A summary of the known bounds for Ay (r, (r — 7)/2).

and n sufficiently large in terms of r, a result which is tight up to the constant ¢ (see also [3] for an alternative
approach with an improved bound on the constant ¢ in terms of ). Moreover, the following result was noted.

Theorem 1.1 ([7]). For all positive integers q,r,s with r > s, R(q+ 1;7,5) > Aq(r,s) + 1.

In particular, if ¢ is fixed, we see that, provided s/r < 1—1/q—e¢ for some fixed ¢ > 0, R(q+1;r, s) grows
at least exponentially in 7. Moreover, it was also shown in [7] that if s/r > 1 —1/¢ + ¢ for some fixed € > 0,
then R(q+ 1;r,s) is at most a constant depending only on ¢ and . That is, for ¢ fixed, there is a threshold
for s/r at 1 — 1/q where the set-coloring Ramsey number R(q + 1;7,s) goes from growing exponentially in
r to being bounded.

In [7], it was suggested that perhaps Theorem [1.1]is almost tight when s/r is close to 1 —1/g. That this
is indeed the case is our first new result.

Theorem 1.2. For any positive integer q and any € > 0, there is ¢ > 0 such that if r, s are positive integers
with s <(1—=1/¢)r and j = (1 —1/q)r — s+ 1, then

R(g+1;r,s) <max ((1+¢€)Ay(r,s —cj),es).
Furthermore, if ¢ = p' and r = p’ are powers of a prime p withr > q, then R(q+1;7,8) < (14€)A4(r,s—cj).

We suspect that there may even be equality in Theorem [L.I] when s is sufficiently close to (1 — 1/q)r,
though our methods fall somewhat short of proving this.

Having established this connection, we can use it to prove bounds on R(g + 1;7,s) when s is close to
(1—-1/¢)r by studying the bounds for A,(r, s) in the same range. It turns out that the study of such bounds
is a well-established topic in coding theory, particularly in the binary case. We have already mentioned the
work of Plotkin above. More precisely, he showed that As(r,7/2) < 2r and that As(r,s) < 2|s/(2s—r)] for
s > r/2, both of which are sometimes tight by considering Hadamard codes (see, for instance, [13, Chapter
2]). More generally, Blake and Mullin [5] showed that A,(r,s) < ﬁ&n when s > (1 — 1/¢)r and it can
also be shown that A,(r, (1 —1/q)r) < 2qr.

There has also been a great deal of work in the binary case for s of the form (r —j)/2 (see Figure[L1]). For
instance, using the linear programming bound, McEliece (see [13, Chapter 17]) showed that Az (r, (r—y7)/2) <
(14 0(1))r(j 4 2) for j = o(r'/?). Sidel'nikov [17] constructed a code showing that McEliece’s bound is
asymptotically tight when j = ©(r!/?). In particular, he showed that As(r, (r — j)/2) > 7(j +2) + 1 for
r= (24" —-1)/(2™ +1) and j = 2™ — 1. Later, Tietdviinen [18] (see also [9]) showed that Aa(r, (r —j)/2) =
O(rlog(j + 1)) for j = o(r'/3) and conjectured that Ay (r,(r — 5)/2) = O(r) in this range. Very recently,
this conjecture was resolved in a strong form by Balla [4], who showed that As(r, (r — j)/2) < (2 + o(1))r
for j = o(r'/?). That is, the bound remains close to the Plotkin bound in this range.

In a recent paper, Pang, Mahdavifar and Pradhan [15] showed that Ag(r, (r — 2¢7%/2)/2) > r® and that
As(r, (r — 2/r)/2) = O(r™/?) and Ay(r, (r — 44/7)/2) = O(r'>/?). We improve these bounds and, more
generally, establish good bounds for A4(r, (1 —1/¢)(r — j)) when j is on the order of v/r. Moreover, because



of Theorems [L.1] and [[.2] we get analogues, both of the bounds here and those mentioned above, for the
corresponding set-coloring Ramsey numbers R(q + 1;7, s).

Theorem 1.3. If k is a positive integer and j < \/(k — 1)r/(q¢ — 1), then
Ay(r, (L= 1/q)(r = j)) = Ogi(r*).
On the other hand, for any prime power q, there are infinitely many r such that, for j > (k — 1)\/7/q,

Aq(r, (1= 1/q)(r = j)) = (rq)*/2.

As a warm-up to our main result, in the next section we will prove a tight result for R(3;2s,s) (see
also |7, Proposition 4.3] for another tight result). This quantity was recently studied, independently of the
work in [7], in the master’s thesis of Le [10]. She showed that if there is a Hadamard matrix of order 2s, then
R(3;2s,5s) > 4s+1. In the other direction, she gave an upper bound on R(3;2s, s) which grows exponentially
in s and asked whether the gap can be closed. We answer this question by proving the following.

Theorem 1.4. For all s > 1, R(3;2s,s) <4s+ 1.

Note that the assumption s > 1 is needed in Theorem [L.4] as R(3;2,1) = R(3;2) = 6. Moreover, since
there is a Hadamard matrix of order 2s whenever s = ¢ + 1 with ¢ =1 (mod 4) a prime power, we see that
R(3;2s,s) = 4s+ 1 for infinitely many s and also that R(3;2s,s) = (4 + o(1))s.

2 A tight result infinitely often

In this short section, we prove Theorem [L.4] that R(3;2s,s) < 4s+ 1 for all s > 1, which, by Le’s
construction [10], is sharp for infinitely many s. We begin with the following result, which is essentially
a special case of [T, Proposition 4.1].

Lemma 2.1. Ifr < 2s, then R(3;7,5) < 52— + 1. In particular, R(3;2s —1,s) < 2s + 1.

— 2s—r

Proof. Consider an (r, s)-coloring of the edges of the complete graph on N vertices with no monochromatic
triangle. As each of the r color classes is triangle-free, each color class has at most N2/4 edges, so the
total number of colors used on all edges is at most N2 /4. On the other hand, as s colors are used on each
edge, the total number of colors used on all edges is S(N). Hence, s(g) < rN?/4. Simplifying, we get that

2
1—-1/N <r/2sand so N < 525 Thus, R(3;7,s) < 525 + 1. O

2s—r" 2s—r

In the proof above, we used Mantel’s theorem, the statement that any triangle-free graph on N vertices
has at most |N2?/4| edges. It is known that equality holds in Mantel’s theorem if and only if the graph
is a balanced complete bipartite graph. If, instead, we restrict attention to non-bipartite graphs, Mantel’s
theorem can be improved very slightly. This is the content of the following result of Brouwer [6].

Lemma 2.2 ([6]). Any non-bipartite triangle-free graph on N vertices has at most |[N?/4] — |N/2] + 1
edges. In particular, when N is odd, any such graph has at most N?/4 — N/2+5/4 edges.

With this, we can now prove Theorem [I.4]

Proof of Theorem[1.4] Consider a (2s, s)-coloring of the edges of the complete graph on N = 4s+ 1 vertices
and suppose, for the sake of contradiction, that it has no monochromatic triangle. If one of the color classes
has an independent set S of size 2s 4+ 1, then the coloring induced on the set S is a (2s — 1, s)-coloring and
so, by Lemma 2.1} S must contain a monochromatic triangle, a contradiction. Since any bipartite graph on
4s + 1 vertices contains an independent set with 2s 4+ 1 vertices, to complete the proof it suffices to show
that at least one of the color classes is bipartite. But, if each color class is non-bipartite, Lemma 2.2l implies
that each color class has at most N?/4 — N/2 + 5/4 edges, so the total number of colors on edges is at

most 2s(N?/4 — N/2 + 5/4). As the total number of colors on edges equals s(g), we would then obtain

s(g) < 2s(N?%/4— N/2+5/4). This simplifies to N < 5 or, equivalently, s < 1, contradicting our assumption
that s > 1 and completing the proof. O



As a quick corollary of Theorem [I.4] applied in combination with Theorem [L.1] we see that A5(2s,s) <
R(3;2s,s) — 1 < 4s, which is exactly the Plotkin bound in the binary case. As the Plotkin bound is known
to be tight whenever there is a Hadamard matrix of order 2s, this also returns Le’s lower bound [10] for
R(3;2s,5).

3 Codes from set colorings

In this section, we prove Theorem [1.2] showing that the connection between codes and set-coloring Ramsey
numbers discovered in [7] goes both ways near the zero-rate threshold. We first state and prove a certain
stability version of Turan’s theorem.

3.1 Stability for Turan’s theorem

Turdn’s theorem is the natural generalization of Mantel’s theorem to larger cliques. If we write T 4 for the
Turén graph, the balanced complete g-partite graph on N vertices, Turdn’s theorem [19] then states that the
Turén graph T 4 is the unique Ky 1-free graph on N vertices with the maximum number of edges. This
maximum is therefore at most (1 — %)N 2/2 edges, with equality if and only if NV is a multiple of q.

We wish to prove a stability version of Turdn’s theorem, saying that any graph on N vertices with nearly
as many edges as T , can be made g-partite by deleting a small number of vertices. In the proof, we will
make use of the following well-known result of Andrésfai, Erdds and Sés [2].

Lemma 3.1 ([2]). Every K, 1-free graph on N vertices with minimum degree larger than %N =(1-

ﬁ )N is q-partite.

The stability result we need is now as follows.
Lemma 3.2. Every K i1-free graph G on N > 12¢® vertices has at most (1— %)N2/2 — %(ZG) edges, where
fq(G) is the minimum f such that f vertices can be deleted from G so that the remaining induced subgraph
is q-colorable.

Proof. Let G(0) = G. After defining G(7), if G(¢) has a vertex v; of degree at most %|G(i)|, then let

G(i+1) be obtained from G(i) by deleting v;. Let f = f,(G). We must eventually define G(f), as otherwise
the process stops at some G(i) with ¢ < f of minimum degree larger than %|G(i)|. But, by Lemma B.1]

this G(4) is a g-partite graph obtained from G by deleting i < f = f,(G) vertices, contradicting the definition

of f,(G).
Since G(f) is Kq41-free, Turdn’s theorem implies that G(f) has at most (1 — %)|G(f)|2/2 edges. Hence,

since the degree of v; in G(7) is at most %(N — 1) and ggj =(1- %) - m, the number of edges in

G is at most

-1
3¢ —4 . 1 9 f Nf ( 1) 9 Nf
G _ _Z A _z _
“ (f))+§3q—1(N Z)S(l Q)N/2+2 2(1(3q—1)S ! q N7z 8q%’
as required. O

3.2 From set colorings to error-correcting codes

We will deduce Theorem [I.2] from the following result.

Theorem 3.3. Let A\ > 1 and N = R(q+ 1;7,5) — 1 > 12¢%. Ifb= {4)\q2 ((1 - %) r—s+ %)J > 0, then

Agy(r,s —2b) > <1 — %) N.



Proof. Consider an (r, s)-coloring of Ky with N = R(q+1;r,s)— 1 without a monochromatic K,+1. Such a
coloring exists from the definition of the set-coloring Ramsey number. Consider the r graphs G1,...,G, on
V(K n) where E(G;) is the set of edges of Ky whose set of colors contains color 4, so that G; is Kgy1-free
and each edge of K is an edge of exactly s of these r graphs. For each G, there is a set U; of f,(G;) vertices
such that the induced subgraph of G; upon deleting U is g-partite. If we write V;1, ..., Vj, for the ¢ resulting
independent sets in G;, then V(K ) can be written as the disjoint union V(Ky) =U; UV;; U---UVj,. For
each vertex v € V(Kn), let z;(v) = j if v € V}; and otherwise let x;(v) be an arbitrary element of [¢]. Then,
for each v € V(Ky), we let x(v) = (21 (v),...,2.(v)) € [q]".

By counting over each edge e, the number of pairs (e, i) with e € E(G;) is (N)s On the other hand,

2
counting over the color classes, the number of such pairs is also >._, e(G;). Hence,

(J;[)S - ie(Gi) < Z; ((1 - 1) N?/2 -~ %(QG)) = (1 — %) rN?/2 — 8_]:][2 ;fq((;i)7

i=1 q

where the inequality is by Lemma [3.21 Multiplying both sides by ?viz and rearranging, we get

e 1 S
N 1;fq(Gi)§4q2<<1—a)r—s+N) = M.

Since Yi_, Uil = >°I_, f4(G;), Markov’s inequality now implies that the number of vertices v for which
v € U; for at least AM values of 4 is at most N/A. Hence, the set V' of vertices v for which v € U; for
at most AM values of i satisfies |[V/| > N — N/XA = (1 — A™')N. Consider the collection of codewords
C = {z(v) : v € V'}. For each pair of distinct vertices u,v € V', we have that (u,v) is an edge of exactly s
graphs G;. For each G; for which (u,v) € E(G;) and neither « nor v is in U;, we have x;(u) # x;(v). Since
u and v are each in at most b = | AM | of the sets U;, there are at least s — 2b coordinates for which u and
v must differ. Hence, since C is a collection of codewords in [g]” in which each pair has distance at least
s —2b, |C| < Ay(r,s — 2b). Since |C| = |V'| > (1 — A1) N, this completes the proof. O

Proof of Theorem[L.2l If N = R(q+ 1;7r,8) — 1 < es, then we are already done. We may therefore assume
that N > es. We apply Theorem 3.3 with A = 2/¢ to obtain

Ag(r,s —2b) > (1 —€/2)N,

where b = {4)\(12 ((1 — %) r—s4+ %)J Note that b < ¢j/2 where j = (1 — %) r — s+ 1 for an appropriate
constant ¢ > 0 depending only on ¢ and e. This implies that

R(g+1;r,8) < (14 €)Aq(r,s — cf),

as desired.

In the case where ¢ = p’ and r = p’ are powers of the same prime p with r» > ¢, we show that N > s,
which immediately gives the desired conclusion. Based on generalized Hadamard matrices, it is shown in
[12] that for such g and 7 there are codes over Iy, with size ¢r and distance (1 —1/q)r. By Theorem [L1} this
implies that N > A,(r,s) > qr > s, as required. O

4 Codes with large distance

In this section, we prove our upper and lower bounds for A,(r,s), and hence R(q + 1;7, s), when s is close
to (1 —1/q)r. For the upper bound, we will make use of Delsarte’s linear programming bound [§], following
a technique of McEliece, Rodemich, Rumsey and Welch [14] (see also Theorem 35 in [13, Chapter 17]) and
its extension to g-ary codes in [1]. If we define the Krawtchouk polynomials by

K97 (z) = i(_l)j(q 1y (:v> (r - x)

= J/\i—1J



for any 0 < ¢ < r, then Delsarte’s bound is as follows.

Lemma 4.1. [8] If P(z) =Y, B; K" (z) is a linear combination of the K" with By > 0 and 3; > 0 for all
i > 1 such that P(d) <0 for all D < d < r, then

Aqg(r, D) < P(0)/Bo.
We are now ready to prove the upper bound in Theorem [1.3]

Theorem 4.2. If k is a positive integer and j < \/(k — 1)r/(q— 1), then

Aq(r, (1= 1/q)(r = j)) = Og i (r").

Proof. Our argument will largely follow the proof from [14]. We refer to this paper and to [11] for the
standard properties of Krawtchouk polynomials. Note that throughout the proof, for clarity of presentation,
we will systematically omit the superscripts in the notation for Krawtchouk polynomials.

For a < (1 —1/q)(r — j), consider the polynomial

Plr) = (Ki(a)Kiyi(x) — Ki+l(a)Ki($))27

a—x

noting that P(d) < 0 for all d > (1 — 1/¢)(r — j). By the Christoffel-Darboux formula (see [11, Corollary
3.5])

Ki(a)Kit1(z) = Kivi(a)Ki(z) g (7”) (g—1) zz: K;(z)K;(a)

Tr—a i+ 1\4 = (;)(q_l)j’
we have
_ r R (Ve () K s K (@)K (a)
P = 5 ()l V@) ~ Kot 3 R
K;(@Kiti(a) _a (v NS e (e K;(a)Ki(a)
z—i—l()q_l ZK (z) - 01 +i+1(i)(Q—1)jZ_:OKJ(a?)KzH(:E)- D=1y

We will make use of the following properties of Krawtchouk polynomials: K;(z)K;(z) is a nonnegative
combination of the K;(z)f the K, are orthogonal under the bilinear form (f, g) = > im0 ( Vg —1)7 f(5)9(5)
with (K;, K;) = q¢"(¢ — 1)i(:); and if p; is the smallest positive root of K, then p; > p;1+1 and there are no
other roots of K;11 in (piy1, p:). We also have

T

b= 3 (D)a-rr@. w0 =@-1(]).

=0

If @ is such that p;41 < a < p;, then K;(a)K;y1(a) < 0 and K;(a)K;(a) > 0 for all j < 4. Therefore,
P(z) =3, B; K" () is a linear combination of the K" with 8; > 0 for all i > 1. Moreover, by orthogonality,
we have that

Bo=q"> (;) (q—1)"P(z) = —q*’“i1 (T) (¢—1)"- % " (¢ 1) (:)

1This should be taken as meaning that the values of the two polynomials are equal for all z = 0,1, ...,r, but this is sufficient
for our application of Delsarte’s bound.



and
(Ki(a)Ki+1(0) — Kz'+1(a)Ki(0))2'

a

P(0) =

Hence, if p;41 < a < p;, Lemma [4.1] implies that

(Ki(@)Kit1(0) — Ky (a) Ki(0))*
azty (¢ = 1)) Ki(a) Ky (a)

Noting that K;11(a)/K;(a) ranges from 0 to —oo as a goes from p; 41 to p;, we can find ag in that range
such that KiJrl(ao)/Ki(ao) = — Z+1(O)/KZ(O) and

Aq(r, (1 =1/q)(r = j)) < P(0)/Bo = —

(Ki(a0)Kis1(0) = Kiv1(a0)Ki(0)* 4K‘< )Kia (0) _ Ha-D™G) _ 4+ D@ D™(L)
a7 (¢ — 1)1 () Ki(ao) Kit1(ao) o7 (g —1)i(5) a0y B qpit1 '
Now we note that K1(z) = (¢ —1)(r — x) — z, so that p1 = (1 —1/¢)r and Ka(x) = (¢ — 1)*("3%) — (¢ —

Da(r—z)+ (3), so that po < (1—1/q)(r —/r/(q — 1)). Writing hy, for the largest root of the k-th Hermite
polynomial, we also have the general bound (see [11, Corollary 6.1])

q—2h2_ V2(g —1)(r — k+2)hy,
2¢ " q

pr < (1 =1/q)r - < =1/g)(r =/ (k= 1r/(g—1)),

where we used that hy > /(k —1)/2 for k > 2 and that r may be taken sufficiently large in ¢ and k. For
j < /(k—=1)r/(g—1), we may therefore pick any a with pr11 < a < p and it will automatically satisfy
a<(1—-1/q)(r —j). Therefore, taking a = ao as in the calculation above, we find that

4(k+1)(q — 1)k+1(k11)

qPk+1 - Oq’k(rk%

Ay(r,(1=1/q)(r — 7)) <

where we used that pry1 = Qg x(r) (see [11, Equation 125]). O
We now prove the lower bound in Theorem [1.3] which follows from concatenating appropriate codes.

Theorem 4.3. For any positive integer k and any prime power q, there are infinitely many r such that, for

j>(k—=1)\/r/q,
Ag(r,(1=1/q)(r — 5)) > (rq)*/>.

Proof. Based on generalized Hadamard matrices, it is shown in [12] that if ¢ = p’ and u = p’ for some j > i,
then there exist codes over Fy with size qu and distance (1 — 1/q)u. We also recall that the Reed-Solomon
code is a code over F? with size s* and distance n — k + 1, where s is a prime power at least n.

We consider a concatenation code with the generalized Hadamard code as the inner code and the Reed—
Solomon code as the outer code. More explicitly, let C; be a code over F; with size qu and distance
(1 —1/q)u and let C, C F? be the Reed—Solomon code where we choose s = n = qu to be a prime power.
The concatenation code is formed by considering C, as a subset of [qu]™ through a bijection ¢ : [s] — qu and
then using the inner code C; to map each element of [qu]” term by term to a subset of (F}/)" = ;™. Since
it is easy to see that the distance of a concatenated code is at least the product of the distances of the inner
and outer codes, this gives a code in Fi™ with distance at least (n — k + 1)(1 — 1/q)u and size s*. Letting

r =un = qu?, we see that the distance of the code is at least (1 —1/q)(r — (k —1)y/7/q) and the size of the
code is (rq)*/2. O



5 Concluding remarks

Using Theorems [L.1] and [L.2] to turn back to R(3;r, (r — j)/2), the picture that emerges is a rather complex
one, with the function exhibiting a range of different behaviours depending on the value of j. When r is
even and j = 0, Theorem [L.4] gives the exact value R(3;r,7/2) = 2r + 1. Increasing j, the result of Balla [4]
discussed in the introduction tells us that R(3;r, (r — 5)/2) remains close to 2r until j reaches roughly /3,
where the result of Sidel'nikov [17] shows that the value jumps to r!*¢ for some ¢ > 0. The function is
at most roughly rj until j passes \/r, where the results of Pang, Mahdavifar and Pradhan [15], which our
Theorem [L.3] refines, show that the function starts to grow as an arbitrary power of r. By the time j is linear
in 7, the bound becomes exponential in r and it is possible (though not generally expected) that the bound
jumps to superexponential as j approaches r.

This summary raises many questions, not least of which is whether there are further jumps in behaviour
as j passes from /7 to r. It would also be interesting to decide whether any aspects of the picture drawn
above change as the clique size goes from 3 to 4 and beyond. For instance, does the shift from the linear to
the polynomially superlinear regime for R(4;r,2(r — j)/3) still happen when j is roughly /37
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