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Main Text
Abstract

To interpret the sensory environment, the brain combines ambiguous sensory measurements with
knowledge that reflects context-specific prior experience. But environmental contexts can change
abruptly and unpredictably, resulting in uncertainty about the current context. Here we address two
questions: how should context-specific prior knowledge optimally guide the interpretation of
sensory stimuli in changing environments, and do human decision-making strategies resemble this
optimum? We probe these questions with a task in which subjects report the orientation of
ambiguous visual stimuli that were drawn from three dynamically switching distributions,
representing different environmental contexts. We derive predictions for an ideal Bayesian
observer that leverages knowledge about the statistical structure of the task to maximize decision
accuracy, including knowledge about the dynamics of the environment. We show that its decisions
are biased by the dynamically changing task context. The magnitude of this decision bias depends
on the observer’s continually evolving belief about the current context. The model therefore not
only predicts that decision bias will grow as the context is indicated more reliably, but also as the
stability of the environment increases, and as the number of trials since the last context switch
grows. Analysis of human choice data validates all three predictions, suggesting that the brain
leverages knowledge of the statistical structure of environmental change when interpreting
ambiguous sensory signals.

Author Summary



The brain relies on prior knowledge to make perceptual inferences when sensory information is
ambiguous. However, when the environmental context changes, the appropriate prior knowledge
often changes with it. Here, we develop a Bayesian observer model to investigate how to make
optimal perceptual inferences when sensory information and environmental context are both
uncertain. The behavioral signature of this strategy is a context-appropriate decision bias whose
strength grows with the reliability of the context cue, the stability of the environment, and with the
number of decisions since the most recent change in context. We identified exactly this pattern in
the behavior of human subjects performing a dynamic orientation discrimination task. Together, our
results suggest that in dynamic environments, our perceptual interpretations of ambiguous sensory
measurements depend on our underlying belief about the likelihood of change.

Main Text

Introduction

To accomplish goals, humans and other animals must infer properties of the environment
in the face of uncertainty and change'2. Prior knowledge is often leveraged to guide perceptual
decisions based upon ambiguous sensory measurements®®. However, knowledge that is relevant
in one context may lead to worse outcomes if applied in another’°. A complex challenge arises
when perceptual uncertainty is compounded by additional uncertainty about whether a change in
context has occurred'®'. As an example, imagine you are moving through a field, foraging for ripe
bananas. Some bananas are clearly green or yellow and easy to judge, but many are ambiguous
(Fig. 1a). Prior knowledge about the probability of encountering a ripe banana helps to make more
accurate decisions. Bananas grown in sunny groves are more likely to be ripe, whereas those
grown in shady groves are less likely to be ripe. As you move through the field with the sun
overhead, it will be easy to identify the sunny and shady groves and use the appropriate prior
knowledge. But clouds form, and the difference between sunny and shady groves becomes less
clear. How can context-specific knowledge remain useful in the face of uncertainty over both
perceptual interpretation and environmental context?

Bayesian inference offers a normative framework that specifies how different forms of
knowledge can be optimally leveraged when making decisions under uncertainty'. In the above
example, knowledge about the ambiguity of perception and knowledge about probable banana
colors in shady and sunny groves can both be leveraged. Specifically, knowledge about the
ambiguity of perception is used to compute the likelihood of the perceived color given a banana’s
true color (Fig. 1b), while knowledge about probable banana colors in shady and sunny groves is
summarized as a context-specific prior belief (Fig. 1c). The normalized product of the prior and
likelihood yields a posterior belief (Fig. 1d, left), which is used by a Bayesian decision-maker to
decide whether or not to pick the banana (Fig. 1e, left). The impact of the prior on the decision
depends on the relative strengths of the prior and the likelihood. When a sensory measurement is
highly ambiguous (e.g., when assessing colors at dusk), the likelihood function is broad, and the
same prior will have a larger impact on the posterior (Fig. 1d,e, middle panel). On the other hand,
when the environmental context only weakly specifies the distribution of colors (e.g., in groves with
mottled light), the prior is broad and will have a comparatively small impact (Fig. 1d,e, right
panel).

Here, we develop a Bayesian ideal observer model to extend these normative predictions
to a dynamic environment. Key to this ‘dynamic’ model is that it additionally leverages knowledge
about the statistical structure of environmental dynamics to interpret ambiguous sensory
measurements. It does so by constructing a continually evolving posterior belief about the current
context that informs the prior over stimuli (Fig. 1f). Like the ‘static’ model described above, this
model predicts that when the context is more reliably indicated, the observer is more certain about
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the identity of the current context, and will exhibit greater overall context-appropriate bias
(hereafter, positive "aligned bias"). However, the dynamic strategy additionally has two distinct
signatures: First, when the environment is more stable (i.e., context switches happen less
frequently), the observer will be overall more certain about the context, resulting in greater levels
of aligned bias. Second, as an observer makes more decisions within the same context, they
become more certain about the identity of the current context, and their aligned bias will grow

(Fig. 1g).

We then asked whether human observers similarly leverage multiple forms of knowledge
when making decisions in a dynamic environment. Subjects were shown a brief presentation of a
drifting grating and asked to judge its orientation. Stimuli were drawn from one of three dynamically
switching distributions, each representing a specific environmental context. At the beginning of
each trial, an ambiguous cue (the color of the fixation mark) indicated the current context. Subjects
were not told what this cue signified but had experienced the associated stimulus distributions in a
prior training session. Analysis of the human choice behavior revealed a dynamically evolving
influence of context that resembled the predictions of our dynamic Bayesian ideal observer. These
results suggest that the brain leverages knowledge about the statistical structure of environmental
change to combat the challenges posed by uncertain and unstable environments.

Results

Twelve human subjects performed a two-alternative forced choice (2AFC) orientation
discrimination task in which they judged on every trial whether a visual stimulus presented in the
near periphery was rotated clockwise or counterclockwise relative to vertical (Methods). Stimuli
consisted of drifting gratings with variable orientation and contrast (Fig. 2a, top). Observers
performed the task under three contexts characterized by different distributions of stimulus
orientation (Fig. 2a, bottom). Context switches occurred pseudo-randomly. During the initial training
phase, context switches were relatively rare, but they occurred frequently in the subsequent test
phase (Methods). To quantify this aspect of the task, we computed for each trial the number of
trials since the most recent context switch. This metric was approximately exponentially distributed
across trials and had a mean value of 15.9 trials during the training phase and 2.35 trials during
the test phase (Fig. 2b).

This task is difficult for several different reasons. First, stimulus strength (i.e., rotation
magnitude) is weak in light of perceptual acuity for orientation''. Second, at low contrast,
perceptual sensitivity is further reduced, and uncertainty about stim- ulus orientation is elevated>6.
And third, while there are context-specific regularities that can be leveraged to improve
performance (i.e., two out of three contexts are associated with a skewed distribution of
orientations), the environment is constantly in flux, leaving observers potentially uncertain about
the underlying context on any given trial. As outlined above, a Bayesian decision-maker faced with
these challenges maximizes performance by exploiting its knowledge of the statistical structure of
the task.

To investigate the usefulness of different forms of knowledge, we evaluated the task
performance of a Bayesian ideal observer who has knowledge about an increasing number of task
components (Methods). Like our human subjects, the ideal observer was presented with a
sequence of oriented stimuli and tasked to decide on every trial whether a given stimulus was
rotated clockwise or counter-clockwise. It does so on the basis of both a noisy measurement of the
stimulus orientation and an ambiguous context cue. The least-informed of our ideal observers only
has general knowledge about the ambiguity of perception, allowing it to compute the likelihood of
the sensory measurement given the stimulus’ true orientation, which it uses to inform the decision.
This observer correctly judged the stimulus in 61.5% of trials (Fig. 2c, leftmost bar). Additionally
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providing knowledge about cue reliability and context-specific stimulus distributions enables an
ideal observer to combine this likelihood function with a trial-specific prior belief about stimulus
orientation and to base its decision on the resulting posterior belief about stimulus orientation. This
increased performance by approximately one percentage point (Fig. 2c, second bar). Further
providing knowledge about the effects of contrast on orientation sensitivity enables an ideal
observer to build a contrast-specific likelihood function, yielding an extra performance benefit (Fig.
2c, third bar). Finally, providing knowledge about the statistical probability of a context change
enables an ideal observer to further reduce its uncertainty about the current context, again yielding
an extra improvement in task performance (Fig. 2c, rightmost bar). Thus, knowledge about
environmental dynamics can be as useful as other forms of knowledge typically associated with
Bayesian inference in perceptual decision-making tasks.

Bayesian ideal observer model for dynamic orientation discrimination

To identify signatures of the optimal decision-making strategy for this task, we investigated
the choice behavior of the dynamic Bayesian ideal observer model. This observer leverages
multiple forms of knowledge. It knows that the environment switches between three discrete
contexts at a fixed rate, and it knows the underlying distribution of stimuli in each context. Because
it additionally assumes that the context cue itself is ambiguous, it uses the incoming context cue in
conjunction with knowledge about environmental dynamics to continually update its posterior belief
about the current context, which in turn determines its prior belief about stimulus orientation for the
current trial (Methods, Fig. 3a).

The dynamic inference strategy manifests in patterns of decisions that cannot be deduced
from any individual choice, but rather become evident in the relationship between choice and task
variables. To expose this relationship, we simulated and analyzed decisions across a large number
of trials in our task. We first verified that dynamic inference yields similar decision biases as well-
informed static inference (i.e., model 3 in Fig. 2c). Plotting average choice behavior as a function
of stimulus orientation, split out by underlying task-context, shows that the dynamic ideal observer’s
decisions depend both on sensory stimulus measurements and context-specific prior knowledge
(Fig. 3b). The influence of context on the decision depends on the relative strength of the prior and
likelihood. For example, in low contrast settings, the sensory orientation measurement is more
uncertain (i.e., the likelihood is broader), and the association between stimulus orientation and
behavioral choice is weaker, as evidenced by the shallower slope of the lines. The ideal observer
naturally compensates for this loss of information by relying more heavily on context-specific
knowledge. This results in a stronger aligned bias, as evidenced by the increased horizontal
separation between the lines (Fig. 3b). We quantify the influence of context on the decision by
computing the average change in the point of subjective equality (defined as the orientation that
elicits 50% clockwise choices) from the uniform context.

How does dynamic inference uniquely impact decision bias beyond the effects described
above? When the context changes, the prior over stimuli will naturally weaken and strengthen over
time as a function of the ideal observer’s evolving belief about context. Following a context switch,
incoming stimuli and context cues are in conflict with the ideal observer’'s belief about context,
which leads to an increase in uncertainty about context and a weakening of the context posterior.
This, in turn, leads to a weakening of the stimulus prior, which will evolve from a single context-
specific distribution to a mixture distribution (see example in Fig. 3a, middle). Strengthening of the
prior due to increasing certainty about context is evident in the evolution of the ideal observer’s
aligned bias as it completes more trials within a context. Fig. 3c shows the temporal evolution of
aligned bias in low contrast settings for different assumptions adopted by the ideal observer about
the exact statistical structure of the task (grey curves). Consider the overall trend. Just after a
context switch, the ideal observer has high uncertainty about the current context, and the context-
induced bias is minimal. As the ideal observer performs more trials within a context, it continually
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updates its belief and reduces its uncertainty about the current context, and the aligned bias
grows.

The particular pattern of aligned bias depends on the ideal observer’s underlying
assumptions about the stability of the environment and the reliability of the context cue. Aligned
bias evolves dynamically whenever the ideal observer assumes the environment to be somewhat
stable (i.e., the assumed probability of a context switch is less than 0.5; Fig. 3c, top) and the context
cue to be ambiguous (Fig. 3c, bottom). The higher the assumed stability of the environment and
the lower the assumed reliability of the context cue, the longer it takes for the aligned bias to fully
saturate (Fig. 3c). The level at which the aligned bias saturates is higher when context changes
are assumed to be less probable and the cue more reliable (Fig. 3c). The temporal evolution of the
aligned bias also depends on the number of trials since the previous context switch. The more
stable the environment is, the stronger the ideal observer’s belief is about the previous context, and
thus the more evidence (time) that is required to update that belief and the longer it takes for the
context to maximally exert its influence on choice (Fig. S1a). However, as can be appreciated from
the subtle horizontal shift in color across the rows of the bias-matrices in Fig. S1b, this effect is
generally weak compared to the overall influence of context stability. Finally, note that even in the
most extreme cases, the aligned bias does not go negative. In principle, this could happen.
However, under the specific conditions we studied, it does not.

In summary, a dynamic Bayesian ideal observer uses a hierarchical inference strategy to
perform our task. This yields orientation judgments that are biased by task context. The magnitude
of this effect not only depends on stimulus contrast, but also on the observer’'s belief about the
reliability of the context cue, the stability of the environment, and on the number of trials since the
most recent context switch. These last two effects are uniquely associated with leveraging
knowledge about environmental dynamics to improve uncertain perceptual decisions (Fig. 3c,
brown vs grey curves).

Effect of cue reliability, context volatility, and sensory uncertainty on human choice
behavior

What knowledge do humans leverage when making perceptual decisions in dynamic
environments? Leveraging knowledge about context-specific priors and perceptual ambiguity
biases uncertain perceptual decisions®*®. As such, decision bias can have many origins. But if it
results from leveraging these forms of knowledge, it will be modulated by the reliability of the context
cue and the level of sensory uncertainty. Finally, as we have shown, additionally leveraging
knowledge about the hierarchical structure of our task and the stability of the environment will
weaken this bias in more volatile environments and right after a context switch. To test these
predictions, we manipulated critical task statistics and conducted several targeted analyses of the
human choice behavior. To study the effect of the reliability of the context cue, we assigned each
subject to one of two conditions. In the veridical cue condition, the context cue correctly indicated
the underlying context on every single trial. In the ambiguous cue condition, the cue was valid on
80% of the trials. Subjects were not told what the cue signified, but experienced the associated
stimulus distributions during the initial training phase (Fig. 4a). To study the effect of the stability of
the environment, context switches were relatively rare during the training phase, but occurred
frequently in the subsequent test phase (Fig. 4a, top).

We first asked whether choices were biased by task context in a manner that depends on
the reliability of the context cue. Consider an example human observer who judges the same stimuli
differently under different contexts during the test phase (Fig. 4b, bottom panel). To quantify this
effect, we described the data with a Signal Detection Theory (SDT) based process-model of
decision-making that specifies how the probability of a "clockwise" choice depends on the task
variables (orientation, contrast, and context; lines in Fig. 4b, bottom panel). We then used this
model to measure the observers’ uncertainty about stimulus orientation (defined as the cross-trial
variability in the orientation estimate, Fig. 4b, top panel) and the magnitude of their aligned bias.



Dividing this latter statistic by the former provides a normalized estimate of aligned bias. For each
subject, we independently estimated their aligned bias at the end of the training phase and during
the test phase. We only included trials of the same contrast level in this analysis (see Methods).
Recall that the context cue was less reliable in the ambiguous cue condition than in the veridical
cue condition. As predicted, this resulted in lower levels of aligned bias (Fig. 4c). This was true both
at the end of the training phase (median bias = 1.084 for the veridical cue condition and 0.259 for
the ambiguous cue condition, P = 0.015, one-sided Wilcoxon rank-sum test), and during the test
phase (median bias = 0.31 for the veridical cue condition and —0.035 for the ambiguous cue
condition, P = 0.015). This pattern suggests that the observed decision bias in part resulted from
leveraging knowledge about context-specific priors. Did subjects also leverage knowledge about
the rate of context changes? As can be seen in Figure 4c, the sudden increase in environmental
volatility in the test phase decreased aligned bias for every single subject (median decrease in
normalized bias = 0.435, P < 0.001, one-sided Wilcoxon signed-rank test, n = 11). This effect was
significant within each condition (veridical cue condition: median decrease = 1.01, P = 0.031, n =
5; ambiguous cue condition: median decrease = 0.283, P = 0.016, n = 6). We conclude that aligned
bias increases as the context cue becomes more reliable, but decreases as the environment
becomes less stable.

A Bayesian observer with precise knowledge about the ambiguity of perception will rely
more strongly on context-specific knowledge when sensory measurements are more uncertain. To
test whether human choices exhibit a similar pattern, we next asked whether choices were biased
by task context in a contrast-dependent manner. During the test phase, high and low contrast
stimuli were pseudo-randomly intermixed (see Methods). For each subject, we independently
estimated their uncertainty about stimulus orientation and the magnitude of their aligned bias for
high and low contrast stimuli. As can be seen in Figure 5a, lowering stimulus contrast increased
orientation uncertainty for all subjects but one (median increase in uncertainty = 0.303 deg, P <
0.001, one-sided Wilcoxon signed-rank test, n = 12). This effect was significant within each
condition (veridical cue condition: median increase = 0.403 deg, P = 0.016, n = 6; ambiguous cue
condition: median increase = 0.147 deg, P = 0.031, n = 6). In the veridical cue condition, lowering
stimulus contrast also resulted in a larger aligned bias, though note that one subject (JI) did not
exhibit context-dependent choice behavior at either high or low contrast (median increase = 0.248
deg, P = 0.031, n = 6; Fig. 5b, left panel). In the ambiguous cue condition, there was no consistent
aligned bias during the test phase of the experiment (high contrast: median bias = —0.032 deg, P =
0.989, n = 6; low contrast: median bias =—-0.019 deg, P = 0.784, n = 6), nor a consistent change in
the magnitude of the bias (median increase = 0.018 deg, P = 0.156, n = 6; Fig. 4b, right panel).
Thus, when present, aligned bias increases with stimulus uncertainty.

So far, we have shown that orientation judgments are biased by task context. The
magnitude of this effect depends on both the reliability of the sensory measurement and the
reliability of the context cue. This suggests that subjects in our task typically incorporate knowledge
about perceptual ambiguity and context-specific priors into their decision-making process. The
magnitude of the aligned bias also depends on the stability of the environment. This suggests that
observers additionally exploit knowledge about the hierarchical structure of the task and the stability
of the environment to interpret ambiguous sensory stimuli. To further test this hypothesis, we now
turn to the question of whether aligned bias changes with the number of trials since the most recent
context switch (i.e., time spent in the current context).

Effect of trials since a context switch on human choice behavior

Does the influence of context on the decision change over time following a context switch?
This is a difficult question to address for two reasons. First, we have a limited amount of choice
data (mean = 4,120 completed trials during the test phase per observer), distributed unevenly
across the number of trials since the last context switch. The frequency of context switches in our
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experiment creates an abundance of trials that occur right after a context switch and many fewer
trials that are, for example, the tenth trial within a single context (Fig. 2b, bottom right). Estimating
aligned bias separately for each "level" of trial count post-context switch, as we did for the ideal
observer, would yield unreliable estimates for our human observers. Second, in perceptual
decision-making tasks, observers commonly exhibit sequential choice dependencies that here
could be mistaken for Bayesian-like dynamic inference. Specifically, observers’ responses are
often correlated with their previous response'” and, sometimes, with the previous stimulus'®. These
correlations are usually positive, but can be negative as well. Although such dependencies may
improve overall decision accuracy in temporally continuous environments, they are distinct from
dynamic Bayesian inference, which relies on the continual updating of one’s belief about context.

To overcome these challenges, we developed a descriptive modeling approach to
characterize the evolution of context-specific aligned biases following a context switch. Our
methodology is related to approaches developed by Roy et al. (2021)'° to characterize the temporal
evolution of decision-making strategies in static environments. Specifically, we use a dynamic
Bernoulli generalized linear model (GLM) defined by a set of weights that specify the trial-by-trial
influence of different task variables on the observer’s decision. These variables capture stimulus
and context manipulations, as well as recent response and stimulus history (Fig. 6a). Our approach
is novel in its use of a dynamic "bias function"”, f(S), that describes the temporally-evolving influence
of context on choice and is given by:

£ =—= (1)
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where S is the number of trials since the last context switch (for the current trial), y controls the
shape of the bias function, and C is a categorical variable that takes a value of —1, 0, or 1 for the
negatively skewed, uniform, or positively skewed context. We chose this functional form because
it can capture a variety of monotonically evolving relationships. For each observer, we jointly
estimate the weights and the shape parameter y by maximizing the likelihood of the data under the
model. Because f(S) varies nonlinearly with S, we use a two-step grid-search procedure to find this
maximum (Methods).

To validate our method, we used the dynamic GLM to generate synthetic data sets for
three model observers. These model observers had identical weights for the task variables, but
differed in their reliance on past history and in the evolution of their aligned bias with the number of
trials following a context switch. Each model observer was presented with the exact sequence of
trials presented to one of our human observers. We then applied our analysis procedure to these
synthetic data, and we found that it provided a robust and unbiased estimate of the influence of
response and stimulus history (Fig. 6b, left panel), as well as of the dynamic influence of the number
of trials since the last context switch. This latter point can be best appreciated by considering



recovery of the evolution of the bias function (Fig. 6b, right panel). We obtain this relation by setting
the model’s history terms to zero, such that:

—we+wg(0.5-1/(1+e¥5))

Wg+WeD,

bias(S) =

where wc is the weight on context, ws the weight on the bias function, we the weight specifying the
effect of stimulus orientation at low contrast, we the weight specifying the additional effect of
orientation at high contrast, and De a dummy variable that takes a value of 0 for low contrast stimuli
and 1 for high contrast stimuli. As can be seen in Fig. 6b, the fitted GLM closely approximates the
ground truth effects of dynamic bias. This is true for a simulated aligned bias that rapidly rises, is
independent of, or slowly decreases with the number of trials since the last context switch.

Having validated our method, we described each human observer’s choice behavior with
the dynamic GLM and used a bootstrap-based procedure to obtain confidence intervals for the
model predictions (Methods). The dynamic GLM has only one more free parameter than the static
SDT-model, but described the data much better (Fig. S2, see Supplementary Table S1 for AIC
comparison). This improvement was in part due to the inclusion of history terms. In particular, we
found that observers’ responses were systematically correlated with their previous response (Fig.
6c, top), but not with the previous stimulus (Fig. 6¢, bottom). In addition, the use of a dynamic bias
function helped to capture the changing influence of context on the perceptual decision following a
context switch. A cross-validation analysis revealed that this model component was necessary for
some, but not all, subjects (see Supplementary Table S4). In spite of this heterogeneity, we robustly
observe that the influence of context on the perceptual decision grows with time spent in the current
context beyond the influence of the previous response. To quantify this effect, we set the model’s
history terms to zero and calculated the model-predicted bias for trials that occurred ten trials after
a context switch (Eq. 2) and compared this value to the model’s prediction for trials that immediately
followed a context switch. As can be seen in Figure 6d, spending ten consecutive trials in the same
context increased aligned bias for most subjects (median increase in aligned bias at high contrast
= 0.107 deg, P = 0.005, one-sided Wilcoxon signed-rank test, n = 12; low contrast = 0.155 deg, P
=0.017, n = 12). This effect reached statistical significance within the veridical cue condition (high
contrast = 0.147 deg, P = 0.016, n = 6; low contrast = 0.188 deg, P = 0.016, n = 6), but not within
the ambiguous cue condition (high contrast = 0.094 deg, P = 0.281, n = 6; low contrast = 0.154
deg, P = 0.078, n = 6), perhaps due to the substantially weaker aligned bias within this condition.
The model-predicted cross-trial evolution of the aligned bias with history terms set to zero is plotted
for each subject in Figure 6e. Inspection of these curves reveals that for some subjects, aligned
bias increased gradually over the course of multiple trials (CZ, SS, BC) while for others, the bias
abruptly saturated (AC, CW, DQ), or barely changed at all (JI, FL, LC). Within the veridical cue
condition, this inter-observer variability resembles variants of the dynamic Bayesian ideal observer
with different assumptions about the stability of the environment or the reliability of the context cue
3c. Note that in the ambiguous cue condition, several observers exhibit negative aligned bias either
immediately after a context switch, or after multiple trials within a context. While this effect is not
predicted by the Bayesian ideal observer, we suspect it was induced by the low environmental
stability of the test phase as all ambiguous cue condition observers had positive aligned bias during
the highly stable training phase (Fig. 4c). Together, these results therefore suggest that our
subjects’ decisions were not only guided by knowledge about perceptual ambiguity and context-
specific priors, but also by knowledge about the hierarchical nature of the task and the stability of
the environment.



Discussion

Perception is inherently uncertain, and natural environments are constantly in flux. Both
factors are considered major forces that shape computation and representation in sensory
systems'®-20-24_ This raises the question of how uncertainty and instability jointly impact sensory-
guided decisions'"?%26_ Qur analysis reveals that in a simple perceptual decision-making task,
human subjects rely more strongly on context-specific knowledge when their belief about the
current context is more certain. For decision-makers who leverage knowledge about the
dynamics of the environment, this occurs in more stable environments and after spending more
time in the same context. The resulting decision bias can be understood as a rational adaptation
to the challenges presented by a dynamic world. Moments of transition often yield uncertainty
about the underlying context. Does the first clap of thunder really announce the arrival of rain?
Does the first flower truly signify that spring has begun? The answer to these questions will
impact subsequent decisions, but because the available cues are ambiguous, it is not possible to
answer them correctly all of the time. The most accurate strategy is to build and continually
update probabilistic hierarchical representations of the environment to guide the interpretation of
incoming stimuli. Under this strategy, uncertainty about the current context weakens strong
context-specific priors over stimuli. When newly incoming evidence (the sound of rain drops or
the sight of melting snow) further clarifies the context, these priors — and their impact on
perceptual decisions — grow stronger again.

Our study complements recent work on uncertain perceptual decisions in dynamic
environments. One set of studies asked how negative feedback influences decision-making
strategies when stimulus-response contingency rules undergo covert and unpredictable changes,
and found that both humans and monkeys take expected choice accuracy into account to
disambiguate the source of failure?”-2. Another set of studies investigated temporal integration of
dynamic stimuli in environments that change on different timescales. Human observers adapt
their decision-making strategies to fluctuations that occur suddenly within a single trial?®, between
trials in a sequence®, or gradually across long blocks of trials®'. They do so in various manners,
which include adjusting the rate at which they discount previous beliefs?®, biasing initial beliefs?’,
and adopting time-varying decision criteria®?. These various modifications can all be understood
as attempts to improve task performance, as revealed by the optimal Bayesian decision-making
policy?°.

We found that uncertain perceptual decisions in changing environments are biased by
context-specific knowledge in a manner that qualitatively resembles the dynamic ideal Bayesian
strategy, but quantitatively deviates from this optimum. Specifically, we reported that decision
bias is larger when context cues are more reliable (Fig. 4c, veridical vs. ambiguous cue
condition), when the environment is more stable (Fig. 4c, late vs test), when the sensory
measurement is less certain (Fig. 5b), and after more time has been spent in the current context
(Fig. 6d). These effects are all predicted under a hierarchical Bayesian inference strategy (Fig.
3b-c). However, our analysis also reveals several quantitative deviations from the optimal
strategy. Most notably, when the context cue is 100% reliable, there is no uncertainty about the
current context under a well-calibrated generative model of the task, and hence decision bias
should neither depend on the stability of the environment nor on the number of trials since the
most recent context switch. This is not what we observed in the veridical cue condition. Moreover,
when the context cue is 80% reliable, a well-calibrated model would result in some decision bias,
even in highly unstable environments. This is not what we observed during the test phase of the
ambiguous cue condition. To a first approximation, the behavior of subjects in both conditions
resembled a dynamic Bayesian inference strategy that relied on a miscalibrated generative model
of the task in which the reliability of the context cue was systematically underestimated, resulting
in weak stimulus priors. One possible explanation for this discrepancy is that subjects may have
occasionally lapsed in associating the context cue with the appropriate stimulus distribution,
thereby introducing memory-noise that effectively reduced the reliability of the context cue. It is
also possible that subjects continuously learn the context-specific stimulus distributions by
averaging the most recent trials?. Especially in highly unstable environments, this would result in



weak stimulus priors. Future work may be able to distinguish miscalibrated generative models
from alternative strategies by using prior-cost metamers, as proposed by Sohn and Jazayeri
(2021).

Which computations do humans use to infer statistical properties of dynamic
environments? While we did not address this question in this work, it is an active area of
research?34-38 A common finding of several recent studies is that a Bayesian belief updating
strategy offers a reasonable account for the learning process?%6®, However, subjects often
appear to rely on a miscalibrated model of the task, and alternative strategies such as
reinforcement learning can rarely be ruled out. Notwithstanding, these studies offer strong
evidence that perceptual decisions in dynamic environments involve statistical inference over
multiple temporal scales: one fast (for each individual decision), and others slow (for the statistical
regularities of the environment). The key contribution of the present study is to show that, as a
consequence, knowledge of environmental dynamics can shape the magnitude and temporal
evolution of perceptual decision bias.

The perceptual inference problems faced by humans and other animals are complex, and
so are the strategies they use to make behavioral choices. Normative models are a critical tool to
uncover the principles that shape these strategies. Here, Bayesian inference serves as a
framework for generating hypotheses about which forms of knowledge might be leveraged to
improve uncertain perceptual decisions in our task. The Bayesian ideal observer model predicts
that an agent that makes use of the temporal structure in the environment will use a dynamically
evolving prior over stimuli. This prediction is difficult to test: the normative model is too complex to
directly fit to choice data, but a pure data-based trial-averaging approach is not efficient enough
to reliably characterize the temporal evolution of aligned bias from realistic amounts of data.
Instead, we opted to test the normative prediction by looking at our data through the lens of
different modeling approaches. Note that the prediction we sought to test was not whether
humans are Bayesian — rather, we were inspired by normative principles to descriptively
characterize the trial-by-trial evolution of decision bias across contexts in a dynamic task. We
used a tried-and-tested process model of decision-making to verify the presence of volatility- and
uncertainty-dependent biases and a flexible descriptive model to characterize the dynamic
evolution of these biases over the course of a few trials. The interpretation of our data critically
relies on the combined insights offered by each of these approaches. As such, our study provides
an example of how different computational tools can be used in conjunction to gain insight into
the mechanisms underlying complex choice behavior at the single trial level.

Materials and Methods

Behavioral task. Twelve human subjects (5 male, 7 female; ages 18-30) with normal or corrected-
to-normal vision participated in the experiment. The experimental protocol was approved by the
local ethics committee (Institutional Review Board of The University of Texas at Austin) and all
participants gave written informed consent. Subjects were not aware of the purpose of the study.
Owing to sample size, no gender-specific analyses were performed.

Subjects were seated in a dimly lit room in front of a gamma-corrected CRT monitor
(Hewlett Packard, A7217A). A head and chin rest ensured that the distance between the
participants’ eyes and the monitor’s screen was 57 cm. Eye position was recorded with a high-
speed, high-precision eye tracking system (EyeLink 1000). We presented visual stimuli at a spatial
resolution of 1280 X 1024 pixels and a refresh rate of 75 Hz. Stimuli were presented using PLDAPS
software (https://github.com/huklab/PLDAPS) on an Apple Macintosh computer.

Subjects performed an orientation discrimination task in blocks of 48 trials. Each trial began
when participants fixated a small square (0.5°diameter) at the center of the screen. After 500 ms,
two choice targets appeared, one on each side of the fixation point (on the horizontal meridian, at
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4.5 degrees eccentricity). The choice targets were white lines (2° long, 0.3° wide), rotated —22.5°
(choice target on the left) and 22.5° (choice target on the right) from vertical. After 500 ms, a
circularly vignetted drifting grating appeared. The stimulus was positioned in the lower left visual
quadrant (centered at an eccentricity of 3.2°), measured 1.25° in diameter, had a spatial frequency
of 2.5 cycles/deg, and a temporal frequency of 3 cycles/s. Subjects judged the orientation of the
stimulus relative to vertical. The stimulus remained on for 500 ms. The stimulus then disappeared
along with the fixation mark and subjects reported their decision with a saccadic eye movement to
the choice target whose orientation was closest to the estimated stimulus orientation. Auditory
feedback about the accuracy of the response was given at the end of each trial. We varied stimulus
orientation over a small range (a few degrees) that was centered on vertical and tailored to each
observer’s orientation sensitivity. Vertically oriented stimuli received random feedback. Stimuli were
presented at either high or low contrast (Michelson contrast of 100% and 10%). For nine out of
twelve observers, high and low contrast stimuli were randomly interleaved. For the three remaining
observers, high and low contrast stimuli were grouped in blocks of eight trials.

Subjects performed the task under three contexts, characterized by a uniform, negatively
skewed, and positively skewed distribution of stimulus orientation (shown in Fig. 2a). The
corresponding baseline probability of a "clockwise" choice being correct was 50%, 70%, and 30%.
Context switches occurred pseudo-randomly, with a hazard rate of 6.3% during the training phase,
and of 42.5% during the test phase. The color of the fixation mark (red, green, or blue) also varied
across trials. In the veridical cue condition, this color indicated the underlying context on 100% of
trials, in the ambiguous cue condition, this was the case on 80% of the trials. Subjects were not
told what the color of the fixation mark signified. Trials in which the subject did not maintain fixation
within 1.5° of the fixation mark were aborted. Participants performed the task across three to eight
sessions and successfully completed between 2,420 and 5,388 trials during the test phase of the
experiment.

Before performing the main task, subjects participated in one or more training sessions.
Compared to the main task, the range of orientations was larger and context switches occurred
much less frequently in these training sessions. We considered subjects ready for the main task
once their stimulus judgements were consistent (stable, lawfully shaped psychometric functions),
reliable (few lapses on easy catch trials), and appropriately biased by context in the most difficult
conditions. This typically required more than 2,000 training trials (see Fig. 3a).

Dynamic Bayesian ideal observer model. We derived predictions for a Bayesian ideal observer
who leverages its knowledge of the statistical structure of the task to maximize decision accuracy.
The dynamic ideal observer assumes that on each trial t, the stimulus orientation 6; and the context
cue xt depend on the true underlying context Ct, and that each context is associated with a specific
stimulus distribution p(6¢C) that is matched to one of the distributions used in the behavioral task
(Fig. 2a). It further assumes that context switches occur with a probability h (i.e., the hazard rate),
inducing the following transition probability over the context variable Ct.

1-h =
p(CelC—y) = {h/(N -1 gz;g:i (3)

where N = 3 is the number of possible contexts.
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On each trial, the ideal observer obtains a noisy orientation

measurement y: via the encoding distribution p(y:6,0?) = N(6,0?), where o? is the variance of
sensory noise. It also obtains a noisy context cue measurement x:. In particular, the ideal observer
assumes that the context cue is perturbed by external noise via the cue-generating distribution
p(x{C:¥ , k) = von Mises(C:, k), where C{ is the angular label of the context C; and « is the
concentration parameter that controls the assumed reliability of the context cue. This formulation
captures the situation whereby the first context could be mistaken for the third one and vice-versa
and thus represents memory noise. The ideal observer then uses these measurements to update
its beliefs about task context and stimulus orientation and make a decision.

To make a decision, the ideal observer estimates the probability p(6: > 0|y, x: ) that the
stimulus is oriented clockwise. This estimate is based on the following sequence of steps (note that
for notational simplicity, we denote only the most recent stimulus 6: and cue x:, instead of their
respective histories 6;<t and x<t ):

1. Update the posterior over contexts with the measured context cue; i.e., compute
p(Celx,) < p(x:|CIP(Celxe—1)

2. Compute the prior over stimuli by marginalising over the posterior over contexts; i.e.,

compute p(Cy|x,) Z%ip(xtlct)p(ctlxt—l)

3. Use the resulting prior to compute the posterior over stimulus orientations 6 given the noisy
representation yx; i.e., compute p (0|, x;)

4. Use the resulting posterior to compute the probability that the stimulus is oriented

clockwise; i.e., compute p(6; > 0y, x¢) = Yi0 (B¢ |Ve, X¢)

5. Ifp(6; > 0|y, x;) > 0.5, respond that the orientation is clockwise; if p < 0.5, respond
counter-clockwise; if p = 0.5, respond randomly.

6. Compute the prior over contexts for the next time step; i.e., compute p(C;4q|x;) =
ZLCEP(Ct|xt)p(Ct+1|Ct)

To illustrate the usefulness of the different forms of knowledge leveraged by this ideal observer,
we also simulated task performance for three model variants that could not access knowledge
about specific task components (Fig. 2c). All model variants were presented with the same set of
stimulus and cue measurements, which mimicked the temporal dynamics of the training phase of
the experiment. In our implementation, all model variants followed the same sequence of steps to
make a decision, but differed in their assumptions about the generative process. For example,
model 1 had general knowledge about the ambiguity of perception, but not about the effects of
contrast. We implemented this as assuming a single level of stimulus-independent sensory noise
that summarized the overall variability of the orientation measurements in the experiment (step 3).
Model 1 did not know the context-specific stimulus distributions. We implemented this as
associating each context cue with the same uniform distribution that summarized the overall
stimulus distribution in the task (step 2). Finally, model 1 had no knowledge about the probability
of environmental change. We implemented this as assuming a flat prior over context for each trial
(step 6). We used this approach to specify each model variant. For the generative process, we
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used the following parameter values in this simulation: orientation = [-7.5, -5, -2.5, 0, 2.5, 5, 7.5],
02 =10 for high contrast stimuli and 20 for low contrast stimuli, h = 20%, and k = 1.5.

To identify signatures of the optimal decision-making strategy, we simulated choice behavior
of the dynamic Bayesian ideal observer model mimicking the temporal dynamics of the test phase
of the experiment. We consider two ways in which the ideal observer’s generative model of the task
can be miscalibrated: either the assumed hazard rate or the assumed reliability of the context cue
(or both) may differ from the actual values used in the behavioral experiment (Fig. 3c). We used
the following parameter values in the simulations: orientation = [-7.5, -5, -2.5, 0, 2.5, 5, 7.5], 0? = 2
for high contrast stimuli and 5 for low contrast stimuli, h = 10, 20, and 50%, k = 0.4, 0.2, and 0.025
for Fig. 2e, and 0.45, 0.4, and 0.35 for Fig. S1. Every simulated experiment consisted of 57,600,000
trials.

Signal Detection Theory model.

We measured observers’ uncertainty about stimulus orientation and their estimation bias
by fitting the relation between the task variables (orientation, contrast, and context) and probability
of a "clockwise" choice with a Signal Detection Theory based process-model of decision-making®.
Under this model, each trial gives rise to an orientation estimate which is compared with a fixed
criterion to obtain a decision (Fig. 4b). We assume that these estimates follow a Gaussian
distribution, the mean of which is determined by the true stimulus orientation plus a context-specific
constant (yielding two free parameters: one for the uniform context, and one for the non-uniform
contexts). The spread of the Gaussian is determined by the contrast of the stimulus (resulting in
two free parameters). Finally, we assumed that on some trials, observers "lapse" and simply guess
without considering the task variables*® (two free parameters, one per contrast). We chose this
model based on a model comparison analysis in which we evaluated four versions of the model on
the data collected during the test phase of the experiment (a 10,000-fold leave-one-out cross-
validation analysis performed separately on high and low contrast choice data). Model versions
differed in the number of free parameters used to describe the context-specific shift and spread of
the orientation estimates (see Supplementary Table 2 and 3). Model parameters were optimized
by maximizing the likelihood over the observed data, assuming responses arise from a Bernoulli
process. We obtained confidence intervals on the uncertainty and bias estimates by performing a
1000-fold non-parametric bootstrap.

Dynamic Bernoulli generalized linear model.

We characterized the temporal evolution of our subjects’ decision-making strategy by fitting
a descriptive model that specifies the trial-by-trial influence of a set of independently manipulated
task variables (orientation, contrast, and context) as well as two history terms (previous response,
previous orientation) and the nonlinearly transformed trials since context switch on the choice
behavior. These predictors were linearly combined and then passed through a logit link function.
The logit link function is given by

logit(®d;) = ln( il ) (4)

1-@;

where @iis the probability of a clockwise choice. It follows that the point of subjective equality, PSE,
can be obtained by setting the linear combination of the predictors to zero and solving for S, the
number of trials since the last context switch. When the history terms are set to zero, this yields the
following expression for the high contrast condition:
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WcCitwsf(S)+wg)

PSE(S,C) = —

()

Wg+we

where wcis the weight on context, Ciindicates the context (-1, 0, or 1), wsis the weight on the bias
function f(S), we an additive constant, wethe weight specifying the effect of stimulus orientation at
low contrast, and we the weight specifying the additional effect of orientation at high contrast.
Calculating the difference of equation 5 for the clockwise and uniform condition yields equation 2.

Model parameters were optimized by maximizing the likelihood over the observed data,
assuming responses arise from a Bernoulli process. We used a two-step "grid-search" procedure
to find this maximum, whereby we first optimize all model parameters for a given value of y, repeat
this search-process for a manually specified range of y values, and then select the solution with
the best goodness-of-fit value. For each subject, the dynamic GLM better captured the data than
the Signal Detection Theory model (Akaike Information Criterion comparison, see Supplementary
Table 1 and Supplementary Fig. 1). To assess the necessity of the dynamic bias function, we
conducted a cross-validation analysis in which trials that occurred between 1 and 4 trials after a
context switch comprised the training set and trials that were the 5th or later after a context switch
made up the test set. The full dynamic GLM outperformed a reduced "static" version that lacked
the dynamic bias function in four of six veridical cue condition observers and three of six ambiguous
cue condition observers (see Supplementary Table 4).
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Figure Legends

Figure 1. Example of Bayesian decision-making in a dynamic environment. (a) Yellower bananas
are more likely to be ripe than greener bananas. (b) The likelihood distribution associated with a
given color percept. (c) The conditional color distributions for bananas grown in shady vs sunny
groves. (d) lllustration of a Bayesian foraging strategy. When the environmental context is certain
(left, inset), the associated color distribution specifies the prior. The product of the prior and the
likelihood gives the posterior. The impact of the prior on the posterior depends on the relative
strength of likelihood and prior. (e) The forager decides that the banana is ripe when the
probability that it is more yellow than some fixed criterion exceeds 50 percent (left, inset). The
resulting choice behavior is plotted against the fruit’s color. The dotted green line illustrates this
relation in the absence of prior knowledge, the full orange line illustrates this relation for the
Bayesian forager. The prior biases the decision. (f) As the forager moves from one grove to
another, she encounters changes in environmental context that are difficult to detect. When the
context is uncertain, a Bayesian decision-maker constructs a prior by linearly mixing both color
distributions, with weights determined by the continually-evolving context belief. (g) If the context-
belief incorporates knowledge about environmental dynamics, the influence of context-specific
knowledge on choice behavior is minimal following a context switch, and grows over series of
decisions uninterrupted by a context switch.

Figure 2. Bayesian ideal observer models for dynamic 2AFC orientation discrimination. (a)
Context-specific distribution of stimulus orientation used in the model simulations. Stimulus
contrast was varied over two levels. (b) The cross-trial distribution of the number of trials from the
most recent context switch for the training and test phase of the experiment. (c) Performance of
various Bayesian ideal observers, equipped with general knowledge about the ambiguity of
sensory measurements (model 1), plus knowledge about the reliability of the context cue (model
2), plus knowledge about the contrast-specific ambiguity of sensory measurements (model 3),
plus knowledge about the likelihood of a context switch (model 4).

Figure 3. Bayesian ideal observer model for dynamic 2AFC orientation discrimination. (a)
Schematic of the Bayesian ideal observer’s decision-making process. (b) Summary of the
model’s choice behavior. Proportion of clockwise choices is plotted against stimulus orientation,
split out by task context (different lines) and stimulus contrast (top vs bottom). (c) Evolution of low
contrast aligned bias as a function of the number of trials since a context switch split out by
assumed hazard rate (top) and assumed reliability of the context cue (bottom). Grey curves
illustrate the dynamic ideal observer model (model 4 in Fig. 2c), brown curves illustrate a static
analogue (model 3 in Fig. 2c).

Figure 4. Human orientation judgments are biased by task-context in a manner that depends on
the reliability of the context cue and on the stability of the environment. (a) Number of completed
trials during the training and test phase of the experiment for each subject. (b) Bottom: Proportion
of clockwise choices of an example observer plotted as a function of stimulus orientation under
three dynamically-switching task contexts (indicated by color). Symbols summarize observed
choice behavior, lines show the fit of a Signal Detection Theory model of decision-making. Top: In
the model, a stimulus gives rise to a noisy orientation estimate. Comparison with a fixed criterion
yields a decision. (c) Comparison of normalized bias during the training and test phase. In the
veridical cue condition, cue reliability was 100%; in the ambiguous cue condition, cue reliability
was 80%. * P < 0.05.

Figure 5. Human orientation judgments are biased by task-context in a contrast-dependent
manner. (a) Orientation uncertainty for low (ordinate) and high (abscissa) stimulus contrasts for
the veridical cue condition (left) and the ambiguous cue condition (right) subjects. (b) Aligned bias
for low (ordinate) and high (abscissa) stimulus contrasts for the veridical cue condition (left) and
the ambiguous cue condition (right) subjects. Error bars reflect the 68 percent confidence interval,
derived from a 1,000-fold bootstrap analysis (Methods).
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Figure 6. GLM-based analysis of cross-trial dynamics in human orientation judgment strategies.
(a) Dynamic GLM. The probability of a clockwise choice is predicted by the logistic transformation
of six linearly combined regressors. (b) Recovery analysis. Left: Estimated history terms plotted
as a function of their ground truth value for three simulated model observers. Symbols indicate
the mean value; error bars, where visible, illustrate the 68 percent confidence interval. Right:
Evolution of aligned bias for high contrast stimuli as a function of the number of trials since the
most recent context switch for the same model observers. The colored line indicates the ground
truth relationship with history terms set to zero, the dotted black line shows the mean estimate,
and the shaded region illustrates the 68 percent confidence interval. (c) Estimated history terms
for veridical cue condition (left) and ambiguous cue condition (right) subjects. (d) Model-predicted
bias after ten same-context trials plotted against bias immediately following a context switch for
the veridical cue condition (left) and the ambiguous cue condition (right) subjects. Error bars
illustrate the 68 percent confidence interval. (e) Evolution of aligned bias for low and high contrast
stimuli as a function of trials since a context switch for all subjects (model prediction with history
terms set to zero). The shaded region illustrates the 68 percent confidence interval. *Dynamic
GLM outperforms static GLM in cross-validation analysis (see Supplementary Table S4). All
confidence intervals were computed from 1,000 simulated data sets.

Supplementary Figure/Table Legends

Figure S1. Determinants of the Bayesian ideal observer’s aligned bias. (a) Low-contrast aligned

bias (color) as a function of trials since the most recent context switch (columns) and the number
of same context trials prior to the most recent context-switch (rows) for an assumed hazard rate

of 10% and a low level of context cue reliability. (b) The pattern of aligned bias across a range of
assumed levels of hazard rate and context cue reliability.

Figure S2. Comparison of goodness-of-fit of Dynamic GLM and Signal Detection Theory model.
Low contrast data are shown as open symbols and high contrast data as filled symbols.

Table S1. AIC estimates for choice data collected during the test phase of the experiment under
the Signal Detection Theory model and the Dynamic GLM.

Table S2. Average log likelihood for hold-out data predicted under four different variants of the
Signal Detection Theory model (only high contrast trials included).

Table S3. Average log likelihood for hold-out data predicted under four different variants of the
Signal Detection Theory model (only low contrast trials included).

Table S4. Each cell of the table reports the total log-likelihood of the held-out data for each

subject. The rightmost column indicates the proportion of each subject’s total data the held-out
fraction made up.
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