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Abstract | Sub-additivity and variability are ubiquitous response motifs in primary visual cortex (V1). Response
sub-additivity provides a sign of the brain processes that enable us to construct useful interpretations of the
visual environment (i.e., nonlinear input transformations), while response variability provides a sign of the brain
processes that limit the precision with which we can do this (i.e., neural information loss). Historically, these
two motifs have been studied independently of each other. Yet, there is increasing evidence that experimen-
tal manipulations that elicit response sub-additivity often also quench response variability. Here we provide
a unifying review of these phenomena, suggesting that response sub-additivity and variability quenching may
have a common origin. We review empirical findings as well as recent model-based insights into the functional
operations, computational objectives, and circuit mechanisms underlying V1 activity. Although these model-
ing approaches address different aspects of cortical activity, they all predict that response sub-additivity and
variability quenching will often co-occur. Response sub-additivity and variability quenching are not limited to
V1 but are widespread cortical phenomena. Many of the insights we review generalize to other cortical areas,
suggesting that the connection between response sub-additivity and variability quenching may be a canonical
motif across cortex.

The primary visual cortex (V1) has long been a key model sys-
tem for studying cortical circuitry and computations. In recent
decades, two major foci of study in V1 have been response sub-
additivity and response variability. Response sub-additivity in-
volves phenomena in which neuronal responses to two simulta-
neously presented stimuli are less than the sum of the responses
to the two stimuli presented independently (sometimes also re-
ferred to as sublinear response summation). For example, V1
cells have distinct spatial receptive fields, classically defined as
the locations in visual space where a stimulus elicits an increase
in activity (Fig 1a, green circle). Beyond this classical receptive
field lies the receptive field surround. Although ineffective by
itself, stimulation of the surround often suppresses the response
to an effective stimulus within the receptive field (Fig. 1a, grey
vs black). Similarly, for many neurons, doubling the contrast of
a 50% contrast stimulus confined to the classical receptive field
does not double the neural response. Indeed, sub-additive ef-
fects occur beyond1–4 as well as within5–9 the classical receptive
field, are broadly tuned in the orientation domain3,6,7,9, and are
better described by division than by subtraction10,11. Response
variability involves phenomena in which repeated presentations
of the same stimulus elicit variable responses in cortical cells
(Fig. 1a, rasters). This variability is evident both in cells’ mem-
brane potential12–14 and in their spiking activity15–17. Response
variability in visual cortex appears largely random18,19, exhibits
strong stimulus dependence20,21, has non-trivial spatiotemporal
structure22–27, and is often well described by a doubly stochastic

process of spike generation28–33.
Response sub-additivity and variability feature prominently in

the literature because they provide directly observable indica-
tions of the brain’s processes that enable us to perform natural
perceptual tasks on the one hand (i.e., nonlinear neural transfor-
mations34,35), and of the processes that are traditionally believed
to limit our ability to do so on the other hand (i.e., neural infor-
mation loss36,37). They have largely been studied independently
from each other. Yet, it has become apparent that experimental
manipulations that elicit sub-additivity often change variability
too. In particular, response sub-additivity often co-occurs with
variability quenching. This has been observed for experimen-
tal manipulations within21,33 and beyond the classical receptive
field38–41 (Fig 1b,c). Is this mere coincidence? We propose it is
not. Recent theoretical studies of the functional operations, rep-
resentational objectives, and circuit mechanisms underlying V1
activity all suggest that response sub-additivity and variability
quenching are intimately connected. The aim of this review is to
describe what is known about this connection. We first discuss
the connection between sub-additivity and quenching through
the lens of models that seek to offer an economic description
of the transformations that govern stimulus-response relations
in V1. Next, we consider this connection from the viewpoint
of models that seek to identify the computational and represen-
tational goals that shape V1 activity. Finally, we discuss this
connection from a mechanistic perspective on cortical circuitry
and computation. Note that we primarily review data collected
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in cat and monkey. Recent work in rodent V1 has revealed simi-
lar sub-additive phenomena (and is rapidly advancing our under-
standing of the underlying circuit mechanisms42–48), but studies
of response variability in rodent V1 have thus far been less ex-
tensive than in these other species (but see49–51).

Experimental observations: response sub-additivity
Phenomena of sub-additivity challenge an influential model of
cell function. In cat and monkey V1, layer 4 neurons exhibit
numerous response properties that are fundamentally different
from their feedforward thalamic inputs. This includes selectivity
for orientation, direction of motion, and depth54,55. A longstand-
ing view, pioneered by Hubel and Wiesel, holds that this selec-
tivity arises from the alignment of the receptive fields of presy-
naptic thalamic relay cells54. In its simplest form, this frame-
work predicts that V1 receptive fields perform a linear filtering
operation in space and time, which is followed by a threshold-
ing operation to transform intracellular signals into spikes. This
model for V1 responses is at once simple, elegant, and power-
ful. It enabled neuroscientists to approach a fundamental biolog-
ical question (“How do cortical sensory circuits transform their
input into a novel representation of the visual environment?”)
through the principled abstraction of a linear system at a time
when little was known about the cortical representation of visual
information. The chief benefit of this approach is that it read-
ily generates quantitative predictions for arbitrary visual stimuli.
And to a first approximation, these predictions are quite good. A
model that includes a linear receptive field and a static threshold
nonlinearity can explain V1 selectivity for elementary stimulus
attributes such as position, scale, orientation, speed, and direc-
tion of motion56. However, cortical cells also exhibit clear vio-
lations of linearity beyond a static threshold nonlinearity, which
often manifest through the phenomenology of sub-additivity.

One prominent example of sub-additivity arises when a mask-
ing stimulus is superimposed on a cell’s preferred stimulus (Fig
1c). Masking stimuli exert a suppressive influence across a
broad range of spatial frequencies6,8, orientations6,7, and tem-
poral frequencies7,57,58. Failures of responses to sum linearly
are not restricted to the classical receptive field. Responses of
V1 neurons can also be substantially diminished by stimuli out-
side the receptive field2,3,11,59. The strength of this “surround
suppression” depends on the stimulus’ exact position (the larger
the distance from the receptive field center, the weaker the sup-
pression60), and its similarity to the stimulus within the classical
receptive field (the larger the resemblance, the stronger the sup-
pression4,11,61,62).

A different example of sub-additivity comes from contrast
summation experiments (Fig 1c). In these experiments, the same
stimulus is presented at various contrasts, ranging from low to
high. Scaling the contrast of an effective stimulus presented
within the classical receptive field will scale the response of a
linear system by the same factor, a property known as ’response
homogeneity’ in linear systems analysis. But this is not what
happens in visual cortex. With increasing contrast, responses of
V1 cells typically grow faster than linearly for low contrasts, but
grow more slowly than linearly above some low level of contrast

and may approach saturation at higher contrasts5,9. This sub-
linear or saturated response is immediately present at response
onset and occurs for preferred as well as non-preferred stimuli63.
Thus, as soon as stimulus contrast exceeds a low level, sub-
additivity is a general property of cortical contrast responses.

sub-additivity induced by stimuli in the receptive field center
and surround share important properties, but also differ in crit-
ical regards. In both cases, the masking stimulus tends to act
as if it divides the contrast of the driving stimulus by a con-
stant fraction3,9,64. This observation motivates the attempt to
build stimulus-response models of V1 activity that capture both
types of sub-additive effects with a single model component.
However, surround suppression is partially delayed relative to
response onset65–67, exhibits interocular transfer66, and is mod-
ified by contrast adaptation66. None of this is true for within-
receptive-field violations of linearity63,66,68 (though see69). This
discrepancy suggests that the two types of sub-additive effects
have a distinct mechanistic origin.

V1 response sub-additivity might arise in retina, LGN, or V1.
Recent studies have explored the mechanistic origin of V1 re-
sponse sub-additivity by combining visual stimuli with direct
optogenetic stimulation of the visual cortex (Fig 1c). In macaque
and marmoset V1, responses to optogenetic and visual stimula-
tion combine sub-additively41,70, suggesting that cortical circuits
contribute to at least some forms of sub-additivity. Note however
that in these studies the illuminated patch of cortex was large
enough to engage lateral connections thought to be involved in
surround suppression59.

Experimental observations: response variability
Response variability in visual cortex may impose a fundamental
limit on perception. Sensory neurons transmit information about
the external world with sequences of action potentials that are
inherently variable. This is also true of area V1: repeated pre-
sentations of identical visual stimuli elicit different patterns of
spiking activity16,17,20. The origins of this variability are still un-
known, but its consequences may be profound. If this variability
represents irreducible noise, then it will limit the reliability with
which neural populations can represent sensory events, and ulti-
mately the capacity of the organism to perform perceptual tasks.
Motivated by this insight, physiologists have made considerable
efforts to directly compare neuronal and psychophysical sen-
sitivity – an enterprise pioneered by Werner and Mountcastle
(1963)71. This comparison is most meaningful for neurons suit-
ably tuned for the task under consideration. And ideally, sensi-
tivity estimates should be based on physiological and behavioral
data obtained in the same animals, from the same set of trials72.
Studies that meet these criteria have consistently reported that
some individual sensory neurons rival the behavioral capacity
of well-trained macaque monkeys. For example, the ability of
V1 cells to signal changes in stimulus orientation closely ap-
proximates macaques’ perceptual orientation acuity73–75, while
MT cells exhibit sensitivity for visual motion that is very sim-
ilar to perceptual motion sensitivity76. These findings sparked
an enormous interest in the origins and role of neural response
variability. Here too, many found it fruitful to approach these
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Figure 1 Response sub-additivity and variability quenching co-occur under various experimental manipulations. (a) Simulated re-
sponses of a V1 neuron to three patches cropped from the same image using differently sized apertures. (Top) Spike times are
plotted as a raster, with one tick per spike. Each row depicts a repeated presentation of the same stimulus. Different stimuli are
associated with different levels of responsiveness 3,4. Within each raster, there is considerable variability in spiking activity across
trials12,17. (Middle) These spikes were generated by simulating a Poisson process with an underlying rate that is multiplied by a
response gain that varies across trials 28. The rate variability decreases with stimulus size, as is the case for real V1 cells both at the
level of spike counts39 and, relatedly 52,53, membrane potentials 13,21. (Bottom) The associated spike count distributions, obtained by
using a counting window whose length matches the total stimulus duration. In experimental studies, response mean and response
variance are computed from this distribution, not from the generative process itself. The dotted green line indicates the neuron’s
classical receptive field. Photo taken by R.L.T.G. (b) Spike count variance plotted as a function of spike count mean for the simulated
size tuning experiment shown in panel a. Larger symbol sizes indicate larger stimulus apertures. Responses initially increase with
stimulus size, but begin to decrease as the stimulus engages the suppressive surround. This suppressive effect co-occurs with a
change in the relative amount of response variability, measured as the variance-to-mean ratio (i.e., the Fano factor) 39. The blue, grey,
and black circle indicate the three conditions shown in panel a. (c) Summary of some classical experimental manipulations that elicit
response sub-additivity 3,5,6,41 and variability quenching 21,33,39,41. Details of model simulation described in Supplementary Information.
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fundamental biological questions through a principled abstrac-
tion that generates quantitative predictions for arbitrary stimuli:
the Poisson point process.

Which aspects of a spike train are signal and which are noise?
One extreme possibility is that only the number of spikes re-
alized during a temporal interval matters, and that there is no
information in the exact timing of each spike18. This concept is
formalized by the Poisson process. It is the simplest stochastic
point process, fully characterized by a single firing rate parame-
ter that represents a reproducible response to a sensory stimulus.
If the rate is fixed over time, the process is said to be homoge-
neous; if it varies over time, it is inhomogeneous. Both vari-
ants give rise to Poisson-distributed spike counts. A hallmark of
this distribution is that the spike count variance across repeated
measurements matches the spike count mean, regardless of the
length or placement of the time interval over which spikes are
counted. In other words, the ratio of the variance to the mean,
a statistic known as the Fano factor, is always one. In visual
cortex, this prediction enjoys some support. Spike count vari-
ance often approximately equals the mean17,77. However, corti-
cal spiking statistics also exhibit clear deviations from a Poisson
distribution. This most commonly manifests in the form of ex-
cess variance. When the mean count is high, either due to a high
firing rate, or due to the use of a long counting window, super-
Poisson variability (i.e., more variability than expected from a
Poisson process) becomes apparent17,28,31,77. Statistically, both
behaviors can be explained by expanding the Poisson process
with a slowly fluctuating gain that modulates the rate and varies
from trial to trial28,29 (i.e., a doubly stochastic process known
as the ‘modulated Poisson model’, Fig. 1a, traces). Empirically,
these behaviors make it difficult to identify changes in response
variability that are not simply a consequence of changes in re-
sponse mean. One popular approach to overcome this challenge
is to estimate Fano factor using an analysis procedure that cor-
rects for differences in mean response level22 (but see78). This
statistic is called the mean-matched Fano factor. It generally ex-
ceeds 1 in cortex, and, under the Poisson assumption, represents
a measure of cross-trial variability in firing rate.

Firing-rate variability is stimulus dependent in a manner that
resembles phenomena of sub-additivity. Across cortex, it is
maximal in the absence of stimulation and decreases rapidly fol-
lowing stimulus onset22. The magnitude of the decrease depends
on the amount of stimulus energy. For example, in area V1, low
contrast stimuli placed within a neuron’s receptive field are as-
sociated with stronger rate fluctuations than high-contrast stim-
uli21,33. Variability quenching occurs for preferred as well as
non-preferred stimuli that drive a neuron21,22,33, thus resembling
response saturation in contrast summation experiments. It also
occurs for stimuli that do not drive a neuron22, thus resembling
the broad tuning of suppressive effects in masking experiments.
Finally, stimuli outside of the receptive field can quench neural
response variability beyond the reduction of variability caused
by increasing stimulation inside the receptive field39 (Fig 1b,
black vs grey symbol) – thus resembling surround suppression.
The strength of this effect weakly depends on the similarity be-

tween the center and surround stimulus39. The effect also de-
pends on cortical layer79 and on the size and location of the sur-
round stimulus40,79.

The co-occurrence of response sub-additivity and variability
quenching can be illustrated by plotting the variance vs. mean re-
lationship and graphically illustrating stimulus size33 (Fig. 1b).
Increases in stimulus size initially increase both the variance and
mean of the spike count response, but decrease their ratio (the
Fano factor)39. Further increases in size cause surround suppres-
sion, reducing both the variance and the mean and continuing to
decrease their ratio towards the line of Fano factor equal to 139.

Is it mere coincidence that experimental manipulations that
elicit response sub-additivity often quench variability too
(Fig. 1c)? Are these phenomena partly related? Or might they
be distinct manifestations of shared underlying mechanisms?
These questions are difficult to answer because we cannot di-
rectly observe the signals of interest. There is no empirical
measurement that directly reveals the strength of a cell’s “sub-
additive signal”. And firing rate variability is a statistical con-
struct that cannot be mapped onto an observable biophysical
quantity. Answering these questions requires a theoretical ex-
ploration of the issues at stake.

Models of V1 activity
Hubel and Wiesel’s trail blazing work inspired many to build,

test, and refine models of V1 activity. There is a great deal of
diversity among these models, reflecting differences in the un-
derlying aspirations. For example, some models seek to explain
V1 responses in a manner that remains faithful to known physi-
ological mechanisms, thus revealing how the structure of neural
circuits gives rise to their function56,80–83. We will refer to such
models as “mechanistic” accounts of V1 activity. Other models
seek to explain V1 responses on the basis of theoretical cod-
ing principles21,84–89, thereby revealing the computational ob-
jectives that shape neural function (“normative” accounts). And
yet other models aspire to describe quantitatively the transfor-
mation of visual stimuli into neural responses using a limited set
of operations and parameters that can be fit to neural data9,90–94

(“descriptive” accounts). Models of this latter type are useful to
simulate V1 activity and hence can provide insight into V1’s rep-
resentation of visual information beyond experimentally feasible
measurements95. They are also an essential point of compari-
son for studies that aim to connect V1 representations to down-
stream transformations96, perceptual capabilities97,98, other sen-
sory modalities99, and artificial visual systems100.

Descriptive accounts of response sub-additivity and
variability quenching in V1

We will focus here on one prominent descriptive framework,
the “normalization” model91,99,101. This model describes the fir-
ing rate of V1 neurons as the ratio of a narrowly tuned excita-
tory channel and a broadly tuned inhibitory channel. The excita-
tory channel usually consists of a linear spatio-temporal filtering
operation followed by a nonlinear pooling operation and deter-
mines the stimulus selectivity of the neuron (Fig. 2a). The in-
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hibitory channel is built from the same operations, but has much
weaker tuning. Specifically, it extends over a larger area of vi-
sual space than the excitatory channel, and is weakly tuned for
orientation and spatial phase (Fig. 2a). Because this model in-
corporates a divisive operation, its responses saturate with in-
creasing stimulus contrast – that is, once stimulus contrast ex-
ceeds a low level, they are sub-additive91,101. This occurs for
preferred as well as non-preferred stimuli, as is the case for real
V1 cells5,9. Moreover, because the inhibitory channel is broadly
tuned, the normalization model also exhibits cross-orientation
suppression and surround suppression3,87,91. Critically, in the
normalization framework, all sub-additive effects arise from a
single operation. This is an extreme proposition, yet it provides
a remarkably accurate description of classic sub-additive phe-
nomena3,9.

As discussed above, V1 neurons often exhibit super-Poisson
variability in a manner that resembles the effects of a noisy re-
sponse gain. This behavior naturally arises in the normalization
model when we assume spikes arise from a Poisson process94

and allow for noise in the normalization signal33 (Box 1). As
shown in ref.33, including noise in the normalization signal has
almost no effect on the mean responses of the model but affects
response variability in a number of ways. First, since the firing
rate now varies across repeated presentations of the same stim-
ulus, spike generation results from a doubly stochastic process,
yielding super-Poisson variability. Second, because the denom-
inator rescales the output of the excitatory channel, this additive
noise has a multiplicative effect on firing rate, i.e., it introduces
gain fluctuations. Third, the strength of these gain fluctuations
depends on the output of the inhibitory channel (Fig. 2b). As
is evident from the expressions that govern the model’s behav-
ior33, excitatory drive and normalization noise increase excess
response variance, while inhibitory drive has the opposite effect
(Box 1, equation 6). For this reason, the stochastic normaliza-
tion model predicts that response sub-additivity and variability
quenching will often co-occur, as illustrated for some classical
experimental manipulations in Fig. 2c. These predictions have
not yet been tested in great quantitative detail. It is likely that
additional model complexity will be required to capture the ex-
act relationship between response sub-additivity and variability
quenching. Note for example that in Fig. 2c, Fano factor initially
increases with stimulus contrast (bottom left). The available ev-
idence suggests that this occurs for some cortical cells, but in
most cases, Fano factor decreases monotonically with stimulus
contrast32. The model also predicts that Fano factor initially
increases with increasing stimulus size (Fig. 2c, bottom right),
which appears true for the majority of V1 cells (79, see also39). It
is possible that simple variation in parameter values can account
for this cross-neural diversity32. However, it is also possible that
additional model components are required to fully capture the
diverse empirical behaviors.

An alternative version of the stochastic normalization model
replaces the Poisson point process with a Gaussian noise source
in the excitatory channel32. Stimulus-response relations are gov-
erned by different quantitative expressions, but qualitatively be-

have in a very similar manner. Most importantly, this variant also
predicts a general quenching effect of normalization on neural
response variability. With the additional flexibility afforded by
the stochastic numerator, this model can capture empirical de-
viations from a modulated Poisson process. Another important
feature is that this model can be inverted to estimate the single-
trial strength of the normalization signal (which, as discussed
above, is a statistical construct that cannot be measured empir-
ically), from the measured neural activity. Using this method,
it has been shown that even when the stimulus is constant, nor-
malization strength fluctuates substantially across trials, and the
variability of V1 responses is more strongly quenched during
trials with stronger normalization32.

In summary, from the vantage point of this descriptive model
of V1 activity, many of the classical phenomena of sub-
additivity appear to result from the same operation (divisive nor-
malization) and neural responses appear to contain two layers of
variability, variability of spiking and of rate. The second layer
(variability in firing rate) is quenched by the suppressive signal.
Computational and representational objectives that
shape V1 activity
The operations implemented by sensory systems are shaped
through processes of evolution, development, and learning, and
are adapted to the tasks the organism must perform in its natural
environment. This raises the question of whether key features of
sensory systems can be derived from studying artificial systems
designed to either optimally perform such tasks104,105 or to re-
alize computational goals essential to these tasks106,107. In this
section, we focus on theoretical coding principles that provide
such normative insight into response sub-additivity and variabil-
ity quenching in V1.

The most successful theoretical proposal concerning the goal
of early sensory processing is the efficient coding hypothe-
sis106,107. Applied to V1, this hypothesis states that the goal
of V1 activity is to represent natural inputs with less statisti-
cal redundancy than present in those inputs. This notion enjoys
strong empirical support. When a linear filter basis is optimized
such that responses to a generic ensemble of natural stimuli are
both as informative and as statistically independent as possible,
the resulting basis functions resemble the visual receptive field
structure of V1 simple cells84,85, particularly if the stimuli are
natural movies rather than static natural images108.

However, a simple linear transformation is insufficient to pro-
duce fully independent responses to natural images. Remov-
ing the remaining statistical dependencies requires an additional
nonlinear response transformation. In particular, dividing each
filter’s response by the weighted sum of the rectified responses
of neighboring filters increases response independence87. When
optimized for natural image statistics, the resulting divisive nor-
malization model exhibits response sub-additivity reminiscent
of cortical cells. For example, simulations of classical contrast
summation, cross-orientation summation, and size tuning exper-
iments all yield model responses that qualitatively match the be-
havior of V1 cells87. This framework can also account for the
intricate cortical suppression phenomena elicited by natural im-
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Consider the simplest instantiation of the normalization framework99:

λ(S) =
E(S)

β + I(S)
(1)

where λ is firing rate, S an image, E the excitatory drive obtained by measuring the local energy in a narrow range of orientations
and spatial frequencies, I the inhibitory drive obtained by measuring global energy across a broad range of orientations and spatial
frequencies, and β a stimulus-independent constant91. Equation 1 specifies a deterministic relation between stimulus and firing
rate, a statistic that is not directly observable but inferred from trial-averaged measurements. The simplest way to obtain a full
generative model of spiking activity is to include a Poisson point process94,96. Together, these model components suffice to express
the probability of every possible spike count for arbitrary visual stimuli:

p(N |S,∆t) =
(λ(S) ∆t)

N

N !
e−λ(S) ∆t (2)

where N is spike count and ∆t duration of the counting window. Under this model, response variance simply equals the response
mean:

Var[N |S,∆t] = Mean[N |S,∆t] = λ(S) ∆t (3)

Ref.33 assumed that the normalization signal is not deterministic, but subject to additive Gaussian noise with zero mean and variance
σ2
N . On a single trial, spikes are generated from a Poisson process with firing rate

λi(S) =
E(S)

β + I(S) + εi
(4)

where subscript i is a trial index and εi is the Gaussian noise. Because the denominator in equation 4 rescales the output of the
excitatory channel, this additive noise has a multiplicative effect on firing rate, i.e., it introduces gain fluctuations33. The strength of
these gain fluctuations depends on the output of the inhibitory channel and is well approximated by:

σG =
σN

β + I(S)
(5)

where σG expresses the standard deviation of the gain33. The suppressive signal reduces gain fluctuations, and hence reduces
response variability. The stochastic normalization model describes a doubly stochastic process. It follows from the law of total
variance that spike count variance is composed of the sum of the expected Poisson variance (equation 3) and a term that represents
the contribution of rate variability102. This term is the product of the variance of the gain signal and the squared mean response28:

Var[λ(S) ∆t] =
(σNE(S))

2

(β + I(S))
4 ∆t2 (6)

Box 1 Inhibitory drive suppresses response strength and quenches response variability in the stochastic normalization model. Based
on ref. 33.

ages4. Phenomena of sub-additivity can thus be understood as a
direct consequence of the visual system’s attempt to efficiently
encode the statistical structure of natural images. In summary,
this line of work demonstrates that the nonlinear response prop-
erties of sensory neurons captured by divisive normalization-
based descriptive models (described in the previous section) are
well predicted by the normative principle of efficient coding. In
other words, divisive normalization is “not an accident of bio-
logical implementation, but has an important functional role”87.

Although redundancy reduction leads to normalization, which
can account for response sub-additivity, it does not provide a
normative justification for variability, or its quenching, per se.
In fact, neural variability seems at odds with the normative goal
of efficient coding as response variability limits coding capacity
and is therefore undesirable for any pure stimulus encoding sys-

tem109. But sensory systems seek to do more than just represent-
ing sensory input. Ultimately, they must construct perceptual in-
terpretations of the environment that facilitate behavioral tasks.
The most relevant aspects of the environment (e.g., the presence
of potential prey or a potential predator) typically have a com-
plex and ambiguous relationship with raw sensory input. These
aspects thus need to be inferred. Inevitably, these inferences
have varying degrees of certainty. To achieve optimal behav-
ioral outcomes, the uncertainty of perceptual inferences needs
to be taken into account110–112. How neural circuits do so is de-
bated and an important topic of modern research21,27,33,39,113–120.

A prominent hypothesis concerning the role of neural re-
sponse variability in sensory cortex is that its structure may
facilitate the assessment of perceptual uncertainty by down-
stream circuits. Theorists have proposed several variants of this
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idea117,122. In particular, the Neural Sampling hypothesis pro-
poses that neural responses in sensory cortex represent samples
from a probabilistic model of the environment21,122,123. It fol-
lows that neural response variability reflects uncertainty about
the inferred stimulus feature. Consistent with this idea, factors
that improve the quality of perceptual orientation estimates such
as image contrast and aperture size124 also quench response vari-
ability of V1 neurons21,33,39.

From a computational perspective, if sensory systems must
take uncertainty into account, the optimal way to do so is to learn
the causes of sensory inputs, by analyzing the statistical regular-
ities of sensory inputs and forming a so–called generative model
that reproduces those statistics. Probabilistic inference consists
of inverting this generative model, to correctly map an observed
input onto a probability distribution of the causes of that input
(the so-called posterior distribution)125.

This foundational idea has recently been adapted to provide
a unified account for the phenomenologies of response sub-
additivity and response variability in V1. The theory, which
combines critical elements of efficient coding and neural sam-
pling, proposes that V1 activity represents approximate proba-
bilistic inferences based on a generative model of local image
structure21 (Fig. 3a,b). The model postulates that images are
generated by a combination of local features, and a global mod-
ulator representing luminance or contrast (Fig. 3a). The theory
assumes that the computational goal of V1 is to represent lo-
cal image features by undoing the effect of nuisance variables
such as the global modulator, a computation termed marginal-
ization. This has the effect of removing redundancies that are
present in the raw visual inputs due to the nuisance variables
(Fig. 3c). The theory additionally assumes that V1 activity rep-
resents samples from the inferred posterior probability distribu-
tion of the feature coefficients, i.e. a neural sampling-based rep-
resentation (Fig. 3d). In this way, the average neural response
(i.e. the sample mean) represents the mean of the posterior dis-
tribution, that is, the estimate of the feature coefficients that is
expected to have minimal squared-error, while neural variabil-
ity (sample variance) represents uncertainty about this estimate
(posterior variance).

When this model is optimized for natural image statistics,
response sub-additivity and variability quenching often co-
occur21,39,126. The intuition for this connection is that marginal-
ization results in more certain inferences about local image fea-
tures and is achieved via divisive normalization (Fig. 3b). Thus,
the average neural response (representing the posterior mean) in
this model inherits – at least qualitatively – the sub-additive ef-
fects predicted by the divisive normalization model of efficient
coding discussed above21,87. For example, responses of nearby
linear filters representing a neuron’s receptive field and its sur-
round are typically informative about the global modulator. Ho-
mogeneous images that extend beyond the receptive field elicit
similar responses of nearby filters, suggesting a large value of
the global modulator, and therefore evoking strong normaliza-
tion from the surround4,127. Critically, variability quenching is
a consequence of the same computation: observing the image

content in the surround lowers the estimation uncertainty about
local image structure inside the receptive field, and thus results
in a smaller amount of response variability39. Conversely, when
the image is confined to the receptive field (Fig. 3d), or when the
surround image is part of a different object (termed heteroge-
neous center-surround configuration4), responses of nearby lin-
ear filters are less redundant (resulting in weaker normalization)
and uncertainty about local image features is higher (resulting in
higher response variability).

In summary, studies of the computational and representa-
tional objectives underlying V1 activity offer a parsimonious ex-
planation for the co-occurrence of response sub-additivity and
variability quenching: Divisive normalization in V1 serves to
compute probabilistic inferences about visual inputs, relating
sub-additive phenomena that maximize coding efficiency and
quenching phenomena that express uncertainty about inferred
image features.

Circuit mechanisms that govern V1 activity
V1 activity is shaped by retinal, thalamic, and cortical circuit
mechanisms. How do cortical response sub-additivity and re-
sponse variability arise mechanistically from the interplay of
these distinct anatomical components? The descriptive and nor-
mative modeling approaches discussed thus far offer little in-
sight into this. These models are formulated in terms of norma-
tive principles and phenomenological operations – e.g., linear
filtering, divisive normalization, noisy spike generation – whose
biophysical and anatomical substrates are not specified. To ad-
dress this question, we turn to neural circuit models.

Response sub-additivity and variability quenching need not be
produced by the V1 circuit; they could instead arise from the in-
puts to V1. This is likely the case for sub-additivity induced by
stimuli in the receptive field center56,57,128–132; but see69. Like-
wise, variability in firing rate of LGN cells decreases with stim-
ulus contrast13,133. Thus, some forms of response sub-additivity
and variability quenching in cortex have, at least in part, a feed-
forward origin.

How might cortical circuitry further contribute to response
sub-additivity and variability quenching? This question is an ac-
tive topic of contemporary research. The proposed models that
have received the most attention, e.g.53,134,135, share two com-
mon features. First, excitatory cortical circuitry is structured:
excitatory neurons with shared selectivity are more strongly cou-
pled whereas those with distinct preferences exhibit weak cou-
pling. Second, inhibitory connections are strong enough to sta-
bilize the network despite excitatory connectivity being strong
enough to potentially cause instability. These features are ap-
parent in cortex45,136–140, although there is as yet limited direct
evidence for their role in response sub-additivity or variability
quenching (but see136).

Cortical neurons receive inputs from many cells. A neuron re-
ceiving a large number of excitatory inputs, without compensat-
ing inhibition, would have a large mean input and exhibit regular
clock-like spiking, inconsistent with the variable firing of corti-
cal cells18,141. Therefore a number of additional mechanisms
have been proposed to account for spiking variability. Two pos-
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sible sources are stochasticity in cellular and synaptic mecha-
nisms142–144 and input correlations which prevent the variabil-
ity of individual inputs from being averaged out145,146. Spiking
variability can also arise from network dynamics, if inhibition
balances excitation sufficiently that the mean input to a cell is
sub- or peri-threshold, so that the neuron is driven to fire by in-
put fluctuations – brief imbalances in excitation and inhibition –
which occur at random times147–150. The “balanced network”
model148 demonstrated that network dynamics can automati-
cally yield such balancing in a broad parameter regime, with-
out requiring fine tuning of parameters. This model produced
“tight balance”, meaning that the excitation and inhibition that
cancel are much larger than the net input remaining after cancel-
lation151. However, tightly balanced network models do not nat-
urally produce nonlinear input-output transformations that could
give rise to response sub-additivity. They also do not generate
super-Poisson variability or variability quenching. These prob-
lems can be solved by considering more loosely balanced mod-
els151 and/or structured134 or heterogenous152 connectivity, as
we now discuss.

The above mechanisms predict Fano factors below 1. What
additional sources of variability yield super-Poisson variability
characteristic of cortical neurons, and why is this additional vari-
ability quenched by a stimulus? In one family of models, this
additional variability arises during spontaneous activity because
the network is wandering among many states, e.g. correspond-
ing to possible responses to many different stimuli, with neu-
rons firing at different rates in different states134,153. A stimulus
“pins” the network to one state, quenching the variability. Some
of these models depend on specific connectivity. For example,
given stronger connections within and weaker connections be-
tween distinct clusters of excitatory units in an otherwise bal-
anced network, with one cluster’s activity inhibiting the others,
network activation can be largely restricted to one cluster at a
time and wander between clusters over time134. A similar mech-
anism could apply if neurons are most strongly connected to
neurons with similar response properties, forming a continuum
of clusters rather than discrete clusters. Consistent with this idea,
spontaneous activity in V1 wanders through states resembling
stimulus responses, both to laboratory26,154,155 and natural21,27

stimuli, more often than expected by chance. Note that a stim-
ulus that pins the wandering reduces the variability of all neu-
rons, including those not driven by the stimulus156,157. A related
proposal is that a network’s variability is generated by chaotic
dynamics of spontaneous activity, as occurs in tightly balanced
networks with sufficient variability in their weights152. A stim-
ulus can then suppress variability by suppressing the chaos158.

Note that in these models, there is no connection between
the mechanisms that alter variability and sub-additivity of re-
sponses. If such a model shows response sub-additivity, it will
be due to mechanisms distinct from the stimulus-induced pin-
ning of network state that quenches variability. However, in
these models, changes in firing rates (which need not involve
sub-additivity) are naturally coupled to changes in variability:
for example, a decrease in stimulus strength decreases firing

rates and increases variability at the same time157. Such an
increase in variability accompanying a decrease in firing rates
has been observed in some cases of surround suppression79, and
it was suggested79,157 that in these cases, surround suppression
arises primarily from suppression of feedforward inputs (consis-
tent with experimental evidence for feedforward contributions to
surround suppression:66,159 in macaque V1, and160,161 in mouse
V1). However, in most cases, a decrease in variability accompa-
nies surround suppression39,79 (consistent with experimental ev-
idence for cortical contributions to surround suppression66,159).
To explain this phenomenon, other mechanisms relying on the
intrinsic dynamics of V1 are necessary.

An alternative model of V1 dynamics posits that the network
randomly fluctuates about a single steady state for a given fixed
external input, including the input driving spontaneous activity;
but the amplitude of the fluctuations decreases with external in-
put strength, quenching variability. In this model, the fluctua-
tions are due to external input noise amplified by an excitatory
network that is stabilized by inhibitory cells53. This inhibitory
stabilization and its increasing strength with increasing external
input drives both response sub-additivity and variability quench-
ing. A key ingredient of this “stabilized supralinear network”
(SSN) model53,82,135 is that neuronal input/output (I/O) func-
tions are supralinear (Fig. 4a, middle). This means that neuronal
gain – the change in output per change in input, i.e. the I/O func-
tion’s slope – increases with neuronal activation. The result is
that “effective connection strengths” – the change in postsynap-
tic firing rate per change in presynaptic firing rate – increase with
increasing strength of the network’s external input135 (Box 2).
This increase plays a central role in both response sub-additivity
and variability quenching in the SSN.

For very weak external input – around spontaneous levels –
effective synaptic strengths are weak. As a result, monosynaptic
pathways (the external input) are much stronger than the di-and
poly-synaptic pathways they evoke (recurrent input). Thus, re-
sponses largely follow the supralinear input/output function of
decoupled cells, and hence sum supralinearly. With increas-
ing input strength, the relative contribution of network drive in-
creases, eventually exceeding a point at which the excitatory
subnetwork alone would become unstable, and so the network
enters an inhibition-stabilized regime45,135,136,162. Stabilization
occurs through “loose balancing”135,151 (Fig. 4b), meaning (1)
recurrent input largely cancels the external input, so that the net
input grows sublinearly as a function of the external input; and
(2) the net input is comparable in size to the factors that cancel,
i.e. the balance is “loose”. This loose balance is sufficient to
yield irregular spiking163, yet allows nonlinear behaviors such
as response sub-additivity that are absent when balance is tight.
In particular, when a second stimulus is added to a first, most of
the extra feedforward input is cancelled. The result is (a) there
are two parameter regimes, in only one of which contrast satu-
ration occurs135 but (b) for most parameters, when two different
stimuli are added, response summation is sublinear, whether the
second stimulus is added within the receptive field or in the sur-
round82,135.
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In the SSN, at steady state, the contribution of a particular presynaptic cell to the input of a postsynaptic cell, I , is simply given by
the firing rate of the presynaptic cell, rpre, scaled by the strength of the connection between the two cells, W :

I = W rpre + . . . (7)

where . . . denotes terms that are independent of the presynaptic neuron, such as recurrent inputs from other neurons in the network,
as well as external, feedforward inputs from upstream areas. The firing rate of the postsynaptic neuron is then determined by the
neuronal input/output function:

rpost = f(I) (8)

Combining Equations 7 and 8 yields a self-consistent equation that expresses the (steady state) relationship between the firing rates
of the pre- and postsynaptic neuron as

rpost = f(W rpre + . . .) (9)

This means that for a sufficiently small deviation in the activity of a presynaptic neuron (e.g. due to a change in its external drive, or
random fluctuations), δrpre, the change in the response of the postsynaptic neuron, δrpost, is given by

δrpost = f ′(I) W δrpre (10)

where f ′(I) is the “neural gain”, the slope of the input/output function at the steady state input of the postsynaptic neuron. Thus, the
effective connection strength between the two neurons is the actual connection strength scaled by the neuronal gain:

Weff =
δrpost

δrpre
= f ′(I) W (11)

The supralinearity of f means that not only the rate, f(I), grows with the input, I , but so too does the gain, f ′(I), and thus the
effective connection strength, Weff .

Box 2 The scaling of effective connectivity with input strength in the SSN. Based on ref. 135, see also 53,82.

This mechanism also creates and quenches super-Poisson
variability, as illustrated for a simple model of one E and one
I population53 in Fig. 4. With both strong amplifying excitatory
and strong stabilizing inhibitory connections, the network shows
“balanced amplification”164: small input imbalances favoring E
(or I) strongly drive both E and I cells up (or down). This can
be mathematically summarized by formulating the dynamics in
terms of the strengths of two patterns of activity: a difference
(D) pattern and a sum (S) pattern, in which E and I activities
have opposite signs (D) or the same signs (S) (Fig. 4a, right).
Any actual pattern of E and I activities can be expressed as a lin-
ear combination of these two patterns. Each pattern effectively
inhibits or damps its own activity, with weights λD and λS . The
difference pattern excites the sum pattern with a weight wFF ,
but there is no connection in the opposite direction (a feedfor-
ward connection pattern164).

In this model, as external input h increases from 0, the vari-
ability, as measured by voltage standard deviation, first increases
to a peak before thereafter being suppressed (Fig. 4C). The
peak occurs around the transition between the external-input-
dominated and recurrently-dominated regimes, where the recur-
rent input “turns around” and starts balancing the external in-
put (Fig. 4B). As h increases from zero, effective connection
weights rapidly increase and wFF , the feedforward drive from

difference to sum, rapidly grows (Fig. 4D). Thus, variability is
increased by increasingly strong balanced amplification – small
E/I differences in the external noise driving large joint fluctua-
tions of E and I. The decrease of the sum pattern’s self-inhibition
λS also contributes, decreasing the damping of fluctuations of
the sum pattern. Beyond the regime transition, the growth of
wFF greatly slows, while λS , and later λD, grow. This repre-
sents increasingly strong inhibitory stabilization, which damps
fluctuations and so quenches variability. The net result (Fig. 4e)
is that the fluctuations (black ovals), initially driven by the in-
put noise (h = 0), are greatly amplified in the sum direc-
tion, producing the peak in voltage variability (h = 2), before
being quenched by the increasingly strong inhibitory damping
(h = 15).

A signature of the SSN is a non-monotonic dependence of
variability on stimulus strength (Fig. 4c), in agreement with
the stochastic normalization model (Fig. 2c, bottom left, bot-
tom right). This has been studied in the SSN for changes in
contrast53, but experimental data is currently not available for
sufficiently fine manipulations of contrast to test this prediction
comprehensively. In particular, a decrease in variability with in-
creasing contrast for larger contrasts was robustly seen21,22,32,165,
but very low contrasts, for which an increase in variability would
be expected, have not been carefully studied (an increase in
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variability with increasing stimulus contrast at moderately lower
contrasts was seen in a minority of cells32). Instead, experiments
have seen a clear non-monotonic change in variability with in-
creasing stimulus size at least in some layers of V1 – variabil-
ity increasing for the smallest sizes, then decreasing for larger
sizes39,79. The SSN mechanism reproduces surround suppres-
sion of firing rates82 but the dependence of variability on stimu-
lus size has not been explicitly studied. Nevertheless, we expect
the same non-monotonic dependence as for stimulus contrast, as
the same mechanisms should apply in both cases.

Experimental data also suggests that multiple surround mech-
anisms are engaged in different layers and by different spatio-
temporal stimulus configurations59,66,79,159. Modulation of vari-
ability might also vary accordingly39,40,79, including the possi-
bility, described above, that when surround suppression is inher-
ited from the feedforward inputs, it should act like a decrease
in contrast and thus increase variability, while when it derives
from recurrent cortical mechanisms, it represents increasingly
strong inhibitory stabilization which decreases variability. Simi-
lar considerations apply to masking suppression, which includes
a weaker cortical component69 that can be described by the
SSN82, and a stronger component due to masking effects on the
feedforward inputs to cortex56,57,128–132.

In summary, in mechanistic models of V1 activity, response
sub-additivity and variability quenching can both arise via a
common mechanism: network effects that yield increasingly
strong inhibitory stabilization. Variability quenching can also
arise through stimulus pinning of wandering network activity,
without any necessary connection to response sub-additivity. In
all of these models, suppression of feedforward input will sup-
press responses and is expected to increase variability. Partic-
ular forms of sub-additivity or suppression may occur through
different sets of these mechanisms in different locations. Thus,
mechanistic models suggest that sub-additivity will often, but
not always, co-occur with variability suppression.

Conclusions
We have seen that response sub-additivity in V1 often co-occurs
with variability quenching. Response sub-additivity arises from
nonlinear input transformations while response variability re-
sults from the accumulation and amplification of small amounts
of noise as signals flow through neural circuits. It is therefore
not obvious that both types of phenomena should have common
origins. Yet that is exactly what we propose. This proposal is
motivated by recent model-based insights into the functional op-
erations, computational objectives, and circuit mechanisms that
govern V1 activity. Although these modeling approaches ad-
dress different aspects of cortical activity and rely on very dif-
ferent model architectures, they all predict that response sub-
additivity and variability quenching will often co-occur. We do
not wish to suggest that a single circuit mechanism underlies
this relationship – different forms of response sub-additivity and
variability quenching likely arise from distinct circuit mecha-
nisms. Moreover, more work is needed to establish whether the
discussed models are rich enough to account for the diversity of
neural behaviors seen within the same experimental paradigm.

That said, the converging insights naturally raise new questions.
We end this review by considering three that seem particularly
important to us: “Can the modeling insights be unified?”,“Is
the connection between response sub-additivity and variability
quenching a canonical motif across cortex?”, and “Do specific
model components map onto specific subtypes of neurons?”

Descriptive, normative, and mechanistic modeling approaches
offer different levels of explanation, but they are not mutually
exclusive enterprises. Progress at one level can spark progress
at another level. For example, refining descriptive models to
better capture the diverse effects of surround stimulation on re-
sponse suppression3,11 has provided critical guidance for norma-
tive models of V1 activity39,87. Likewise, descriptive accounts
of variability quenching across cortex22 inspired progress in
mechanistic models of spiking activity53,134. More direct exam-
ples of cross-level interactions are offered by recent attempts to
combine different levels of explanation in a single model83,126.
One study126 bridged normative and mechanistic levels by opti-
mizing the connectivity of the SSN architecture for probabilis-
tic inference, so that SSN response variability closely matched
the variability produced by a sampling-based normative model
for stimuli with a cross-orientation mask. The network opti-
mized for this variability structure was precisely in the SSN
loosely balanced regime described above that shows response
sub-additivity and variability quenching. The study also showed
that this SSN regime produced other phenomena not previously
studied, including contrast-controlled oscillations (see also166)
and stimulus-onset transients, each of which played a function-
ally well-defined role in network computations.

Another recent study developed a model that bridges descrip-
tive and a mechanistic levels. Specifically, the family of dy-
namic circuit models called Oscillatory Recurrent Gated Neu-
ral Integrator Circuits (ORGaNICs83) was explicitly designed
to produce a steady state exactly described by the equations of
divisive normalization. Similar to the SSN framework, recur-
rent inhibition in ORGaNICs stabilizes the network when re-
current excitation would otherwise make it unstable, producing
both sub-additivity and variability quenching in stochastic vari-
ants of ORGaNICs (Martiniani and Heeger, personal communi-
cation). ORGaNICs relies on recurrent amplification through a
multiplicative interaction between recurrent drive and recurrent
gain that can be regarded as a phenomenological description of
actual circuit mechanisms. One advantage of this model family
is that its steady state and its variability and covariability can all
be computed analytically, simplifying the study of large-scale
and multi-area networks.

Looking forward, training deep neural networks whose con-
nectivity resembles visual cortical circuitry to either perform vi-
sual tasks167–170 or to predict responses of visual neurons171–173

holds promise as a powerful approach to build bridges between
descriptive, normative, and mechanistic approaches. However,
thus far, this approach has not yielded any insight into neural
response variability or its quenching – this is an important open
challenge for future research.

Response sub-additivity and variability quenching are not lim-
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ited to V1. Suppression of neural responses to a preferred stimu-
lus by the simultaneous presentation of a non-preferred stimulus
has been documented for many sensory174–177 and non-sensory
brain areas178,179. Likewise, the quenching of response variabil-
ity by stimulus onset is thought to be a general property of cor-
tical neurons22. This raises the question of whether the con-
nection between response sub-additivity and variability quench-
ing is a canonical motif across cortex. The insights provided
by the V1 models we reviewed suggest that this may be the
case. Specifically, these models suggest that both phenomena
result from the neural mechanisms that implement the opera-
tion of divisive normalization. This operation is considered a
canonical neural computation that is repeated modularly in many
distinct brain systems through a variety of circuits and mech-
anisms99. Determining the generality of the co-occurrence of
response sub-additivity and variability quenching may reveal a
lawful aspect of neural activity and as such represents a crucial
step for developing a principled understanding of cortical com-
putation.

The models we discussed offer abstracted descriptions of neu-
ral stimulus-response transformations. As we have highlighted
throughout this article, such abstractions can provide valuable
insight into brain function even if the model components cannot
be mapped onto biophysical substrates. Notwithstanding this,
establishing such mapping is a quintessential goal of systems
neuroscience. The recent advent of circuit-dissection tools ca-
pable of distinguishing the functional role of specific sub-types
of cortical neurons41,70,180 brings this goal within experimental
reach.

In this article, we have focused on sub-additivity of firing rate

and on response variability, both single-neuron response statis-
tics. We have reviewed modeling frameworks that suggest uni-
fied descriptions and explanations for those phenomena, but that
also help us distinguish separate mechanisms underlying similar
phenomena. A natural and important extension of this work is
to additionally consider pairwise and population-level response
statistics (e.g. pairwise noise correlations and the geometry of
population activity). These statistics have been studied exten-
sively in cortical areas181–183, are influenced by similar factors as
those that elicit response sub-additivity and variability quench-
ing38,51,184–188, and further constrain models of neural activity.
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Supplementary information
To illustrate the phenomena of response sub-additivity, response variability, and variability quenching, we analyzed simulated
neural responses in Fig. 1a,b. The simulation was conducted in the following way. First, we created a temporal response profile that
unfolded over 1 second in which a fast response rise is followed by a slow decay by multiplying a cumulative Gaussian function with
an exponentially decaying function. To capture the phenomenon of surround suppression, we created three different average levels
of responsiveness (left, middle, and right panels) by multiplying this profile with three different numbers such that it peaked at a rate
of 4, 50, and 20 spikes per second. To capture the phenomenon of variability quenching, we let spikes arise from a doubly stochastic
process. We simulated multiple trials (i.e., repeated stimulus presentations). Each trial, we multiplied the stimulus-specific response
profile with a random gain value to obtain a trial-specific firing-rate profile (Fig. 1a, middle row). The gain values were drawn from
a gamma-distribution with a mean value of 1 and a variance that depended on the stimulus condition28 (set to 1.5, 0.07, and 0.001
for the left, middle, and right panels). Finally, we obtained spike times by using the trial-specific firing rate profile as input for
an inhomogeneous Poisson process125 (Fig 1a, top row). The spike count histograms (Fig. 1a, bottom row) illustrate the resulting
cross-trial distributions of spike counts (using a 1 second counting window). The variance to mean plot (Fig. 1b) illustrates the mean
and variance of these spike count distributions.
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