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Abstract—The utilization of deep learning (DL) in medical
research and industry has witnessed substantial growth in recent
years. A pivotal application involves employing DL for derma-
tology image classification tasks. However, the major challenges
in such tasks, in terms of the scarcity and bias of high-quality
labeled data, significantly hinder further advancement in this
domain. Such data insufficiency gives rise to concerns regard-
ing accuracy disparities across different demographic groups,
which may ultimately lead to unfair outcomes. Additionally,
complex and effective DL models are often unsuitable with
low-power embedded devices, which hinders their usability in
resource-limited environments. In this paper, we propose a
DL framework to address these issues. Our major approach
involves augmenting data with Gaussian white noise to generate
synthetic data samples and employing knowledge distillation
techniques to transfer valuable knowledge from a larger and
more complex model to a smaller and more efficient counterpart.
Through comprehensive experimentation on an open-access skin
disease classification dataset, we demonstrate that our proposed
framework significantly enhances the performance of DL models
on low-power embedded devices, thereby optimizing the trade-
offs among overall accuracy, fairness for different demographic
groups, and inference latency on low-power embedded devices.

Index Terms—Deep Learning, Medical Image Classification,
Synthetic Data, Knowledge Distillation, Real-time Embedded
System

I. INTRODUCTION

With the recent development of artificial intelligence tech-
nology, its applications have been penetrating various indus-
tries across society. In the medical field, one of the most
crucial areas, Al has rapidly developed and engaged. Deep
Learning (DL), as a subfield of Al play an important role
in dermatology clinics, assisting doctors in diagnosing skin

'Our code and experiments can be reproduced by

the details provided in the Methodology section on image
preprocessing and augmentation, model architecture, and train-
ing configurations. (https://github.com/yixinli19/Dermatology-
image-classification). The  MobileNet V3 is available  at
(https://pytorch.org/vision/stable/models/mobilenetv3.html).
The Swin Transformer V2 is available at (http-
s://pytorch.org/vision/stable/models/swin_transformer.html). The dermatology
image dataset is available upon request from ESFair 2023. They can be
reached at: https://esfair2023.github.io/ESFair/.
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diseases [1]. The main approach of DL involves learning from
a vast amount of annotated skin disease images to understand
their underlying features and provide diagnostic outcomes.
However, this image classification task faces a common and
challenging problem in the medical domain: the lack of high-
quality labeled data. Collecting and sharing medical data from
different hospitals present various difficulties, such as patient
privacy concerns. The scarcity of data can lead to inaccura-
cies during training process. Additionally, skin disease image
classification, as a typical medical imaging task, encounters
further challenges. Unlike tasks requiring more specialized and
precise measuring instruments, skin disease images are often
captured using mobile devices. This introduces uncertainties
such as varying image sizes, resolutions, and distractions from
factors like hair, scars, or medical markings on the skin, posing
greater challenges for deep learning. Moreover, the imbalanced
distribution of skin disease data among different ethnicity can
result in better model performance for certain skin tones while
performing poorly on data-limited ethnic groups. To address
the unfairness in medical image classification, Deng et al. [2]
proposed a novel method for fair representation learning with
respect to multi-sensitive attributes. They formulated this prob-
lem mathematically and propose a novel fair representation
learning algorithm named FCRO, which pursues orthogonality
between sensitive and target representations. Khakurel et al.
[3] conduct an empirical study to investigate bias in the image
classification domain based on sensitive attribute gender using
deep convolutional neural networks (CNN) through transfer
learning and minimize bias within the image context using
data augmentation to improve overall model performance.
However, the study that focuses on improving fairness among
different demographic groups and balancing between fairness
and accuracy is insufficient. Another challenge arises in real-
world scenarios, where local clinics may not have high-
power devices to execute the complex DL models. Accessing
through a cloud server requires a stable internet connection,
and maintaining such powerful devices for remote access is
expensive and inefficient. Hence, our study aims to develop
a high-performing lightweight DL model that achieves high



overall accuracy, fairness across different demographic groups,
and low inference latency on low-power embedded devices.

The remaining sections are organized as follows: Section II
explains the targeted problem. Section III elaborates on the
employed methodology, mainly comprising image preprocess-
ing, synthetic data generation, and knowledge distillation.
Then, Section IV describes our experimental settings, base-
lines, results, and corresponding discussions. Subsequently,
Section V presents the related work in dermatology image
classification and real-time DL on low-power devices. Lastly,
Section VI concludes the work and points out future research
directions.
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Fig. 1: Sample skin disease images. There are several features
shown in this figure: (1) The images have different sizes. (2)
Diseases have different sizes, positions, and colors. (3) Some
of the images have distracting information, like hair and marks.
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II. PROBLEM

Our study draws inspiration from the skin disease classifi-
cation task presented at the Tiny and Fair ML Design Contest
during Embedded Systems Week 2023 [4]. The rapid adoption
of machine learning techniques, particularly deep learning, in
diverse medical domains owing to the democratization of Al
Dermatology, benefiting from accessible skin lesion datasets,
has emerged as a prominent area of application.

A. Dataset

The dataset obtained from the ESFair contest comprises skin
disease images categorized into six different classes, namely:
(1) Basal-cell carcinoma (BCC), (2) Benign Keratosis-Like
Lesions (BKL), (3) Melanoma (MEL), (4) Nevus (NV), (5)
Vascular and Anatomic Skin Changes (VASC), and (6) un-
known. Additionally, the dataset consists of four subgroups:
G6, G7, G8, and G10, based on skin tones. The images within
the dataset exhibit diverse sizes, ranging from 640x480 to
6000x4000 pixels. A detailed description of the number of
images for each class and subgroup is provided in Table 1. The
total sample sizes for the four subgroups are 3565, 2350, 3291,
and 2007, respectively, while the sample sizes for each disease
class (BCC, BKL, MEL, NV, VASC, unknown) are 1231, 982,
1537, 2206, 49, and 5207. Figure 2 illustrates the bias in this
dataset, such that the Unknown class in G7 accounts for 20%

of the entire dataset, but it takes 59% in G6. Furthermore,
Figure 1 presents sample image data, illustrating the variations
in image sizes and the presence of distracting information,
such as hair and marks. Additionally, skin diseases exhibit
diverse shapes, colors, and positions, adding to the complexity
of the dataset.

TABLE I: The number of images in each class and group.

| BCC | BKL | MEL | NV | VASC | unknown

G6 68 63 272 1039 4 2118
G7 641 546 521 138 17 487
G8 303 242 368 708 22 1648
G10 219 131 376 321 6 954
Total | 1231 982 1537 | 2206 49 5207
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Fig. 2: An overview of the dataset for each subgroup.

B. Main Objectives

Unlike general images, such as those in ImageNet [5],
skin lesion datasets often manifest biases due to uneven
representation of skin tones. Acknowledging this disparity,
Alexander, CEO of First Derm, notes that images of black
skin comprise only a small portion (5-10%) of their database,
with even fewer samples representing other minority groups,
such as Asians and Hispanics [4]. This inherent bias raises
significant concerns regarding the use of machine learning
in dermatology, as it may yield high overall accuracy but
significantly lower accuracy for specific groups. The reper-
cussions of such bias extend widely, ranging from accidents
in autonomous driving to linguistic discrimination in language
translation, and even life-threatening misdiagnoses in health-
care [4]. In addition, dermatology image classification poses
unique challenges compared to medical image analyses of
other types, such as CT and MG, which use precise scanning
devices to record the data. Skin disease images are typically
captured using mobile devices, such as smartphones [6]. The
variation in image quality from different mobile devices and
under various light conditions can hinder the performance of
machine learning-based classification tasks.

Another problem arises in low-power embedded systems.
Due to the massive training parameters, DL models can usually
achieve relatively high performances in certain tasks. How-
ever, in real-world scenarios, high-power devices are limited
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Fig. 3: An overview of the proposed framework.

by costs and availability. In resource-restricted environments
where real-time diagnosis is needed, complex DL models are
infeasible to accomplish this task. Therefore, to address the
limitation of deep learning deployment on low-power embed-
ded devices, efficient and domain-specific neural networks are
needed.

To address these issues, we set the DL performance objec-
tives in three critical aspects:

e Overall accuracy, which quantifies the percentage of
correct predictions out of the total samples;

o Fairness, measured by examining differences in accuracy
across subgroups and employing Statistical Parity Differ-
ence (SPD); and

« Inference Latency, representing the time taken for making
predictions.

The primary objective is to design DL models capable
of achieving high accuracy performance while effectively
balancing the accuracy between each subgroup. Moreover, the
study aims to execute these neural networks on low-power
embedded devices, ensuring relatively fast inference speed.

III. METHODOLOGY

In this study, we proposed a novel and comprehensive
framework for designing DL models, including preprocessing
images, generating synthetic data, tuning parameters, and
applying knowledge distillation techniques to optimize overall
performances.

A. Framework

The proposed framework is presented in Figure 3, where the
initial step involves resizing and normalizing the input raw im-
ages to 224x224 pixels in RGB format, considering variations
in heights and widths. Next, the dataset is partitioned into
training and testing subsets, while the training set is updated
and balanced by the generation of synthetic data using white

Gaussian noises. During the training phase, a highly effective
teacher model, Swin Transformer [7], is employed to establish
a foundation of knowledge. This knowledge is then transferred
to a more efficient student model using knowledge distillation
techniques. Notably, the selection of the Swin Transformer
as the teacher model is justified due to its outstanding per-
formance in efficiently modeling long-range dependencies in
images while maintaining computational efficiency. It em-
ploys a hierarchical design that divides the image into non-
overlapping patches and utilizes both local and global attention
mechanisms to capture contextual information effectively. This
architecture enables Swin Transformer to handle large images
and achieve state-of-the-art performance on various computer
vision tasks, making it a promising choice for tasks with
high-resolution inputs and complex dependencies [7]. As a
complement to this, the student model, MobileNet [8], is
chosen for its lightweight and high efficiency.

B. Image Preprocessing

Due to the diverse characteristics present in image data,
including variations in size, shape, color, and potential dis-
tractions, a preprocessing step has been taken to ensure all
image data are compatible with the deep learning process.
As depicted in Figure 4, we initially resize all images to a
standardized dimension of 224x224 pixels. Subsequently, we
compute the normalization parameters, encompassing the stan-
dard deviation and mean value of the complete dataset. Finally,
we transform the normalized images into RGB values for each
pixel, facilitating integration into the following stages of our
proposed framework. This preprocessing pipeline enhances
the effectiveness of our neural network-based approaches for
image analysis tasks.

C. Class Weighting

In response to the challenge posed by the imbalanced
dataset, we introduced modifications to the class weighting
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Fig. 4: An example showing how the image data is processed.
The image in this example is from G10 with the label
BCC. This image size is 600x480 pixels. The first step of
preprocessing is to resize the image to 224x224 pixels, and
then normalize with the standard deviation and mean values
calculated from the entire dataset.

within the DL to afford greater attention to the specific
classes. As evidenced in Table I, it becomes apparent that
the Unknown class contains a significantly larger number of
samples compared to all other classes, while the images in
the VASC class only accounts for 0.4% of the entire dataset.
Hence, in the context of this scenario, it is imperative to assign
a higher class weighting to the minority classes with interests.
By adopting this approach to class weighting, we seek to
optimize the DL’s performance in tackling the imbalanced
dataset. In this study, we changed the class weights in the
training pipeline to [15, 15, 15, 15, 1, 5] for BCC, BKL,
MFEL, NV, Unknown, and VASC. This allows the DL
models to put more attention on the minority classes with
interests. Due to the limited sample size of VASC, we set the
weight to 5 and all other class weights to 15 except Unknown.

D. Synthetic Data Generation

without Gaussian white noises. In this example, the standard
deviation is 0.2.

We add the Gaussian white noises to the original RGB
values to generate new synthetic samples. To be specific,
Gaussian white noise is a fundamental concept used in s-
tatistical signal processing and models for communication
channels [9]. Incorporating Gaussian white noise into image
data involves several steps. Initially, the RGB value at each
pixel is determined. Then, the noise is calculated, adhering to
a Gaussian distribution with zero mean and constant variance.
The computed noise is then added to the original pixel value.
This process is performed for all pixels in the image, resulting
in a new sample with the added Gaussian white noise. The
formula is shown in Equation 1 [9].

n(x,y) =n(z,y) o (1)

where n(x,y) is the Gaussian white noise value at the pixel
position (x, y), n(z,y) is a random value drawn from a
standard Gaussian distribution with a mean of zero and a
variance of one, and o is the standard deviation of the desired
Gaussian white noise. It controls the magnitude of the noise
to be added to the image.

Figure 5 provides a visual representation of the impact of
Gaussian white noise on image processing. The addition of
noises to the image enables us to regulate the size of the
training data, thereby mitigating the adverse effects of biased
data.

E. Knowledge Distillation

Knowledge distillation, an essential technique for transfer-
ring knowledge from a larger neural network to a smaller one,
plays an important role in optimizing the balance between ef-
fectiveness and efficiency. In the typical architecture of neural
networks, class probabilities are generated using a “’softmax”
output layer, which converts the logit value, represented as
zi, corresponding to each class, into a probability denoted as
q;- This transformation involves a comparison between z; and
other logits [10]. The general formula is shown as:

- exp(F)
4= Sjexp(Z)
where T is a temperature that is normally set to 1. The
higher value of the temperature T produces a softer probability
distribution over classes.

Two built-in loss functions from PyTorch are used in our
knowledge distillation technique.

(€5

o CrossEntropyLoss [11]: The traditional cross-entropy loss
(ce_loss): This measures the difference between the stu-
dent’s predictions and the ground-truth labels. It aligns
with the logistic loss employed on the neural network
outputs when the softmax function is utilized. [12].

o KLDivLoss [13]: The Kullback-Leibler divergence loss
(kl_loss). This loss function captures the similarity be-
tween the softened predictions of the student and teach-
er models. The softened predictions are obtained by
applying softmax to the model logits divided by the
temperature parameter.

The overall loss is then computed as a weighted sum of the
cross-entropy loss and the KL divergence loss. The weight
of each loss is determined by alpha. And the temperature
parameter, T, is squared in the KL loss term (T2 - kI_loss)
to balance the magnitudes of the two loss components. The
detailed knowledge distillation loss function is shown below.

ce_loss = cross_entropy(student_pred, target) (3)

N erp(z)
softmaz(z;) = Seap(z)) 4)
soft_t = softmax(W) (5)



student_pred )
T

kl_loss = kl_divergence(soft_s,soft_t) @)

soft_s = log(softmax( (6)

loss = (1 — alpha) - ce_loss + alpha - T? . kl_loss (8)

where

« student_pred: Student model predictions

o teacher_pred: Teacher model predictions

o target: Ground-truth labels

o T: Temperature to soften the probabilities

o alpha: A hyperparameter controlling the trade-off be-

tween cross-entropy and knowledge distillation losses

In summary, this knowledge distillation loss function allows
the student model to learn from both its own predictions
(cross-entropy loss) and the predictions of a larger teacher
model (kl divergence loss) to improve its performance on
classification tasks, particularly when dealing with imbalanced
datasets.

FE. Evaluation Metric

Three key performance indicators (KPIs) have been consid-
ered for evaluating the performance of our proposed work.
¢ Overall accuracy: the number of correct predictions out
of the total samples.
Number of correct predictions

A = ’
ccuracy Total number of predictions ©

« Fairness: Based on the accuracy for each subgroup and
Statistical Parity Difference (SPD) [14]. The formula of
SPD is:

P(Y = 1|A = minority) — P(Y = 1|A = marjority)

(10)

where Y are the model predictions, and A is the group

of sensitivity attributes.

For the minority group (the group that has the minimum

samples), the SPD is 0. After that operation, we will have

the table of the SPD for each group. For the unfairness

score, the formula is:

(0.2 = 3" Vg; € G{|SPD;|}/N)
0.2 an

Fairness =1 —

where N is the number of subgroups.

o Inference Latency: We run 10 iterations to get the
average latency L (in s) on Raspberry Pi 4 with 100
randomly selected images from testing dataset.

L
L:iﬁiju

=1
where L; means the latency at i-th iteration. The average

inference latency L will be recorded. The latency score
will be normalized by the following formula.

L— Lmzn
Lmin

12)

Lp=1— (13)

Lmaz -

where L,,,;,=0s, and L,,,,»,=100s.

The overall performance is calculated by the sum of these
three scores with equal weights. Note that such uniformly
balanced performance calculation of accuracy, fairness, and
latency was proposed by the ESFair competition and adopted
directly in this work.

1
Performance = 3 (Accuracy + Fairness + Latency) (14)

IV. EXPERIMENT
A. Experiment Setting

In our experiments, we used one NVIDIA GeForce GTX
1080 Ti for training purposes, and a Raspberry Pi 4 Model
B with 4GB of onboard RAM to test our neural networks.
Initially, we divided the dataset into training and testing sets
using the 80-20 Train/Test split technique. Then, applying a
5-fold cross validation technique to verify the performance.
The epoch size is 400 and the batch size is set to 16 due to
the limitation of the hardware used in this experiment.

B. Baselines

Two state-of-art deep learning models in the image classi-
fication domain are adopted in our experiments, in terms of
Swin Transformer [7] and MobileNet [8]. The baselines are
the following:

e Swin Transformer V2 [7]: A hierarchical vision trans-
former for computer vision tasks that utilizes shifted
windows and transformer blocks to efficiently process
high-resolution images.

o MobileNet V3 [8]: A lightweight and efficient convo-
Iutional neural network architecture designed for mo-
bile and embedded devices, optimized to perform image
recognition tasks with minimal computational resources.

o Our proposed approach: Training Swin Transformer as
a teacher model, then transferring knowledge to the
student model, MobileNet, with our proposed knowledge
distillation loss function.

Additionally, we conduct a comprehensive evaluation of
synthetic data generation across five different settings shown
in Table II. In specific terms, we investigated two differ-
ent variations: training data sizes and standard deviations
for Gaussian white noises. The baseline scenario involves
solely employing the training set without any synthetic data
generation. Conversely, the subsequent experimental settings
explore alternative configurations. For instance, in the context
of [2500, 2500, 2500, 2500, 2500, 2500], this shows that the
data sizes for all six classes within each subgroup, comprising
both original and synthetic data, is set to 2500.

C. Result

Table III presents the comparisons between our proposed
work with the other two baselines. After training each model,
the size of MobileNet is 6.041MB, Swin Transformer is
113.53MB, and our proposed work is 6.039MB. Due to the
small adjustment on parameters in each setting shown in



TABLE II: The experiment settings for training purposes

Setting Data size for each subgroup STD
S1 Original training data N/A
S2 [2500, 2500, 2500, 2500, 2500, 2500] | 0.03
S3 [2500, 2500, 2500, 2500, 2500, 2500] | 0.05
S4 [4000, 4000, 4000, 4000, 2500, 2500] | 0.03
S5 [4000, 4000, 4000, 4000, 2500, 2500] | 0.05

Table II, the model sizes remain the same for each experi-
ment setting. The scores in Table III are calculated by the
average scores using the five cross-validation technique. All
the experiments are conducted on a Raspberry Pi 4 Model B
with 4GB of onboard RAM.

TABLE III: Experiment Results Overview

Model Setting | Accuracy | Fairness | Latency | Overall
S1 0.723 0.636 0.924 0.761
. S2 0.725 0.641 0.920 0.762
?g%‘;‘ﬁ;g S3 0708 | 0620 | 0916 | 0.751
’ S4 0.795 0.768 0.910 0.824
S5 0.780 0.721 0911 0.804
S1 0.827 0.744 0.093 0.555
Swin S2 0.834 0.758 0.091 0.561
Transformer S3 0.818 0.721 0.091 0.543
(113.53MB) S4 0.867 0.846 0.093 0.602
S5 0.843 0.799 0.090 0.577
S1 0.801 0.692 0.909 0.8
Ours S2 0.812 0.716 0.903 0.810
S3 0.798 0.687 0911 0.799
(6.039MB) S4 0.843 0.810 0.906 0.853
S5 0.811 0.787 0.909 0.836
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Fig. 6: Baselines include MobileNet, Swin Transformer, and
our proposed work. The overall performance is calculated
by the sum of accuracy, fairness, and inference latency. In
this figure, each model produces two results, including the
performance before and after adding synthetic data.

Figure 6 depicts that our proposed work with synthetic data
generation technique reaches the highest overall performance.
In the aspects of accuracy and fairness, Swin Transformer
achieves the highest scores due to its complex and effective
architecture, where the shifted window mechanism can analyze

each portion of the images and learn the deeper features
than the normal convolutional neural network architectures.
However, this design significantly slows down the inference
speed on Raspberry Pi 4. MobileNet, on the other hand, has a
lightweight architecture that can run fast on low-power devices
but is weak at accuracy and fairness. Compared to these
two baselines, our proposed work well-balanced the trade-
offs between effectiveness and efficiency. In addition, Figure 7
shows the confusion metrics for our proposed work in S1
and S4. Each matrix shows the results for a subgroup. The
accuracy for the subgroups in S1 are 0.844 (G6), 0.716 (G7),
0.826 (G8), and 0.794 (G10). For S4, the accuracy are 0.882
(G6), 0.753 (G7), 0.868 (G8), and 0.848 (G10), and the overall
accuracy increased from 0.801 to 0.843.

D. Discussions

Based on the experimental results shown in Figure 6, our
proposed work achieved the highest performance compared to
the other baselines. We analyze these results in three aspects:
Comparison in Knowledge Distillation. Without any adjust-
ment in training the DL models, the model with the best
performance in accuracy and fairness is Swin Transformer. But
this model is incapable of running on low-power embedded
devices. The model size is 113.53MB, which is 18.8 times
larger than MobileNet with a size of 6.041MB. Without
high-power computing resources supported, it takes around
95 seconds to classify 100 images. In contrast, MobileNet
executes with the fastest inference speed in our experiment,
and it can classify 100 images in less than 10 seconds.
However, these two baselines still cannot balance well between
effectiveness and efficiency. Our proposed work, instead, has
a 10% increase in accuracy, an 8.8% increase in fairness, and
a 1.6% loss in inference latency compared to MobileNet. As
for the comparison with Swin Transformer, even though the
accuracy of our work decreased by 3%, and the fairness score
decreased by 7%, the inference latency score is 9.8 times
higher. Our proposed work shows the best ability of balancing
these three KPIs, in terms of accuracy, fairness, and inference
latency.

Comparison in Synthetic Data Generation. Compared to
S1, the performances in S2 increased in all aspects, but the
average increases in the three KPIs are around 1%. However,
when comparing S1 with S4 for all baselines, the overall
performance increased by 5%, the accuracy increased by 4%,
and the fairness increased by 11%. This improvement points
out a direction on how to deal with biased datasets. Another
finding shows in the comparison between S2 with S3, and S4
with S5, where the only difference is the standard deviation
(STD) in Gaussian white noise generations. With the higher
STD, the noises in the image data increase, which leads to a
loss in image features. As shown in the result, with an STD
of 0.05, the performances decreased significantly in all KPIs.
Comparison in Each Subgroup. As shown in Figure 7, the
left confusion metrics represent the result for our proposed
work in S1. The right metrics are the results from S4.
Before applying our DL mechanisms, the overall accuracy is
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Fig. 7: The comparison between S1 and S4 with our proposed work shown in confusion metrics.

0.801. The major obstacles are the low performances in the
classes other than Unknown. Due to the images in Unknown
taking a large portion of the entire dataset, the DL models
trained on this data have a biased higher performance in
classifying Unknown images but are weak at other classes.
With our proposed work, the overall performance increases to
0.843, and each class’s accuracy has significant improvements.
Specifically, the average improvement in BCC, BKL, MEL,
and NV is from 0.718 to 0.798. This result safely proves that
our work can be beneficial in balancing the biased dataset as
well as improving the overall performance.

According to the experiment results, it is obvious that
training DL models with our proposed framework can signifi-
cantly improve the performances in multiple dimensions. Our
research is one of the first studies to analyze the performances
combining accuracy, fairness, and inference latency, especially
in Al healthcare systems. By effectively balancing the trade-
offs among these three KPIs, our proposed framework has the
potential to be adapted to any other DL tasks in real-world
scenarios.

V. RELATED WORK

Over the past decades, the healthcare system has expe-
rienced a significant rise in the demand for medical im-
age classification services, encompassing various imaging
modalities such as Radiography, Computed Tomography (CT),
Mammography Images (MG), Ultrasound images, Magnetic
Resonance Imaging (MRI), Magnetic Resonance Angiography
(MRA), and Positron Emission Tomography (PET) [15]. To
meet these demands, Deep Learning technology has emerged
as a powerful tool. However, medical image classification
faces a common challenge, the scarcity of high-quality labeled
data due to limited samples and expensive labeling processes.
This challenge is particularly critical in dermatology image
classification, where skin diseases, affecting nearly one-third
of the world’s population, are often underestimated despite
their visibility [16]. Additionally, due to the complexity of
powerful neural networks, the practicality of their execution on
low-power embedded devices is typically limited. Therefore,

researchers have put efforts into addressing these issues in the
domain of dermatology image classification and real-time DL
execution on low-power devices.

A. Dermatology image classification

Yanagisawa et al. [17] developed a convolutional neural
network (CNN) model for skin image segmentation, leading
to a skin disease image dataset suitable for the classifica-
tion of multiple skin diseases. The CAD system achieved
approximately 90% sensitivity and specificity in distinguishing
atopic dermatitis from malignant diseases and complications.
However, the authors claimed that the constraint lies in the
restricted number of images, which may have introduced a
bias in the machine learning-based attribute extraction for
the identified skin diseases. In another study, He et al. [18]
proposed SEECNN, a Genetic Algorithm (GA) with a simple
encoding scheme for evolving both the architectures and
weight initialization values of CNNs to address image classi-
fication problems. The limitation includes the lack of research
on handling imbalanced dataset. Mijwil et al [19] worked on
analyzing more than 24,000 skin cancer images using three
ConvNet architectures (InceptionV3, ResNet, and VGG19).
Unfortunately, this study did not evaluate the performance in
terms of fairness and inference speed.

B. Real-time DL execution on low-power devices

Li et al. [20] introduced EfficientFormer, which enhances
ViT-based models by identifying inefficient designs, intro-
ducing a dimension-consistent pure transformer, and applying
latency-driven slimming. Goel et al. [21] introduced the Modu-
lar Neural Network Tree architecture to improve accuracy and
reduce redundancy and energy consumption in DL models.
This architecture utilizes multiple smaller DL modules for
image classification, based on a novel visual similarity metric.
Experimental results on Raspberry Pi 3 and Raspberry Pi Zero
demonstrated significant reductions in memory requirements,
inference time, energy consumption, and operations compared
to existing DL architectures. Additionally, Chang et al. [22]
proposes a low-power, memory-efficient, and high-speed ML



algorithm for classifying smart home activity data in resource-
constrained environments. Jafari et al. [23] introduce Sensor-
Net, a scalable and low-power embedded deep convolutional
neural network (DCNN) designed for classifying multimodal
time series signals. When implemented on NVIDIA Jetson
TX2 SoC (CPU + GPU) and compared to TX2 single-
core CPU and GPU implementations, FPGA-based SensorNet
achieves a 15 and 4 improvement in energy consumption.
However, little effort has been made in balancing the trade-offs
between accuracy and inference speed.

VI. CONCLUSION AND FUTURE WORK

In this research, we present a comprehensive Deep Learning
(DL) framework for the real-time dermatology image classi-
fication task on low-power embedded systems. Compared to
baseline models, our approach combines image preprocessing,
data augmentation, and knowledge distillation, resulting in the
highest overall performance which consists of overall accura-
cy, fairness for different demographic groups, and inference
latency on low-power embedded devices. The versatility of
our framework extends its potential to various other DL tasks,
enhancing feasibility on low-power embedded devices across
diverse applications. Our future work aims to further refine the
framework’s performance by exploring and developing more
effective models and techniques, fine-tuning the parameters in
knowledge distillation and synthetic data generation to find
the optimal performances, and implementing a product-level
assistant tool for dermatology clinics.
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