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Abstract

Conjoint analysis is a popular experimental design used to measure multidimensional preferences. Many
researchers focus on estimating the average marginal effects of each factor while averaging over the
other factors. Although this allows for straightforward design-based estimation, the results critically
depend on the ways in which factors interact with one another. An alternative model-based approach
can compute various quantities of interest, but requires correct model specifications, a challenging task
for conjoint analysis with many factors. We propose a new hypothesis testing approach based on the
conditional randomization test (CRT) to answer the most fundamental question of conjoint analysis:
Does a factor of interest matter in any way given the other factors? Although it only provides a formal
test of these binary questions, the CRT is solely based on the randomization of factors, and hence
requires no modeling assumption. This means that the CRT can provide a powerful and assumption-
free statistical test by enabling the use of any test statistic, including those based on complex machine
learning algorithms. We also show how to test commonly used regularity assumptions. Finally, we apply the
proposed methodology to conjoint analysis of immigration preferences. An open-source software package
is available for implementing the proposed methodology. The proposed methodology is implemented via
an open-source software R package CRTConjoint, available through the Comprehensive R Archive Network
https://cran.r-project.org/web/packages/ CRT Conjoint/index.html.

Keywords: factorial design; heterogeneous treatment effect; causal interactions; design-based inference
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1. Introduction

Conjoint analysis, introduced more than half a century ago (Luce and Tukey 1964), is a factorial
survey-based experiment designed to measure preferences on a multidimensional scale. It has been
extensively used by marketing firms to determine desirable product characteristics (e.g., Bodog and
Florian 2012; Green, Krieger, and Wind 2001). Recently, conjoint analysis has gained popularity among
social scientists (Hainmueller, Hopkins, and Yamamoto 2014; Raghavarao, Wiley, and Chitturi 2010)
who are interested in studying individual preferences concerning elections (e.g., Ono and Burden
2018), immigration (e.g., Hainmueller and Hopkins 2015), employment (e.g., Popovic, Kuzmanovic,
and Martic 2012), and other issues.

When analyzing conjoint experiments, the design-based approach, pioneered by Hainmueller et al.
(2014), has been the most popular among social scientists. The main advantage of this nonparametric
approach is its simplicity—it uses the difference-in-means estimator or linear regression to infer the
average marginal component effect (AMCE) of each factor. However, because the AMCE represents
the marginal effect of one factor averaged over all the other factors, it may fail to capture important
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interactions. This is potentially problematic given that practitioners often use a small AMCE to conclude
that a factor does not matter (e.g., Hainmueller and Hopkins 2015; Hainmueller et al. 2014; Ono and
Burden 2018). Although a narrow AMCE-based confidence interval containing zero only implies that
the factor has a weak marginal effect, it is possible that the same factor has substantial interaction effects.

A possible solution is the model-based approach that ranges from traditional parametric regression
models (Campbell, Mhlanga, and Lesschaeve 2013; Green and Srinivasan 1990; McFadden 1973) to
more recent machine learning (ML) algorithms (Abramson et al. 2020; de la Cuesta, Egami, and Imai
2022; Egami and Imai 2019; Goplerud, Imai, and Pashley 2022). In conjoint analysis, however, there
exist a large number of potential interaction effects. Thus, the model-based approach often assumes
the absence of certain interaction terms or uses regularization, yielding possible misspecification or
regularization bias. While subgroup analysis, a common practice to analyze only a subset of the data,
is simpler, it suffers from the well-known problem of multiple testing, which is of serious concern in
conjoint analysis given the large number of possible causal effects of interest (see also Shiraito and
Liu, 2022 for a discussion of multiple testing problems in conjoint analysis). Finally, the use of ML
algorithms, which is becoming increasingly common, cannot yield even consistent estimates in high-
dimensional settings without strong assumptions.

In this paper, we propose a new approach to analyzing data from conjoint analysis that combines the
strengths of the existing design-based and model-based approaches (Section 3). Specifically, we show
how to conduct assumption-free hypothesis testing based on the conditional randomization test (CRT;
Candeés et al. 2018). In the causal inference literature, the CRT has been used to test interference between
units (Aronow 2012; Athey, Eckles, and Imbens 2018). Instead of estimating a particular causal effect,
we ask the most fundamental question of conjoint analysis: Does a factor of interest matter in any way
given the other factors? In many conjoint analyses, researchers are interested in investigating this binary
question regarding a specific factor (e.g., country effects in immigration preferences [Hainmueller and
Hopkins 2015] and gender effects in candidate evaluation [Ono and Burden 2018]). The proposed
approach answers this question with greater statistical power than the AMCE by utilizing flexible
ML algorithms but without making any assumption about the underlying causal structure. Despite
its flexibility, the CRT has an attractive statistical property that the resulting p-values are exactly valid
regardless of the sample size or the number of factors.

We also show that the proposed methodology can test the validity of assumptions commonly invoked
in conjoint analysis (Hainmueller et al. 2014). They include the assumptions of no profile order effect, no
carryover effect, and no fatigue effect (Bansak et al. 2018, 2019). Thus, the proposed hypothesis testing
approach can serve as the first step of analyzing conjoint data without assumptions, complementing
existing approaches that estimate causal quantities of interest.

For empirical illustration, we apply the proposed methodology to a conjoint analysis of immigration
preferences among U.S. citizens (Section 4). While some researchers contend that U.S. citizens generally
prefer high-skilled immigrants regardless of their countries of origin, others have suggested that
racially prejudiced respondents discriminate against non-European immigrants (Hainmueller and
Hopkins 2015; Newman and Malhotra 2019). By combining ML algorithms with the CRT, we find that
respondents do differentiate according to whether immigrants are from Mexico or European countries.
In addition, we conduct simulations studies whose results are reported in the Supplementary Material.

2. Motivation

In this section, we briefly describe a motivating empirical application concerning the role of ethno-
centrism in immigration preferences. In Appendix G of the Supplementary Material, we present an
additional application about the role of gender discrimination in political candidate evaluations. We also
discuss the limitations of the commonly used approach based on the AMCE that motivate the proposed
methodology. In Section 4, we revisit the application and apply our hypothesis testing approach.

2.1. Role of Country of Origin in Immigration Preference

Immigration is one of the most contentious issues in the United States today. In an influential
study, Hainmueller and Hopkins (2015) use a conjoint analysis to empirically examine the immigrant
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Figure 1. The estimated average marginal component effects (AMCEs) of immigrants’ countries of origin in the Hainmueller and
Hopkins (2015) study. The plot shows the estimated AMCEs for France, Germany, Mexico, and Poland, which represent the average
differences in the estimated probability of choosing an immigrant profile with a specific level of the “country of origin” factor,
marginalizing other attributes. The baseline factor level is India, and the 95% confidence intervals are also shown.

characteristics favored or disfavored by U.S. citizens. The study used the forced-choice design, in
which each respondent was presented with a pair of hypothetical immigrant profiles and asked which
immigrant they would “personally prefer to see admitted to the United States” Each of 1,396 respondents
rated five pairs of profiles.

An immigrant profile consists of nine factors—prior trips to the United States, reason for application,
country of origin, language skills, profession, job experience, employment plans, education level, and
gender, each of which has multiple levels (see Table 5 in Appendix H of the Supplementary Material
as well as the original article for details). Most factors are independently and uniformly randomized
across their levels with the exception of two restrictions to avoid implausible pairs. First, immigrant
profiles that list escape persecution as the “reason of immigration” can only have Iraq, Sudan, or Somalia
as their “country of origin” Second, a high-skill “profession” such as financial analyst, research scientist,
doctor, and computer programmer is possible only if the “education level” is at least 2 years of college.
This restricted randomization scheme induces dependencies between these factors. The survey also
contains information about respondents’ age, education, ethnicity, gender, and ethnocentrism. The
study contains a random sample of 14,018 profiles.

In this study, Hainmueller and Hopkins estimate the AMCE, which represents the marginal effect
of a factor of interest averaging over the other factors. Based on the statistically insignificant estimates
for the AMCEs of the “country of origin” factor for Mexico and European countries (reproduced in
Figure 1),' they conclude that “despite media frames focusing on low-skilled, unauthorized immigration
from Mexico, there is little evidence of penalty specific to Mexicans” (539). The authors obtain these
estimates by fitting a linear regression model, where the outcome variable indicates whether the profile is
selected and the predictors are the nine randomized factors. To account for the restricted randomization,
they also include two sets of interaction terms, one between “country of origin” and “reason of
immigration” and the other between “profession” and “education level.” To obtain the estimated AMCE
of Germany, for example, Hainmueller and Hopkins take the main effect of Germany (the baseline is
India) and then add it to the average of all the interaction terms between Germany and the “reason
of immigration” factor. Clustered standard errors are computed by clustering on each respondent to
account for dependency within a respondent.

Despite this overall finding, the AMCE-based approach may mask relevant interactions and het-
erogeneous treatment effects. Indeed, Hainmueller and Hopkins conduct a subgroup analysis and
find that the “country of origin” factor has statistically significant interactions with the respondents’

! All data and results throughout this paper are publicly available at https://doi.org/10.7910/DVN/ENISGF (Ham, Imai, and
Janson 2023).
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ethnocentrism. They measure ethnocentrism using the feeling thermometer score (ranging from 0
to 100) for the respondent’s own groups minus the average feeling thermometer across the other
groups. In addition, Newman and Malhotra (2019) reanalyze the same dataset and estimate three-
way interactions among respondents’ ethnocentrism, “country of origin,” and “profession.” The authors
compute the AMCEs of high-skilled immigrants (baseline of janitor) separately for each country of
origin and respondent’s ethnocentric group. They find that these AMCEs are different between Mexican
and European immigrants when compared among highly ethnocentric respondents (see Figure 1 in
Newman and Malhotra 2019 for further details).

In this paper, we apply the proposed hypothesis testing approach to testing whether or not immi-
grants from Mexico and those from Europe are viewed differently in any way while controlling for all the
other experimental factors as well as the respondent characteristics. The rejection of this null hypothesis
would mean that the country of origin of an individual plays a statistically significant role in some U.S.
citizens’ preferences about that individual’s immigration to the United States.

2.2. Limitations of Existing Approaches

Although the AMCE is a useful causal quantity of interest and can be easily and reliably estimated, it is
not free of limitations. The AMCE is a marginal effect based on two types of averaging: (1) averaging over
the distribution of other attributes and (2) averaging over the responses (and hence respondents). Recall
that in the standard causal inference setting with a binary treatment, a zero average treatment effect does
not necessarily imply zero treatment effect for everyone. The treatment may benefit some and harm
others, and these positive and negative effects can cancel out through averaging. The AMCE suffers
from a similar problem, potentially masking important causal heterogeneity if there are interactions
among attributes and/or between attributes and respondent characteristics.

Additionally, although an AMCE-based confidence interval that does not contain zero represents
evidence that the factor matters, a narrow AMCE-based confidence interval that contains zero only
implies that a factor has a weak marginal effect. Nevertheless, practitioners tend to use narrow AMCE-
based confidence intervals that contain zero to conclude that a factor does not matter. For example,
Hainmueller et al. (2014) conclude that the “candidates’ income does not matter much” and that
the “candidates’ racial and ethnic backgrounds are even less influential,” based on the AMCE-based
confidence interval for income and ethnicity (19). Ono and Burden (2018) also claim that “the bias
against female candidates [...] is limited to presidential rather than congressional elections” (585) after
obtaining a statistically insignificant AMCE estimate for gender among congressional candidates. Lastly,
Spilker, Bernauer, and Umafa (2016) interpret statistically insignificant country effects to conclude
that “in spite of different national contexts, individuals in [Costa Rica, Nicargua, and Vietnam] hold
similar preferences regarding potential [Preferential Trade Agreement] partners” (712). In all cases,
the lack of a significant AMCE estimate is not sufficient to conclude that the factor of interest does
not matter. Instead, it only implies that the factor may have little impact “on average” Furthermore,
although the AMCE can be generalized to account for interactions, it requires researchers to choose
a specific interaction term out of many possible interactions and may lead to the problems similar to
those of subgroup analysis, including multiple testing.

Although the AMCE is popular, there also exist model-based approaches to flexibly estimate
potentially any quantity of interest. In particular, logistic regression remains a popular model-based
alternative in conjoint analysis (Campbell et al. 2013; Green and Srinivasan 1990; McFadden 1973)
especially in marketing research. Although a hierarchical modeling approach remains another popular
model-based alternative in conjoint studies, we do not consider it here because it is based on a Bayesian
framework rather than frequentist approach taken in this paper (Andrews, Ansari, and Currim 2002).
Model misspecification, however, remains a significant challenge. Although researchers may add more
interactions to account for all possible effects, such an approach can reduce statistical power and more
importantly lead to invalid p-values (Candés and Sur 2018). We show in Figure 9 in Appendix ] of the
Supplementary Material that using logistic regression and accounting for all two-way interactions to
reduce model misspecification can easily lead to invalid p-values.
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Consequently, a consensus among researchers has emerged that flexible ML algorithms are necessary
for capturing these causal interactions (Abramson et al. 2020; Bansak et al. 2020; de la Cuesta et al. 2022;
Goplerud et al. 2022). Yet ML algorithms, despite their flexibility, cannot yield consistent estimates
in high-dimensional settings without strong assumptions. In addition, statistical inference in small
samples remains a challenge (Chernozhukov et al. 2017; Dezeure et al. 2015; Imai and Li 2021). Our
goal is to address these problems through an assumption-free approach based on the CRT.

3. The Proposed Methodology
In this section, we describe the proposed methodology based on the CRT.

3.1. Notation and Setup

For concreteness, we focus on the forced-choice conjoint design, under which a respondent is asked to
choose one of two profiles. Our methodology is general and can be extended to other designs. Let n be
the total number of respondents. As is often done in practice, suppose that each respondent evaluates J
pairs of profiles, yielding a total of nJ responses (for notational simplicity, we assume the same number
of evaluations for each respondent).

We use Yj; € {0,1} to represent the binary outcome variable for evaluation j by respondent i, which
equals 1 for selecting the left profile and 0 for choosing the right profile. Although for convenience we
use “left” and “right” to distinguish two profiles under each evaluation, the profiles do not necessarily
have to be placed side by side on the actual survey platform. We use the following nJ x 1 stacked
vector representation for this outcome variable Y = [Y1;Y2;...;Y,], where Y; = [Yi; Yi;...; Y] of
dimension ] x 1 denotes the outcome variable for respondent i. We use [a1;az;. . . ;as | to denote a vertical
stacking of vectors or matrices ai,az, . .. ,a,. We often observe some characteristics of the respondents,
and we use V; to denote a ] x r-dimensional matrix of r pre-treatment covariates for respondent i that
are repeated across J rows.

Next, let p represent the total number of attributes or factors” used for each conjoint profile. We use
ascalar Xée €{1,2,...,K;} to denote the value of the ¢th factor of interest for evaluation j by respondent
i, where the superscript distinguishes the factors for the left (L) and right (R) profiles, and K, > 2 is the
total number of factor levels for factor £. We use XiLj = [X,»le peen ;Xiqu] to denote a g-dimensional column
vector, containing all q factors of interest for the left profile for respondent i in the jth evaluation where
q < p. We define Xf} similarly for the right profile. In addition, we use X;; = [X{;, Xf}] as a column vector
of length 2q to represent the main factors of interest from two profiles together. Lastly, the remaining
(p—q) factors are denoted by Z; = [Z,»Lj; Zf}], where each term is similarly defined. For example, in the
immigration conjoint experiment, if the main factor of interest is “country of origin,” the other factors
include “education” and “profession.”

As done for the outcome variable, we stack all evaluation-specific factors to define respondent-level
factor matrices, which are further combined to yield the factor matrix X = [X;X;;...; X,] and Z =

[Z1;Zs;...;Z,] of dimension n] x 2q and n] x2(p—q), respectively, where X; = [X[}; X;...; X} ] and

Z:=[Z]:Z};...;Z]] are matrices of dimension J x 2g and ] x 2(p—q), respectively. Lastly, we also stack
il i2 i q P q P Y- Y

all respondent characteristics V = [V1; V3;...; V,,] of dimension nJ x r.

Finally, we use Y (x,z) to denote the nJ-dimensional vector of the potential outcomes when X = x
and Z = z. We avoid the assumption of no interference effect since our vector of potential outcomes
is a function of the entire set of treatments X and Z (Rubin 1990). We assume a super-population
framework, where the potential outcomes Y (x,z) are assumed to be drawn from a population of
infinite size. In Appendix B of the Supplementary Material, we discuss how our framework is related
to a finite-population framework, which is the basis of Fisher’s randomization test. In conjoint analysis,
the profile attributes are randomized according to a known distribution, P(X,Z), and we allow for

2Throughout the paper, we use “factors” and “attributes” interchangeably.


https://doi.org/10.1017/pan.2023.41

https://doi.org/10.1017/pan.2023.41 Published online by Cambridge University Press

6 Dae Woong Ham et al.

any randomization distribution. In general, the randomization of the factors implies the following
independence relation:

Y (x,z) 1L (X,Z) forallxe X, andz € Z, (1)

where we use X and Z to represent the support of X and that of Z, respectively, and x and z to denote
the value of X and that of Z, respectively (see Chapter 3.6 of Imbens and Rubin 2015).

3.2. The Conditional Randomization Test

The CRT is an assumption-free approach that can combine design-based inference with flexible ML
algorithms. For ease of presentation, we first introduce the CRT without incorporating the respondent
characteristics V and then return in Section 3.6 to show how V can be incorporated in all the proposed
methods. The CRT allows us to examine whether the factors of interest X change the response Y while
holding the other factors Z constant. Specifically, we test the following null hypothesis:

Hy: Y (x,2) iY(x',z) forallx,x e X, and z € Z, 2)

where we use £ to denote distributional equality. As a reminder, Hy states that our entire vector of
potential outcomes are equal in distribution for any values of X. Our alternative hypothesis states that
X affects Y in some way while keeping Z unchanged. This is formalized as

d
Hi:Y(x,2z)# Y (x',z) forsomex,x € X,andze Z. (3)

We emphasize that the null hypothesis defined in Equation (2) implies the absence of any causal
effects involving the main factor(s) of interest. For example, the null hypothesis is false if X affects
Y for any individual respondent or subgroup of respondents. Similarly, the null hypothesis does not
hold if X influences Y only when Z takes a certain set of values. Thus, the null hypothesis precludes
any heterogeneous or interaction effects between the selected factors of interest X and other factors Z
included in the experiment.

Contrast this hypothesis test formulation with that of the standard AMCE-based analysis, which
asks whether each factor of interest X; matters on average. More specifically, Hainmueller, Hopkins,
and Yamamoto assume that each individual’s potential outcome is only a function of its own profile
task, that is, Y;;(X,Z) = Y;j(Xy;, Z;), and computes the marginal importance of X; by averaging each
individual potential outcome over Z; as well as the respondents, which are assumed to be exchangeable,
leading to the following null hypothesis:

HyMP B{Y;(x,Zy)} = B{Y§(%,Zi)}, (4)

where x and X are the specified values of the main factors and the expectation is taken over Z;; (other
factors) and the respondents. As briefly explained in Section 2.2, the limitation of the AMCE-based
approach is that averaging over other factors can mask important causal interaction and heterogeneity.

We now establish the equivalence between the null hypothesis about the potential outcomes defined
in Equation (2) and the conditional independence relation among observed variables. This result allows
us to use the CRT, which is a general assumption-free methodology for testing conditional independence
relations in designed experiments (Candes et al. 2018). We state this result as the following theorem
whose proof is given in Appendix A of the Supplementary Material.

Theorem 3.1 (Equivalence). The null hypothesis defined in Equation (2) is equivalent to the following
conditional independence hypothesis under the randomization assumption of Equation (1):

H™:Y 1 X|Z.

The CRT produces exact p-values without asymptotic approximation while enabling the use of
any test statistic, including ones based on complex ML algorithms, without making any modeling
assumptions. In the conjoint analysis literature, researchers have used traditional regression modeling
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Algorithm 1: Conditional Randomization Test (CRT)

Input: Data (X,Y,Z), test statistic T(X,y,z), total number of re-samples B, conditional
distribution X | Z;

forb=1,2,...,Bdo
L Sample X® from the distribution of X | Z conditionally independently of X and Y;

Output: p-value := =1 [1 +38 1{r(x®)Y,Z) > T(X,Y,Z)}]3

T B+1

Table 1. The p-values based on the conditional randomization test (CRT) and the average
marginal component effect (AMCE) estimation. The first p-values are from the HierNet-based
CRT and AMCE-based test statistics, testing whether the immigrant’s “country of origin” (Mexico
or Europe) matters for immigration preferences. The other three p-values are from the HierNet-
based CRT test statistics, testing the regularity conditions commonly used for conjoint analysis.

CRT AMCE  Profile ordereffect ~ Carryover effect ~ Fatigue effect

p-values  0.042 0.27 0.80 0.12 0.45

(e.g., Barone, Lombardo, and Tarantino 2007; Hauber et al. 2016; McFadden 1973) and more recently
modern ML algorithms (e.g., Abramson et al. 2020; Egami and Imai 2019). However, the validity
of these analyses critically depends on modeling assumptions, parameter tuning, and/or asymptotic
approximation. In contrast, the CRT assumes nothing about the conditional distribution of the outcome
Y given (X,Z). Indeed, it does not even require the data to be independently or identically distributed,
a property which we use later to test carryover and profile order effects. The only requirement is
the specification of the conditional distribution of X given Z, which is readily available from the
experimental design of conjoint analysis. Although the power of the CRT critically depends on the
test statistic, the CRT always controls type 1 error no matter what the true model is. This contrasts with
other model-based approaches that require modeling assumptions to be valid (see Appendix J of the
Supplementary Material for more details).

Algorithm 1 summarizes the general procedure used to compute the exact p-value for the CRT. Note
that if X and Z are independently randomized, as is often the case, one can simply sample X*) from
the marginal distribution of X. If, on the other hand, certain combinations of X and Z values (e.g.,
doctor without a college degree in the immigration conjoint experiment) are excluded, then we must use
the appropriate conditional distribution of X given Z. Critically, Algorithm 1 is valid for complicated
experimental designs, so long as one can sample from the conditional distribution X given Z.

The CRT can be computationally intensive since it requires computing the test statistic T a total of
B+1 times. However, these computations can easily be parallelized. Furthermore, recent works (Liu
et al. 2020; Tansey et al. 2018) have shown that certain test statistic constructions also alleviate the
need for these computations. In Appendix I of the Supplementary Material, we detail several tricks
that can be used to dramatically reduce the computation time when implementing the CRT. For the
main application results presented in Section 4 (first column of Table 1), we note that the parallelized
computational time was approximately 6 minutes with 50 cores to calculate each p-value with B = 2,000.
Our software package makes it easy for practitioners to use multiple cores and provides a step-by-step
instruction for using many cores on Amazon Web Services.*

The p-value of the CRT is valid’ regardless of sample size and test statistic (Candeés et al. 2018). This is
especially attractive because the number of second-order interactions are comparable or even larger than

3We add one to the numerator and denominator so that the distribution of the p-value is stochastically dominated by the
uniform distribution as suggested by Candes et al. (2018).

“The detailed instructions and example use cases can be found in a vignette of our open-source software package at
https://cran.r-project.org/web/packages/ CRT Conjoint/vignettes/ CRTConjoint.html.

>That is, under Hy, P(p-value < ) < v for all € [0,1].
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the sample size in typical conjoint studies. To see the validity of the p-values, it suffices to recognize that
under the null hypothesis, all B+ 1 test statistics, T(X,Y,Z), (X", Y,Z), ..., T(X®)|Y,Z), are
exchangeable given (Y, Z). While any test statistic produces a valid p-value under the CRT, the choice
of test statistic determines the statistical power. We now turn to this practically important consideration.

3.3. Test Statistics

Although H, is logically false, if there is any difference in the potential outcome distribution, the poten-
tial outcome distribution for binary random variables is completely characterized by its conditional
mean and marginal mean. Therefore, in this setting, both the CRT and AMCE test hypotheses related
to the marginal or conditional means. To obtain a powerful test statistic that does not mask important
interactions, we consider a test statistic based on the Lasso logistic regression with hierarchical
interactions, or HierNet (Bien, Taylor, and Tibshirani 2013). Specifically, HierNet constrains the two-
way interaction effects to be smaller in magnitude than their corresponding main effects. For example,
this implies that a two-way interaction effect will be set to zero if its relevant main effects are all zero.
Although this constraint may not actually hold in practice, a stricter regularization on the interactions
is desirable. This is because the space of possible two-way interactions is large and grows quadratically,
and many of them are expected to be indistinguishable from zero. Thus, we view the hierarchical sparsity
constraint as an important tool that may lead to greater power when interactions are weak or do not exist.
Although the practical implementation of the HierNet leverages the sparsity constraint, we emphasize
that the validity of the CRT does not depend on the appropriateness of this constraint. When fitting
HierNet, we use the dummy variable encoding (i.e., each factor level is represented by its own dummy
variable) but do not omit the baseline level. We can fit this overparameterized model because of the
regularization of HierNet. The primary advantage of this approach is that the results are no longer
dependent on the choice of baseline levels (Egami and Imai 2019). Finally, we use the publicly available
HierNet package in R, where the response is the nJ/-dimensional Y and the design matrix is the nJ x 2p
dimensional features (X,Z) for both the left and right profiles.

We begin by considering the simplest case where we have a single main factor of interest X (g = 1).
Without loss of generality, we assume that this is the first factor among the total of p factors. There are two
types of interaction effects to consider (de la Cuesta et al. 2022). First, a within-profile interaction effect
represents the interaction between one level of the main factor and another level of a different factor
within the same profile. Second, a between-profile interaction effect represents the factor interaction
between two profiles (left vs. right) that are being compared under the forced choice design.

TtierNet = Z(ﬂk -B)*+ Z Zl i (Frow = Yuew )+ Z zl: i (Orom —S1ew), (5)

0=2k=1k"=1 =1k=1k'=1

main effects within-profile interaction effects between-profile interaction effects

where Bk is the estimated main effect coefficient for the kth level of our factor of interest X with 8
denoting the average of these estimated main effect coefficients, and ;¢ and dye represent the
estimated within-profile and between-profile interaction effect coefficients between the kth level of
the factor of interest X and the k’th level of the /th factor, respectively. Similar to the main effects,
1w and 6y denote the averages of their corresponding estimated interaction effect coefficients. We
do not consider third- or higher-order interactions because of the typical sample size in a conjoint
experiment and a lack of powerful methods to detect such interactions. However, in Appendix G
of the Supplementary Material, we illustrate how to incorporate third-order interactions when prior
substantive knowledge is available.

This test statistic can be easily generalized to the setting where there is more than one factor of interest
(g > 1). In such a case, we simply compute Equation (5) for each factor of interest, and then sum the
resulting values to arrive at the final test statistic. THierNet aims to capture any differential effects the
levels of X have on the response through their main effects and relevant interaction effects.
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For example, suppose that X is “country of origin” in the immigration conjoint experiment (Section
2.1). Under Hy, we would expect all main effects and any interaction effects of Mexico and Germany
to be roughly equivalent, thus making THiernet close to zero. However, suppose that immigrants from
Germany with a certain “education level” were favored more than those from Mexico with a certain
“education level” Then, we would expect these interactions to differ, making Thierne further from zero.

We use cross-validation® to choose the value of HierNet’s tuning parameter, which controls the
degree of regularization. In addition, when the sample size and the number of factors are large,
fitting HierNet can be computationally demanding. To alleviate this issue, we propose computational
speedups of the HierNet test statistics, which are detailed in Appendix I of the Supplementary Material.
In particular, we drop X when fitting the HierNet tuning parameter via cross-validation. Since this
computationally expensive step does not depend on X, we do not need to re-run it for each X?.

So far, we have constructed our test statistic as if there is no profile order effect. This implies that the
effects of each factor do not depend on whether it belongs to the left or right profile. Formally, we have
imposed the following symmetry constraints in our HierNet test statistic:

A AL AR ~ ~L ~R N I
Br = B = Bk, e = Vi = ~Vewkks Oeerkr = —Oprerk, (6)

where the superscripts L and R denote the left and right profile effects, respectively. S denotes the
between profile interaction between the kth level of factor ¢ in the left profile with the k"th level of factor
¢ in the right profile.” The signs of the estimated coefficients reflect the fact that the response variable
Y is recorded as 1 if the left profile is chosen and as 0 if the right profile is selected. These constraints
reduce the dimension of parameters to be estimated by half.

Importantly, the validity of the proposed tests does not depend on whether the assumption of no
profile order effect holds. Through simulations, Figure 6 in Appendix E of the Supplementary Material
shows that these constraints can significantly increase statistical power when there is no profile order
effect. Appendix D.2 of the Supplementary Material also presents simulations that show a substantial
power gain from using the HierNet-based CRT test statistic compared to using the AMCE-based test
statistic. To incorporate this symmetry constraint, we append another copy of the dataset below the
original dataset, where the appended copy is identical to the original dataset except that the order of left
and right profiles is flipped and the response variable is transformed as 1 —'Y before fitting HierNet (see
Appendix E of the Supplementary Material for details). In Section 3.5, we show how to use the CRT for
testing the validity of the assumption of no profile order effect.

Because the validity of the CRT does not depend on modeling assumptions, one can incorporate
a variety of assumptions into test statistics. In general, test statistics have a greater statistical power if
the assumptions hold in the true (unknown) data generating process. Therefore, as much as possible
the choice of test statistic should reflect researchers’ substantive knowledge. Appendix G of the
Supplementary Material presents an empirical example of leveraging substantive knowledge in the test
statistic.

3.4. Generalization of the Null Hypothesis and Test Statistic

Researchers are often interested in testing only a few levels of interest as opposed to testing the whole
factor. Yet, simply dropping the observations that correspond to those irrelevant factor levels can lead
to a loss of statistical power. An advantage of the formulation described below is that we can retain all
observations including those whose factor levels are irrelevant, which can improve statistical power.

The CRT remains valid if used with cross-validation so long as the resampled test statistics based on X" similarly uses
cross-validation. This ensures exchangeability.

7Equation (6) also implies that the between-profile interactions in Equation (5) for the same factor obey Sggkk: == ook for
any factor ¢ and levels k,k’. In particular, this implies that Sggkk =0, i.e., between-profile interactions of the same factor and
same level are zero, while 5g[kk/ are counted twice in Equation (5), i.e., between-profile interactions of the same factor and
levels k and k" are counted twice in Equation (5).
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For example, suppose we are interested in how respondents differentiate immigrants from Mexico
and Germany. If the way in which respondents differentiate between immigrants from Mexico and those
from China is different from how they distinguish between immigrants from Germany and those from
China, then this implies that the respondents are viewing immigrants from Mexico differently than those
from Germany. Therefore, detecting any differences for even the irrelevant levels may help improve the
statistical power.

Here, we generalize the null hypothesis and test statistic, given in Equations (2) and (5), so that the
methodology can accommodate any combinations of factor levels. We introduce a coarsening function
h that groups factor levels of interest while assigning other factor levels to themselves. Formally, this
coarsening function is defined as i : X — X, where | X| > | X|. Thus, for our aforementioned immigration
example, h will assign the same value to immigrants from Mexico and Germany while leaving all other
combinations mapped to different values.

Under this setup, we can test the null hypothesis that specific levels within X do not affect the
potential outcome in any way. Formally,

Sl Y (x,2) & Y (x',z) forall x,x" € X, such that h(x) = h(x') and z € Z. (7)

The condition h(x) = h(x") enables the comparison of the factor levels of interest alone. Additionally,
Hy is a special case of Hy*"™! when the coarsening function h is the identity function. Finally, applying
the same argument as the one used to prove Theorem 3.1, it can be shown that H5"*™ is equivalent to
the following conditional independence relation:

Y 1 X | h(X),Z. (8)

To test this null hypothesis, we first fit the same HierNet with the main and two-way interaction
effects. To incorporate the coarsening function h, our test statistic takes the same form as the one given
in Equation (5) but is based only on the estimated coefficients that correspond to the factor levels of
the group induced by the h function, that is, Mexico and Germany in the above example. Appendix
E1 of the Supplementary Material contains further details of testing the general null hypothesis and
the corresponding CRT algorithm. In Section 4, we also provide an example of applying H5 "™ that
contains more details on this test statistic.

Finally, Appendix C of the Supplementary Material details how to further generalize when a
researcher is interested in grouping factor levels, that is, combining levels France, Germany, and Poland
into one level Europe when testing Hy ™™ Although coarsening via h also involved “grouping” levels,
the grouping described in Appendix C of the Supplementary Material aggregates factor levels to allow
comparison between higher-level categories, while the coarsening function & allows us to focus our
hypothesis test only on differences between a subset of factor levels of interest.

HOGeneral

3.5. Testing the Regularity Assumptions of Conjoint Analysis

To further demonstrate the flexibility of the CRT, we also show how to use the CRT for testing the validity
of several commonly made assumptions of conjoint analysis. Since we are interested in not rejecting the
null hypothesis for the hypotheses presented in this section, we propose test statistics that are designed
to be reasonably powerful for general settings in conjoint analysis.

3.5.1. Profile Order Effect

The assumption of no profile order effect states that changing the order of profiles, that is, left versus
right, does not affect the actual profile chosen (since the value of Y corresponds to whether the left or
right profile is chosen, Y should be recoded as 1 —Y when the profile order is changed). We denote the
potential outcome Yij(xfj,xg,zfj,zg), which is now a function of left and right profiles. Although not
necessary, we assume here no interference between responses for notational clarity (see Appendix E.2 of
the Supplementary Material for the general case). Lastly, we use Xinq and Zing to denote the support of
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[xl]7 ] and that of [z; Zij; ,J] respectively, representing the support of factors used in each individual’s
evaluatlon (hence “ind” in the subscript).

We formally state the assumption of no profile order effect as the following null hypothesis that
reordering of the left and right profiles has no effect on the adjusted response:

Order

. L R _L _Ryd R_L R L o r L R L. R
Hy ™ 2 Yi(x, X5, 235,24 ) = 1= Yii(X5, X33, 25,25 ), for all i,j, [Xii; X ] € Xing, [2i; Zij] € Zina-

We modify the HierNet test statistic in Equation (5) with the same HierNet fit on (X,Y,Z) but without
enforcing the constraints in Equation (6) as

=

o Ky

N3 R 2
Yeekk t Veerkk

=1k=1 f:l k k'=1

Il
—_

ord p »r
Theta(X,Y,2) = Zz(ﬂekw&) PP

Ko Kor

+ZZZZ(5€ékk'+5Mk/ ) i

£=1¢"=1k=1k'=1

HY™", a large value of this test

Since the symmetry constraints given in Equation (6) must hold under
statistic indicates a potential violation of the null hypothesis. To conduct the CRT for testing Hy™", we
resample and recompute our test statistics. Appendix E2 of the Supplementary Material provides details

about the testing procedure.

3.5.2. Carryover Effect

Researchers also often rely on the assumption of no carryover effect (Hainmueller et al. 2014). The
assumption states that the order of the ] evaluations each respondent performs has no effect on
the outcomes. This assumption is violated, for example, if respondents use information from their
previous evaluations when assessing a given pair of profiles. To test this carryover effect, we assume
no interference across respondents but consider potential interference across evaluations within each
respondent.

Let x; 1.j-1) represent all the profile attributes that were presented to respondent i from the first
evaluation to the (j— 1)th evaluation. Then, the potential outcome can be written as a function of
both current and previous profiles, that is, Yj; (x,-’lz(j,l),z,-’lz(j,l),x,-j,zij) for j > 2, where we assume
no interference between respondents but allow interference within a respondent. Our null hypothesis is
that, for a given evaluation j > 2, the response Yj; is independent of all the previous profiles conditional
on the current profiles:

HCarryover .Y, i

Y ’ ’
0 . ij(Xi,l:(j—l)vzi,lz(j—l)vxijazij) ij(xi,lz(j—l)azi,lz(j—l)vxljvzij)a

where for all i>1, 7> 2, X; 1:-1),X] 1;(j-1) € X 22 1(j-1) € 271, Xij € Xind, 2ij € Zina with
XJ ! and ZJ 4 denoting the support of x; 1.(j_1) and that of z; 1.(;_,), respectively.

We test th1s null hypothesis by using a test statistic that targets whether the immediately preceding
evaluation affects the current evaluation. We believe targeting the lag-1 effect in the test statistic
is reasonable because if a carryover effect exists, respondents are likely to be affected most by the
immediately preceding evaluation. For example, if respondents believe that they have placed too
much weight on profiles’ professions in the previous evaluation, they might decide to rely on the
current profiles’ “country of origin” factor more than its “profession” factor in order to balance across
evaluations. Under this scenario, we would expect a significant interaction between previous profiles’
“profession” factor and current profiles’ “country of origin” factor.

We modify the test statistic given in Equation (5) in the following way. Suppose that ] is
even (if J is odd, simply consider ] — 1 evaluations). We first define a new response vector
Y/ = [Yi;Yis;...; Y] by taking every other evaluation. Similarly, we can define new factors of
interest X; = [[Xi1;Zin]";[Xi3;Zi3]",...;[Xij-1;Zij-1]"] and a new set of conditioning variables
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Z; = [[Xi2; Zi2]";[Xia; Zia]", ... ;[Xis; Ziy]"]. We then fit HierNet with the new response Y* =
[YT;Y5;...;Y, Jon (X*,Z"), where X* = [X[;X7;...; X, ] and Z" is defined similarly.

For this particular scenario, HierNet will estimate all main effects and interaction effects of Z*, and
the interaction effects between X* and Z*, which are of primary interest. To increase the power of the
test, we set all main and interaction effects of X* to zero since we do not expect the previous profile alone
to impact the respondent’s choice. Furthermore, we also do not expect the interaction effects between
X* and Z* to differ, depending on the ordering (left vs. right) of the relevant factors. Therefore, we
enforce all these interaction effects to have equal magnitude as done in Equation (6) (see Appendix E
of the Supplementary Material for further details). This leads to the following test statistic:

Ko Kyr
IEI:KIZH(X Y" Z ) Z Z Z Z'Yéé'kk’
=10'=1k=1k'=

where i represents the coefficient of an interaction term between the kth level of the ¢th factor of
the profile used in the previous evaluation and the k'th level of the ¢'th factor of the profile used in
the current evaluation. Appendix E.2 of the Supplementary Material explains how to resample the test
statistic in this setting.

3.5.3. Fatigue Effect
Researchers may be concerned that a respondent performing a large number of conjoint evaluations
may experience the “fatigue effect,” resulting in a declining quality of responses. Recently, Bansak et al.
(2018) conducted an empirical study to examine how the pattern of responses depends on the number of
evaluations each respondent performs. Here, we show how to use the CRT to formally test the presence
of the fatigue effect.

Similar to the carryover effect, we investigate whether there is a fatigue effect within each respondent’s
potential outcome Y;;(x;j,2;), where we again assume no interference effect as done when testing no
profile order effect. We test the following null hypothesis that the potential outcome is unaffected if
respondent i evaluated the same pair of profiles (x;j,z;;) but at a later or earlier evaluation j’ # j:

H(I;atlgue : Yij(X,'j,Z,'j) i Yijf(xij,zij) for all i,j,j,, Xij € /Yinda and zijj € Zind-

We propose a similar HierNet test statistic that reflects a scenario where respondents will only pay
attention to a shrinking number of factors as they rate more profiles. In this case, we would expect
interactions between the factors and the evaluation order index F = (F;,F, ... ,F, ), which represents an
nJ-dimensional integer vector with F; = (1,2,...,]) foralli=1,2,...,n. Again, for the sake of statistical
power, we impose the absence of profile order effects on HierNet as done in Equation (5). Our proposed
test statistic is the following from a HierNet fit of Y on (X,Z,F):

P K
Fat1 ue ~2
Hle;gNet(X Y Z F) - Z Yeks
(=1k=1
where 4y represents the coefficient of an interaction term between F and level k of factor £. Appendix E2
of the Supplementary Material shows how to resample and recompute the test statistics to test H, Tatigue

3.6. Incorporating Respondent Characteristics

In conjoint experiments, researchers often expect factors of interest to interact strongly with respon-
dent characteristics (Hainmueller and Hopkins 2015; Newman and Malhotra 2019; Ono and Burden
2018). It is possible to exploit this fact when applying the CRT by directly incorporating respondent
characteristics, V, into the test statistic. Doing so can substantially increase the statistical power.

We incorporate respondent characteristics in the CRT procedure by appending V to Z and holding
both (Z, V') constant. Since respondent characteristics are not randomized factors, unlike Z, V is not
guaranteed to be independent of the potential outcomes. We can test the following causal null hypothesis
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that conditions upon V:
HO:Y(x,z)iY(x',z) |V forallx,x € X, andz € Z. 9)

Theorem 3.1 can be easily extended to show that this null hypothesis is equivalent to the conditional
independence relation Y 11 X | Z,V. Algorithm 1 also stays the same except we sample X" from the
distribution of X | (Z, V') and our test statistic is now a function of (X,Y,Z, V).

A major benefit of incorporating respondent characteristics is the ability to capture respondent
characteristic interactions into the test statistic. Consequently, we incorporate an additional predictor
'V when fitting HierNet and modify the HierNet test statistic in Equation (5) as

K _ P Ki Kg ) )
ThierNet = (B =B)"+ 2. >0 > (Frewk — Yiew)
k=1

{=2k=1k'=1
main effects within-profile interaction effects
K1 Ky r Ly . _ )
+ Z S5 G = 0w )*+ > Z Z (Eimrw = Etmw)” (10)
=1k=1k'=1 m=lk=1w=1l  “—

respondent interaction effects
between-profile interaction effects

where é Lmkw Tepresents the interaction between the kth level of our factor of interest X and the wth
level of the mth factor of a respondent characteristic. If a respondent characteristic is a numeric
variable, we could either coarsen it into a factor variable or directly include it in the model as a
numeric variable.® Again, &1mw denotes the average of these estimated interaction coeflicients. Similar
to Equation (10), we add the additional constraint that Eompow = é,mkw femkw, where the superscripts
L and R similarly denote the left and rlght profile effects. Finally, we modify T similarly by
adding ¥0_ > ¥ T L (€L 4y +ER )2 to the original test statistic in TQISS,, to account for
respondent characteristlc interactions. For the empirical applications in Section 4 and Appendix G of
the Supplementary Material, we incorporate V and use the modified test statistics to test Hy and the no
profile order effect.

4. Empirical Application: Immigration Preferences and Ethnocentrism

In this section, we apply the proposed CRT to the conjoint study introduced in Section 2.1. We begin our
analysis of the immigration conjoint experiment by testing whether respondents differentiate between
immigrants from Mexico and those from European countries. We use the same dataset as the one used
in Hainmueller and Hopkins (2015). This gives us a total sample of 6,980 observations with n = 1,396
respondents each rating J = 5 tasks. Our main factor of interest X is the “country of origin” variable.

Since we are interested in testing how respondents differentiate Mexican and European candidates,
we use the generalized hypothesis Hy™™ defined in Equation (7) that compares the main and
interaction effects only between the factor levels of interest and coarsen the three levels—Germany,
France, and Poland—into one level called Europe (see Appendix C of the Supplementary Material for
a formal treatment). Furthermore, the  function in H{®™ takes the “country of origin” variable
and maps the relevant levels of Mexico and Europe to one output and the remaining levels to other
unique outputs. We include all the other randomized factors and respondent characteristics as Z and
V, respectively, except the ethnocentrism variable, which is only measured for a subset of respondents.
We incorporate this variable at the end of this section.

We fit HierNet using Y as the response and our main factor X, other randomized factors Z, and
respondent characteristics V as the predictors. We then compute the test statistic given in Equation (10)

8HierNet standardizes all variables when performing the fit. Therefore, even if a numeric variable is on a different scale, all
estimated coefficients remain comparable.
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while imposing the implied no profile order effect constraints given in Equation (6) (with the constraints
applied to the respondent characteristic interactions too). As mentioned briefly in Section 3.4, we
slightly modify this test statistic by only using the estimated coefficients for Mexico and Europe while
ignoring the other coefficients.

As shown in Table 1, the CRT p-value of this test statistic is 0.042, providing evidence that
respondents differentiate immigrants from Mexico and Europe. For comparison, we also compute the
p-value based on the estimated AMCE of being from Mexico compared to being from Europe. We
apply a commonly used linear regression approach described in Section 2.1 to compute this p-value.
Specifically, we first fit a linear regression model using “country of origin,” “reason of immigration,” and
their interaction as predictors to account for the restricted randomization (Hainmueller et al. 2014).
The standard errors are clustered by respondent. We then use the F-test of the linear equality constraint
that implies the null hypothesis under the linear model. The resulting p-value for the difference between
Mexico and Europe is 0.27, which is statistically insignificant.

The above result suggests that the CRT may be able to capture complex interactions and yield greater
statistical power than the AMCE-based test. The two largest interactions in the observed test statistic are
within-profile interactions between “country of origin” and “education” and between “country of origin”
and “prior trips to U.S”” factors, which included whether or not the immigrant entered the United States
illegally. Thus, we next assess the degree to which the interaction effects account for this difference in
statistical power. To do this, we use a Lasso logistic regression” without interaction terms where we only
include the main effects of (X,Z, V). The CRT p-value of using only the relevant levels of the main
effects of X as the test statistic is 0.082, which is somewhat larger than the p-value based on HierNet
test statistic. This suggests that interactions play some role in yielding a more powerful test than the
AMCE-based approach.

Hainmueller and Hopkins suggest that respondents do not differentiate between immigrants from
Mexico and those from Europe based on the results of their main analysis (see Figure 1, which replicates
this analysis). However, they also conduct a subgroup analysis and find that “country of origin” has
statistically significant interaction(s) with the respondent’s ethnocentrism through a subgroup analysis
(see also Newman and Malhotra 2019 for related findings). Thus, we now repeat the same analysis as
above except that we include this ethnocentrism variable as an additional respondent characteristic
in V. Note that unlike the original analysis, we do not dichotomize this variable and use the original
continuous scale. Since ethnocentrism is only measured for white and black respondents, the number
of total respondents is reduced to n = 1,135. Despite this reduction in sample size, the inclusion of
the ethnocentrism variable produces the p-value of 0.019, which is smaller than the p-value of the
analysis without this variable. As expected, the largest interaction in the observed test statistic involves
the ethnocentrism variable. All together, our analysis provides evidence that respondents differentiate
immigrants from Mexico and Europe.

Lastly, we use the CRT to test the three commonly made regularity assumptions of conjoint analysis:
no profile order effect, no carryover effect, and no fatigue effect. The last three columns in Table 1 present
the p-values from the various tests described in Section 3.5. We find no evidence that these assumptions
are violated in the immigration conjoint experiment (the first row). In particular, the fact that we do
not detect profile order effects suggests that imposing the symmetry constraint as done in Equation (6)
likely improves power.

5. Concluding Remarks

Conjoint analysis is a popular methodology for analyzing multidimensional preferences and decision-
making. In this paper, we propose an assumption-free approach for conjoint analysis based on the CRT.

Throughout this paper (including the Supplementary Material), we fit all Lasso logistic regressions using the glmnet
package in R and fit all logistic regressions using the standard glm() function, where both the response and design matrices
are equivalent to the original HierNet fit unless otherwise specified.
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The proposed methodology allows researchers to test whether a set of factors of interest matter at all
without assuming a statistical model. We also extend the proposed methodology to test for differential
effects for any combination of factor levels and other regularity assumptions commonly invoked in
conjoint analysis like the profile order effect. Although we acknowledge the CRT only provides a formal
test of whether a factor matters or not, such an analysis is of substantive interest. In particular, by
incorporating ML algorithms and/or domain knowledge, the CRT can leverage complex interactions
to improve its power without making modeling assumptions. As a result, the CRT provides a more
powerful test than the AMCE that may mask important interactions. The CRT is easy to implement and
provides exact (i.e., non-asymptotic) p-values that are valid even in high dimensions. We believe that
this flexibility combined with its assumption-free nature makes the CRT a powerful tool for conjoint
analysis. The CRT can complement existing methods like the AMCE analysis by providing a useful way
to examine whether a factor of interest matters at all.
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