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with restricted structures, it was shown that every 2K,-free 3/2-tough graph with at least
three vertices has a 2-factor, and the toughness bound 3/2 is best possible. In viewing 2K>,
the disjoint union of two edges, as a linear forest, in this paper, for any linear forest R on
Keywords: 5, 6, or 7 vertices, we find the sharp toughness bound t such that every t-tough R-free
2-factor graph on at least three vertices has a 2-factor.
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Forbidden subgraphs

1. Introduction

Let G be a simple, undirected graph and let V(G) and E(G) denote the vertex set and the edge set of G, respectively.
We denote the set of neighbors of a vertex x € V(G) by N¢(x). The closed neighborhood of a vertex x in G, denoted by
N¢[x], is the set {x} U N¢(x). For any subset S C V(G), G[S] is the subgraph of G induced by S, G — S denotes the subgraph
G[V(G)\ S1, and N¢(S) = J,es Ng(v). Given disjoint subsets S and T of V(G), we denote by E¢(S, T) the set of edges
which have one endvertex in S and the other endvertex in T, and let eg(S,T) = |Eg(S, T)|. If S = {s} is a singleton, we
write e (s, T) for ec({s}, T). If H C G is a subgraph of G, and T C V(G) with TNV (H) =@, we write Ec(H, T) and ec(H, T)
for notational simplicity.

For a given graph R, we say that G is R-free if there does not exist an induced copy of R in G. For integers a and b with
a>0and b > 1, we denote by aP} the graph consisting of a disjoint copies of the path P,. When a =1, 1P}, is just Pp, and
when a =0, 0Py, is the null graph. For two integers p and g, let [p,q]l={ieZ:p <i<q}.

Denote by c(G) the number of components of G. Let t > 0 be a real number. We say a graph G is t-tough if for each
cutset S of G we have t-c(G — S) < |S|. The toughness of a graph G, denoted by 7(G), is the maximum value of t for which
G is t-tough if G is non-complete and is defined to be oo if G is complete.

For an integer k > 1, a k-regular spanning subgraph is a k-factor of G. It is well known, according to a theorem by
Enomoto, Jackson, Katerinis, and Saito [3] from 1995, that every k-tough graph with at least three vertices has a k-factor if
klV(G)| is even and |V (G)| > k + 1. In terms of a sharp toughness bound, particular research interest has been taken for
2-factors for graphs with restricted structures. For example, it was shown that every 3/2-tough 5-chordal graph (graphs
with no induced cycle of length at least 6) on at least three vertices has a 2-factor [1]. As 2K;-free graphs are 5-chordal,
as a consequence, every 3/2-tough 2K,-free graph on at least three vertices has a 2-factor [5]. The toughness bound 3/2 is
best possible in both results.
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Fig. 1. The five exceptional graphs for Theorem 1(1), where S = {x} and T = {t1, t, t3}.

A linear forest is a graph consisting of disjoint paths. In viewing 2K; as a linear forest on 4 vertices and the result by Ota
and Sanka [5] that every 3/2-tough 2K,-free graph on at least three vertices has a 2-factor, we investigate the existence
of 2-factors in R-free graphs when R is a linear forest on 5, 6, or 7 vertices. These graphs R are listed below, where the
unions are vertex disjoint unions.

1 Ps P4UPy P3sUP, P3U2P; 2P,UPy PpU3P; 5Pq;

2. Pg PsUPy P4UP, P4U2P; 2P3 P3UP,UPy P3U3Py 3P, 2P,U2P; PpU4P1 6Pq;

3. P; PgUPq PsUPy P5sU2Pq P4UP3 P4qUPyUPq P4U3P1 2P3UPq P3U2P, P3UPyU2P;
P3U4P; 3P,UPy 2P,U3Py P,U5Py 7P;.

Our main results are the following.

Theorem 1. Let t > 0 be a real number, R be any linear forest on 5 vertices, and G be a t-tough R-free graph on at least 3 vertices.
Then G has a 2-factor provided that

(1) Re{P4UPq1,P3U2P1,P,U3P1}andt =1 unless

(a) R= Py U3Pq,and G = Hg or G contains H; as a spanning subgraph such that E(G) \ E(H;) C Ec(S, V(G) \ (TUYS)) for
eachi € [1, 4], where H;, S and T are defined in Fig. 1.
(b) R = P3U2Pq, and G contains Hy as a spanning subgraph such that E(G) \ E(H1) € E¢(S, V(G) \ (T U S)).

(2) R=5P1andt > 1.
(3) Re{Ps,P3UP,,2P, UP1}andt=3/2.

Theorem 2. Let t > 0 be a real number, R be any linear forest on 6 vertices, and G be a t-tough R-free graph on at least 3 vertices.
Then G has a 2-factor provided that

(1) Re{P4U2P1,P3U3P1, P, U4P1,6P1}andt > 1 unless R =6P1 and G contains Hs with p =5 as a spanning subgraph such
that E(G) \ E(Hs) C E¢(S,V(G) \ (T US)) U E(G[S]), where Hs, S and T are defined in Fig. 2.
(2) R e {Pg, P5UPq1,P4UPy,2P3, P3UPyUPy,3P,2P, U2P1}andt=3/2.

Theorem 3. Let t > 0 be a real number, R be any linear forest on 7 vertices, and G be a t-tough R-free graph on at least 3 vertices.
Then G has a 2-factor provided that



E. Grimm, A. Johnsen and S. Shan Discrete Mathematics 346 (2023) 113578

The graph Hs

Fig. 2. The exceptional graph for Theorem 2(1), where S = {x1,x2}, T = {t1, ..., ts}, and p =5.
D D
Vo Vo
S S
X1 X2 X1 X2
L] L] L[] L]
+ v 'S " Vs
! v, N~_1-— + ~_1
t1 ty t3 tg ts t1 ty t3 (7 ts
T T T
The graph Hg The graph H7 The graph Hg
Vo D D D1 D>
S S S
Vo Vi V3 V4 Ve
X1 X2 X1 X2
L] L] L] L]
Vi V3 Vg Vs X.] X.z V2 Vs
+ V2 Vs +
V3 Vg
+
L
tq ty t3 ty ts t 6 t3 ty ts t ty t3 ty ts

The graph Hg The graph Hyg The graph Hq

Fig. 3. The six exceptional graphs for Theorem 3(1)(b), where S = {x1,x2}, T = {t1, t2, t3, ts, t5}, and “+” represents the join of H;[S] and H;[T], i € [6, 11].
(1) Re{P4U3Pq,P3U4Pq, P U5P1}andt > 1 unless

(a) when R # P4 U 3P4, G contains Hs with p =5 as a spanning subgraph such that E(G) \ E(Hs) € Eg(S,V(G)\(TUS) U
E(G[S]), where Hs, S and T are defined in Fig. 2.

(b) R = P,U5Pq and G contains one of He, . .., H11 as a spanning subgraph such that E(G) \ E(H;) € E¢(S, V(G)\(TUS))U
E(G[S]) UE(G[V(G) \ (T US)]), where H;, S and T are defined in Fig. 3 for each i € [6, 11].

(2) R=7P1andt > % unless G contains Hs with p =5 as a spanning subgraph such that E(G) \ E(Hs) € E¢(S,V(G)\(TUS))U
E(G[SD.

(3) Re{Py7,PgU Py, P5U Py, P5sU2Py, P4UP3, P4UP,UPy,2P3U Py, P3U2P,, P3UPyU2P,3P, U Pq,2P, U3P1}and
t=3/2.

Remark 4 (Examples demonstrating sharp toughness bounds). The toughness bounds in Theorems 1 to 3 are all sharp.

(1) Theorem 1(1) when R € {P4 U Py, P3 U2Pq, P, U3P¢} and t = 1. The graph showing that the toughness 1 is best
possible is the complete bipartite K,_1 , for any integer n > 2. The graph K, 51 is (P2 U P1)-free and so is R-free, with
limp— 00 T(Kpn—1) = limp— 00 % =1, but contains no 2-factor.

(2) Theorem 1(2), Theorem 2(1) and Theorem 3(1) and t > 1. The graph showing that the toughness is best possible is
the graph Hip, which is constructed as follows: let p > 3, K, be a complete graph, and y1, y2, ¥3 € V(Kj) be distinct,

3
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Fig. 4. Sharpness example for Theorem 1(2), Theorem 2(1) and Theorem 3(1), where S = {x} and T = {t1, t2, t3}.

S ={x}, and T = {t1, t, t3}, then Hq, is obtained from Kj,, S and T by adding edges t;x and t;y; for each i € [1, 3].
See Fig. 4 for a depiction. By inspection, the graph is 5Pi-free and (P4 U 2P)-free. So the graph is R-free for any
Re{5P,P4U2P,P3U3Py, P, U4P1,6P1, P4U3P1, P3U4Pq, P, U5P1}. For any given p > 3, the graph H, does not
contain a 2-factor, as any 2-factor has to contain the edges t1x, t;x and t3x. We will show t(H13) =1 in the last section.
(3) For Theorem 1(3), Theorem 2(2) and Theorem 3(3) and t = %: note that all the graphs R in these cases contain 2K>

as an induced subgraph. Chvatal [2] constructed a sequence {G};2; of split graphs (graphs whose vertex set can be

partitioned into a clique and an independent set) having no 2-factors and 7(Gy) = % for each positive integer k. As

the class of 2K,-free graphs is a superclass of split graphs, %—tough is the best possible toughness bound for a 2K, -free
graph to have a 2-factor.

(4) Theorem 3(2) and t > %. The graph showing that the toughness is best possible is the graph Hs with p > 6, which is
constructed as follows: let p > 5, K, be a complete graph, and y1, ¥2, ¥3, ¥4, ¥s5 € V(Kp) be distinct, S = {x1, X2}, and
T = {t1,t2,t3,t4,t5}. Then Hs is obtained from Kj, S and T by adding edges t;x; and t;y; for each i € [1,5] and each
j €[1,2]. See Fig. 2 for a depiction. By inspection, the graph is 7P1-free. For any given p > 5, the graph Hs does not
contain a 2-factor, as any 2-factor has to contain at least three edges from one of x; and x; to at least three vertices of

T. We will show t(Hs) = % when p > 6 in the last section.

To supplement Theorems 1 to 3, we show that the exceptional graphs in Figs. 1 to 3 satisfy the corresponding conditions
below.

Theorem 5. The following statements hold.

(1) The graph H; is (P2 U 3P1)-free, contains no 2-factor, and T (H;) = 1 for each i € [0, 4], the graph H is also (P3 U 2 P1)-free.
(2) The graph H; is (P, U 5Pq)-free and contains no 2-factor for each i € [5,11], Hs with p =5 is (P3 U 4P1)-free and 6P-free.
Furthermore, T(Hs) = g when p =5 and t(H;) = %for eachi e [6,11].

We have explained that Hs and Hi; are R-free for the corresponding linear forests R and contain no 2-factor in Re-
mark 4(2) and (4). The Theorem below is to verify the toughness of the graphs Hs with p > 6 and H1s.

Theorem 6. The following statements hold.

(1) T(Hs) = % when p > 6;
(2) T(H2) =1.

The remainder of this paper is organized as follows. In section 2, we introduce more notation and preliminary results
on proving existence of 2-factors in graphs. In section 3, we prove Theorems 1-3. Theorems 5 and 6 are proved in the last
section.

2. Preliminaries

One of the main proof ingredients of Theorems 1 to 3 is to apply Tutte’s 2-factor Theorem. We start with some notation.
Let S and T be disjoint subsets of vertices of a graph G, and D be a component of G — (S U T). The component D is said
to be an odd component (resp. even component) of G — (SUT) if ec(D,T) =1 (mod 2) (resp. eg(D,T) =0 (mod 2)). Let
h(S, T) be the number of all odd components of G — (S U T). Define

8(S, T)=2|S| =2|T| + ch—s(}/) —h(s,T).
yeT
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It is easy to see that §(S,T) =0 (mod 2) for every S, T C V(G) with SN T = @. We use the following criterion for the
existence of a 2-factor, which is a restricted form of Tutte’s f-factor Theorem.

Lemma 7 (Tutte [6]). A graph G has a 2-factor if and only if (S, T) > 0 forevery S, T C V(G) with SNT =@.
An ordered pair (S, T), consisting of disjoint subsets of vertices S and T in a graph G, is called a barrier if §(S,T) < —2.
By Lemma 7, if G does not have a 2-factor, then G has a barrier. In [4], a biased barrier of G is defined as a barrier (S, T) of

G such that among all the barriers of G,

(1) |S| is maximum; and
(2) subject to (1), |T| is minimum.

The following properties of a biased barrier were derived in [4].
Lemma 8. Let G be a graph without a 2-factor, and let (S, T) be a biased barrier of G. Then each of the following holds.
(1) The set T is independent in G.
(2) If D is an even component with respect to (S, T), then eg(T, D) =0.
(3) If D is an odd component with respect to (S, T), then forany y € T, eg(y, D) < 1.
(4) If D is an odd component with respect to (S, T), then forany x € V(D), ec(x, T) < 1.
Let G be a graph without a 2-factor and (S, T) be a barrier of G. For an integer k > 0, let C; denote the set of components

D of G — (SUT) such that eg(D, T) = k. The following result was proved as a claim in [4] but we include a short proof
here for self-completeness.

Lemma 9. Let G be a graph without a 2-factor, and let (S, T) be a biased barrier of G. Then |T| > |S| + Zkzl k|Cok1|+ 1.

Proof. Let U =V (G)\ S. Since (S, T) is a barrier,

8(S,T)=2S| =2|T|+ ) dc-s(y) —h(S,T)

yeT
=2IS| = 2|T|+ Y de-s(¥) — Y _ [Cats1] < —2.
yeT k>0

By Lemma 8(1) and Lemma 8(2),

Y des() =) ec(y,U)=ec(T,U) =y (k+1)|Cos1l.

yeT yeT k>0

Therefore, we have

—2>2|S| = 2|T|+ Y _k+DICaxs1l — Y _ [Cors1l-
k>0 k>0

which yields |T| > [S|+ 3 41 kICoxky1|+1. O
We use the following lemmas in our proof.

Lemma 10. Let t > 1, G be a t-tough graph on at least three vertices containing no 2-factor, and (S, T) be a biased barrier of G. Then
the following statements hold.

(1) IfCq £ 0, then |S| + 1 > 2t. Consequently, S = @ implies C1 = @, and |S| = 1 implies C; = @ whent > 1.
(2) Uks1Cotr1 # 9.

Proof. By Lemma 9, T # @. Since G is 1-tough and thus is 2-connected, d¢(y) > 2 for every y € T. This together with
Lemma 8(1)-(3) implies |S| + D 4~q [Cakr1] = 2.

For the first part of (1), suppose to the contrary that |S|+ 1 < 2t. Let D € C; and y € V(T) be adjacent in G to some
vertex v € V(D). As [S|+) 4~ |Cax+1]l =2 and |T| > |S|+1 by Lemma 9, we have c¢(G — (SU{y})) > 2 regardless of whether
or not S = . But c(G — (SU{y})) > 2 implies 7(G) < 2t/2 =t, contradicting G being t-tough. The second part of (1) is a
consequence of the first part.
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For (2), suppose to the contrary that Ukz] Cok+1 =¥. By Lemma 10(1), |S| + |C1] > 2 implies |S| > 1. Consequently,
|T| > 2 by Lemma 9. As every component of G — (SUT) in C; is connected to exactly one vertex of T, S is a cutset of G
with ¢(G — S) > |T|. However, |T| > |S|+ Zkz] k|Cok+1]1+1 =S|+ 1, implying 7(G) < 1, a contradiction. O

A path P connecting two vertices u and v is called a (u, v)-path, and we write uPv or vPu in order to specify the two
endvertices of P. Let uPv and xQy be two disjoint paths. If vx is an edge, we write uPvxQy as the concatenation of P
and Q through the edge vx. Let G be a graph without a 2-factor, and let (S, T) be a barrier of G. For y € T, define

h(y)=HD: De| JCu1 and ec(y,D) =1}l

k>1
Lemma 11. Let G be a graph without a 2-factor, and let (S, T) be a biased barrier of G. Then the following statements hold.

(1) IfIUk>1 Cak+11 = 1, then G contains an induced P4 U aPy, wherea = |T| — 2.

(2) Ifthereexists yo € T with h(yo) > 2, then for some integer b > 7, G contains an induced P, UaP1, where a = |T | — 3. Furthermore,
an induced Py U aP1 can be taken such that the vertices in aP1 are from T and the path Py has the form y1xjP1x1yoX2P2X5y2,
where yo, y1,y2 € T and xTPl)q and x; P;x; are respectively contained in two distinct components from |y Cak+1 such that
eg(x, T) = 0 for every internal vertex x from P1 and P».

Proof. Lemma 8(1), (3) and (4) will be applied frequently in the arguments sometimes without mentioning it.

Let D € [Jy~1 Cok+1- The existence of D implies |T| >3 and |V(D)| > 3 by Lemma 8(3) and (4). We claim that for a
fixed vertex x; € V(D) such that eg(x1, T) = 1, there exists distinct x, € V(D) and an induced (xi, x2)-path P in D with
the following two properties: (a) eg(x2, T) =1, and (b) eg(x, T) =0 for every x € V(P) \ {x1,x2}. Note that the vertex x;
exists by Lemma 8(4). Let y1 € T be the vertex such that ec(x1,T) =eg(x1,y1) =1 and W = Ng(T \ {y1}) N V(D). Since
ING(T)NV(D)| >3 and |Ng(y1) N V(D)| =1, we have W # (J. By Lemma 8(4), x; ¢ W. Now in D, we find a shortest path
P connecting x; and some vertex from W, say x;. Then x, and P satisfy properties (a) and (b), respectively. Let y, € T such
that eg(x2, T) = ec(x2, y2) = 1. The vertex y, uniquely exists by the choice x, and Lemma 8(4). By Lemma 8(1) and (4),
and the choice of P, we know that yx1Px2y, and T \ {y1, ¥2} together contain an induced P4 UaP;. This proves (1).

We now prove (2). By Lemma 8(3), the existence of yo implies || Ji~q Cak+1] = 2, which in turn gives |T| > 3 by
Lemma 8(3) again. We let D1, D € |y~ Cak+1 be distinct such that eg (yo, D7) =1 and e¢(yo, D) = 1. Let x; € D; such that
ec (Yo, Di) = ec(¥o, i) = 1. By the argument in the first paragraph above, we can find xf € V(D) \ {x;} and an (x;, x;")-path
P; in D; for each i e {1, 2}. By the choice of P; and Lemma 8(4), there are unique y1, y2 € T \ {yo} such that x{'y; € E(G).
If y1 # y2, by the choice of P1 and P, and Lemma 8(1) and (4), we know that y1x]P1x1y0X2P2x5y> and T \ {yo, Y1, Y2}
together contain an induced P, UaP; for some integer b > 7. Thus we assume y; = y;. Then the vertex y; can also play the
role of yo. Let W = Ng(T \ {yo, y1}) NV (D2). By Lemma 8(4), X, X5 ¢ W. Now in D3, we find a shortest path P3 connecting
some vertex of {x;, xJ} and some vertex from W, say z. Let the neighbor of z in G from T be z;. If PJ is an (xz, z)-path, then
y1X;P1x1yox2P5z and T \ {yo, y1, 21} together contain an induced P, UaP1. If P} is an (x3, z)-path, then yox P1x]y1x;P5z
and T \ {yo, ¥1, 21} together contain an induced P, UaPi. The second part of (2) is clear by the construction above. O

S|

Let G be a non-complete graph. A cutset S of V(G) is a toughset of G if s = 7(G).

Lemma 12. If G is a connected graph and S is a toughset of G, then for every x € S, x is adjacent in G to vertices from at least two
components of G — S.

Proof. Assume to the contrary that there exists x € S such that x is adjacent in G to vertices from at most one component
of G —S. Then ¢(G — (S \ {x})) =c(G—S)>2 and

IS\ ST
c(G=(S\{x})) c(G=9)

contradicting G being t(G)-tough. O

7(G),

3. Proof of Theorems 1, 2, and 3

Let R be any linear forest on at most 7 vertices. If G is R-free, then G is also R*-free for any supergraph R* that contains
R as an induced subgraph. To prove Theorems 1 to 3, we will show that the corresponding statements hold for a supergraph
R* of R, where R* contains R as an induced subgraph. This strategy simplifies the cases of possibilities of R. Let us first list
the supergraphs that we will use.

(1) P4U3Pq is a supergraph of the following graphs: P4 U2P¢, P3 U3P¢, and P, U4Pq;

6
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(2) 6P is a supergraph of 5Pq;
(3) P3U2P; is a supergraph of 3P;;
(4) P7U2Pq is a supergraph of the following graphs:

(@) Ps, P3U Py, 2P U Py;
(b) Pg, P5UPq,P4UPy,2P3,P3UPy,UP1,2P,U2Pq;
(c) P7,PgUPy,P5U2P1,P4UPy,UPq,2P3UPq, P3UPyU2P1,2P, U3Pq.

Those supergraphs above together with the graphs R listed below cover all the 33 R graphs described in Theorems 1
to 3. Theorems 1 to 3 are then consequences of the theorem below.

Theorem 13. Let t > 0 be a real number, R be a linear forest, and G be a t-tough R-free graph on at least 3 vertices. Then G has a
2-factor provided that

(1) Re{P4UPq1,P3U2P1,P,U3P1}andt =1 unless

(a) R=P,U3Pq,and G = Hg or G contains H; as a spanning subgraph such that E(G) \ E(H;) C E¢(S, V(G) \ (T UYS)) for
eachi € [1, 4], where H;, S and T are defined in Fig. 1.
(b) R = P3U2Pq, and G contains Hy as a spanning subgraph such that E(G) \ E(H1) € E¢(S, V(G) \ (T U S)).

(2) Re{P4U3Pq,P3U4P¢,P,U5P,6P1}andt > 1 unless

(a) when R # P4 U 3P4, G contains Hs with p =5 as a spanning subgraph such that E(G) \ E(Hs) € E¢(S,V(G)\(TUS) U
E(G[S]), where Hs, S and T are defined in Fig. 2.

(b) R =P,U5Pq and G contains one of He, . .., H11 as a spanning subgraph such that E(G) \ E(H;) € E¢(S, V(G)\(TUS))U
E(G[S]) UE(G[V(G) \ (T US)]), where H;, S and T are defined in Fig. 3 for each i € [6, 11].

(3) R=7P1andt > % unless G contains Hs with p =5 as a spanning subgraph such that E(G) \ E(Hs) C E¢(S,V(G)\(TUS))U
E(G[S)).
(4) Re{P7U2P1,P5UPy, P4UP3, P3U2P5,3P, UP }andt = 3/2.

Proof. Assume by contradiction that G does not have a 2-factor. By Lemma 7, G has a barrier. We choose (S, T) to be a
biased barrier. Thus (S, T) and G satisfy all the properties listed in Lemma 8. These properties will be used frequently even
without further mentioning sometimes. By Lemma 9,

ITI =S|+ ) KlCar1l + 1. (1)
k>1

Since t > 1, by Lemma 10(2), we know that

a1 #0. (2)

k>1

This implies |T| >3 and so G contains an induced P4 U P1 by Lemma 11(1). Thus we assume R # P4 U Pq in the rest of the
proof.

Claim 1. R ¢ {P3 U 2P, P, U3P4} unless G falls under one of the exceptional cases as in (a) and (b) of Theorem 13(1).

Proof. Assume instead that R € {P3 U 2P, P, U3Pq}. Thus t = 1. We may assume that G does not fall under any of the
exceptional cases as in (a) and (b) of Theorem 13(1).

It must be the case that |T| = 3, as otherwise G contains an induced P4 U 2P; by Lemma 11(1), and so contains an
induced R. By Equation (1), we have |Jy-qCak+1l + |S| < 2. By Lemma 10(1), we have that C; = ¢ if S =. Since G is
1-tough and so 8(G) > 2, Lemma 8(1)~(3) implies that | Uk>1Cak+1! + S| = 2. By (2), we have the two cases below.

Case1: [Ugs1Caky11 =2 and S =0.

Let D1, Dy € g1 Cak+1 be the two odd components of G — (SUT). Since |T| =3, Lemma 8(3) implies that eg(D;, T) =3
for each i € [1,2]. Let y e T and x € V(D) such that xy € E(G). We let x; be a neighbor of x from Di. Then yxx; is an
induced P3 by Lemma 8(3). Let y1 € T \ {y} such that yix; ¢ E(G), which is possible as |T| =3 and eg(x1,T) <1 by
Lemma 8(4). We now let x; € V(D7) such that eg(x2, {y, y1}) = 0, which is again possible as [Ng(T) N V(D3)| =3 and
each vertex of D, is adjacent in G to at most one vertex of T. However, yxx1, y1 and x, together form an induced copy of
P3 U2P1. Therefore, we assume R = P, U3Pq.



E. Grimm, A. Johnsen and S. Shan Discrete Mathematics 346 (2023) 113578

We first claim that |V (D;)| = 3 for each i € [1,2]. Otherwise, say |V(D3)| >4. Let y € T and x € V(D7) such that
xy € E(G). Take x1 € V(D) such that eg(x1, T) =0, which exists as [Ng(T) NV (D3)| = 3. Then xy,x; and T \ {y} together
form an induced copy of P, U3Pq, giving a contradiction. We next claim that D; = K3 for each i € [1, 2]. Otherwise, say
D1 # K3. As Dy is connected, it follows that Dy = P3. If also D, # K3 and so D, = P3, then deleting the two vertices of
degree 2 from both D and D, gives three components (note that each vertex of T is adjacent in G to one vertex of Dy
and one vertex of D3), showing that t(G) <2/3 < 1. Thus D, = K3. We let x1,x; € V(D) be nonadjacent, y1, y2 € T such
that eg(x;, y;) =1 for each i € [1, 2], and z1, z2 € V(D3) such that eg(y;, zj) =1 for each i € [1,2]. Let y € T \ {y1, y2}. Then
7122, Y, X1 and x; together form an induced copy of P, U3P1, giving a contradiction.

Thus |V (D;)| =3 and D; = K3 for each i € [1, 2]. However, this implies that G = Hy.

Case2: |Ugsq Coky1l=1 and |S|=1.

Since G is 1-tough and so is 2-connected, we have Cy, = for any k > 0: there is no edge between T and any even
component of G — (SUT) by Lemma 8(2), and |S| =1. Let D € [y~ Cak+1 be the odd component of G — (S U T). Assume
first that R = P3 U2P;. Then we have |V (D)| = 3. Otherwise, |V (D)| > 4. Let x € V(D) such that eg(x,T) =0 and P be a
shortest path of D from x to a vertex, say x; € V(D) N Ng(T). Let y € T such that eg(x1, y) = 1. Then xPx;y and T \ {y}
contain an induced copy of R, a contradiction.

Since G does not contain Hq as a spanning subgraph such that E(G) \ E(Hy) € E¢(S, V(G) \ (T UYS)), it follows that
D # K3. As D is connected, it follows that D = P3. Now deleting the vertex in S together with the degree 2 vertex of D
produces three components, showing 7(G) <2/3 < 1.

Therefore, we assume now that R = P, U 3P;. Since G does not contain H; as a spanning subgraph such that E(G) \
E(H1) € E¢(S,V(G) \ (T UYS)), the argument for the case R = P3 U 2P; above implies that |V (D)| > 4. We claim that
|V(D)|=4.1If |[V(D)| =5, we let x1,x2 € V(D) \ N¢(T) be any two distinct vertices. If x;x, € E(G), then x1x, together with
T form an induced copy of R, a contradiction. Thus V (D) \ N¢(T) is an independent set in G. However, c(G — (SU (Ng(T)N
V(D)) =ITI+|V(D)\ Ne(T)| = 5, implying 7(G) <4/5 < 1.

Thus |V (D)| = 4. Let x € V(D) such that eg(x, T) = 0. Since G does not contain H; as a spanning subgraph such that
E(G)\ E(H;) € E¢(S,V(G)\ (T UYS)) for each i € [2,4], it follows that either dp(x) <2 or dp(x) =3 and D = K;3. If
dp(x) =3, then as D = Ky, 3, we have c(G — (SU{x})) =3, implying 7(G) <2/3 < 1. Thus dp (x) < 2. Let V(D) = {x, X1, X2, X3}
and assume xxq ¢ E(D). Then c(G — (S U {x2, x3})) =4, implying 7(G) < 3/4 < 1. The proof of Case 2 is complete. O

Thus by Claim 1 and the fact that R # P4 U Py, we can assume R ¢ {P4 U P1, P3 U2Pq, P, U3P1} from this point on.
Therefore we have t > 1. This implies that G is 3-connected and so §(G) > 3. Thus |S|+]| Ukzo Cok+1| >3 by Lemma 8(1)-(4).

Claim 2. |T| > 5.

Proof. Equation (2) implies |T| > 3. Assume to the contrary that |T| < 4. We consider the following two cases.

Casg1: |T|=3.

Since |S|+ | Ukzo Cok+1] =3, we already have a contradiction to Equation (1) if C; = @. Thus C1 # @, which gives |S| >2
by Lemma 10(1). However, we again get a contradiction to Equation (1) as Ukzl Cok+1 # ¥ by Equation (2).

Case2: |T| =4.

By Lemma 8(3), we know that Cyi4q =¥ for any k > 2. First assume |S| < 1. Then C; = by Lemma 10(1). By Lemma 8,
there are at least 3|T| =12 edges going from T to vertices in S and components in ;- Cak+1. As Cox41 =9 for any k > 2,
it follows that |C3| >4 if |S| =0 and |C3| > 3 if |S| =1, contradicting Equation (1). B

Next, assume |S| > 2. By Equations (1) and (2), we have |S| = 2. Let D be the single component in C3. Define Wp to
be a set of 2 vertices in D which are all adjacent in G to some vertex from T. Then S U Wp is a cutset in G such that
|ISUWp| =4 and c(G — (SU Wp)) > |T| =4, contradicting t(G) >t>1. O

By Claim 2 and Lemma 11(1), we see that G contains an induced R = P4 U3Pq. Thus we may assume R ¢ {P4U P1, P3U
2Py, P, U3P1, P4U3Pq} from this point on.

Claim 3. R ¢ {P3 U4Pq, P, U5P1,6P1,7P} unless G falls under the exceptional cases as in (a) and (b) of Theorem 13(2) or as in
Theorem 13(3).

Proof. We may assume that G does not fall under any of the exceptional cases as in (a) and (b) of Theorem 13(2) and as
in Theorem 13(3). Thus we show that R ¢ {P3 U4Py, P U5P¢,6P1,7P1}.

Assume to the contrary that R € {P3U4Pq, P, U5P1,6P1,7P1}. By Lemma 11(1), G contains an induced P4UaPq, where
a=|T|—2.If a>5, then each of P3 U4P¢, P, U5P1,6P1, and 7P is an induced subgraph of P4 UaPq, a contradiction.

8
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Thus a <4 and so |T| <6. As |T| <6, we have that | J,., Cor+1 =% by Lemma 8(3). By Claim 2, |T| > 5. Thus, we have two
cases.

Casg1: |T|=5.

As |T| =5, we have Cy1 =¥ for any k > 3. We consider two cases regarding whether or not |C3 UCs| > 2.

Case11: |C3UCs|=1.

Let D € Cyk+1 € C3 UCs be the only odd component of G — (S U T). Note that k is either one or two. By Equation (1),
5>|S|+k+1,s0|S| <4—k.

We first claim that Co, = @ for any £ > 0. Suppose to the contrary that Cy; # @ for some £ > 0. Then ¢ = 0 by Lemma 8(2).
Let Wp be a set of 2k vertices (which exist by Lemma 8(4)) from D which are adjacent in G to vertices from T. Then SUWp
forms a cutset and we have

IS|+2k 4+k
< —— < <
“—|TI+1 — 6 —
contradicting t > 1.

We then claim k = 2. For otherwise, k = 1. Let Wp be a set of 2k vertices from D which are adjacent in G to vertices
from T. Then SU Wp forms a cutset and we have

IS|+2k 4+k 5
t<—< =—
- 5 - 5 5
contradicting t > 1. Thus k = 2.
From k =2, we get |S| < 2. We lastly claim |S| = 2. For otherwise, |S| < 1. Let Wp be a set of 2k vertices from D which
are adjacent in G to vertices from T. Then SU Wp forms a cutset and we have
IS|+2k 1+2k 5
< — < = — = l,
- 5 - 5 5
contradicting t > 1.
Since |S| =2 and D is the only odd component of G — (SUT), we know that every vertex of T is adjacent in G to every
vertex from S by §(G) > 3. We now consider two subcases to finish the proof of Case 1.1.

Case11.1: |V(D)| > 6.

For R = P3 U4P1, let x € V(D) such that eg(x, T) =0. Let P be a shortest path in D from x to a vertex, say x* from
N¢g(T)NV (D). Let y* € T such that e¢(x*, y*) = 1. Then xPx*y* and T \ {y*} contain P3 U4P; as an induced subgraph. We
consider next that R =6P¢. Then T and the vertex of D that is not adjacent in G to any vertex from T form an induced
6P1, giving a contradiction. For R = 7P1, let Wp be the set of 2k 4+ 1 vertices (which exist by Lemma 8(4)) from D which
are adjacent in G to vertices from T. Then SU Wp forms a cutset and we have

IS|+2k+1 4+k+1 7
t < < =,
- |TI+1 6 6
giving a contradiction to t > 7/6.

Lastly, we consider R = P, U5Py. For any x € V(D) such that e¢(x, T) =0, it must be the case that x is adjacent in G to
every vertex from N¢(T) NV (D). Otherwise, let x* € Ng(T)NV (D) such that xx* ¢ E(G). Let y* € T such that e (x*, y*) =1.
Then x*y* and (T \ {y*}) U {x} contain P, U5P as an induced subgraph. Furthermore, if |V (D)| — |[Ng(T) N V(D)| > 2, then
V(D) \ (Ng(T) N V(D)) is an independent set in G. Otherwise, an edge with both endvertices from V (D) \ (N¢(T) N V(D))
together with T induces P, U5Pq. Thus if |V(D)| > 7, let Wp be the set of 2k + 1 vertices (which exist by Lemma 8(4))
from D which are adjacent in G to vertices from T. Then SU W forms a cutset and we have

6
~ =1,
6

)

t

IS|+5 7
t< <z,
IT|+2 ~ 7
giving a contradiction to t > 1. Thus |V (D)| = 6. Let x € V(D) be the vertex such that e¢(x, T) = 0. Then it must be the case
that D — x has at most two components. Otherwise, we have t < ‘S%ﬂ =1.

Assume first that c¢(D — x) = 2. Let D1 and D, be the two components of D — x, and assume further that |V (D1)| <
[V (D3)|. Then as |V(D — x)| =5, we have two possibilities: either |V(D1)| =1 and |V(D3)| =4 or |V(D1)| =2 and
|V(D32)| = 3. Since §(G) > 3, if |V(D1)| =1, then the vertex from D; must be adjacent in G to at least one vertex from
S. When |V (D3)| =4 and D; # K4, then D, has a cutset W of size 2 such that ¢(D; — W) =2. Then SUW U {x} is a
cutset of G such that c¢(G — (SU W U {x})) =5, showing t < 1. Thus D, = K4. However, this shows that G contains Hg as
a spanning subgraph. When |V (D;)| =3 and D; # K3, then D; has a cutvertex x*. Then S U {x, x*} is a cutset of G such
that ¢(G — (S U {x, x*})) =4, showing that t < j—‘l =1. Thus D; = K3; however, this shows that G contains H7 as a spanning
subgraph.

Assume then that ¢(D —x) = 1. Let D* = D —x. If §(D*) > 3, then D* is Hamiltonian and so G contains Hyg as a spanning
subgraph. Thus we assume §(D*) < 2.
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Assume first that D* has a cutvertex x*. Then c(D* —x*) = 2: as if ¢(D* — x*) > 3, then c(G — (S U {x, x*})) > 4, implying
t < 1. Let D] and D3 be the two components of D* —x*, and assume further that |V (D7)| < |V (D3)|. Then as |V (D* —x*)| =
4, we have two possibilities: either |V(D})|=1 and |V(D})| =3 or |V(D})| =2 and |V (D3)| = 2. When |V (D3)| =3 and
D; # K3, then D3 has a cutvertex x**. Then S U {x, x*, x**} is a cutset of G such that ¢(G — (S U {x, x*, x**})) = 5, showing
that t < 1. Thus D = K3. The vertex x* is a cutvertex of D* and so is adjacent in D* to a vertex of D} and a vertex of D3.
However, this shows that G contains Hg as a spanning subgraph. When |V (D3)| =2, as G does not contain Hg or Hg as a
spanning subgraph, x* is adjacent in G to exactly one vertex, say xj, of D] and to exactly one vertex, say x5, of D3. Then
SU{x,x7, x5} is a cutset of G whose removal produces 5 components, showing 7(G) < 1.

Assume then that D* is 2-connected. As §(D*) <2, D* has a minimum cutset W of size 2. If ¢(D* — W) = 3, then we
have c(G — (SU W U {x})) =5, showing t < 1. Thus ¢(D* — W) = 2. Then by analyzing the connection in D* between W
and the two components of D* — W, we see that D* contains Cs as a spanning subgraph, showing that G contains Hqg as
a spanning subgraph.

Case11.2: |V(D)| =5.

Since Hs is an exceptional graph for each R € {P3 U4P1, P, U5P1,6P1,7P1}, we assume that G does not contain Hs as
a spanning subgraph. Thus D # Ks. As D # K5, D has a cutset Wp of size at most 3 such that each component of D — Wp
is a single vertex. Then

JISI+IWpl _4-243
[ L -

s

a contradiction.
Case1.2: |C3UCs| > 2.
By Equation (1), we have

4> S|+ klCosl-

k>1

So one of the following holds:

1. S=¢ and either |C5| =2 and |C3| =0, |C5] =1 and |C3] <2, or |C5| =0 and |C3| < 4. In this case, C; =¥ by Lemma 10(1).
Thus by Lemma 8(3), we have eg(T,V(G)\T) <12 < 3|T| =15.
2. |S| =1 and either |C5| =1 and |C3| =1, or |C5| =0 and |C3| < 3. In this case, again C; =¥ by Lemma 10(1). This implies
there are a maximum of 14 edges incident to vertices in T, a contradiction.
3. |S]| =2 and either |C5| =1 and |C3 =0|, or |C5| =0 and |C3| = 2.
If |C5]=1 and |C3 = 0|, then we let D € C5 be the only odd component of G — (SUT). If |C5| =0 and |C3] =2, let
C3 ={D1, D3}. Note that |V (D;)| > 3 by Lemma 8(4) for each i € [1, 2].
We first claim that Cyy = @ for any ¢ > 0. Suppose to the contrary that Cy; # @ for some ¢ > 0. Then ¢ =0 by
Lemma 8(2). Let W be a set of 4 vertices from either D or consisting of 2 vertices from D and 2 vertices from D, that
are all adjacent in G to vertices from T.

contradicting t > 1.

When |C5]| =1 and |C3 = 0], we also know that every vertex of T is adjacent in G to every vertex from S by §(G) > 3.
Then D # K5 since G does not contain Hs as a spanning subgraph. As D # K5, D has a cutset Wp of size at most 3 such
that each component of D — Wp is a single vertex. Then

ISI+IWp| _4-2+3 _

=< < 1,
IT| 5

a contradiction.

Thus we assume that |Cs5| =0 and |C3| = 2. Since |T| =5, there exists yo € T such that eg(yo,D;) =1 for each
ie€[1,2]. If R=P3U4Pq, then T together with the two neighbors of yy from V(D7) U V(D7) induce R. If R =6Pq,
then T \ {yo} together with the two neighbors of yo from V(D) U V(D>) gives an induced 6P;. If R=7Pq, let Wp, C
V(D;)\ Ng(yo) be the two vertices of D; that are adjacent in G to vertices from T. Then c(G—(SUWp, UWp, U{yo})) =
IT|—142=6. Thus t < 2:2E2+1 = 7 contradicting t > £. Lastly, assume R = P, U5P1. If one of D; has at least 4 vertices,
say |V (D3)| > 4, then let x € V(D3) such that eg(x,T) =0, x* € V(D1) and y* € T such that ec(x*, y*) = 1. Then x*y*
and (T \ {y*}) U {x} induce P, U5P1. Thus |V(D1)| =|V(D3)| =3. If one of D;, say D, # K3, then D, has a cutvertex x.
Let W be the set of any two vertices of Dq. Then SUW U {x} is a cutset of G such that c¢(G — (SUW U{x})) =5, showing
that t < g =1. Thus D1 = D, = K3. However, this shows that G contains Hq1 as a spanning subgraph.

10
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Casg2: |T|=6.

In this case, by Lemma 11(1), G has an induced P4 U 4Pq, which contains each of P3 U4P{, P, U5P; and 6P as an
induced subgraph. So we assume R = 7Pq in this case and thus t > %.

Recall for y € T, h(y) =|{D: D € |Jy>1 Cakt+1 and eg(y, D) > 1}|. If there exists yo € T such that h(yo) > 2, we let x1, x2
be the two neighbors of yg from the two corresponding components in Uk>1Cak+1, respectively. Then T \ {yo} together
with {x1, X} induces 7P1. Thus h(y) <1 for each y e T. This, together with |T| =6, implies that we have either |C3] € {1, 2}
and Cy4q =@ for any k> 2 or |C5| =1 and Cypq =¥ for any 1 <k #2.

If |C3] =1 and Cyy1 =0 for any k > 2, then |S| <4 by Equation (1). Let W be a set of two vertices from the component
in C3 that are adjacent in G to vertices from T. Then ¢(G — (S U W)) > 6, indicating t < % < %. For the other two cases,
we have |S| <3.If |C3] =2 and Cy+q =¥ for any k > 2, let W be a set of four vertices, with two from one component in
C3 and the other two from the other component in C3, which are adjacent in G to vertices from T. If |[C5| =1 and Cyr1 =@
for any 1 <k #2, let W be a set of four vertices from the component in Cs that are adjacent in G to vertices from T. Then
we have (G — (SUW)) > 6, indicating that t < 32 = 2. O

By Claim 3, we now assume that R € {P7 U2P1, P5sU Py, P4U P3, P3U2P,,3P,UPq} and t =3/2.
Claim 4. There exists y € T with h(y) > 2.

Proof. Assume to the contrary that for every y € T, we have h(y) < 1. Define the following partition of T:

To={yeT:ec(y,D)=0forall D U02k+1},
k>1
Ti={yeT:ec(y,D)=1forsomeD e U62k+1}~
k>1
Note that |T¢| = Zkzl(Zk + 1)|Cok+1| by Lemma 8(3) and (4). For each D € Cyy1 for some k > 1, we let Wp be a set of

2k vertices that each has in G a neighbor from T. As each D — Wp is connected to exactly one vertex from T and each
component from Cy is connected to exactly one vertex from T, it follows that

w=su |J wp
DeUk=1 Cakt1

satisfies c(G — W) > |T| = 5, where |T| > 5 is by Claim 2.
By the toughness of G, we have

S|+ ) 2KkICos1] = W[ = t|T| =t(|To| + |T1])
k>1

=t | |Tol+ Y 2k + 1)|Cas1]
k>1

3

> o [ 1Tol + 3@k + DiCa]
k>1

Thus

ISI+ Y kICars11 = 3ITol /24 Y _(2k+3/2)[Cat1] > [Tol + Y2k + DICox 1| =1T],
k>1 k>1 k>1

contradicting Equation (1). O

By Claim 4, there exists y € T such that h(y) > 2. Then as |T| > 5, by Lemma 11(2), G contains an induced P7 U2P;. Thus
we assume that R # P7 U2Pq. We assume first that || ;. C2k+1] > 3 and let Dy, Dy, D3 be three distinct odd components
from | Jy- Cak+1. Let yo € T such that h(yo) > 2. We assume, without loss of generality, that e¢(yo, D1) = e¢(¥o, D2) = 1.
By Lemma 11(2), G contains an induced P, UaP;, where b>7 and a = |T| — 3, and the graph P, UaP; can be chosen
such that the vertices in aPq are from T and the path P, has the form y1x]P1X1yox2P2x5y2, where yo,y1,y2 € T and
X;P1x1 and xjPyx; are respectively contained in D1 and D; such that eg(x, T) =0 for every internal vertex x from P;
and P;. If one of y; and y,, say y1 has a neighbor z; from V(Ds3), then z1y1xjP1Xx1yox2P2x5y2 and T \ {yo, ¥1, Y2}
induce Pg U 2Pq, which contains each of Ps U Py, P4 U P3, and 3P, U Py as an induced subgraph. Let z; € V(D3) be a
neighbor of z;. Then zzz1y1xj‘P1x1yoxz P2x§y2 contains an induced P3 U 2P, whether eg(z2, {0, y2}) =0 or 1. Thus we

11
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assume e (yi, D3) =0 for each i € [1,2] and so we can find y3 € T \ {yo, y1,y2} and z € V(D3) such that y3z € E(G).
Then y1x]P1x1Yox2P2X5y, and zys contains an induced P7 U P3, which contains each of Ps U P;, P3U2P; and 3P, U Py
as an induced subgraph. We are only left to consider R = P4 U P3. As eg(yi, D3) =0 for each i € [1,2], we can find
distinct y3, ya € T\ {¥o, ¥1, y2} and distinct z1, zp € V(D3) such that y3zi, y4z> € E(G). We let P be a shortest path in D3
connecting z; and z;. If eg(yo, V(P)) =0, then y3z1Pzy4 and y1x]P1X1yox2P2x3y> contains an induced P4 U P3. Thus
ec(yo, V(P)) =1. Then y3z1Pz2y4 and y1xjP1x1 together contain an induced P4 U Ps3.

Thus |Uk2] Cok+11=2.Let D1,Dy € Ukz] Cok+1 be the two components. Define the following partition of T:
To={yeT:ec(y,D1) =ec(y, D) =0},

yeT:ec(y,Dy)=1andec(y, D2) =0},
Ti2={yeT:ec(y,D1)=0andec(y, D2) =1},

Tr={ye€T:ec(y,D1) =ec(y,D2)=1}.

By Claim 4, we have T, # (. Now define the following vertex sets:

W1=Ng(T11)NV(Dy), and Wy =Ng(T12) NV (Dy).

We have that |W1| =|Tq1] and |W3| = |T12|. Now let W =S U W1 U W,. Then W is a cutset of G with ¢(G — W) >
ITol 4 IT11] + |T12| + 1 since Ty # @. By toughness, |W| > 3(|To| + |T11] + |T12| + 1). Since [W| = [S|+ [W1| + |W3| =
S|+ |T11] + [T12l, we have |S|+ [T11] + [T12| = 3Tol + 3IT11] + 3|T12| + 3. This implies

3 1 1
S| > =|T, —|T —|T 1.
| |_2| o|+2| 11|+2| 12| +

Thus,

3 1 1
|5|+/<1+k22§|T0|+§|T11|+§|T12|+1+k1+kz, (3)

where 2k; + 1 =e¢(T, D;) for each i € [1,2].
On the other hand, we have

IT| =|Tol 4+ k1 +1+ 2k +1—|T2])

1
=|Tol| + k1 + 2ka +2) — 5(2k1 +1+2ky +1—T11| = IT12D)

1 1
=|To|+k1 +ky+1+ §|T11|+ §|T12|.

Using the size of T and (3), we get |S| + k1 + k2 > |T|, showing a contradiction to Equation (1).
The proof of Theorem 13 is now finished. O

4. Proof of Theorems 5 and 6
Recall that for a graph G, «(G), the independence number of G, is the size of a largest independent set in G.

Proof of Theorem 5. For each i € [0, 11], H; does not contain a 2-factor by Lemma 7. Thus to finish proving Theorem 5, we
are only left to show the three claims below.

Claim 5. The graph H; is (P, U3Pq)-free, Hy is (P3 U 2Pq)-free, and T (H;) =1 for each i € [0, 4].

Proof. We first show that H; is (P U 3Pq)-free for each i € [0,4]. We only show this for Hp, as the proofs for H; for
i €[1,4] are similar. In Ho, there are two types of edges xy: x,y € V(D;) or x € V(D) and y € V(T), where j € [1,2].
Without loss of generality first consider the edge vivy € E(D1) and the subgraph F1 = Hg — (Np,[v1]U Np,[v2]). We see
a(F1) = 2. Now, without loss of generality, consider the edge v1t; and the subgraph F» = Ho — (Ny,[v1]U Ny, [t1]). We see
o (Fy) = 2. In either case, P, U3P; cannot exist as an induced subgraph in Hg. Thus Hg is (P U3Pq)-free.

Then we show that H; is (P3 U 2Pq)-free. Three types of induced paths abc of length 3 exist: ae S,be T,c € V(D),
aeT,b,ceV(D), oracT,b=x,ceT. Without loss of generality, consider the path xt;v; and the subgraph F; = H; —
(Np;[X]IUNpg, [£1]1U Np, [v1]). We see that Fy is a null graph. Then, without loss of generality, consider the path t;v{v, and
the subgraph F» = Hi — (N, [t1]1U Ny, [v1] U Ny, [v2]). We see |V (F2)| = 1. Now, without loss of generality, consider the
path t1xt; and the subgraph F» = Hy — (Ny,[t1]1U Ny, [x] U Ny, [t2]). We see |V (F2)| = 1. In either case, P3 U2P; cannot
exist as an induced subgraph in Hy. Thus Hq is (P3 U2P1)-free.

12
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Let i € [0,4]. As §(H;) =2, t(H;) < 1. It suffices to show 7(H;) > 1. Since H; is 2-connected, we show that c(H; —
W) < |W| for any W C V(H;) such that |[W| > 2. If |W| =2, by considering all the possible formations of W, we have
c(Hi — W) < |W/|. Thus we assume |W| > 3.

Assume by contradiction that there exists W C V(H;) with |W| >3 and c(H; — W) > |W| + 1 > 4. The size of a largest
independent set of each Hg, Ha, H3, and Hy is 4, and of Hy is 3. Since c(H; — W) is bounded above by the size of a largest
independent set of H;, we already obtain a contradiction if i =1 or |W| > 4. So we assume i € {0, 2, 3,4} and |[W|=3.

As c(Hi — W) > 4, for the graph Hp, we must have {v{, vy, v3}NW #@ and {va4, v5, vg} N W #£@. As |W| =3, we have
either WNT =@ or [W NT|=1. In either case, by checking all the possible formations of W, we get c(Ho — W) < 2,
contradicting the choice of W.

As c(H; — W) > 4, for each i € [2, 4], we must have x € W. Thus tj ¢ W for j €[1, 3], as otherwise, c(H; — (W \ {t;})) >
4, contradicting the argument previously that c(H; — W*) <2 for any W* C V(H;) and |W*| <2. As |[W| =3, we then
have |W N {vq, vy, v3, v4}| = 2. However, c(H; — W) < 3 for W = {x, vy, v} for all distinct k, ¢ € [1,4]. We again get a
contradiction to the choice of W. O

Claim 6. The graph Hs with p =5 is (P3 U 4P)-free, (P, U5P1)-free, and 6P1-free with T (Hs) = g.

Proof. Let p =5 and D be the odd component of Hs — (SUT). Note that D = K, = Ks.

We first show that Hs is (P3 U 4Pq)-free. There are three types of induced paths xyz of length 3 in H5:x€ S,y €
T,zeV(D)orxeT,y,ze V(D) orx,ze T,y e S. Without loss of generality, consider the path x1t;y; and the subgraph
F1 =Hs — (Npg[x1]U Npg[t1]1U Npg[y1]1). We see that Fq is a null graph. Now consider the path t1y1y> and the subgraph
Fy = Hs — (Ny,[t1]1U Npg[y11 U Ny [y2]). We see a(F») = 3. Finally consider the path t1x1t; and the subgraph F3 = Hs —
(NH5[t11U Npg[x11U Ny [t2]). We see «(F3) = 3. In any case, an induced copy of P3 U4P; cannot exist in Hs. Thus Hs is
(P3 U4Pq)-free.

We then show that Hs is (P, U 5Pp)-free. There are three types of edges xy in Hs:xe€ S,yeTorxeT,y €
V(D) or x, y € V(D). Without loss of generality, consider the edge x1t1 and the subgraph F1 = Hs — (N5 [x1]UNp,[t1]). We
see |V (F1)| =4. Now consider the edge t1y1 and the subgraph F» = Hs — (Ny4[t11U Npg[y1]). We see |V (F2)| = 4. Finally,
consider the edge y;y2 and the subgraph F3 = Hs — (NgHs5[y1]1UNps[y2]). We see a(F3) = 3. In any case, no induced copy
of P, U5Pq can exist in Hs. Thus Hs is (P, U5P1)-free.

We lastly show that Hs is 6P1-free. There are three types of vertices x in Hs5 : x€ S,x € T, or x € V(D). Without loss of
generality, consider the vertex x; and the subgraph Fi = H5 — Ny [x1]. We see a(F1) = 1. Now consider the vertex t; and
the subgraph F = Hs — Ny [t1]. We see o(F2) = 4. Finally, consider the vertex y; and the subgraph F3 = Hs — Ny.[y1].
We see o(F3) =4. In any case, no induced copy of 6P can exist in Hs. Thus Hs is 6P-free.

We now show that 7(Hs) = g. Let W be a toughset of Hs. Then S C W. Otherwise, by the structure of Hs, we have
c(Hs — W) <3 and |W|>5.As SC W and the only neighbor of each vertex of T in H5 — S is contained in a clique of Hs,
we have TNW = . Since c(Hs — W) > 2, it follows that W NV (D) # @. Then c(Hs — W) =|W NV (D)| if [ WNV(D)| <3
or WNV(D)|=5, and c(Hs — W)= |WNV(D)|+1if |[WNV(D)| =4. The smallest ratio of % is g, which happens
when (WNV(D)|=4. O

Claim 7. The graph Hj is (P, U 5Pq)-free with T (H;) = %for eachie[6,11].

Proof. We show first that each H; is (P, U5P)-free. We do this only for the graph Hg, as the proofs for the rest graphs
are similar. For any edge ab € E(Hg), we see a(Hg — (Nyg[a] U Np4[b])) < 4. Thus no induced copy of (P, U5P1) can exist
in Hg. Thus Hg is (P2 U5P1)-free.

We next show that t(H;) = % for each i € [6, 10]. We have c(H; — (SU{v1,...,Vv5})) =6, implying t(H;) < %. Suppose
T(Hj) < %. Let W be a toughset of Hj. As each H; is 3-connected, we have |W| > 3. Thus c(H; — W) > 3. We have that
either SC W or S ¢ W. Suppose the latter. Then we have SNV (H; — W) # @. Then all vertices in T \ W are contained
in the same component as the one which contains S\ W. Since c(H; — W) > 3, by the structure of H;, it follows that we
have either T C W or {vq,...,vs5} C W. In either case, we have c(H; — W) < 3, implying % > % > %, a contradiction.
So SC W. By Lemma 12, tj ¢ W for all j € [1,5]. Thus each t; € V(H; — W). Now either vo € W or vo ¢ W. Suppose

vo € W, then we cannot have all v; € W without violating Lemma 12. In this case, the minimum ratio % occurs when

PR w 6 _ 7
|WN{vq, vy, vs, va, vs}| = 3. This implies C(Ai_lw >2> ¢
W]

This implies {v1...v5} C W and =W = %, a contradiction. Thus t(H;) = % for each i € [6, 10].

a contradiction. Thus vg ¢ W and we must have vg € V(H; —W).

Lastly we show 7(H11) = Z. We have c(Hy1 — (S U {v1, V2.3, Vs, ve})) = 6, implying T(H11) < Z. Suppose T(Hq1) < Z.
Let W be a tough set of Hy1. As Hqq is 3-connected, we have |W| > 3. Thus c(Hyj; — W) > 3. We have that either SC W
or S ¢ W. Suppose the latter. Then we have SNV (Hj1 — W) # . Then all vertices in T \ W are contained in the same
component as the one which contains S\ W. Since c(Hj; — W) > 3, by the structure of Hyy, it follows that |W| > 5 and

c(Hi1 — W) < 4. This implies % > % > % a contradiction. So S € W. By Lemma 12, t; ¢ W for i € {1, 2,4, 5}. Thus
W] 6

tie V(Hi1 — W) for i € {1, 2,4,5} and we must have W N {v1, v, v3, v4, V5, v, t3} # @. If t3 ¢ W, then ) 25> %,

13
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a contradiction. Thus t3 € W. Then v3 and vg4 are respectively in two distinct components of H;; — W by Lemma 12. Thus
W N{vy, vy, vs,ve} #0 as c(Hyg — W) > 3. Furthermore, we have c(Hj; — W) = |W N {v1, v2, vs, vg}| + 2. The smallest
ratio of % is %, which happens when {vq, v, vs5, vg} € W. Again we get a contradiction to the assumption that
T(Hi) < §. Thus t(Hi)=%. O

The proof of Theorem 5 is complete. 0O

Proof of Theorem 6. Let p > 6 and D be the odd component of Hs — (S U T). Note that D = K. Since c(Hs — (S U
{¥1,...,¥5})) =6, we have t(Hs) < %. We show t(Hs) > %. Let W be a toughset of Hs. Then either SC W or S gZ W.
Suppose the latter. Then we have S NV (Hs — W) # (. Then all vertices in T \ W are contained in the same component
as the one containing S \ W. Since c(Hs — W) > 2, by the structure of Hs, it follows that we have either T C W or
{¥1,...,ys5) € W. In either case, we have c(Hs — W) < 3, implying C(H'S#W) > 2 > L. Now suppose S € W. By Lemma 12,
ti ¢ W for all i. Thus each t; € V(Hs — W). Furthermore, c(Hs — W) = |W NV (D)| + 1. Since W is a cutset of G, we have
|[W NV (D)| > 2. The smallest ratio of C(Hl%w) is %, which happens when |W NV (D)| =5.

For the graph Hiz, we have T(H13) <1 by §(H12) < 2. We show t(H12) > 1. Let W be a toughset of Hy,. Then either
SCW or SZ W. Suppose the latter. Then we have SNV (Hjy — W) # §. Then all vertices in T \ W are contained in the
same component as the one containing S\ W. Since c(Hi2 — W) > 2, by the structure of H1y, it follows that we have either
T CW or {y1,y2,y3} € W. In either case, we have c(Hj — W) < 2, implying % > % > 1. Now suppose S C W.
By Iasmma 12, t; ¢ W for all i. Thus each t; € V(Hi2 — W). This implies [{y1, ¥2, y3} N W|=2 or 3. In either case we see
iy =1 O
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