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For a given graph R , a graph G is R-free if G does not contain R as an induced subgraph. 
It is known that every 2-tough graph with at least three vertices has a 2-factor. In graphs 
with restricted structures, it was shown that every 2K2-free 3/2-tough graph with at least 
three vertices has a 2-factor, and the toughness bound 3/2 is best possible. In viewing 2K2, 
the disjoint union of two edges, as a linear forest, in this paper, for any linear forest R on 
5, 6, or 7 vertices, we find the sharp toughness bound t such that every t-tough R-free 
graph on at least three vertices has a 2-factor.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a simple, undirected graph and let V (G) and E(G) denote the vertex set and the edge set of G , respectively. 
We denote the set of neighbors of a vertex x ∈ V (G) by NG(x). The closed neighborhood of a vertex x in G , denoted by 
NG [x], is the set {x} ∪ NG(x). For any subset S ⊆ V (G), G[S] is the subgraph of G induced by S , G − S denotes the subgraph 
G[V (G) \ S], and NG(S) = ⋃

v∈S NG(v). Given disjoint subsets S and T of V (G), we denote by EG(S, T ) the set of edges 
which have one endvertex in S and the other endvertex in T , and let eG(S, T ) = |EG(S, T )|. If S = {s} is a singleton, we 
write eG(s, T ) for eG({s}, T ). If H ⊆ G is a subgraph of G , and T ⊆ V (G) with T ∩ V (H) = ∅, we write EG(H, T ) and eG(H, T )

for notational simplicity.
For a given graph R , we say that G is R-free if there does not exist an induced copy of R in G . For integers a and b with 

a ≥ 0 and b ≥ 1, we denote by aPb the graph consisting of a disjoint copies of the path Pb . When a = 1, 1Pb is just Pb , and 
when a = 0, 0Pb is the null graph. For two integers p and q, let [p, q] = {i ∈Z : p ≤ i ≤ q}.

Denote by c(G) the number of components of G . Let t ≥ 0 be a real number. We say a graph G is t-tough if for each 
cutset S of G we have t · c(G − S) ≤ |S|. The toughness of a graph G , denoted by τ (G), is the maximum value of t for which 
G is t-tough if G is non-complete and is defined to be ∞ if G is complete.

For an integer k ≥ 1, a k-regular spanning subgraph is a k-factor of G . It is well known, according to a theorem by 
Enomoto, Jackson, Katerinis, and Saito [3] from 1995, that every k-tough graph with at least three vertices has a k-factor if 
k|V (G)| is even and |V (G)| ≥ k + 1. In terms of a sharp toughness bound, particular research interest has been taken for 
2-factors for graphs with restricted structures. For example, it was shown that every 3/2-tough 5-chordal graph (graphs 
with no induced cycle of length at least 6) on at least three vertices has a 2-factor [1]. As 2K2-free graphs are 5-chordal, 
as a consequence, every 3/2-tough 2K2-free graph on at least three vertices has a 2-factor [5]. The toughness bound 3/2 is 
best possible in both results.
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Fig. 1. The five exceptional graphs for Theorem 1(1), where S = {x} and T = {t1, t2, t3}.

A linear forest is a graph consisting of disjoint paths. In viewing 2K2 as a linear forest on 4 vertices and the result by Ota 
and Sanka [5] that every 3/2-tough 2K2-free graph on at least three vertices has a 2-factor, we investigate the existence 
of 2-factors in R-free graphs when R is a linear forest on 5, 6, or 7 vertices. These graphs R are listed below, where the 
unions are vertex disjoint unions.

1. P5 P4 ∪ P1 P3 ∪ P2 P3 ∪ 2P1 2P2 ∪ P1 P2 ∪ 3P1 5P1;
2. P6 P5 ∪ P1 P4 ∪ P2 P4 ∪ 2P1 2P3 P3 ∪ P2 ∪ P1 P3 ∪ 3P1 3P2 2P2 ∪ 2P1 P2 ∪ 4P1 6P1;
3. P7 P6 ∪ P1 P5 ∪ P2 P5 ∪ 2P1 P4 ∪ P3 P4 ∪ P2 ∪ P1 P4 ∪ 3P1 2P3 ∪ P1 P3 ∪ 2P2 P3 ∪ P2 ∪ 2P1

P3 ∪ 4P1 3P2 ∪ P1 2P2 ∪ 3P1 P2 ∪ 5P1 7P1.

Our main results are the following.

Theorem 1. Let t > 0 be a real number, R be any linear forest on 5 vertices, and G be a t-tough R-free graph on at least 3 vertices. 
Then G has a 2-factor provided that

(1) R ∈ {P4 ∪ P1, P3 ∪ 2P1, P2 ∪ 3P1} and t = 1 unless

(a) R = P2 ∪ 3P1 , and G ∼= H0 or G contains Hi as a spanning subgraph such that E(G) \ E(Hi) ⊆ EG(S, V (G) \ (T ∪ S)) for 
each i ∈ [1, 4], where Hi , S and T are defined in Fig. 1.

(b) R = P3 ∪ 2P1 , and G contains H1 as a spanning subgraph such that E(G) \ E(H1) ⊆ EG(S, V (G) \ (T ∪ S)).

(2) R = 5P1 and t > 1.
(3) R ∈ {P5, P3 ∪ P2, 2P2 ∪ P1} and t = 3/2.

Theorem 2. Let t > 0 be a real number, R be any linear forest on 6 vertices, and G be a t-tough R-free graph on at least 3 vertices. 
Then G has a 2-factor provided that

(1) R ∈ {P4 ∪ 2P1, P3 ∪ 3P1, P2 ∪ 4P1, 6P1} and t > 1 unless R = 6P1 and G contains H5 with p = 5 as a spanning subgraph such 
that E(G) \ E(H5) ⊆ EG(S, V (G) \ (T ∪ S)) ∪ E(G[S]), where H5 , S and T are defined in Fig. 2.

(2) R ∈ {P6, P5 ∪ P1, P4 ∪ P2, 2P3, P3 ∪ P2 ∪ P1, 3P2, 2P2 ∪ 2P1} and t = 3/2.

Theorem 3. Let t > 0 be a real number, R be any linear forest on 7 vertices, and G be a t-tough R-free graph on at least 3 vertices. 
Then G has a 2-factor provided that
2
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Fig. 2. The exceptional graph for Theorem 2(1), where S = {x1, x2}, T = {t1, . . . , t5}, and p = 5.
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Fig. 3. The six exceptional graphs for Theorem 3(1)(b), where S = {x1, x2}, T = {t1, t2, t3, t4, t5}, and “+” represents the join of Hi [S] and Hi [T ], i ∈ [6,11].

(1) R ∈ {P4 ∪ 3P1, P3 ∪ 4P1, P2 ∪ 5P1} and t > 1 unless

(a) when R �= P4 ∪ 3P1 , G contains H5 with p = 5 as a spanning subgraph such that E(G) \ E(H5) ⊆ EG(S, V (G) \ (T ∪ S)) ∪
E(G[S]), where H5 , S and T are defined in Fig. 2.

(b) R = P2 ∪5P1 and G contains one of H6, . . . , H11 as a spanning subgraph such that E(G) \ E(Hi) ⊆ EG(S, V (G) \ (T ∪ S)) ∪
E(G[S]) ∪ E(G[V (G) \ (T ∪ S)]), where Hi, S and T are defined in Fig. 3 for each i ∈ [6, 11].

(2) R = 7P1 and t > 7
6 unless G contains H5 with p = 5 as a spanning subgraph such that E(G) \ E(H5) ⊆ EG(S, V (G) \ (T ∪ S)) ∪

E(G[S]).
(3) R ∈ {P7, P6 ∪ P1, P5 ∪ P2, P5 ∪ 2P1, P4 ∪ P3, P4 ∪ P2 ∪ P1, 2P3 ∪ P1, P3 ∪ 2P2, P3 ∪ P2 ∪ 2P1, 3P2 ∪ P1, 2P2 ∪ 3P1} and 

t = 3/2.

Remark 4 (Examples demonstrating sharp toughness bounds). The toughness bounds in Theorems 1 to 3 are all sharp.

(1) Theorem 1(1) when R ∈ {P4 ∪ P1, P3 ∪ 2P1, P2 ∪ 3P1} and t = 1. The graph showing that the toughness 1 is best 
possible is the complete bipartite Kn−1,n for any integer n ≥ 2. The graph Kn,n−1 is (P2 ∪ P1)-free and so is R-free, with 
limn→∞ τ (Kn,n−1) = limn→∞ n−1

n = 1, but contains no 2-factor.
(2) Theorem 1(2), Theorem 2(1) and Theorem 3(1) and t > 1. The graph showing that the toughness is best possible is 

the graph H12, which is constructed as follows: let p ≥ 3, Kp be a complete graph, and y1, y2, y3 ∈ V (Kp) be distinct, 
3
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Fig. 4. Sharpness example for Theorem 1(2), Theorem 2(1) and Theorem 3(1), where S = {x} and T = {t1, t2, t3}.

S = {x}, and T = {t1, t2, t3}, then H12 is obtained from Kp , S and T by adding edges ti x and ti yi for each i ∈ [1, 3]. 
See Fig. 4 for a depiction. By inspection, the graph is 5P1-free and (P4 ∪ 2P1)-free. So the graph is R-free for any 
R ∈ {5P1, P4 ∪ 2P1, P3 ∪ 3P1, P2 ∪ 4P1, 6P1, P4 ∪ 3P1, P3 ∪ 4P1, P2 ∪ 5P1}. For any given p ≥ 3, the graph H12 does not 
contain a 2-factor, as any 2-factor has to contain the edges t1x, t2x and t3x. We will show τ (H12) = 1 in the last section.

(3) For Theorem 1(3), Theorem 2(2) and Theorem 3(3) and t = 3
2 : note that all the graphs R in these cases contain 2K2

as an induced subgraph. Chvátal [2] constructed a sequence {Gk}∞k=1 of split graphs (graphs whose vertex set can be 
partitioned into a clique and an independent set) having no 2-factors and τ (Gk) = 3k

2k+1 for each positive integer k. As 
the class of 2K2-free graphs is a superclass of split graphs, 32 -tough is the best possible toughness bound for a 2K2-free 
graph to have a 2-factor.

(4) Theorem 3(2) and t > 7
6 . The graph showing that the toughness is best possible is the graph H5 with p ≥ 6, which is 

constructed as follows: let p ≥ 5, Kp be a complete graph, and y1, y2, y3, y4, y5 ∈ V (Kp) be distinct, S = {x1, x2}, and 
T = {t1, t2, t3, t4, t5}. Then H5 is obtained from Kp , S and T by adding edges ti x j and ti yi for each i ∈ [1, 5] and each 
j ∈ [1, 2]. See Fig. 2 for a depiction. By inspection, the graph is 7P1-free. For any given p ≥ 5, the graph H5 does not 
contain a 2-factor, as any 2-factor has to contain at least three edges from one of x1 and x2 to at least three vertices of 
T . We will show τ (H5) = 7

6 when p ≥ 6 in the last section.

To supplement Theorems 1 to 3, we show that the exceptional graphs in Figs. 1 to 3 satisfy the corresponding conditions 
below.

Theorem 5. The following statements hold.

(1) The graph Hi is (P2 ∪ 3P1)-free, contains no 2-factor, and τ (Hi) = 1 for each i ∈ [0, 4], the graph H1 is also (P3 ∪ 2P1)-free.
(2) The graph Hi is (P2 ∪ 5P1)-free and contains no 2-factor for each i ∈ [5, 11], H5 with p = 5 is (P3 ∪ 4P1)-free and 6P1-free. 

Furthermore, τ (H5) = 6
5 when p = 5 and τ (Hi) = 7

6 for each i ∈ [6, 11].

We have explained that H5 and H12 are R-free for the corresponding linear forests R and contain no 2-factor in Re-
mark 4(2) and (4). The Theorem below is to verify the toughness of the graphs H5 with p ≥ 6 and H12.

Theorem 6. The following statements hold.

(1) τ (H5) = 7
6 when p ≥ 6;

(2) τ (H12) = 1.

The remainder of this paper is organized as follows. In section 2, we introduce more notation and preliminary results 
on proving existence of 2-factors in graphs. In section 3, we prove Theorems 1-3. Theorems 5 and 6 are proved in the last 
section.

2. Preliminaries

One of the main proof ingredients of Theorems 1 to 3 is to apply Tutte’s 2-factor Theorem. We start with some notation. 
Let S and T be disjoint subsets of vertices of a graph G , and D be a component of G − (S ∪ T ). The component D is said 
to be an odd component (resp. even component) of G − (S ∪ T ) if eG(D, T ) ≡ 1 (mod 2) (resp. eG(D, T ) ≡ 0 (mod 2)). Let 
h(S, T ) be the number of all odd components of G − (S ∪ T ). Define

δ(S, T ) = 2|S| − 2|T | +
∑

dG−S(y) − h(S, T ).
y∈T

4
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It is easy to see that δ(S, T ) ≡ 0 (mod 2) for every S , T ⊆ V (G) with S ∩ T = ∅. We use the following criterion for the 
existence of a 2-factor, which is a restricted form of Tutte’s f -factor Theorem.

Lemma 7 (Tutte [6]). A graph G has a 2-factor if and only if δ(S, T ) ≥ 0 for every S, T ⊆ V (G) with S ∩ T = ∅.

An ordered pair (S, T ), consisting of disjoint subsets of vertices S and T in a graph G , is called a barrier if δ(S, T ) ≤ −2. 
By Lemma 7, if G does not have a 2-factor, then G has a barrier. In [4], a biased barrier of G is defined as a barrier (S, T ) of 
G such that among all the barriers of G ,

(1) |S| is maximum; and
(2) subject to (1), |T | is minimum.

The following properties of a biased barrier were derived in [4].

Lemma 8. Let G be a graph without a 2-factor, and let (S, T ) be a biased barrier of G. Then each of the following holds.

(1) The set T is independent in G.
(2) If D is an even component with respect to (S, T ), then eG(T , D) = 0.
(3) If D is an odd component with respect to (S, T ), then for any y ∈ T , eG(y, D) ≤ 1.
(4) If D is an odd component with respect to (S, T ), then for any x ∈ V (D), eG(x, T ) ≤ 1.

Let G be a graph without a 2-factor and (S, T ) be a barrier of G . For an integer k ≥ 0, let Ck denote the set of components 
D of G − (S ∪ T ) such that eG(D, T ) = k. The following result was proved as a claim in [4] but we include a short proof 
here for self-completeness.

Lemma 9. Let G be a graph without a 2-factor, and let (S, T ) be a biased barrier of G. Then |T | ≥ |S| + ∑
k≥1 k|C2k+1| + 1.

Proof. Let U = V (G) \ S . Since (S, T ) is a barrier,

δ(S, T ) = 2|S| − 2|T | +
∑
y∈T

dG−S(y) − h(S, T )

= 2|S| − 2|T | +
∑
y∈T

dG−S(y) −
∑
k≥0

|C2k+1| ≤ −2.

By Lemma 8(1) and Lemma 8(2),
∑
y∈T

dG−S(y) =
∑
y∈T

eG(y,U ) = eG(T ,U ) =
∑
k≥0

(2k + 1)|C2k+1|.

Therefore, we have

−2 ≥ 2|S| − 2|T | +
∑
k≥0

(2k + 1)|C2k+1| −
∑
k≥0

|C2k+1|,

which yields |T | ≥ |S| + ∑
k≥1 k|C2k+1| + 1. �

We use the following lemmas in our proof.

Lemma 10. Let t ≥ 1, G be a t-tough graph on at least three vertices containing no 2-factor, and (S, T ) be a biased barrier of G. Then 
the following statements hold.

(1) If C1 �= ∅, then |S| + 1 ≥ 2t. Consequently, S = ∅ implies C1 = ∅, and |S| = 1 implies C1 = ∅ when t > 1.
(2)

⋃
k≥1 C2k+1 �= ∅.

Proof. By Lemma 9, T �= ∅. Since G is 1-tough and thus is 2-connected, dG (y) ≥ 2 for every y ∈ T . This together with 
Lemma 8(1)-(3) implies |S| + ∑

k≥0 |C2k+1| ≥ 2.
For the first part of (1), suppose to the contrary that |S| + 1 < 2t . Let D ∈ C1 and y ∈ V (T ) be adjacent in G to some 

vertex v ∈ V (D). As |S| +∑
k≥0 |C2k+1| ≥ 2 and |T | ≥ |S| +1 by Lemma 9, we have c(G − (S ∪{y})) ≥ 2 regardless of whether 

or not S = ∅. But c(G − (S ∪ {y})) ≥ 2 implies τ (G) < 2t/2 = t , contradicting G being t-tough. The second part of (1) is a 
consequence of the first part.
5
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For (2), suppose to the contrary that 
⋃

k≥1 C2k+1 = ∅. By Lemma 10(1), |S| + |C1| ≥ 2 implies |S| ≥ 1. Consequently, 
|T | ≥ 2 by Lemma 9. As every component of G − (S ∪ T ) in C1 is connected to exactly one vertex of T , S is a cutset of G
with c(G − S) ≥ |T |. However, |T | ≥ |S| + ∑

k≥1 k|C2k+1| + 1 = |S| + 1, implying τ (G) < 1, a contradiction. �
A path P connecting two vertices u and v is called a (u, v)-path, and we write uP v or v Pu in order to specify the two 

endvertices of P . Let uP v and xQ y be two disjoint paths. If vx is an edge, we write uP vxQ y as the concatenation of P
and Q through the edge vx. Let G be a graph without a 2-factor, and let (S, T ) be a barrier of G . For y ∈ T , define

h(y) = |{D : D ∈
⋃
k≥1

C2k+1 and eG(y, D) ≥ 1}|.

Lemma 11. Let G be a graph without a 2-factor, and let (S, T ) be a biased barrier of G. Then the following statements hold.

(1) If | ⋃k≥1 C2k+1| ≥ 1, then G contains an induced P4 ∪ aP1 , where a = |T | − 2.
(2) If there exists y0 ∈ T with h(y0) ≥ 2, then for some integer b ≥ 7, G contains an induced Pb∪aP1 , where a = |T | −3. Furthermore, 

an induced Pb ∪ aP1 can be taken such that the vertices in aP1 are from T and the path Pb has the form y1x∗
1P1x1 y0x2P2x∗

2 y2 , 
where y0, y1, y2 ∈ T and x∗

1P1x1 and x∗
2P2x2 are respectively contained in two distinct components from 

⋃
k≥1 C2k+1 such that 

eG(x, T ) = 0 for every internal vertex x from P1 and P2 .

Proof. Lemma 8(1), (3) and (4) will be applied frequently in the arguments sometimes without mentioning it.
Let D ∈ ⋃

k≥1 C2k+1. The existence of D implies |T | ≥ 3 and |V (D)| ≥ 3 by Lemma 8(3) and (4). We claim that for a 
fixed vertex x1 ∈ V (D) such that eG(x1, T ) = 1, there exists distinct x2 ∈ V (D) and an induced (x1, x2)-path P in D with 
the following two properties: (a) eG (x2, T ) = 1, and (b) eG (x, T ) = 0 for every x ∈ V (P ) \ {x1, x2}. Note that the vertex x1
exists by Lemma 8(4). Let y1 ∈ T be the vertex such that eG (x1, T ) = eG(x1, y1) = 1 and W = NG(T \ {y1}) ∩ V (D). Since 
|NG(T ) ∩ V (D)| ≥ 3 and |NG (y1) ∩ V (D)| = 1, we have W �= ∅. By Lemma 8(4), x1 /∈ W . Now in D , we find a shortest path 
P connecting x1 and some vertex from W , say x2. Then x2 and P satisfy properties (a) and (b), respectively. Let y2 ∈ T such 
that eG(x2, T ) = eG(x2, y2) = 1. The vertex y2 uniquely exists by the choice x2 and Lemma 8(4). By Lemma 8(1) and (4), 
and the choice of P , we know that y1x1Px2 y2 and T \ {y1, y2} together contain an induced P4 ∪ aP1. This proves (1).

We now prove (2). By Lemma 8(3), the existence of y0 implies | ⋃k≥1 C2k+1| ≥ 2, which in turn gives |T | ≥ 3 by 
Lemma 8(3) again. We let D1, D2 ∈ ⋃

k≥1 C2k+1 be distinct such that eG (y0, D1) = 1 and eG(y0, D2) = 1. Let xi ∈ Di such that 
eG(y0, Di) = eG(y0, xi) = 1. By the argument in the first paragraph above, we can find x∗

i ∈ V (Di) \ {xi} and an (xi, x∗
i )-path 

Pi in Di for each i ∈ {1, 2}. By the choice of Pi and Lemma 8(4), there are unique y1, y2 ∈ T \ {y0} such that x∗
i yi ∈ E(G). 

If y1 �= y2, by the choice of P1 and P2 and Lemma 8(1) and (4), we know that y1x∗
1P1x1 y0x2P2x∗

2 y2 and T \ {y0, y1, y2}
together contain an induced Pb ∪aP1 for some integer b ≥ 7. Thus we assume y1 = y2. Then the vertex y1 can also play the 
role of y0. Let W = NG(T \ {y0, y1}) ∩ V (D2). By Lemma 8(4), x2, x∗

2 /∈ W . Now in D2, we find a shortest path P∗
2 connecting 

some vertex of {x2, x∗
2} and some vertex from W , say z. Let the neighbor of z in G from T be z1. If P∗

2 is an (x2, z)-path, then 
y1x∗

1P1x1 y0x2P∗
2z and T \ {y0, y1, z1} together contain an induced Pb ∪ aP1. If P∗

2 is an (x∗
2, z)-path, then y0x1P1x∗

1 y1x
∗
2P

∗
2z

and T \ {y0, y1, z1} together contain an induced Pb ∪ aP1. The second part of (2) is clear by the construction above. �
Let G be a non-complete graph. A cutset S of V (G) is a toughset of G if |S|

c(G−S) = τ (G).

Lemma 12. If G is a connected graph and S is a toughset of G, then for every x ∈ S, x is adjacent in G to vertices from at least two 
components of G − S.

Proof. Assume to the contrary that there exists x ∈ S such that x is adjacent in G to vertices from at most one component 
of G − S . Then c(G − (S \ {x})) = c(G − S) ≥ 2 and

|S \ {x}|
c(G − (S \ {x})) <

|S|
c(G − S)

= τ (G),

contradicting G being τ (G)-tough. �
3. Proof of Theorems 1, 2, and 3

Let R be any linear forest on at most 7 vertices. If G is R-free, then G is also R∗-free for any supergraph R∗ that contains 
R as an induced subgraph. To prove Theorems 1 to 3, we will show that the corresponding statements hold for a supergraph 
R∗ of R , where R∗ contains R as an induced subgraph. This strategy simplifies the cases of possibilities of R . Let us first list 
the supergraphs that we will use.

(1) P4 ∪ 3P1 is a supergraph of the following graphs: P4 ∪ 2P1, P3 ∪ 3P1, and P2 ∪ 4P1;
6
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(2) 6P1 is a supergraph of 5P1;
(3) P3 ∪ 2P2 is a supergraph of 3P2;
(4) P7 ∪ 2P1 is a supergraph of the following graphs:

(a) P5, P3 ∪ P2, 2P2 ∪ P1;
(b) P6, P5 ∪ P1, P4 ∪ P2, 2P3, P3 ∪ P2 ∪ P1, 2P2 ∪ 2P1;
(c) P7, P6 ∪ P1, P5 ∪ 2P1, P4 ∪ P2 ∪ P1, 2P3 ∪ P1, P3 ∪ P2 ∪ 2P1, 2P2 ∪ 3P1.

Those supergraphs above together with the graphs R listed below cover all the 33 R graphs described in Theorems 1
to 3. Theorems 1 to 3 are then consequences of the theorem below.

Theorem 13. Let t > 0 be a real number, R be a linear forest, and G be a t-tough R-free graph on at least 3 vertices. Then G has a 
2-factor provided that

(1) R ∈ {P4 ∪ P1, P3 ∪ 2P1, P2 ∪ 3P1} and t = 1 unless

(a) R = P2 ∪ 3P1 , and G ∼= H0 or G contains Hi as a spanning subgraph such that E(G) \ E(Hi) ⊆ EG(S, V (G) \ (T ∪ S)) for 
each i ∈ [1, 4], where Hi , S and T are defined in Fig. 1.

(b) R = P3 ∪ 2P1 , and G contains H1 as a spanning subgraph such that E(G) \ E(H1) ⊆ EG(S, V (G) \ (T ∪ S)).

(2) R ∈ {P4 ∪ 3P1, P3 ∪ 4P1, P2 ∪ 5P1, 6P1} and t > 1 unless

(a) when R �= P4 ∪ 3P1 , G contains H5 with p = 5 as a spanning subgraph such that E(G) \ E(H5) ⊆ EG(S, V (G) \ (T ∪ S)) ∪
E(G[S]), where H5 , S and T are defined in Fig. 2.

(b) R = P2 ∪5P1 and G contains one of H6, . . . , H11 as a spanning subgraph such that E(G) \ E(Hi) ⊆ EG(S, V (G) \ (T ∪ S)) ∪
E(G[S]) ∪ E(G[V (G) \ (T ∪ S)]), where Hi, S and T are defined in Fig. 3 for each i ∈ [6, 11].

(3) R = 7P1 and t > 7
6 unless G contains H5 with p = 5 as a spanning subgraph such that E(G) \ E(H5) ⊆ EG(S, V (G) \ (T ∪ S)) ∪

E(G[S]).
(4) R ∈ {P7 ∪ 2P1, P5 ∪ P2, P4 ∪ P3, P3 ∪ 2P2, 3P2 ∪ P1} and t = 3/2.

Proof. Assume by contradiction that G does not have a 2-factor. By Lemma 7, G has a barrier. We choose (S, T ) to be a 
biased barrier. Thus (S, T ) and G satisfy all the properties listed in Lemma 8. These properties will be used frequently even 
without further mentioning sometimes. By Lemma 9,

|T | ≥ |S| +
∑
k≥1

k|C2k+1| + 1. (1)

Since t ≥ 1, by Lemma 10(2), we know that
⋃
k≥1

C2k+1 �= ∅. (2)

This implies |T | ≥ 3 and so G contains an induced P4 ∪ P1 by Lemma 11(1). Thus we assume R �= P4 ∪ P1 in the rest of the 
proof.

Claim 1. R /∈ {P3 ∪ 2P1, P2 ∪ 3P1} unless G falls under one of the exceptional cases as in (a) and (b) of Theorem 13(1).

Proof. Assume instead that R ∈ {P3 ∪ 2P1, P2 ∪ 3P1}. Thus t = 1. We may assume that G does not fall under any of the 
exceptional cases as in (a) and (b) of Theorem 13(1).

It must be the case that |T | = 3, as otherwise G contains an induced P4 ∪ 2P1 by Lemma 11(1), and so contains an 
induced R . By Equation (1), we have | ⋃k≥1 C2k+1| + |S| ≤ 2. By Lemma 10(1), we have that C1 = ∅ if S = ∅. Since G is 
1-tough and so δ(G) ≥ 2, Lemma 8(1)-(3) implies that | ⋃k≥1 C2k+1| + |S| = 2. By (2), we have the two cases below.

Case 1: | ⋃k≥1 C2k+1| = 2 and S = ∅.

Let D1, D2 ∈ ⋃
k≥1 C2k+1 be the two odd components of G − (S∪ T ). Since |T | = 3, Lemma 8(3) implies that eG (Di, T ) = 3

for each i ∈ [1, 2]. Let y ∈ T and x ∈ V (D1) such that xy ∈ E(G). We let x1 be a neighbor of x from D1. Then yxx1 is an 
induced P3 by Lemma 8(3). Let y1 ∈ T \ {y} such that y1x1 /∈ E(G), which is possible as |T | = 3 and eG(x1, T ) ≤ 1 by 
Lemma 8(4). We now let x2 ∈ V (D2) such that eG(x2, {y, y1}) = 0, which is again possible as |NG (T ) ∩ V (D2)| = 3 and 
each vertex of D2 is adjacent in G to at most one vertex of T . However, yxx1, y1 and x2 together form an induced copy of 
P3 ∪ 2P1. Therefore, we assume R = P2 ∪ 3P1.
7



E. Grimm, A. Johnsen and S. Shan Discrete Mathematics 346 (2023) 113578
We first claim that |V (Di)| = 3 for each i ∈ [1, 2]. Otherwise, say |V (D2)| ≥ 4. Let y ∈ T and x ∈ V (D1) such that 
xy ∈ E(G). Take x1 ∈ V (D2) such that eG(x1, T ) = 0, which exists as |NG (T ) ∩ V (D2)| = 3. Then xy, x1 and T \ {y} together 
form an induced copy of P2 ∪ 3P1, giving a contradiction. We next claim that Di = K3 for each i ∈ [1, 2]. Otherwise, say 
D1 �= K3. As D1 is connected, it follows that D1 = P3. If also D2 �= K3 and so D2 = P3, then deleting the two vertices of 
degree 2 from both D1 and D2 gives three components (note that each vertex of T is adjacent in G to one vertex of D1
and one vertex of D2), showing that τ (G) ≤ 2/3 < 1. Thus D2 = K3. We let x1, x2 ∈ V (D1) be nonadjacent, y1, y2 ∈ T such 
that eG(xi, yi) = 1 for each i ∈ [1, 2], and z1, z2 ∈ V (D2) such that eG(yi, zi) = 1 for each i ∈ [1, 2]. Let y ∈ T \ {y1, y2}. Then 
z1z2, y, x1 and x2 together form an induced copy of P2 ∪ 3P1, giving a contradiction.

Thus |V (Di)| = 3 and Di = K3 for each i ∈ [1, 2]. However, this implies that G ∼= H0.

Case 2: | ⋃k≥1 C2k+1| = 1 and |S| = 1.

Since G is 1-tough and so is 2-connected, we have C2k = ∅ for any k ≥ 0: there is no edge between T and any even 
component of G − (S ∪ T ) by Lemma 8(2), and |S| = 1. Let D ∈ ⋃

k≥1 C2k+1 be the odd component of G − (S ∪ T ). Assume 
first that R = P3 ∪ 2P1. Then we have |V (D)| = 3. Otherwise, |V (D)| ≥ 4. Let x ∈ V (D) such that eG (x, T ) = 0 and P be a 
shortest path of D from x to a vertex, say x1 ∈ V (D) ∩ NG(T ). Let y ∈ T such that eG (x1, y) = 1. Then xPx1 y and T \ {y}
contain an induced copy of R , a contradiction.

Since G does not contain H1 as a spanning subgraph such that E(G) \ E(H1) ⊆ EG(S, V (G) \ (T ∪ S)), it follows that 
D �= K3. As D is connected, it follows that D = P3. Now deleting the vertex in S together with the degree 2 vertex of D
produces three components, showing τ (G) ≤ 2/3 < 1.

Therefore, we assume now that R = P2 ∪ 3P1. Since G does not contain H1 as a spanning subgraph such that E(G) \
E(H1) ⊆ EG(S, V (G) \ (T ∪ S)), the argument for the case R = P3 ∪ 2P1 above implies that |V (D)| ≥ 4. We claim that 
|V (D)| = 4. If |V (D)| ≥ 5, we let x1, x2 ∈ V (D) \ NG(T ) be any two distinct vertices. If x1x2 ∈ E(G), then x1x2 together with 
T form an induced copy of R , a contradiction. Thus V (D) \ NG(T ) is an independent set in G . However, c(G − (S ∪ (NG(T ) ∩
V (D)))) = |T | + |V (D) \ NG(T )| ≥ 5, implying τ (G) ≤ 4/5 < 1.

Thus |V (D)| = 4. Let x ∈ V (D) such that eG(x, T ) = 0. Since G does not contain Hi as a spanning subgraph such that 
E(G) \ E(Hi) ⊆ EG(S, V (G) \ (T ∪ S)) for each i ∈ [2, 4], it follows that either dD(x) ≤ 2 or dD(x) = 3 and D = K1,3. If 
dD(x) = 3, then as D = K1,3, we have c(G − (S∪{x})) = 3, implying τ (G) ≤ 2/3 < 1. Thus dD(x) ≤ 2. Let V (D) = {x, x1, x2, x3}
and assume xx1 /∈ E(D). Then c(G − (S ∪ {x2, x3})) = 4, implying τ (G) ≤ 3/4 < 1. The proof of Case 2 is complete. �

Thus by Claim 1 and the fact that R �= P4 ∪ P1, we can assume R /∈ {P4 ∪ P1, P3 ∪ 2P1, P2 ∪ 3P1} from this point on. 
Therefore we have t > 1. This implies that G is 3-connected and so δ(G) ≥ 3. Thus |S| +| ⋃k≥0 C2k+1| ≥ 3 by Lemma 8(1)-(4).

Claim 2. |T | ≥ 5.

Proof. Equation (2) implies |T | ≥ 3. Assume to the contrary that |T | ≤ 4. We consider the following two cases.

Case 1: |T | = 3.

Since |S| + | ⋃k≥0 C2k+1| ≥ 3, we already have a contradiction to Equation (1) if C1 = ∅. Thus C1 �= ∅, which gives |S| ≥ 2
by Lemma 10(1). However, we again get a contradiction to Equation (1) as 

⋃
k≥1 C2k+1 �= ∅ by Equation (2).

Case 2: |T | = 4.

By Lemma 8(3), we know that C2k+1 = ∅ for any k ≥ 2. First assume |S| ≤ 1. Then C1 = ∅ by Lemma 10(1). By Lemma 8, 
there are at least 3|T | = 12 edges going from T to vertices in S and components in 

⋃
k≥1 C2k+1. As C2k+1 = ∅ for any k ≥ 2, 

it follows that |C3| ≥ 4 if |S| = 0 and |C3| ≥ 3 if |S| = 1, contradicting Equation (1).
Next, assume |S| ≥ 2. By Equations (1) and (2), we have |S| = 2. Let D be the single component in C3. Define WD to 

be a set of 2 vertices in D which are all adjacent in G to some vertex from T . Then S ∪ WD is a cutset in G such that 
|S ∪ WD | = 4 and c(G − (S ∪ WD)) ≥ |T | = 4, contradicting τ (G) ≥ t > 1. �

By Claim 2 and Lemma 11(1), we see that G contains an induced R = P4 ∪ 3P1. Thus we may assume R /∈ {P4 ∪ P1, P3 ∪
2P1, P2 ∪ 3P1, P4 ∪ 3P1} from this point on.

Claim 3. R /∈ {P3 ∪ 4P1, P2 ∪ 5P1, 6P1, 7P1} unless G falls under the exceptional cases as in (a) and (b) of Theorem 13(2) or as in 
Theorem 13(3).

Proof. We may assume that G does not fall under any of the exceptional cases as in (a) and (b) of Theorem 13(2) and as 
in Theorem 13(3). Thus we show that R /∈ {P3 ∪ 4P1, P2 ∪ 5P1, 6P1, 7P1}.

Assume to the contrary that R ∈ {P3 ∪4P1, P2 ∪5P1, 6P1, 7P1}. By Lemma 11(1), G contains an induced P4 ∪aP1, where 
a = |T | − 2. If a ≥ 5, then each of P3 ∪ 4P1, P2 ∪ 5P1, 6P1, and 7P1 is an induced subgraph of P4 ∪ aP1, a contradiction. 
8
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Thus a ≤ 4 and so |T | ≤ 6. As |T | ≤ 6, we have that 
⋃

k>2 C2k+1 = ∅ by Lemma 8(3). By Claim 2, |T | ≥ 5. Thus, we have two 
cases.

Case 1: |T | = 5.
As |T | = 5, we have C2k+1 = ∅ for any k ≥ 3. We consider two cases regarding whether or not |C3 ∪ C5| ≥ 2.
Case 1.1: |C3 ∪ C5| = 1.
Let D ∈ C2k+1 ⊆ C3 ∪ C5 be the only odd component of G − (S ∪ T ). Note that k is either one or two. By Equation (1), 

5 ≥ |S| + k + 1, so |S| ≤ 4 − k.
We first claim that C2� = ∅ for any � ≥ 0. Suppose to the contrary that C2� �= ∅ for some � ≥ 0. Then � = 0 by Lemma 8(2). 

Let WD be a set of 2k vertices (which exist by Lemma 8(4)) from D which are adjacent in G to vertices from T . Then S∪WD

forms a cutset and we have

t ≤ |S| + 2k

|T | + 1
≤ 4+ k

6
≤ 6

6
= 1,

contradicting t > 1.
We then claim k = 2. For otherwise, k = 1. Let WD be a set of 2k vertices from D which are adjacent in G to vertices 

from T . Then S ∪ WD forms a cutset and we have

t ≤ |S| + 2k

5
≤ 4+ k

5
= 5

5
= 1,

contradicting t > 1. Thus k = 2.
From k = 2, we get |S| ≤ 2. We lastly claim |S| = 2. For otherwise, |S| ≤ 1. Let WD be a set of 2k vertices from D which 

are adjacent in G to vertices from T . Then S ∪ WD forms a cutset and we have

t ≤ |S| + 2k

5
≤ 1+ 2k

5
= 5

5
= 1,

contradicting t > 1.
Since |S| = 2 and D is the only odd component of G − (S ∪ T ), we know that every vertex of T is adjacent in G to every 

vertex from S by δ(G) ≥ 3. We now consider two subcases to finish the proof of Case 1.1.

Case 1.1.1: |V (D)| ≥ 6.
For R = P3 ∪ 4P1, let x ∈ V (D) such that eG(x, T ) = 0. Let P be a shortest path in D from x to a vertex, say x∗ from 

NG(T ) ∩ V (D). Let y∗ ∈ T such that eG(x∗, y∗) = 1. Then xPx∗ y∗ and T \ {y∗} contain P3 ∪ 4P1 as an induced subgraph. We 
consider next that R = 6P1. Then T and the vertex of D that is not adjacent in G to any vertex from T form an induced 
6P1, giving a contradiction. For R = 7P1, let WD be the set of 2k + 1 vertices (which exist by Lemma 8(4)) from D which 
are adjacent in G to vertices from T . Then S ∪ WD forms a cutset and we have

t ≤ |S| + 2k + 1

|T | + 1
≤ 4+ k + 1

6
= 7

6
,

giving a contradiction to t > 7/6.
Lastly, we consider R = P2 ∪ 5P1. For any x ∈ V (D) such that eG (x, T ) = 0, it must be the case that x is adjacent in G to 

every vertex from NG(T ) ∩ V (D). Otherwise, let x∗ ∈ NG(T ) ∩ V (D) such that xx∗ /∈ E(G). Let y∗ ∈ T such that eG (x∗, y∗) = 1. 
Then x∗ y∗ and (T \ {y∗}) ∪ {x} contain P2 ∪ 5P1 as an induced subgraph. Furthermore, if |V (D)| − |NG(T ) ∩ V (D)| ≥ 2, then 
V (D) \ (NG(T ) ∩ V (D)) is an independent set in G . Otherwise, an edge with both endvertices from V (D) \ (NG(T ) ∩ V (D))

together with T induces P2 ∪ 5P1. Thus if |V (D)| ≥ 7, let WD be the set of 2k + 1 vertices (which exist by Lemma 8(4)) 
from D which are adjacent in G to vertices from T . Then S ∪ WD forms a cutset and we have

t ≤ |S| + 5

|T | + 2
≤ 7

7
,

giving a contradiction to t > 1. Thus |V (D)| = 6. Let x ∈ V (D) be the vertex such that eG (x, T ) = 0. Then it must be the case 
that D − x has at most two components. Otherwise, we have t ≤ |S∪{x}|

3 = 1.
Assume first that c(D − x) = 2. Let D1 and D2 be the two components of D − x, and assume further that |V (D1)| ≤

|V (D2)|. Then as |V (D − x)| = 5, we have two possibilities: either |V (D1)| = 1 and |V (D2)| = 4 or |V (D1)| = 2 and 
|V (D2)| = 3. Since δ(G) ≥ 3, if |V (D1)| = 1, then the vertex from D1 must be adjacent in G to at least one vertex from 
S . When |V (D2)| = 4 and D2 �= K4, then D2 has a cutset W of size 2 such that c(D2 − W ) = 2. Then S ∪ W ∪ {x} is a 
cutset of G such that c(G − (S ∪ W ∪ {x})) = 5, showing t ≤ 1. Thus D2 = K4. However, this shows that G contains H6 as 
a spanning subgraph. When |V (D2)| = 3 and D2 �= K3, then D2 has a cutvertex x∗ . Then S ∪ {x, x∗} is a cutset of G such 
that c(G − (S ∪ {x, x∗})) = 4, showing that t ≤ 4

4 = 1. Thus D2 = K3; however, this shows that G contains H7 as a spanning 
subgraph.

Assume then that c(D −x) = 1. Let D∗ = D −x. If δ(D∗) ≥ 3, then D∗ is Hamiltonian and so G contains H10 as a spanning 
subgraph. Thus we assume δ(D∗) ≤ 2.
9
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Assume first that D∗ has a cutvertex x∗ . Then c(D∗ − x∗) = 2: as if c(D∗ − x∗) ≥ 3, then c(G − (S ∪ {x, x∗})) ≥ 4, implying 
t ≤ 1. Let D∗

1 and D∗
2 be the two components of D∗ − x∗ , and assume further that |V (D∗

1)| ≤ |V (D∗
2)|. Then as |V (D∗ − x∗)| =

4, we have two possibilities: either |V (D∗
1)| = 1 and |V (D∗

2)| = 3 or |V (D∗
1)| = 2 and |V (D∗

2)| = 2. When |V (D∗
2)| = 3 and 

D∗
2 �= K3, then D∗

2 has a cutvertex x∗∗ . Then S ∪ {x, x∗, x∗∗} is a cutset of G such that c(G − (S ∪ {x, x∗, x∗∗})) = 5, showing 
that t ≤ 1. Thus D∗

2 = K3. The vertex x∗ is a cutvertex of D∗ and so is adjacent in D∗ to a vertex of D∗
1 and a vertex of D∗

2. 
However, this shows that G contains H8 as a spanning subgraph. When |V (D∗

2)| = 2, as G does not contain H8 or H9 as a 
spanning subgraph, x∗ is adjacent in G to exactly one vertex, say x∗

1, of D
∗
1 and to exactly one vertex, say x∗

2, of D
∗
2. Then 

S ∪ {x, x∗
1, x

∗
2} is a cutset of G whose removal produces 5 components, showing τ (G) ≤ 1.

Assume then that D∗ is 2-connected. As δ(D∗) ≤ 2, D∗ has a minimum cutset W of size 2. If c(D∗ − W ) = 3, then we 
have c(G − (S ∪ W ∪ {x})) = 5, showing t ≤ 1. Thus c(D∗ − W ) = 2. Then by analyzing the connection in D∗ between W
and the two components of D∗ − W , we see that D∗ contains C5 as a spanning subgraph, showing that G contains H10 as 
a spanning subgraph.

Case 1.1.2: |V (D)| = 5.
Since H5 is an exceptional graph for each R ∈ {P3 ∪ 4P1, P2 ∪ 5P1, 6P1, 7P1}, we assume that G does not contain H5 as 

a spanning subgraph. Thus D �= K5. As D �= K5, D has a cutset WD of size at most 3 such that each component of D − WD

is a single vertex. Then

t ≤ |S| + |WD |
|T | ≤ 4− 2+ 3

5
= 1,

a contradiction.
Case 1.2: |C3 ∪ C5| ≥ 2.
By Equation (1), we have

4 ≥ |S| +
∑
k≥1

k|C2k+1|.

So one of the following holds:

1. S = ∅ and either |C5| = 2 and |C3| = 0, |C5| = 1 and |C3| ≤ 2, or |C5| = 0 and |C3| ≤ 4. In this case, C1 = ∅ by Lemma 10(1). 
Thus by Lemma 8(3), we have eG (T , V (G) \ T ) ≤ 12 < 3|T | = 15.

2. |S| = 1 and either |C5| = 1 and |C3| = 1, or |C5| = 0 and |C3| ≤ 3. In this case, again C1 = ∅ by Lemma 10(1). This implies 
there are a maximum of 14 edges incident to vertices in T , a contradiction.

3. |S| = 2 and either |C5| = 1 and |C3 = 0|, or |C5| = 0 and |C3| = 2.
If |C5| = 1 and |C3 = 0|, then we let D ∈ C5 be the only odd component of G − (S ∪ T ). If |C5| = 0 and |C3| = 2, let 

C3 = {D1, D2}. Note that |V (Di)| ≥ 3 by Lemma 8(4) for each i ∈ [1, 2].
We first claim that C2� = ∅ for any � ≥ 0. Suppose to the contrary that C2� �= ∅ for some � ≥ 0. Then � = 0 by 

Lemma 8(2). Let W be a set of 4 vertices from either D or consisting of 2 vertices from D1 and 2 vertices from D2 that 
are all adjacent in G to vertices from T .

t ≤ |S| + 4

|T | + 1
≤ 6

6
= 6

6
= 1,

contradicting t > 1.
When |C5| = 1 and |C3 = 0|, we also know that every vertex of T is adjacent in G to every vertex from S by δ(G) ≥ 3. 

Then D �= K5 since G does not contain H5 as a spanning subgraph. As D �= K5, D has a cutset WD of size at most 3 such 
that each component of D − WD is a single vertex. Then

t ≤ |S| + |WD |
|T | ≤ 4− 2+ 3

5
= 1,

a contradiction.
Thus we assume that |C5| = 0 and |C3| = 2. Since |T | = 5, there exists y0 ∈ T such that eG (y0, Di) = 1 for each 

i ∈ [1, 2]. If R = P3 ∪ 4P1, then T together with the two neighbors of y0 from V (D1) ∪ V (D2) induce R . If R = 6P1, 
then T \ {y0} together with the two neighbors of y0 from V (D1) ∪ V (D2) gives an induced 6P1. If R = 7P1, let WDi ⊆
V (Di) \NG(y0) be the two vertices of Di that are adjacent in G to vertices from T . Then c(G − (S ∪WD1 ∪WD2 ∪{y0})) =
|T | −1 +2 = 6. Thus t ≤ 2+2+2+1

6 = 7
6 , contradicting t > 7

6 . Lastly, assume R = P2∪5P1. If one of Di has at least 4 vertices, 
say |V (D2)| ≥ 4, then let x ∈ V (D2) such that eG(x, T ) = 0, x∗ ∈ V (D1) and y∗ ∈ T such that eG(x∗, y∗) = 1. Then x∗ y∗
and (T \ {y∗}) ∪ {x} induce P2 ∪ 5P1. Thus |V (D1)| = |V (D2)| = 3. If one of Di , say D2 �= K3, then D2 has a cutvertex x. 
Let W be the set of any two vertices of D1. Then S ∪W ∪{x} is a cutset of G such that c(G − (S ∪W ∪{x})) = 5, showing 
that t ≤ 5 = 1. Thus D1 = D2 = K3. However, this shows that G contains H11 as a spanning subgraph.
5
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Case 2: |T | = 6.
In this case, by Lemma 11(1), G has an induced P4 ∪ 4P1, which contains each of P3 ∪ 4P1, P2 ∪ 5P1 and 6P1 as an 

induced subgraph. So we assume R = 7P1 in this case and thus t > 7
6 .

Recall for y ∈ T , h(y) = |{D : D ∈ ⋃
k≥1 C2k+1 and eG(y, D) ≥ 1}|. If there exists y0 ∈ T such that h(y0) ≥ 2, we let x1, x2

be the two neighbors of y0 from the two corresponding components in 
⋃

k≥1 C2k+1, respectively. Then T \ {y0} together 
with {x1, x2} induces 7P1. Thus h(y) ≤ 1 for each y ∈ T . This, together with |T | = 6, implies that we have either |C3| ∈ {1, 2}
and C2k+1 = ∅ for any k ≥ 2 or |C5| = 1 and C2k+1 = ∅ for any 1 ≤ k �= 2.

If |C3| = 1 and C2k+1 = ∅ for any k ≥ 2, then |S| ≤ 4 by Equation (1). Let W be a set of two vertices from the component 
in C3 that are adjacent in G to vertices from T . Then c(G − (S ∪ W )) ≥ 6, indicating t ≤ 4+2

6 < 7
6 . For the other two cases, 

we have |S| ≤ 3. If |C3| = 2 and C2k+1 = ∅ for any k ≥ 2, let W be a set of four vertices, with two from one component in 
C3 and the other two from the other component in C3, which are adjacent in G to vertices from T . If |C5| = 1 and C2k+1 = ∅
for any 1 ≤ k �= 2, let W be a set of four vertices from the component in C5 that are adjacent in G to vertices from T . Then 
we have c(G − (S ∪ W )) ≥ 6, indicating that t ≤ 3+4

6 = 7
6 . �

By Claim 3, we now assume that R ∈ {P7 ∪ 2P1, P5 ∪ P2, P4 ∪ P3, P3 ∪ 2P2, 3P2 ∪ P1} and t = 3/2.

Claim 4. There exists y ∈ T with h(y) ≥ 2.

Proof. Assume to the contrary that for every y ∈ T , we have h(y) ≤ 1. Define the following partition of T :

T0 = {y ∈ T : eG(y, D) = 0 for all D ∈
⋃
k≥1

C2k+1},

T1 = {y ∈ T : eG(y, D) = 1 for some D ∈
⋃
k≥1

C2k+1}.

Note that |T1| = ∑
k≥1(2k + 1)|C2k+1| by Lemma 8(3) and (4). For each D ∈ C2k+1 for some k ≥ 1, we let WD be a set of 

2k vertices that each has in G a neighbor from T . As each D − WD is connected to exactly one vertex from T and each 
component from C1 is connected to exactly one vertex from T , it follows that

W = S ∪
⋃

D∈⋃
k≥1 C2k+1

WD

satisfies c(G − W ) ≥ |T | ≥ 5, where |T | ≥ 5 is by Claim 2.
By the toughness of G , we have

|S| +
∑
k≥1

2k|C2k+1| = |W | ≥ t|T | = t(|T0| + |T1|)

= t

⎛
⎝|T0| +

∑
k≥1

(2k + 1)|C2k+1|
⎞
⎠

≥ 3

2

⎛
⎝|T0| +

∑
k≥1

(2k + 1)|C2k+1|
⎞
⎠ .

Thus

|S| +
∑
k≥1

k|C2k+1| ≥ 3|T0|/2+
∑
k≥1

(2k + 3/2)|C2k+1| > |T0| +
∑
k≥1

(2k + 1)|C2k+1| = |T |,

contradicting Equation (1). �
By Claim 4, there exists y ∈ T such that h(y) ≥ 2. Then as |T | ≥ 5, by Lemma 11(2), G contains an induced P7 ∪2P1. Thus 

we assume that R �= P7 ∪ 2P1. We assume first that | ⋃k≥1 C2k+1| ≥ 3 and let D1, D2, D3 be three distinct odd components 
from 

⋃
k≥1 C2k+1. Let y0 ∈ T such that h(y0) ≥ 2. We assume, without loss of generality, that eG (y0, D1) = eG(y0, D2) = 1. 

By Lemma 11(2), G contains an induced Pb ∪ aP1, where b ≥ 7 and a = |T | − 3, and the graph Pb ∪ aP1 can be chosen 
such that the vertices in aP1 are from T and the path Pb has the form y1x∗

1P1x1 y0x2P2x∗
2 y2, where y0, y1, y2 ∈ T and 

x∗
1P1x1 and x∗

2P2x2 are respectively contained in D1 and D2 such that eG(x, T ) = 0 for every internal vertex x from P1
and P2. If one of y1 and y2, say y1 has a neighbor z1 from V (D3), then z1 y1x∗

1P1x1 y0x2P2x∗
2 y2 and T \ {y0, y1, y2}

induce P8 ∪ 2P1, which contains each of P5 ∪ P2, P4 ∪ P3, and 3P2 ∪ P1 as an induced subgraph. Let z2 ∈ V (D3) be a 
neighbor of z1. Then z2z1 y1x∗P1x1 y0x2P2x∗ y2 contains an induced P3 ∪ 2P2 whether eG(z2, {y0, y2}) = 0 or 1. Thus we 
1 2

11
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assume eG (yi, D3) = 0 for each i ∈ [1, 2] and so we can find y3 ∈ T \ {y0, y1, y2} and z ∈ V (D3) such that y3z ∈ E(G). 
Then y1x∗

1P1x1 y0x2P2x∗
2 y2 and zy3 contains an induced P7 ∪ P2, which contains each of P5 ∪ P2, P3 ∪ 2P2 and 3P2 ∪ P1

as an induced subgraph. We are only left to consider R = P4 ∪ P3. As eG(yi, D3) = 0 for each i ∈ [1, 2], we can find 
distinct y3, y4 ∈ T \ {y0, y1, y2} and distinct z1, z2 ∈ V (D3) such that y3z1, y4z2 ∈ E(G). We let P be a shortest path in D3
connecting z1 and z2. If eG(y0, V (P )) = 0, then y3z1P z2 y4 and y1x∗

1P1x1 y0x2P2x∗
2 y2 contains an induced P4 ∪ P3. Thus 

eG(y0, V (P )) = 1. Then y3z1P z2 y4 and y1x∗
1P1x1 together contain an induced P4 ∪ P3.

Thus | ⋃k≥1 C2k+1| = 2. Let D1, D2 ∈ ⋃
k≥1 C2k+1 be the two components. Define the following partition of T :

T0 = {y ∈ T : eG(y, D1) = eG(y, D2) = 0},
T11 = {y ∈ T : eG(y, D1) = 1 and eG(y, D2) = 0},
T12 = {y ∈ T : eG(y, D1) = 0 and eG(y, D2) = 1},
T2 = {y ∈ T : eG(y, D1) = eG(y, D2) = 1}.

By Claim 4, we have T2 �= ∅. Now define the following vertex sets:

W1 = NG(T11) ∩ V (D1), and W2 = NG(T12) ∩ V (D2).

We have that |W1| = |T11| and |W2| = |T12|. Now let W = S ∪ W1 ∪ W2. Then W is a cutset of G with c(G − W ) ≥
|T0| + |T11| + |T12| + 1 since T2 �= ∅. By toughness, |W | ≥ 3

2 (|T0| + |T11| + |T12| + 1). Since |W | = |S| + |W1| + |W2| =
|S| + |T11| + |T12|, we have |S| + |T11| + |T12| ≥ 3

2 |T0| + 3
2 |T11| + 3

2 |T12| + 3
2 . This implies

|S| ≥ 3

2
|T0| + 1

2
|T11| + 1

2
|T12| + 1.

Thus,

|S| + k1 + k2 ≥ 3

2
|T0| + 1

2
|T11| + 1

2
|T12| + 1+ k1 + k2, (3)

where 2ki + 1 = eG(T , Di) for each i ∈ [1, 2].
On the other hand, we have

|T | = |T0| + (2k1 + 1+ 2k2 + 1− |T2|)
= |T0| + (2k1 + 2k2 + 2) − 1

2
(2k1 + 1+ 2k2 + 1− |T11| − |T12|)

= |T0| + k1 + k2 + 1+ 1

2
|T11| + 1

2
|T12|.

Using the size of T and (3), we get |S| + k1 + k2 ≥ |T |, showing a contradiction to Equation (1).
The proof of Theorem 13 is now finished. �

4. Proof of Theorems 5 and 6

Recall that for a graph G , α(G), the independence number of G , is the size of a largest independent set in G .

Proof of Theorem 5. For each i ∈ [0, 11], Hi does not contain a 2-factor by Lemma 7. Thus to finish proving Theorem 5, we 
are only left to show the three claims below.

Claim 5. The graph Hi is (P2 ∪ 3P1)-free, H1 is (P3 ∪ 2P1)-free, and τ (Hi) = 1 for each i ∈ [0, 4].

Proof. We first show that Hi is (P2 ∪ 3P1)-free for each i ∈ [0, 4]. We only show this for H0, as the proofs for Hi for 
i ∈ [1, 4] are similar. In H0, there are two types of edges xy: x, y ∈ V (D j) or x ∈ V (D j) and y ∈ V (T ), where j ∈ [1, 2]. 
Without loss of generality first consider the edge v1v2 ∈ E(D1) and the subgraph F1 = H0 − (NH0 [v1] ∪ NH0 [v2]). We see 
α(F1) = 2. Now, without loss of generality, consider the edge v1t1 and the subgraph F2 = H0 − (NH0 [v1] ∪ NH0 [t1]). We see 
α(F2) = 2. In either case, P2 ∪ 3P1 cannot exist as an induced subgraph in H0. Thus H0 is (P2 ∪ 3P1)-free.

Then we show that H1 is (P3 ∪ 2P1)-free. Three types of induced paths abc of length 3 exist: a ∈ S, b ∈ T , c ∈ V (D), 
a ∈ T , b, c ∈ V (D), or a ∈ T , b = x, c ∈ T . Without loss of generality, consider the path xt1v1 and the subgraph F1 = H1 −
(NH1 [x] ∪ NH1 [t1] ∪ NH1 [v1]). We see that F1 is a null graph. Then, without loss of generality, consider the path t1v1v2 and 
the subgraph F2 = H1 − (NH1 [t1] ∪ NH1 [v1] ∪ NH1 [v2]). We see |V (F2)| = 1. Now, without loss of generality, consider the 
path t1xt2 and the subgraph F2 = H1 − (NH1 [t1] ∪ NH1 [x] ∪ NH1 [t2]). We see |V (F2)| = 1. In either case, P3 ∪ 2P1 cannot 
exist as an induced subgraph in H1. Thus H1 is (P3 ∪ 2P1)-free.
12
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Let i ∈ [0, 4]. As δ(Hi) = 2, τ (Hi) ≤ 1. It suffices to show τ (Hi) ≥ 1. Since Hi is 2-connected, we show that c(Hi −
W ) ≤ |W | for any W ⊆ V (Hi) such that |W | ≥ 2. If |W | = 2, by considering all the possible formations of W , we have 
c(Hi − W ) ≤ |W |. Thus we assume |W | ≥ 3.

Assume by contradiction that there exists W ⊆ V (Hi) with |W | ≥ 3 and c(Hi − W ) ≥ |W | + 1 ≥ 4. The size of a largest 
independent set of each H0, H2, H3, and H4 is 4, and of H1 is 3. Since c(Hi − W ) is bounded above by the size of a largest 
independent set of Hi , we already obtain a contradiction if i = 1 or |W | ≥ 4. So we assume i ∈ {0, 2, 3, 4} and |W | = 3.

As c(Hi − W ) ≥ 4, for the graph H0, we must have {v1, v2, v3} ∩ W �= ∅ and {v4, v5, v6} ∩ W �= ∅. As |W | = 3, we have 
either W ∩ T = ∅ or |W ∩ T | = 1. In either case, by checking all the possible formations of W , we get c(H0 − W ) ≤ 2, 
contradicting the choice of W .

As c(Hi − W ) ≥ 4, for each i ∈ [2, 4], we must have x ∈ W . Thus t j /∈ W for j ∈ [1, 3], as otherwise, c(Hi − (W \ {t j})) ≥
4, contradicting the argument previously that c(Hi − W ∗) ≤ 2 for any W ∗ ⊆ V (Hi) and |W ∗| ≤ 2. As |W | = 3, we then 
have |W ∩ {v1, v2, v3, v4}| = 2. However, c(Hi − W ) ≤ 3 for W = {x, vk, v�} for all distinct k, � ∈ [1, 4]. We again get a 
contradiction to the choice of W . �
Claim 6. The graph H5 with p = 5 is (P3 ∪ 4P1)-free, (P2 ∪ 5P1)-free, and 6P1-free with τ (H5) = 6

5 .

Proof. Let p = 5 and D be the odd component of H5 − (S ∪ T ). Note that D = Kp = K5.
We first show that H5 is (P3 ∪ 4P1)-free. There are three types of induced paths xyz of length 3 in H5 : x ∈ S, y ∈

T , z ∈ V (D) or x ∈ T , y, z ∈ V (D) or x, z ∈ T , y ∈ S . Without loss of generality, consider the path x1t1 y1 and the subgraph 
F1 = H5 − (NH5 [x1] ∪ NH5 [t1] ∪ NH5 [y1]). We see that F1 is a null graph. Now consider the path t1 y1 y2 and the subgraph 
F2 = H5 − (NH5 [t1] ∪ NH5 [y1] ∪ NH5 [y2]). We see α(F2) = 3. Finally consider the path t1x1t2 and the subgraph F3 = H5 −
(NH5 [t1] ∪ NH5 [x1] ∪ NH5 [t2]). We see α(F3) = 3. In any case, an induced copy of P3 ∪ 4P1 cannot exist in H5. Thus H5 is 
(P3 ∪ 4P1)-free.

We then show that H5 is (P2 ∪ 5P1)-free. There are three types of edges xy in H5 : x ∈ S, y ∈ T or x ∈ T , y ∈
V (D) or x, y ∈ V (D). Without loss of generality, consider the edge x1t1 and the subgraph F1 = H5 − (NH5 [x1] ∪NH5 [t1]). We 
see |V (F1)| = 4. Now consider the edge t1 y1 and the subgraph F2 = H5 − (NH5 [t1] ∪ NH5 [y1]). We see |V (F2)| = 4. Finally, 
consider the edge y1 y2 and the subgraph F3 = H5 − (NGH5[y1] ∪NH5 [y2]). We see α(F3) = 3. In any case, no induced copy 
of P2 ∪ 5P1 can exist in H5. Thus H5 is (P2 ∪ 5P1)-free.

We lastly show that H5 is 6P1-free. There are three types of vertices x in H5 : x ∈ S, x ∈ T , or x ∈ V (D). Without loss of 
generality, consider the vertex x1 and the subgraph F1 = H5 − NH5 [x1]. We see α(F1) = 1. Now consider the vertex t1 and 
the subgraph F2 = H5 − NH5 [t1]. We see α(F2) = 4. Finally, consider the vertex y1 and the subgraph F3 = H5 − NH5 [y1]. 
We see α(F3) = 4. In any case, no induced copy of 6P1 can exist in H5. Thus H5 is 6P1-free.

We now show that τ (H5) = 6
5 . Let W be a toughset of H5. Then S ⊆ W . Otherwise, by the structure of H5, we have 

c(H5 − W ) ≤ 3 and |W | ≥ 5. As S ⊆ W and the only neighbor of each vertex of T in H5 − S is contained in a clique of H5, 
we have T ∩ W = ∅. Since c(H5 − W ) ≥ 2, it follows that W ∩ V (D) �= ∅. Then c(H5 − W ) = |W ∩ V (D)| if |W ∩ V (D)| ≤ 3
or |W ∩ V (D)| = 5, and c(H5 − W ) = |W ∩ V (D)| + 1 if |W ∩ V (D)| = 4. The smallest ratio of |W |

c(H5−W )
is 65 , which happens 

when |W ∩ V (D)| = 4. �
Claim 7. The graph Hi is (P2 ∪ 5P1)-free with τ (Hi) = 7

6 for each i ∈ [6, 11].

Proof. We show first that each Hi is (P2 ∪ 5P1)-free. We do this only for the graph H6, as the proofs for the rest graphs 
are similar. For any edge ab ∈ E(H6), we see α(H6 − (NH6 [a] ∪ NH6 [b])) ≤ 4. Thus no induced copy of (P2 ∪ 5P1) can exist 
in H6. Thus H6 is (P2 ∪ 5P1)-free.

We next show that τ (Hi) = 7
6 for each i ∈ [6, 10]. We have c(Hi − (S ∪ {v1, . . . , v5})) = 6, implying τ (Hi) ≤ 7

6 . Suppose 
τ (Hi) < 7

6 . Let W be a toughset of Hi . As each Hi is 3-connected, we have |W | ≥ 3. Thus c(Hi − W ) ≥ 3. We have that 
either S ⊆ W or S � W . Suppose the latter. Then we have S ∩ V (Hi − W ) �= ∅. Then all vertices in T \ W are contained 
in the same component as the one which contains S \ W . Since c(Hi − W ) ≥ 3, by the structure of Hi , it follows that we 
have either T ⊆ W or {v1, . . . , v5} ⊆ W . In either case, we have c(Hi − W ) ≤ 3, implying |W |

c(Hi−W )
≥ 5

3 > 7
6 , a contradiction. 

So S ⊆ W . By Lemma 12, t j /∈ W for all j ∈ [1, 5]. Thus each t j ∈ V (Hi − W ). Now either v0 ∈ W or v0 /∈ W . Suppose 
v0 ∈ W , then we cannot have all v j ∈ W without violating Lemma 12. In this case, the minimum ratio |W |

c(Hi−W )
occurs when 

|W ∩{v1, v2, v3, v4, v5}| = 3. This implies |W |
c(Hi−W ≥ 6

5 > 7
6 , a contradiction. Thus v0 /∈ W and we must have v0 ∈ V (Hi −W ). 

This implies {v1 . . . v5} ⊆ W and |W |
c(Hi−W )

= 7
6 , a contradiction. Thus τ (Hi) = 7

6 for each i ∈ [6, 10].
Lastly we show τ (H11) = 7

6 . We have c(H11 − (S ∪ {v1, v2, t3, v5, v6})) = 6, implying τ (H11) ≤ 7
6 . Suppose τ (H11) < 7

6 . 
Let W be a tough set of H11. As H11 is 3-connected, we have |W | ≥ 3. Thus c(H11 − W ) ≥ 3. We have that either S ⊆ W
or S � W . Suppose the latter. Then we have S ∩ V (H11 − W ) �= ∅. Then all vertices in T \ W are contained in the same 
component as the one which contains S \ W . Since c(H11 − W ) ≥ 3, by the structure of H11, it follows that |W | ≥ 5 and 
c(H11 − W ) ≤ 4. This implies |W |

c(H11−W )
≥ 5

4 > 7
6 , a contradiction. So S ⊆ W . By Lemma 12, ti /∈ W for i ∈ {1, 2, 4, 5}. Thus 

ti ∈ V (H11 − W ) for i ∈ {1, 2, 4, 5} and we must have W ∩ {v1, v2, v3, v4, v5, v6, t3} �= ∅. If t3 /∈ W , then |W | ≥ 6 > 7 , 
c(H11−W ) 5 6

13
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a contradiction. Thus t3 ∈ W . Then v3 and v4 are respectively in two distinct components of H11 − W by Lemma 12. Thus 
W ∩ {v1, v2, v5, v6} �= ∅ as c(H11 − W ) ≥ 3. Furthermore, we have c(H11 − W ) = |W ∩ {v1, v2, v5, v6}| + 2. The smallest 
ratio of |W |

c(H11−W )
is 7

6 , which happens when {v1, v2, v5, v6} ⊆ W . Again we get a contradiction to the assumption that 
τ (H11) < 7

6 . Thus τ (H11) = 7
6 . �

The proof of Theorem 5 is complete. �
Proof of Theorem 6. Let p ≥ 6 and D be the odd component of H5 − (S ∪ T ). Note that D = Kp . Since c(H5 − (S ∪
{y1, . . . , y5})) = 6, we have τ (H5) ≤ 7

6 . We show τ (H5) ≥ 7
6 . Let W be a toughset of H5. Then either S ⊆ W or S � W . 

Suppose the latter. Then we have S ∩ V (H5 − W ) �= ∅. Then all vertices in T \ W are contained in the same component 
as the one containing S \ W . Since c(H5 − W ) ≥ 2, by the structure of H5, it follows that we have either T ⊆ W or 
{y1, . . . , y5} ⊆ W . In either case, we have c(H5 − W ) ≤ 3, implying |W |

c(H5−W )
≥ 5

3 > 7
6 . Now suppose S ⊆ W . By Lemma 12, 

ti /∈ W for all i. Thus each ti ∈ V (H5 − W ). Furthermore, c(H5 − W ) = |W ∩ V (D)| + 1. Since W is a cutset of G , we have 
|W ∩ V (D)| ≥ 2. The smallest ratio of |W |

c(H5−W )
is 76 , which happens when |W ∩ V (D)| = 5.

For the graph H12, we have τ (H12) ≤ 1 by δ(H12) ≤ 2. We show τ (H12) ≥ 1. Let W be a toughset of H12. Then either 
S ⊆ W or S � W . Suppose the latter. Then we have S ∩ V (H12 − W ) �= ∅. Then all vertices in T \ W are contained in the 
same component as the one containing S \ W . Since c(H12 − W ) ≥ 2, by the structure of H12, it follows that we have either 
T ⊆ W or {y1, y2, y3} ⊆ W . In either case, we have c(H12 − W ) ≤ 2, implying |W |

c(H12−W )
≥ 3

2 > 1. Now suppose S ⊆ W . 
By Lemma 12, ti /∈ W for all i. Thus each ti ∈ V (H12 − W ). This implies |{y1, y2, y3} ∩ W | = 2 or 3. In either case we see 

|W |
c(H12−W )

= 1. �
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