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1 | INTRODUCTION

We consider only simple graphs. Let G be a graph. For v € V (G), N (v) is the set of neighbors
of v in G and dg(v) := INg(v)l. We denote by §(G) and A(G) the minimum degree and the
maximum degree of G, respectively. For S C V (G), G[S] is the subgraph of G induced on S, and
G — S:= G[V(G) — S]. For disjoint vertex sets V;, V5 C V (G), let Eg(V;, V5) be the set of all
edges with one endvertex in Vi and the other in V;. When W] = {v}, we write Eg(v, V,) for
Ec(W, V3). We use the standard notation K, F,, and K, , to denote the complete graph on n

This paper is dedicated to Prof. Katsuhiro Ota for his 60th birthday.

886 | © 2023 Wiley Periodicals LLC. wileyonlinelibrary.com/journal/jgt J Graph Theory. 2023;104:886-903.


https://orcid.org/0000-0002-6384-2876
mailto:s.tsuchiya@isc.senshu-u.ac.jp
https://wileyonlinelibrary.com/journal/jgt
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fjgt.23005&domain=pdf&date_stamp=2023-07-10

SHAN and TSUCHIYA 887
WILEY-—*

vertices, the path of order n, and the complete bipartite graph with one partition of size m and
the other of size n, respectively. Two vertices x and y of a graph G are called twins if
Ns(x) = Ng(»). By the definition, x is not adjacent to y if they are twins. If G contains no
twins, then G is twin-free.

A spanning tree of a graph with no vertex of degree 2 is called a homeomorphically
irreducible spanning tree (HIST) of the graph. Let T be a HIST of a graph. In T, a vertex of
degree 1 is called a leaf of T, and each vertex other than leaves is called a stem of T. For a graph
G, a blocking set is a cutset of G consisting of vertices of degree 2. By the definition of a HIST, if
G has a HIST, then G contains no blocking set.

In [1], Albertson, Berman, Hutchinson, and Thomassen proved that it is NP-complete to
decide whether a given graph contains a HIST. On the other hand, there are sufficient
conditions that guarantee the existence of a HIST in a graph.

Theorem A (Albertson, Berman, Hutchinson, and Thomassen [1]). Let G be a graph of
order n > 4. If each pair of vertices have a common neighbor, then G has a HIST.

Theorem B (Furuya and Tsuchiya [3]). Let G be a connected graph of order n > 4 with no
induced P, (i.e., G is Bj-free). Then G has a HIST if and only if G is isomorphic to neither
K5 n—2 nor a graph obtained from K4 by subdividing one edge.

Theorem C (Ito and Tsuchiya [4]). Let G be a graph of order n > 8. For any nonadjacent
vertices x and y, if dg(x) + dg(y) > n — 1, then G has a HIST.

Graphs satisfy conditions in Theorems A-C have diameter 2. In [1], Albertson, Berman,
Hutchinson, and Thomassen conjectured that for a graph G of order n > 10 and diameter 2, if G
is twin-free, then G contains a HIST. However, Ando [2] recently disproved this conjecture. In
this paper, we give a complete characterization of all graphs of diameter 2 that contain a HIST.
To state the result, we construct graphs described below of diameter 2 but contain no HIST.

Let k> 1 be an integer. For each i € {1, ...k}, let A; = K, be a complete bipartite
graph with bipartition X; and ¥; such that IX;| = 2 and Il = p;, where p, > 1 is an integer.
Let X; ={u;, v}, and let K; and K, be two complete graphs with V(K;) = {x} and
V(Kx) = {»5 - ¥} Then a graph A(p,,..,p,) is obtained from A,..,A;, K; and K; by
identifying x with u; and identifying y, with v; for each i. We let

A ={A(py, ..., pp)Ip; = 1 for each i}

be the set of all such graphs A(p, ..., p;). In particular, if p, = 1 (i.e., A; = P; is a path) for each
i, we denote A(p,, ..., p;) by A, which is a graph in A, with smallest order. See Figure 1 for an
illustration of a graph in A, and the graph A}, respectively. Note that each graph in A
contains no HIST as it has a blocking set, and each graph in A, — {A}} is a graph of diameter 2

with twins.
For n > 6, let B, be a graph such that V (B,) = {a, by, by, ..., by—3, €1, ¢} and

EBy) ={ab;:1<i<n-—3}U{cb:3<j<n—31U{bb,,cibyciby, crcol.

It is clear that B, — {b;b,} = A(2,n — 5). See Figure 2 for a depiction of B,,.
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FIGURE 1 A(@3,2,..,2) € A (left) and A(1, 1, ..., 1) = A (right).

a
by bnS
C1 Co

FIGURE 2 B,.

FIGURE 3 A twin-free graph of order 9 containing no homeomorphically irreducible spanning tree.

We now state Ando's result in disproving the conjecture of Albertson, Berman, Hutchinson,
and Thomassen in [1] and our characterization of graphs of diameter 2 containing a HIST.

Theorem D (Ando [2]). Let G be a graph of order n > 10 with diameter 2. Suppose that G
is twin-free. Then G has a HIST if and only if G is not isomorphic to A} for any k > 1.

Theorem 1. Let G be a graph of order n > 10 and diameter 2. Then G has a HIST if and
only if G & Ay for any k > 1 and G # B,.

The condition n > 10 is best possible in both Theorems D and 1. The graph of order 9 given
in Figure 3, constructed in [1], is twin-free, has no blocking set, is not isomorphic to By, but
contains no HIST.
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Theorem 1 gives alternative proofs of Theorems A-D if we assume the graphs are of order at
least 10.

Proof of Theorem A. Since each pair of vertices of G have a common neighbor and so
the diameter of G is 2. By Theorem 1, it suffices to show that G ¢ Ay for any k > 1 and
that G # B,. Take a graph H in Ay, let x’ be a vertex in Ny (x), where recall x is the vertex
contained in K; when constructing the graph H. Then x and x’ do not have a common
neighbor in H. In B,, a and b; do not have any common neighbor. |

Proof of Theorem B. Since G is a connected graph containing no induced P, the
diameter of G is 2. Since all graphs in A, are isomorphic to K; , for some p, it suffices to
show that G ¢ Ay for any k > 2 and that G # B,. For any k > 2, take a graph H in A,
and let x’ be a common neighbor of x and y, in H, where recall y, is a vertex in Kj used to
construct H. Then xx'y, y, is an induced B,. In B,, ab,c;ic; is an induced F,. O

Proof of Theorem C. Since dg(x) + dg(y) > n — 1 for any nonadjacent vertices x and y,
x and y have at least one common neighbor. Thus the diameter of G is 2. So, it suffices to
show that G ¢ Ay for any k > 1 and that G # B,,. Take a graph H in A, let x" and x” be
vertices in Ny (x). Then dy(x") + dg(x") =4 <9 <n —1. In By, dg, (b)) + dp, (b3) =
5<9<n-1 |

Proof of Theorem D. It suffices to show that G ¢ Ay — {A;} for any k > 1 and that
G # B,. Take a graph H in A — {A;}, and let A; = K, , be a complete bipartite subgraph
of H with p; > 2. Let x’ and x” be vertices of A; from the partite set of size p,. Then

Ny (x") = Ng(x") = {x, y}, and hence x’ and x” are twins. In B, there exists b, because
n > 10. Then Ng, (b3) = N, (bs) = {a, c;}, and hence b; and b, are twins. O

Theorem 1 is implied by the two theorems below, which we prove, respectively, in
Sections 2 and 3.

Theorem 2. LetG be a graph with diameter 2. Then G contains a blocking set if and only
if G € Ay for some integer k > 1.

Theorem 3. Let G be a graph of order n > 10 and diameter 2. Suppose that G contains
no blocking set. Then G contains a HIST if and only if G # B,.

2 | PROOF OF THEOREM 2

Proof. If G € Ay for some integer k > 1, then the vertices of G other than those
corresponding to K; and K}, in the definition of .4, form a blocking set of G. Conversely,
suppose that G is a diameter 2 graph containing a blocking set. We show that G € Ay, for
some integer k > 1. O

Let B be a minimal blocking set of G and let Dy, ..., D, (p > 2) be components of G — B.
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Claim 2.1. For each b € B and each component D; with i € {1, ..., p}, b is adjacent to a
vertex of D; in G. Consequently, p = 2.

Proof. Suppose to the contrary that there exists b € B such that N(b) N V(D;) = @ for
some i. Then B — {b} is a blocking set of G smaller than B, contradicting to B being minimal.
Since each vertex in B has degree 2 in G, p = 2 as a consequence of the first part. |

Claim 2.2. Foreachi € {1, 2}, every vertex in D; is adjacent to at least one vertex from B
in G.

Proof. Let u € V(D;) be an arbitrary vertex. Take v € V(D)) for j# i. Since the
diameter of G is 2, u and v share a common neighbor in G. Consequently, u has a
neighbor from B in G. O

Claim 2.3. For eachi € {1, 2}, G[D;] is a clique.

Proof. Suppose to the contrary that there exist d, d’ € V(D;) such that dd’ ¢ E(D;). By
Claim 2.2, d is adjacent to a vertex b € B in G. Since dg(b) = 2, it follows from Claim 2.1
that b is not adjacent to any vertices from V (D;) — {d} in G. Since d'd ¢ E(D;) and so
d'd ¢ E(G), d’ has no common neighbor with b in G. This contradicts the assumption
that the diameter of G is 2. O

Claim 2.4. There exists i € {1, 2} such that G[D;] = K;.

Proof. Suppose to the contrary that G[D;] # K for each i € {1, 2}. As a consequence,
we have [V (D))l > 2 and IV (D,)| > 2. Let d}, d} € V(D,) be distinct. By Claim 2.2, for
eachi € {1, 2}, d! is adjacent to at least one vertex from B in G. As each vertex from B
has degree 2 in G, by Claim 2.1, each vertex from B is adjacent to exactly one vertex
from D; in G. Thus di and d, have no common neighbor from B in G. For each
iefl1,2} let

Bi=Ng(d)NnB and B =B - (B, UB,).

Let b; € B; for each i. Since b; and b, have no common neighbor from D; and
bib, ¢ E(G) in G by Claim 2.1, it follows that b; and b, have a common neighbor d}
from D, in G because the diameter of G is 2. Since IV (D,)| > 2, there exists a vertex
d; € V(D) — {d{}. Since each vertex from B is adjacent to exactly one vertex from D,

in G by Claim 2.1 and di € Ng(b;) N Ng(b,), applying Claim 2.2, we know that dj is
adjacent to a vertex b’ € B — {by, b} in G. By symmetry, suppose b’ € B, U B’. Thus
b'd{ ¢ E(G) and so b’ and b; have no common neighbor from D; in G. Since
d?b’ € E(G) and b’ is adjacent to exactly one vertex from D, in G by Claim 2.1, it
follows that b’ is not adjacent to d in G. Thus b’ and b; have no common neighbor
from D, in G. Furthermore, B is an independent set in G by Claim 2.1. Hence the
distance between b; and b’ is at least 3 in G, contradicting the assumption that the
diameter of G is 2.
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By Claim 2.4, we assume, without loss of generality, that G[D;] = K;. By Claim 2.1,
each vertex from B is adjacent to exactly one vertex from D, in G. This together with
Claims 2.2 and 2.3 implies that D, is a complete graph of order at most|Bl. Now by Claims
2.1-2.4, we have G € Ay, where k := |V (D,)I|, completing the proof. O

3 | PROOF OF THEOREM 3
Theorem 3 is implied by the three lemmas below.

Lemma 4. Let G be a graph of order n > 10, diameter 2, and containing no blocking set.
Suppose that §(G) < 2. Then G has a HIST if and only if G # B,,.

Lemma 5. Let G be a graph of order n > 10 and diameter 2. If 5(G) = 3, then G has a
HIST.

Lemma 6. Let G be a graph of order n > 10 and diameter 2. If 5(G) > 4, then G has a
HIST.

For a subtree T of a graph G, T is called an extendable HIT if T has no vertex of degree 2 and for
anyv € V(G) — V(T), v is adjacent to a stem of T'. By the definition, the following statement is true.

Fact 3.1. A graph with an extendable HIT contains a HIST.

3.1 | Proof of Lemma 4

Proof. By tedious check, we can see that B, has no HIST. Thus it suffices to show that G
has a HIST if G # B,. If G has a vertex of degree n — 1, then G has a spanning star, which
is a HIST of G. Thus we assume A(G) < n — 2.

Let v be a vertex of G such that dg(v) = §(G). If dg(v) = 1, then the degree of the
vertex adjacent to v is n — 1 because the diameter of G is 2, contradicting A(G) < n — 2.
Thus we have dg(v) = 2. Let w; and w, be the vertices of G that are adjacent to v.

First we assume w;w, € E(G). Suppose, by symmetry, dg(w;) > dg(w,). Since
A(G)<£n—2 and so dg(w;) < n — 2, there exists y € V(G)\{v, w;, w,} such that
w1y € E(G). Then w,y € E(G) as the distance between y and v is 2 in G. Since
de(w;) > dg(w,), n>10, and the diameter of G is 2, there exist distinct
X1, % € Ng(w;) — {w,, v}. Thus G has a double star T such that

V(T) = {wy, wp, X1, %,v,y} and  E(T) = {wiw,, wixi, wixp, Wov, Wy}
Since each vertex of V(G) — V(T) is adjacent to either w; or w, in G, T is an
extendable HIT. Hence G has a HIST.

Next we assume wyw, € E(G). For each i € {1, 2}, let

W, = Ng(w;)) — Ng(ws—;) and Wi, = (Ng(w1) N Ng(wy)) — {v}. O
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Claim 3.2. If Wj; has a vertex x of degree at least 3 in G, then G has a HIST.

Proof. Let x € Wi, with dg(x) > 3. Then x is adjacent to a vertex y € W, U W5 U Wy, in
G. Let W/ = W, — {y} for each i € {1, 2}, and let W}, = Wi, — {y}. By symmetry, we
assume W]l > IWjl. Since n > 10, there exist distinct vertices w,w’ € Wy U Wy,. If
W, # @, then let w” € W;. We now construct a tree T as follows:

V(T) = {w,x,w, w,w,y, v, w” and
E(T) = {wix, wyx, wiw, wiw’, xy, wov, wow”} if W, # @;
V(T) = {wy, x, w, v, wy, ¥} and
E(T) = {wix, wiw, wiv, wyX, Xy} it W, = @.

In either case, T is an extendable HIT because each vertex in W, (resp., W] U Wy,) is
adjacent in G to w, (resp., wy). O

By Claim 3.2, we may assume that the degree of each vertex from Wi, is 2 in G. Thus
Eqc(W;,, Wi,) = @ foreachi € {1, 2}. If W, = @ for eachi € {1, 2}, then W}, U {v} is a blocking set
of G. If W; = & for some i € {1, 2}, then w; has no common neighbor with each vertex of W;_; in
G, contradicting G being diameter 2. Thus for each i € {1, 2}, W, # @.

Claim 3.3. Wil + Wl > 4.

Proof. Suppose to the contrary that Wl + W5l < 3. If Wl + IW5l =2, then
Wil = 1W5l =1 as W, # @ for each i. Since the vertex in W, is degree 2 in G,
Wi U Wi, U {v} is a blocking set of G, a contradiction. So we have IWjl + IW,l = 3. By
symmetry, we assume that IWjl = 2 and W5l = 1. Since Wi, U W5 U {1} is not a blocking
set of G, the vertex from W, has degree at least 3 in G. By Claim 3.2, the vertex from W, is
adjacent in G to both of the vertices of W4. If G [W}] contains no edges, then W; U W, U {v}
is a blocking set of G. If G[W}] contains an edge, then G = B,,. In either case, we obtain a
contradiction. O

Claim 3.4. There exist four distinct vertices x; € Wi, x, € Wy and y,,y, € Wi U W; such
that

1) xx € E(G),
(2) dg(x;) > 3 for each i, and
3) Xy, %y, € E(G).

Proof. By Claim 3.2, we may assume that Eg (W, Wi,) = @ for each i € {1, 2}. Since G
has diameter 2, Eqg(W;, W5) # @. Since G contains no blocking set, G has two distinct
vertices a; € W] and a, € W, satisfying Conditions (1) and (2). Since dg(a;) > 3, a; is
adjacent to a vertex b; € (W, U W3) — {@y, @y} in G for each i. If b; # b,, then letting
x; = a; and y, = b; gives the desired vertices. Hence we may assume that b; = b, and
dg(a;) = 3 for each i. By symmetry, we assume b; € Wi. By Claim 3.3, there exists a
vertex c € W, — {ay, ap, by} for some i € {1, 2}. Since dg(a;_;) = 3, c is not adjacent to az_;
in G. Since the diameter of G is 2, ¢ and a;_; have a common neighbor in G. Then c¢ is
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adjacent to b; in G because a;c, ws_;c € E(G). Then letting x3 = by, 5 = ap, y;, = ¢, and
¥, = @y gives four desired vertices. O

By Claim 3.4, G has four distinct vertices x; € W;, x, € W, and y;, y, € W, U W, satisfying
Conditions (1)-(3). For each i € {1, 2}, let W/ = W, — {x, %, ¥;, ),}. By symmetry, we assume
IWjl > IW;\. Since n > 10, there are two distinct vertices w, w’ € W{ U Wi,. If W, # ¢, then let
w” € W,. We now construct a tree T as follows:

V(T) = {wy, X, %, wa, w, W, ¥, ¥,, v, W'} and
E(T) = {wixy, X1, Wy, Wiw, Wiw’, X3 Yy, % ¥, Wb, Wwow”} if W) # @&;
V(T) = {w, X, %, W, v, ¥, ¥, W)} and
E(T) = {wixy, x16, wiw, WiV, X3 ¥}, % ¥,, X Wa} it W, = @.

In either case, T is an extendable HIT because each vertex in W, (resp., Wy U Wi,) is
adjacent in G to w, (resp., wy).

3.2 | Proof of Lemmas 5 and 6

To prove Lemmas 5 and 6, we construct a spanning tree T of G as follows. Let v be a vertex of G
such that dg(v) = §(G). We take a spanning tree T in G so that

« T contains all edges of Eg(v, Nz (v)),
« all vertices of T other than leaves are contained in Ng(v) U {v} and
« the number of vertices of degree 2 in T is as small as possible.

Note that such T exists, as G has diameter 2 and so every vertex of V(G) — (Nz(v) U {v}) is
adjacent in G to a vertex from N;(v). In T, we define subsets of N;(v) so that

o N') = {uldr (u) > 4, u' € Nog(v)},

« N2(v) = {uldr (u?) = 3, u’ € Ng(v)},

o N3(V) := {ulldr (u?) = 2, u? € Ng(v)}, and
o N*(V) := {utldr (u*) = 1, u € Ny(v)}.

We define subsets of V(G) — (Ng(v) U {v}) so that
« Wi == (wllw!u € E(T) for some u € N'(v)},
o W= {wlw?u € E(T) for some u € N2(v)}, and
« W5 := (wlw’u € E(T) for some u € N3(v)}.
See Figure 4 for a depiction of T and the sets defined above.
Claim 3.5. For each w € W3, w is not adjacent to any vertex from N'(v) U N2(v) in G.

Moreover, for any pair of vertices w, w’ € W;, w and w’ have no common neighbor from
N3(v) UN*(v) in G.
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FIGURE 4 A spanning tree T.

Proof. Otherwise, we can take a spanning tree so that its number of vertices of degree 2
is smaller than that of T. O

Lemma 5. Let G be a graph of order n > 10 and diameter 2. If 5(G) = 3, then G has a
HIST.

Proof. We use the notation introduced above, and take T be a spanning tree of G with
the described properties. O

Claim 3.6. For each we W;, w is adjacent to at least two vertices from
N*(W)Uu WU W, U W in G.

Proof. Since dg(w) > dg(v) = 3, w is adjacent to at least three vertices in G. By the
definition of T, w is adjacent to a vertex from N3(v) in G. By Claim 3.5, w is not adjacent
to any vertex from N'(v) U N2(v) in G. Thus the other two neighbors of w in G are
contained in N*(v) U W U W3 U W4, O

If W = @, then T is a HIST of G. So we suppose W; # @. By the definition of T, we have
W4l = IN3(v)I < 3. Since n > 10, IW3l < 3 implies N'(v) U N2(v) # @. Thus IW4l < 2.

First we assume W3l = 2. Let x; and X, be the two vertices in W4. and for each i € {1, 2}, let y,
be a vertex of N3(v) which is adjacent to x; in T. Let y be the vertex in Ng(v) — {y;, »,}. Since
n > 10, it follows from the definition of T that {y} = N'(v) and N*(v) U W; = @.

Claim 3.7. 1If x; and x have a common neighbor in G, then G has a HIST.

Proof. Let x’ be a common neighbor of x; and X, in G. By adding xx’, %x’ to T and
deleting x y;, %, y, from T, we obtain a HIST of G. O

By Claim 3.7, we suppose that x; and x, have no common neighbor in G. This implies that
X% € E(G) because the diameter of G is 2.

Claim 3.8. For eachi € {1, 2}, x; is adjacent to a vertex from W in G.
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Proof. Since dg(x;) > 3, x; is adjacent to a vertex other than x;_; and ), in G. By Claim
3.5, such a vertex is contained in W,. O

By Claim 3.8, x; is adjacent to a vertex z; € W, in G. By Claim 3.7, 71 # 2.
Claim 3.9. For eachi € {1, 2}, y, is adjacent to y in G.

Proof. By the minimality of the number of degree 2 vertices of T, y; is not adjacent to
any vertex of W; in G for each i € {1, 2}. Thus ), and z3_; have a common neighbor in G as
G has diameter 2. Since Wj N N();) = @ and x;_; is nonadjacent to z; in G by Claim 3.7,
y is the only possible common neighbor of y; and z;_;. Thus yy, € E(G) for eachi. []

By Claim 3.9, yy,,y, € E(G). Then we obtain a HIST of G by adding yy,, yy,, 121, x1% to
T and deleting vy, vy,, yz1, %y, from T.

Next we assume |Wl = 1. Let 3 be the vertex in W5, y; be the vertex in N3(v) which is
adjacent to x; in T, and let y, y’ be the two vertices in N; (v) — {¥,}. Since n > 10, it follows from
the definition of T that W; # @. By symmetry, we assume y € N'(v).

Claim 3.10. If x; has a common neighbor with a vertex from W in G, then G has a HIST.

Proof. Let z be a vertex in W] such that z and x; have a common neighbor x’ in G. Let y”
be a vertex in {y, y’} such that y”z € E(T). Note that y” # x’ as x; is not adjacent to any
vertex from N'(v) U N2(v) in G by Claim 3.5. By adding xx’,zx’ to T and deleting
¥"z,x ¥, from T, we obtain a HIST of G. O

By Claim 3.10, we may assume that x; has no common neighbor with any vertex from W in
G. This implies that x; is adjacent to each vertex of Wj in G because the diameter of G is 2. By
this fact and Claim 3.10, we obtain the following claim.

Claim 3.11. If G[W] contains an edge, then G has a HIST.
By Claim 3.11, we may assume that G [W] contains no edge.

Claim 3.12. Let z be a vertex in W; such that yz € E(T). If y'z € E(G), then G has a
HIST.

Proof. Suppose that there is a vertex 7’ € Ny (y) — {v, z}. Then we obtain a HIST of G by
adding x2, z’,y'z to T and deleting y,v,y'v,yz’ from T. O

Claim 3.13. If either y’ € N'(v) or y’ € N*(v), then G has a HIST.

Proof. Since y’ € N'(v) U N*(v), it follows that V(G) = {v,y,y",»,x} U Wi. As W
is an independent set in G by Claim 3.11, and y, is not adjacent to any vertex of W] in
G by the minimality of the number of degree 2 vertices of T, we see that each vertex
in W] is adjacent to y and )’ in G because §(G) > 3. Therefore G has a HIST by
Claim 3.12. O
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By Claim 3.13, we may assume )’ € N2(v). Let x{ and x; be the two vertices in
W, (i.e., x{y',x,y" € E(T)). By the minimality of the number of degree 2 vertices of T, each
vertex in W] is not adjacent to y; in G. By Claims 3.11 and 3.12, each vertex in W, is adjacent to
x; for some i € {1, 2} in G because §(G) > 3.

Claim 3.14. 1If x{ and x, have a common neighbor from W] in G, then G has a HIST.

Proof. Let z be a common neighbor of x; and x, from W;. Then we obtain a HIST of G by
adding xz, x{2, x,z to T and deleting x{y’, x,y’, x; y, from T. O

By Claim 3.14, we may assume that x; and x, have no common neighbor from W in G.
Claim 3.15. If x; is adjacent to x; for some i € {1, 2} in G, then G has a HIST.

Proof. By symmetry, we assume x;x; € E(G). By Claim 3.10, x, is adjacent to no vertex
of Wi in G. Thus x; is adjacent to all vertices of W; in G because every vertex of W is
adjacent to a vertex from {x{, x,;} in G. Let z and z’ be vertices in Wi. Then we obtain a

HIST of G by adding xx{, x12, X,2, X5z’ to T and deleting vy,, vw', x{y’, ¥z’ from T. []

By Claim 3.15, we may assume that x; is not adjacent to x; for anyi € {1, 2} in G. Since the
diameter of G is 2 and x; and y’ are nonadjacent in G, x; and y’ have a common neighbor, which
is not contained in W; by Claim 3.12. Thus we have y, y’ € E(G). Recall that each vertex in W;
is adjacent to x;/ for some i € {1,2} in G. As IWjl > 3, there exist z,z’ € W; such that
X1z, %2 € E(G) or x,2,x,7" € E(G). By symmetry, we assume x{z,x;z’ € E(G). Then we
obtain a HIST of G by adding xz, x,z, x,2’,y; ¥’ to T and deleting vy, vy’, yz', X, y; from T.

Lemma 6. Let G be a graph of order n > 10 and diameter 2. If 5(G) > 4, then G has a
HIST.

Proof. Again, we will use the notation introduced in the beginning of this subsection,
and take T be a spanning tree of G with the described properties. |

Claim 3.16. For each w e W3, w is adjacent to exactly dg(w) — 1 vertices from
N*@w)u WU W, U W in G.

Proof. The vertex w is only adjacent to exactly one vertex from N3(v) in G by the
minimality of the number of vertices of degree 2 of T. By Claim 3.5, w is not adjacent to
any vertex from N'(v) U N2(v) in G. Thus the rest dg(w) — 1 neighbors of w are
contained in N*(v) U W U W53 U Wi, O
If W; = @, then T is a HIST of G. So we suppose W; # @.

Claim 3.17. If Wy U W, = @, then G has a HIST.

Proof. Let W5 ={x,..,xx} for some integer k> 1, and let y € N3(v) such that
x; ), € E(T) for each i. Since dg(x) > dg(v), by Claims 3.5 and 3.16, x; is adjacent to
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all vertices from N*(v) U (W5 — {x}) in G. Since dg(y,) > dg(v), y; is adjacent to a vertex
z € Ng(v) — {y,} in G. If k # 2, then we take a spanning tree T’ so that

k k
E(T') = (E(T) Ui{yztu U {xlxi}] - [{vz} U U yi}]-

i=2 i=2

If k = 2, then we have dg(v) > 7 because n > 10. Let z’ € N*(v) — {z}. We take a
spanning tree T’ so that

E(T") = (E(T) U {»2, %2, x1%}) — {vz, vz, % 3.}
In either case, T’ is a HIST of G. O

By Claim 3.17, we may assume W, U W5 # @. Suppose that for some k > 2, there are vertices
aj, ..., a € W5 such that they have a common neighbor z in G. By Claims 3.5 and 3.16,
z€ (WuUWu W) —{a, ..., ai}. Let by, ..., by € N3(v) such that a;b; € E(T) (1 <i < k). The
degree 2 vertex elimination (D2VE) operation on z is a transformation of T by adding a;z and
deleting a;b; for each i € {1, ..., k}. A sequence of D2VE is the following transformation of T:

Step (1) Set S:= Wi U W, and S’ := W4,

Step (2) Take s € S such that IN(s) n S’l is maximum.

Step (3) IfIN(s) N S’l <1, then no transformation on s. Otherwise, go to the next step.
Step (4) Apply D2VE on s.

Step (5) Set S:= W, U W, U (N(s)NS').

Step (6) Set S" := W3 — S.

Step (7) Return to Step (2).

Let T' be a spanning tree of G obtained from T by a sequence of D2VE. By the definition, the
number of vertices of degree 2 in T' cannot be reduced further by applying the D2VE operation.
In T, we define subsets of Ng(v) so that

« N'() = N'(v),

« N2 () = N2(v),

« M) = {ulu; € N3@), di () = 2},
« N?(v) = N*(@w) = N°(v), and

« N'() = N* ().

Note that N”° (v) were vertices of N3(v) that now become leaves of T. We define subsets of
V(G) — (Ng(v) U {v}) so that

. ﬁ/l:zvvl’
. %::‘/VZ,

« W; = {wiw;u € E(T) for some u € ]\73(11)}, and
- W= W - WA

See Figure 5 for a depiction of T' and the sets defined above.
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N'(v)
9 o1 [ 4] [o e] e
// N2()[\--- \ P N (v) N3(v) N4(v)
i doddd [de4 i s| [deed]
W1 WQ Aé W?

FIGURE 5 A spanning tree T' (dot lines indicate edges of T deleted by the degree 2 vertex elimination
operation).

Note that vertices of W; are adjacent to vertices of W, U W3 U W; in T. By the definition of T,
if W; = @, then T is a HIST of G. So we suppose W; # @. Note that each vertex in W4 is a leaf of
T. By Claim 3.16, we have the following claim.

Claim 3.18. For each we Wi, w is adjacent to exactly dg(w) — 1 vertices from
N*(w)u Wiu Wsu WU W in G.

By the choice of T and the D2VE procedure in getting T’ from T, we have the following claim.

Claim 3.19. For any pair of vertices w, w’ € W4, w and w’ have no common neighbor
from 1\74(1)) U W, uWu W3' in G.

As the diameter of G is 2, by Claims 3.18 and 3.19, we know that any two vertices from W3
are adjacent in G or have a common neighbor from W; in G. Thus the diameter of G[W4] is 2.
We consider below two cases regarding whether or not [Wil = 2.

Case 1. |W4l # 2.

Let Wg = {x,%, .., x;} for some integer k # 2. Assume, without loss of generality,
that the degree of x in G[W4] is maximum. Let Yy, - Y be vertices of N3(v) such that
xy,€E (T). Since the diameter of G [W4] is 2, if k > 3, then we can take a spanning tree H of
G [W4] so that

« H contains all edges of Eg (%1, Ng iz (1)),
« all vertices of H other than leaves are contained in Ngpi; () U {x}, and
« the number of vertices of degree 2 in H is as small as possible.

When k > 3, by the maximality of dg;(%), we have dgyi;(a) = diy (%) > 2. For some integer
p > 0, we assume that H has exactly p vertices from V' (H)\ {x;} that are of degree 2 in H. We
further assume, without loss of generality, that

dy(x;) =2 foreach 2 <i<p+ 1 (thisexpression is meaningful onlyif p > 1).
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We modify T by adding E (H) to T and deleting Uip:zl fwlu (Uf-;p +2{xiy}) from T. Denote
by T’ the resulting spanning tree of G. If k = 1 (i.e,, Wil = 1), then let T" = T. We will now
work on T’ and modify it into a HIST of G. However, we will still use the sets
N'), N*(), N> (v), N’3(v), N* (v), Wi, W and W3, which recall are defined with respect to
T. By the definition, y, is a degree 2 vertex in T’ (see Figure 6).

Claim 3.20. We have d3/(v) > 4. Thus y, is the only degree 2 vertex in T

Proof. Suppose k = 1. Then we have T' = T. As d7(v) = dg(v) > 8(G) > 4, we have
ds(v) > 4. Since Ws = {x;}, by the definition of N (v), y, is the only degree 2 vertex in T

Thus we assume k > 3. In constructing T’ from T, the edges in U{’;}l {vy.} were deleted.
Thus di+(v) = dy(v) — p = dg(v) — p. When IV (H)| = k > 3, H has at least two leaves,
thus p <k — I{q}l — 2 =k — 3. By Claim 3.17, we may assume W; U W, # @. Thus
k < dg(v) — 1. Therefore d#(v) = d+(v) — p = dg(v) — p > 4.

Note that the vertex x; has degree at least 3 in T’. Thus in f”, the set of possible vertices
of degree 2 are contained in {y,, .., y;} U {x; | 2 < i < p + 1}. In constructing T’ from T,
the edges in UYL (v} U (Uf‘:p +21x:y}) were deleted. Thus every vertex from {y,, ..., ;}
has degree 1 in T’. Each vertex x; for 2 <i < p + 1 (if exists) has degree 2 in H,
and x; is also adjacent to y, in T’. Thus x; has degree 3 in T’. Hence y, is the only degree 2

vertex in T". O

AsWiu (W — {xq}) U W; =W U (W — {x}), Ws = W3, and Nz(v) = N?(v), the minimality
of the number of degree 2 vertices of T implies the following claim, which is similar to Claim 3.5.

Claim 3.21. The vertex y, is not adjacent to any vertex from Wiu (W — fq}) U W; inG.
Moreover, for vertices w,w’ € W, and y € N°(v) such that wy, w'y € E(T"), if
wy, € E(G), then w'y, & E(G).

Claim 3.22. If y, is adjacent to a vertex from N ) u N? ) u N* (v)in G, then G has a
HIST.

v

FIGURE 6 A spanning tree T’ (dot lines indicate edges of T' deleted by the transformation and strong lines
indicate edges of H).
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Proof. Suppose that y,y' € E(G) for some )y’ e N v)yu N? v)yu N* (v). Since
dj(v) > 4 by Claim 3.20, by adding y,y’ to T’ and deleting vy’ from T’, we obtain a
HIST of G. O

By Claim 3.22, we suppose that y, is not adjacent to any vertex from N WUN 2 WUN 4 )
in G. Also y, is not adjacent to any vertex from Wiu (W — ) U W; in G by Claim 3.21. Thus
the possible neighbors of y, in G are contained in N’ W) UN » (v) U W3 U {x}. Suppose » is
adjacent to no vertex from W5 in G. Then ¥, is adjacent to dg () — 1 > dg(v) — 1 vertices from
N*(w) U N” () in G. Since IN*() UN" W)l = dg() — IN'0) UKN*(0) U K* (W)l < dg(v) — 1
(note that W,UW,# @ by Claim 3.17, and hence N'(v)UN’(v)# @ because
N'w) u N?(v) = N'(v) U N2(v)), it follows that IN°() UN" @)l =dg(v) — 1 = de(») —
1 > 3 and so y, is adjacent to every vertex from N WUN & (v) in G. We choose a vertex z
so that

« ZE 1\7'3(1)) if 1\7’3(1)) # @, and
. zeN’ (v) such that vz € E(T") if N » (v) = @ (such z exists as H has leaves contained in W4
when k = IWjl = IN3(v)I > 3).

Then we obtain a HIST by adding y,z to T’ and deleting vz from 7".

Claim 3.23. Suppose y, is adjacent to a vertex w € W5 in G. Letw’ € Wyand y € N*()
such that yw, yw’ € E (1) by the definition of W;. Then nw' & E(G), and G has a HIST
or xw' € E(G) — E(T").

Proof. We have yw’ ¢ E(G) by the second part of Claim 3.21. Thus we have
yw e E(G) — E(T"), yw,yw’ € E(T"), and y,w’ ¢ E(G).

Since the diameter of G is 2, y; and w’ have a common neighbor z in G.

By the first part of Claim 3.21, y, is not adjacent to any vertex from W; — {x} in G. By
the minimality of the number of degree 2 vertices of T, w’ is not adjacent to any vertex
from N° (v)UN’3(v) in G (otherwise, if w’ is adjacent to a vertex, say y*, from
N (v) U N’3(v) in G, then in T we would delete yw and yw’ and add y,w and y*w’ to
deduce the number of degree 2 vertices). As Ng(y;) C N WUN 3 () U W5 U [}, we
thus have z € (W5 — (w'}) U {x1}.

If z = w, then we obtain a HIST of G by adding ww’(= zw’), y,w to T’ and deleting
vy, yw’ from T'.1fz € W5 — {w, w'}, then we obtain a HIST of G by adding y,w, y,z, w'z to
T’ and deleting vy, yw, yw' from T’ (in the resulting tree, the degree of y, is 3 and the degree
of y is 1). Thus z = x; and so we have xw’ € E(G) — E(T") by the construction of . O

We now suppose that y; is adjacent to a vertex w; € W; in G. By the definition of W5, there
exist vertices w, € W5 and y € N 2(v) such that ywy, yw, € E(T). By Claim 3.23, we have
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ywwy € E(G), and G has a HIST or xw, € E(G) — E(T"). So, we suppose that
xw, € E(G) — E(T").

If dj (%) > 3, then we obtain a HIST of G by adding x; w,, y,w; to T’ and deleting ywy, yw,
from T'. If dj () < 2, since df(x;) # 2, we must have dj (%) = 1. This implies V (H) = {x}.
Thus if y, is adjacent to a vertex z € N’3(v) in G, then we obtain a HIST of G by adding
»z to T’ and deleting vz from T’. Thus we suppose that ¥, is not adjacent to any vertex
from N’3(v) in G. Note that when V (H) = {x}, we have 1\73(1)) ={»} As 6(G) >4,
Ng(y) c N’() U W5 U {x}, and y,w, & E(G), it follows that y, is adjacent to at least two
vertices of W5 — {wy, w,} in G. Thus there exists w; € W — {wy, w5} such that nw € E(G).
Since w; € W; and w{ ¢ {wy, w,}, there exist vertices w; € W; and y' € N ‘() — {y} such that
y'w{,y'w; € E(T"). By Claim 3.23, we have wjy, € E(G), and G has a HIST or
xw, € E(G) — E(T"). So, we suppose that xw; € E(G) — E(T").

Then we obtain a HIST of G by adding xw,, xyw;, y,wy, y,w; to T’ and deleting
YW1, yws, y'wy, y'wy from T”.

Case 2. |W4l = 2.

Let W; = {x;, %). Let ¥, and y, be the vertices in N3(v) such that xy;, %y, € E (T). By
Claims 3.18 and 3.19, x; and X, have no common neighbor in G. Thus x5 € E(G) because the
diameter of G is 2.

Claim 3.24. If Wy = @, then G has a HIST.

Proof. Note that Wi = @ implies Nl(v) = @. By Claim 3.18, for each i € {1, 2}, x; is
adjacent to exactly dg(x;) — 1 vertices from N* V) UuWu WU W’g in G. Since x; and x
have no common neighbor in G, we have IN4(v) UWau WU Wil > dg(n) —
1+ dg(e) — 1> 2dg() — 2 = 208 W) + IN° )1 + IN" )| + IN*(0)1) — 2. As IW3l =
ZINZ(V)I, Wi = {x, %)}, and W'l = IN’3(V)I, it follows that 1\74(1)) UW’; = @. Thus
IN*(v)I > 2 as d#(v) > 4. Since dg(x;) > dg(v), x; is adjacent to at least IN?()]
vertices from W5 in G for eachi € {1, 2}. This, together with the facts that W5l = 2IN 2 (]
and x; and X%, have no common neighbor in G, implies that each vertex in W is adjacent
to either x; or % in G. For each i, let W5(x;) = Ng(x;) N Ws. Note that we have
W () U W () = Ws and IW5(x)1 = IW5(0)1 = IN*(v)] > 2. Since dg(y,) > dg(v) > 4,
Nl(v) uUWuw;u 1\74(1)) = @, and IW4 = 2, it follows that ¥, is adjacent to a vertex
z€ N°(v) U W5 in G.

If ze N’ (v), then we obtain a HIST of G by adding x%,y,z and
{x;wiw; € Wy (x;) for each i=1,2}toT and deleting x, y,, vz and E# (W5, Nz(v)) from
T. Thus we suppose z & N? W) (ie., z € W3). If z € W5 (x), then we obtain a HIST of G by
adding x5, y;z and ({x;wiiw; € Ws(x;) for each i=1,2} — {xz})toT and deleting x, y,
and E¢(Ws, N”(v)) from T If z € W5 (%), then we obtain a HIST of G by adding x5, y,2
and ({x;wiw; € Wa(x;) for each i=1,2} — {%z}) to T and deleting vy, and
E+ (W5, Nz(v)) from T O

By Claim 3.24, we may assume Wi # @. Thus Nl(v) #* @.
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Claim 3.25. There exists a vertex w € W; which is adjacent to either x or % in G.

Proof. Suppose to the contrary that (Ng() U Ng(%)) N W = @. Then by the same
argument as in Claim 3.24, we have IN4(V) uWu WU W;I >dg(x) —1+dg(o) —
1> 2dg(v) — 2 = 20N W) + IN*W)I + IR W) + IN" W) + IN*(@W)1) — 2. Thus N'()U
N*(v) U W, = @, contradicting the fact N'(v) # @. O

By Claim 3.25 and symmetry, we suppose that x; is adjacent to w € W; in G. Let y be the
vertex in N 1(v) such that wy € E(T).

Claim 3.26. If w is adjacent to a vertex from W] in G, then G has a HIST.

Proof. Suppose that w is adjacent to a vertex w’ € W; — {w} in G. Let y’ be the vertex in
Nl(v) such that w'y’ € E(T). Then we obtain a HIST of G by adding ww', x33, 3w to T
and deleting vy,, % y,, y'w’ from T. O

By Claim 3.26, we may assume that w is not adjacent to any vertex from Wi in G.
Claim 3.27. If y, is adjacent to a vertex from Ng(v) in G, then G has a HIST.

Proof. Let ' € Ng(v) — {y} such that y,;y" € E(G). Then we obtain a HIST of G by
adding y, ¥, 1%, ;3w to T and deleting vy’, %, y,, yw from T. O

By Claim 3.27, we suppose that y, is not adjacent to any vertex from Nz(v) in G.
By the minimality of the number of degree 2 vertices of T, y, is not adjacent to any
vertex from Wj U W; U {%} in G. Thus Ng(y,) C W5 U {v, x;} and so y, is adjacent to at least
N v)u N? ()l > 1 vertices from W; in G by dg(y,) > dg(v). Let w; € W, such that
y,w; € E(G). Then by the definition of W5, there exist w, € W5 and y' € N? (v) such
that w; y’, w,y’ € E(T). By the minimality of the number of degree 2 vertices of T, we have
»nw; € E(G). Thus y, and w, have a common neighbor z in G because the diameter of G is 2.
Since Ng(y,) C W U {v,x} and w, & N;(v), we have z € (W, — {w,}) U {x;}.

If z = x;, then we obtain a HIST of G by adding y, w1, %13, 3w to T and deleting w1y, wyy’ %Y,
from T If z = wy, then we add VW1, WiWa, X35, W to T and delete vy, woy', yw, X, y, from T to
get a HIST of G. Thus we assume z € W5 — {wy, w,}. In this case, we obtain a HIST of G by adding
VW1, 1%, WaZ, X1, i W to T and deleting vy;, w1 y', w2 y’, yw, %, y, from T.
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