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Abstract

A spanning tree of a graph with no vertex of degree 2 is

called a homeomorphically irreducible spanning tree

(HIST) of the graph. In 1990, Albertson, Berman,

Hutchinson, and Thomassen conjectured that every

twin‐free graph with diameter 2 contains a HIST.

Recently, Ando disproved this conjecture and charac-

terized twin‐free graphs with diameter 2 that do

contain a HIST. In this paper, we give a complete

characterization of all graphs of diameter 2 that

contain a HIST. This characterization gives alternative

proofs for several known results.
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1 | INTRODUCTION

We consider only simple graphs. Let G be a graph. For ∈v V G( ), N v( )G is the set of neighbors
of v in G and ≔  d v N v( ) ( )G G . We denote by δ G( ) and GΔ( ) the minimum degree and the
maximum degree ofG, respectively. For ⊂S V G( ),G S[ ] is the subgraph ofG induced on S, and

≔G S G V G S− [ ( ) − ]. For disjoint vertex sets ⊆V V V G, ( )1 2 , let E V V( , )G 1 2 be the set of all
edges with one endvertex in V1 and the other in V2. When V v= { }1 , we write E v V( , )G 2 for
E V V( , )G 1 2 . We use the standard notation K P,n n, and Km n, to denote the complete graph on n

J Graph Theory. 2023;104:886–903.wileyonlinelibrary.com/journal/jgt886 | © 2023 Wiley Periodicals LLC.

This paper is dedicated to Prof. Katsuhiro Ota for his 60th birthday.

https://orcid.org/0000-0002-6384-2876
mailto:s.tsuchiya@isc.senshu-u.ac.jp
https://wileyonlinelibrary.com/journal/jgt
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fjgt.23005&domain=pdf&date_stamp=2023-07-10


vertices, the path of order n, and the complete bipartite graph with one partition of sizem and
the other of size n, respectively. Two vertices x and y of a graph G are called twins if
N x N y( ) = ( )G G . By the definition, x is not adjacent to y if they are twins. If G contains no
twins, then G is twin‐free.

A spanning tree of a graph with no vertex of degree 2 is called a homeomorphically
irreducible spanning tree (HIST) of the graph. Let T be a HIST of a graph. In T , a vertex of
degree 1 is called a leaf ofT , and each vertex other than leaves is called a stem ofT . For a graph
G, a blocking set is a cutset ofG consisting of vertices of degree 2. By the definition of a HIST, if
G has a HIST, then G contains no blocking set.

In [1], Albertson, Berman, Hutchinson, and Thomassen proved that it is NP‐complete to
decide whether a given graph contains a HIST. On the other hand, there are sufficient
conditions that guarantee the existence of a HIST in a graph.

Theorem A (Albertson, Berman, Hutchinson, and Thomassen [1]). Let G be a graph of
order ≥n 4. If each pair of vertices have a common neighbor, then G has a HIST.

Theorem B (Furuya and Tsuchiya [3]). LetG be a connected graph of order ≥n 4 with no
induced P4 (i.e., G is P4‐free). Then G has a HIST if and only if G is isomorphic to neither
K n2, −2 nor a graph obtained from K4 by subdividing one edge.

Theorem C (Ito and Tsuchiya [4]). LetG be a graph of order ≥n 8. For any nonadjacent
vertices x and y, if ≥d x d y n( ) + ( ) − 1G G , then G has a HIST.

Graphs satisfy conditions in Theorems A–C have diameter 2. In [1], Albertson, Berman,
Hutchinson, and Thomassen conjectured that for a graphG of order ≥n 10 and diameter 2, ifG
is twin‐free, then G contains a HIST. However, Ando [2] recently disproved this conjecture. In
this paper, we give a complete characterization of all graphs of diameter 2 that contain a HIST.
To state the result, we construct graphs described below of diameter 2 but contain no HIST.

Let ≥k 1 be an integer. For each ∈i k{1, …, }, let A K=i p2, i
be a complete bipartite

graph with bipartition Xi and Yi such that  X = 2i and  Y p=i i, where ≥p 1i is an integer.
Let X u v= { , }i i i , and let K1 and Kk be two complete graphs with V K x( ) = { }1 and
V K y y( ) = { , …, }k k1 . Then a graph A p p( , …, )k1 is obtained from A A, …, k1 , K1 and Kk by
identifying x with ui and identifying yi with vi for each i. We let

 ≥A p p p i= { ( , …, ) 1 for each }k k i1

be the set of all such graphs A p p( , …, )k1 . In particular, if p = 1i (i.e., A P=i 3 is a path) for each
i, we denote A p p( , …, )k1 by Ak

s, which is a graph ink with smallest order. See Figure 1 for an
illustration of a graph in k and the graph Ak

s, respectively. Note that each graph in k

contains no HIST as it has a blocking set, and each graph in A− { }k k
s is a graph of diameter 2

with twins.

For ≥n 6, let Bn be a graph such that V B a b b b c c( ) = { , , , …, , , }n n1 2 −3 1 2 and

≤ ≤ ∪ ≤ ≤ ∪E B ab i n c b j n b b c b c b c c( ) = { : 1 − 3} { : 3 − 3} { , , , }.n i j2 1 2 1 1 1 2 1 2

It is clear that B b b A n− { } = (2, − 5)n 1 2 . See Figure 2 for a depiction of Bn.
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We now state Ando's result in disproving the conjecture of Albertson, Berman, Hutchinson,
and Thomassen in [1] and our characterization of graphs of diameter 2 containing a HIST.

Theorem D (Ando [2]). LetG be a graph of order ≥n 10 with diameter 2. Suppose thatG
is twin‐free. Then G has a HIST if and only if G is not isomorphic to Ak

s for any ≥k 1.

Theorem 1. LetG be a graph of order ≥n 10 and diameter 2. ThenG has a HIST if and
only if ∉G k for any ≥k 1 and ≠G Bn.

The condition ≥n 10 is best possible in both Theorems D and 1. The graph of order 9 given
in Figure 3, constructed in [1], is twin‐free, has no blocking set, is not isomorphic to B9, but
contains no HIST.

FIGURE 1 ∈A (3, 2, …, 2) k (left) and A A(1, 1, …, 1) = k
s (right).

FIGURE 2 Bn.

FIGURE 3 A twin‐free graph of order 9 containing no homeomorphically irreducible spanning tree.
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Theorem 1 gives alternative proofs of Theorems A–D if we assume the graphs are of order at
least 10.

Proof of Theorem A. Since each pair of vertices of G have a common neighbor and so
the diameter of G is 2. By Theorem 1, it suffices to show that ∉G k for any ≥k 1 and
that ≠G Bn. Take a graph H ink, let x′ be a vertex in N x( )H , where recall x is the vertex
contained in K1 when constructing the graph H . Then x and x′ do not have a common
neighbor in H . In Bn, a and b1 do not have any common neighbor. □

Proof of Theorem B. Since G is a connected graph containing no induced P4, the
diameter of G is 2. Since all graphs in 1 are isomorphic to K p2, for some p, it suffices to
show that ∉G k for any ≥k 2 and that ≠G Bn. For any ≥k 2, take a graph H in k,
and let x′ be a common neighbor of x and y1 in H , where recall y1 is a vertex in Kk used to
construct H . Then xx y y′ 1 2 is an induced P4. In Bn, ab c c1 1 2 is an induced P4. □

Proof of Theorem C. Since ≥d x d y n( ) + ( ) − 1G G for any nonadjacent vertices x and y,
x and y have at least one common neighbor. Thus the diameter ofG is 2. So, it suffices to
show that ∉G k for any ≥k 1 and that ≠G Bn. Take a graph H in k, let x′ and x″ be
vertices in N x( )H . Then ≤d x d x n( ′) + ( ″) = 4 < 9 − 1H H . In Bn, d b d b( ) + ( ) =B B1 3n n

≤ n5 < 9 − 1. □

Proof of Theorem D. It suffices to show that ∉G A− { }k k
s for any ≥k 1 and that

≠G Bn. Take a graph H in A− { }k k
s , and let A K=i p2, i

be a complete bipartite subgraph

of H with ≥p 2i . Let x′ and x″ be vertices of Ai from the partite set of size pi. Then
N x N x x y( ′) = ( ″) = { , }H H i , and hence x′ and x″ are twins. In Bn, there exists b4 because
≥n 10. Then N b N b a c( ) = ( ) = { , }B B3 4 2n n

, and hence b3 and b4 are twins. □

Theorem 1 is implied by the two theorems below, which we prove, respectively, in
Sections 2 and 3.

Theorem 2. LetG be a graph with diameter 2. ThenG contains a blocking set if and only
if ∈G k for some integer ≥k 1.

Theorem 3. Let G be a graph of order ≥n 10 and diameter 2. Suppose that G contains
no blocking set. Then G contains a HIST if and only if ≠G Bn.

2 | PROOF OF THEOREM 2

Proof. If ∈G k for some integer ≥k 1, then the vertices of G other than those
corresponding to K1 and Kk in the definition of k form a blocking set of G. Conversely,
suppose thatG is a diameter 2 graph containing a blocking set. We show that ∈G k for
some integer ≥k 1. □

Let B be a minimal blocking set of G and let D D, …, p1 ( ≥p 2) be components of G B− .
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Claim 2.1. For each ∈b B and each component Di with ∈i p{1, …, }, b is adjacent to a
vertex of Di in G. Consequently, p = 2.

Proof. Suppose to the contrary that there exists ∈b B such that ∩ ∅N b V D( ) ( ) =i for
some i. Then B b− { } is a blocking set ofG smaller than B, contradicting to B being minimal.
Since each vertex in B has degree 2 in G, p = 2 as a consequence of the first part. □

Claim 2.2. For each ∈i {1, 2}, every vertex in Di is adjacent to at least one vertex from B

in G.

Proof. Let ∈u V D( )i be an arbitrary vertex. Take ∈v V D( )j for ≠j i. Since the
diameter of G is 2, u and v share a common neighbor in G. Consequently, u has a
neighbor from B in G. □

Claim 2.3. For each ∈i {1, 2}, G D[ ]i is a clique.

Proof. Suppose to the contrary that there exist ∈d d V D, ′ ( )i such that ∉dd E D′ ( )i . By
Claim 2.2, d is adjacent to a vertex ∈b B inG. Since d b( ) = 2G , it follows from Claim 2.1
that b is not adjacent to any vertices from V D d( ) − { }i in G. Since ∉d d E D′ ( )i and so

∉d d E G′ ( ), d′ has no common neighbor with b in G. This contradicts the assumption
that the diameter of G is 2. □

Claim 2.4. There exists ∈i {1, 2} such that G D K[ ] =i 1.

Proof. Suppose to the contrary that ≠G D K[ ]i 1 for each ∈i {1, 2}. As a consequence,
we have ≥ V D( ) 21 and ≥ V D( ) 22 . Let ∈d d V D, ( )1

1
2
1

1 be distinct. By Claim 2.2, for
each ∈i {1, 2}, di

1 is adjacent to at least one vertex from B in G. As each vertex from B

has degree 2 in G, by Claim 2.1, each vertex from B is adjacent to exactly one vertex
from D1 in G. Thus d1

1 and d2
1 have no common neighbor from B in G. For each

∈i {1, 2}, let

∩ ∪B N d B B B B B= ( ) and ′ = − ( ).i G i
1

1 2

Let ∈b Bi i for each i. Since b1 and b2 have no common neighbor from D1 and
∉b b E G( )1 2 in G by Claim 2.1, it follows that b1 and b2 have a common neighbor d1

2

from D2 in G because the diameter of G is 2. Since ≥ V D( ) 22 , there exists a vertex
∈d V D d( ) − { }2

2
2 1

2 . Since each vertex from B is adjacent to exactly one vertex from D2

in G by Claim 2.1 and ∈ ∩d N b N b( ) ( )G G1
2

1 2 , applying Claim 2.2, we know that d2
2 is

adjacent to a vertex ∈b B b b′ − { , }1 2 in G. By symmetry, suppose ∈ ∪b B B′ ′2 . Thus
∉b d E G′ ( )1

1 and so b′ and b1 have no common neighbor from D1 in G. Since
∈d b E G′ ( )2

2 and b′ is adjacent to exactly one vertex from D2 in G by Claim 2.1, it
follows that b′ is not adjacent to d1

2 in G. Thus b′ and b1 have no common neighbor
from D2 in G. Furthermore, B is an independent set in G by Claim 2.1. Hence the
distance between b1 and b′ is at least 3 in G, contradicting the assumption that the
diameter of G is 2.
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By Claim 2.4, we assume, without loss of generality, that G D K[ ] =1 1. By Claim 2.1,
each vertex from B is adjacent to exactly one vertex from D2 in G. This together with
Claims 2.2 and 2.3 implies that D2 is a complete graph of order at most  B . Now by Claims
2.1–2.4, we have ∈G k, where ≔  k V D( )2 , completing the proof. □

3 | PROOF OF THEOREM 3

Theorem 3 is implied by the three lemmas below.

Lemma 4. LetG be a graph of order ≥n 10, diameter 2, and containing no blocking set.
Suppose that ≤δ G( ) 2. Then G has a HIST if and only if ≠G Bn.

Lemma 5. Let G be a graph of order ≥n 10 and diameter 2. If δ G( ) = 3, then G has a
HIST.

Lemma 6. Let G be a graph of order ≥n 10 and diameter 2. If ≥δ G( ) 4, then G has a
HIST.

For a subtreeT of a graphG,T is called an extendable HIT ifT has no vertex of degree 2 and for
any ∈v V G V T( ) − ( ), v is adjacent to a stem ofT . By the definition, the following statement is true.

Fact 3.1. A graph with an extendable HIT contains a HIST.

3.1 | Proof of Lemma 4

Proof. By tedious check, we can see that Bn has no HIST. Thus it suffices to show thatG
has a HIST if ≠G Bn. IfG has a vertex of degree n − 1, thenG has a spanning star, which
is a HIST of G. Thus we assume ≤G nΔ( ) − 2.

Let v be a vertex of G such that d v δ G( ) = ( )G . If d v( ) = 1G , then the degree of the
vertex adjacent to v is n − 1 because the diameter of G is 2, contradicting ≤G nΔ( ) − 2.
Thus we have d v( ) = 2G . Let w1 and w2 be the vertices of G that are adjacent to v.

First we assume ∈w w E G( )1 2 . Suppose, by symmetry, ≥d w d w( ) ( )G G1 2 . Since
≤G nΔ( ) − 2 and so ≤d w n( ) − 2G 1 , there exists ∈ ⧹y V G v w w( ) { , , }1 2 such that
∉w y E G( )1 . Then ∈w y E G( )2 as the distance between y and v is 2 in G. Since
≥d w d w( ) ( )G G1 2 , ≥n 10, and the diameter of G is 2, there exist distinct

∈x x N w w v, ( ) − { , }G1 2 1 2 . Thus G has a double star T such that

V T w w x x v y E T w w w x w x w v w y( ) = { , , , , , } and ( ) = { , , , , }.1 2 1 2 1 2 1 1 1 2 2 2

Since each vertex of V G V T( ) − ( ) is adjacent to either w1 or w2 in G, T is an
extendable HIT. Hence G has a HIST.

Next we assume ∉w w E G( )1 2 . For each ∈i {1, 2}, let

∩W N w N w W N w N w v= ( ) − ( ) and = ( ( ) ( )) − { }.i G i G i G G3− 12 1 2 □
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Claim 3.2. IfW12 has a vertex x of degree at least 3 in G, then G has a HIST.

Proof. Let ∈x W12 with ≥d x( ) 3G . Then x is adjacent to a vertex ∈ ∪ ∪y W W W1 2 12 in
G. Let W W y′ = − { }i i for each ∈i {1, 2}, and let W W y′ = − { }12 12 . By symmetry, we
assume ≥   W W′ ′1 2 . Since ≥n 10, there exist distinct vertices ∈ ∪w w W W, ′ ′ ′1 12. If

≠ ∅W′2 , then let ∈w W″ ′2. We now construct a tree T as follows:

≠ ∅

∅








V T w x w w w y v w

E T w x w x w w w w xy w v w w W

V T w x w v w y

E T w x w w w v w x xy W

( ) = { , , , , ′, , , ″} and

( ) = { , , , ′, , , ″} if ′ ;

( ) = { , , , , , } and

( ) = { , , , , } if ′ = .

1 2

1 2 1 1 2 2 2

1 2

1 1 1 2 2

In either case, T is an extendable HIT because each vertex inW′2 (resp., ∪W W′ ′1 12) is
adjacent in G to w2 (resp., w1). □

By Claim 3.2, we may assume that the degree of each vertex from W12 is 2 in G. Thus
∅E W W( , ) =G i 12 for each ∈i {1, 2}. If ∅W =i for each ∈i {1, 2}, then ∪W v{ }12 is a blocking set

ofG. If ∅W =i for some ∈i {1, 2}, then wi has no common neighbor with each vertex ofW i3− in
G, contradicting G being diameter 2. Thus for each ∈i {1, 2}, ≠ ∅Wi .

Claim 3.3. ≥   W W+ 41 2 .

Proof. Suppose to the contrary that ≤   W W+ 31 2 . If    W W+ = 21 2 , then
   W W= = 11 2 as ≠ ∅Wi for each i. Since the vertex in W1 is degree 2 in G,
∪ ∪W W v{ }1 12 is a blocking set of G, a contradiction. So we have    W W+ = 31 2 . By

symmetry, we assume that  W = 21 and  W = 12 . Since ∪ ∪W W v{ }12 2 is not a blocking
set ofG, the vertex fromW2 has degree at least 3 inG. By Claim 3.2, the vertex fromW2 is
adjacent inG to both of the vertices ofW1. IfG W[ ]1 contains no edges, then ∪ ∪W W v{ }1 12

is a blocking set ofG. If G W[ ]1 contains an edge, then G B= n. In either case, we obtain a
contradiction. □

Claim 3.4. There exist four distinct vertices ∈x W1 1, ∈x W2 2 and ∈ ∪y y W W,1 2 1 2 such
that

(1) ∈x x E G( )1 2 ,
(2) ≥d x( ) 3G i for each i, and
(3) ∈x y x y E G, ( )1 1 2 2 .

Proof. By Claim 3.2, we may assume that ∅E W W( , ) =G i 12 for each ∈i {1, 2}. Since G
has diameter 2, ≠ ∅E W W( , )G 1 2 . Since G contains no blocking set, G has two distinct
vertices ∈a W1 1 and ∈a W2 2 satisfying Conditions (1) and (2). Since ≥d a( ) 3G i , ai is
adjacent to a vertex ∈ ∪b W W a a( ) − { , }i 1 2 1 2 in G for each i. If ≠b b1 2, then letting
x a=i i and y b=i i gives the desired vertices. Hence we may assume that b b=1 2 and
d a( ) = 3G i for each i. By symmetry, we assume ∈b W1 1. By Claim 3.3, there exists a
vertex ∈c W a a b− { , , }i 1 2 1 for some ∈i {1, 2}. Since d a( ) = 3G i3− , c is not adjacent to a i3−

in G. Since the diameter of G is 2, c and a i3− have a common neighbor in G. Then c is
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adjacent to b1 in G because ∉a c w c E G, ( )i i3− . Then letting x b=1 1, x a=2 2, y c=1 , and
y a=2 1 gives four desired vertices. □

By Claim 3.4, G has four distinct vertices ∈x W1 1, ∈x W2 2, and ∈ ∪y y W W,1 2 1 2 satisfying
Conditions (1)–(3). For each ∈i {1, 2}, let W W x x y y′ = − { , , , }i i 1 2 1 2 . By symmetry, we assume

≥   W W′ ′1 2 . Since ≥n 10, there are two distinct vertices ∈ ∪w w W W, ′ ′1 12. If ≠ ∅W′2 , then let
∈w W″ ′2. We now construct a tree T as follows:

≠ ∅

∅









V T w x x w w w y y v w

E T w x x x x w w w w w x y x y w v w w W

V T w x x w v y y w

E T w x x x w w w v x y x y x w W

( ) = { , , , , , ′, , , , ″} and

( ) = { , , , , ′, , , , ″} if ′ ;

( ) = { , , , , , , , } and

( ) = { , , , , , , } if ′ = .

1 1 2 2 1 2

1 1 1 2 2 2 1 1 1 1 2 2 2 2 2

1 1 2 1 2 2

1 1 1 2 1 1 1 1 2 2 2 2 2

In either case, T is an extendable HIT because each vertex in W′2 (resp., ∪W W′1 12) is
adjacent in G to w2 (resp., w1).

3.2 | Proof of Lemmas 5 and 6

To prove Lemmas 5 and 6, we construct a spanning treeT ofG as follows. Let v be a vertex ofG
such that d v δ G( ) = ( )G . We take a spanning tree T in G so that

• T contains all edges of E v N v( , ( ))G G ,
• all vertices of T other than leaves are contained in ∪N v v( ) { }G and
• the number of vertices of degree 2 in T is as small as possible.

Note that such T exists, as G has diameter 2 and so every vertex of ∪V G N v v( ) − ( ( ) { })G is
adjacent in G to a vertex from N v( )G . In T , we define subsets of N v( )G so that

• ≔ ≥ ∈N v u d u u N v( ) { ( ) 4, ( )}i T i i G
1 1 1 1 ,

• ≔ ∈N v u d u u N v( ) { ( ) = 3, ( )}i T i i G
2 2 2 2 ,

• ≔ ∈N v u d u u N v( ) { ( ) = 2, ( )}i T i i G
3 3 3 3 , and

• ≔ ∈N v u d u u N v( ) { ( ) = 1, ( )}i T i i G
4 4 4 4 .

We define subsets of ∪V G N v v( ) − ( ( ) { })G so that

• ≔ ∈W w w u E T{ ( )i i1
1 1 for some ∈u N v( )}1 ,

• ≔ ∈W w w u E T{ ( )i i2
2 2 for some ∈u N v( )}2 , and

• ≔ ∈W w w u E T{ ( )i i3
3 3 for some ∈u N v( )}3 .

See Figure 4 for a depiction of T and the sets defined above.

Claim 3.5. For each ∈w W3, w is not adjacent to any vertex from ∪N v N v( ) ( )1 2 in G.
Moreover, for any pair of vertices ∈w w W, ′ 3, w and w′ have no common neighbor from

∪N v N v( ) ( )3 4 in G.
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Proof. Otherwise, we can take a spanning tree so that its number of vertices of degree 2
is smaller than that of T . □

Lemma 5. Let G be a graph of order ≥n 10 and diameter 2. If δ G( ) = 3, then G has a
HIST.

Proof. We use the notation introduced above, and take T be a spanning tree of G with
the described properties. □

Claim 3.6. For each ∈w W3, w is adjacent to at least two vertices from
∪ ∪ ∪N v W W W( )4

1 2 3 in G.

Proof. Since ≥d w d v( ) ( ) = 3G G , w is adjacent to at least three vertices in G. By the
definition of T , w is adjacent to a vertex from N v( )3 inG. By Claim 3.5, w is not adjacent
to any vertex from ∪N v N v( ) ( )1 2 in G. Thus the other two neighbors of w in G are
contained in ∪ ∪ ∪N v W W W( )4

1 2 3. □

If ∅W =3 , then T is a HIST of G. So we suppose ≠ ∅W3 . By the definition of T , we have
≤   W N v= ( ) 33

3 . Since ≥n 10, ≤ W 33 implies ∪ ≠ ∅N v N v( ) ( )1 2 . Thus ≤ W 23 .
First we assume  W = 23 . Let x1 and x2 be the two vertices inW3. and for each ∈i {1, 2}, let yi

be a vertex of N v( )3 which is adjacent to xi in T . Let y be the vertex in N v y y( ) − { , }G 1 2 . Since
≥n 10, it follows from the definition of T that y N v{ } = ( )1 and ∪ ∅N v W( ) =4

2 .

Claim 3.7. If x1 and x2 have a common neighbor in G, then G has a HIST.

Proof. Let x′ be a common neighbor of x1 and x2 in G. By adding x x x x′, ′1 2 to T and
deleting x y x y,1 1 2 2 from T , we obtain a HIST of G. □

By Claim 3.7, we suppose that x1 and x2 have no common neighbor in G. This implies that
∈x x E G( )1 2 because the diameter of G is 2.

Claim 3.8. For each ∈i {1, 2}, xi is adjacent to a vertex fromW1 in G.

FIGURE 4 A spanning tree T .
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Proof. Since ≥d x( ) 3G i , xi is adjacent to a vertex other than x i3− and yi in G. By Claim
3.5, such a vertex is contained inW1. □

By Claim 3.8, xi is adjacent to a vertex ∈z Wi 1 in G. By Claim 3.7, ≠z z1 2.

Claim 3.9. For each ∈i {1, 2}, yi is adjacent to y in G.

Proof. By the minimality of the number of degree 2 vertices of T , yi is not adjacent to
any vertex ofW1 inG for each ∈i {1, 2}. Thus yi and z i3− have a common neighbor inG as
G has diameter 2. Since ∩ ∅W N y( ) =G i1 and x i3− is nonadjacent to zi in G by Claim 3.7,
y is the only possible common neighbor of yi and z i3− . Thus ∈yy E G( )i for each i. □

By Claim 3.9, ∈yy yy E G, ( )1 2 . Then we obtain a HIST of G by adding yy yy x z x x, , ,1 2 1 1 1 2 to
T and deleting vy vy yz x y, , ,2 1 2 2 from T .

Next we assume  W = 13 . Let x1 be the vertex in W3, y1 be the vertex in N v( )3 which is
adjacent to x1 inT , and let y y, ′ be the two vertices in N v y( ) − { }G 1 . Since ≥n 10, it follows from
the definition of T that ≠ ∅W1 . By symmetry, we assume ∈y N v( )1 .

Claim 3.10. If x1 has a common neighbor with a vertex fromW1 inG, thenG has a HIST.

Proof. Let z be a vertex inW1 such that z and x1 have a common neighbor x′ inG. Let y″
be a vertex in y y{ , ′} such that ∈y z E T″ ( ). Note that ≠y x″ ′ as x1 is not adjacent to any
vertex from ∪N v N v( ) ( )1 2 in G by Claim 3.5. By adding x x zx′, ′1 to T and deleting
y z x y″ , 1 1 from T , we obtain a HIST of G. □

By Claim 3.10, we may assume that x1 has no common neighbor with any vertex fromW1 in
G. This implies that x1 is adjacent to each vertex ofW1 in G because the diameter of G is 2. By
this fact and Claim 3.10, we obtain the following claim.

Claim 3.11. If G W[ ]1 contains an edge, then G has a HIST.

By Claim 3.11, we may assume that G W[ ]1 contains no edge.

Claim 3.12. Let z be a vertex in W1 such that ∈yz E T( ). If ∈y z E G′ ( ), then G has a
HIST.

Proof. Suppose that there is a vertex ∈z N y v z′ ( ) − { , }T . Then we obtain a HIST ofG by
adding x z x z y z, ′, ′1 1 to T and deleting y v y v yz, ′ , ′1 from T . □

Claim 3.13. If either ∈y N v′ ( )1 or ∈y N v′ ( )4 , then G has a HIST.

Proof. Since ∈ ∪y N v N v′ ( ) ( )1 4 , it follows that ∪V G v y y y x W( ) = { , , ′, , }1 1 1. As W1

is an independent set in G by Claim 3.11, and y1 is not adjacent to any vertex of W1 in
G by the minimality of the number of degree 2 vertices of T , we see that each vertex
in W1 is adjacent to y and y′ in G because ≥δ G( ) 3. Therefore G has a HIST by
Claim 3.12. □
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By Claim 3.13, we may assume ∈y N v′ ( )2 . Let x ′1 and x ′2 be the two vertices in
W2 (i.e., ∈x y x y E T′ ′, ′ ′ ( )1 2 ). By the minimality of the number of degree 2 vertices of T , each
vertex inW1 is not adjacent to y1 in G. By Claims 3.11 and 3.12, each vertex inW1 is adjacent to
x ′i for some ∈i {1, 2} in G because ≥δ G( ) 3.

Claim 3.14. If x ′1 and x ′2 have a common neighbor fromW1 in G, then G has a HIST.

Proof. Let z be a common neighbor of x ′1 and x ′2 fromW1. Then we obtain a HIST ofG by
adding x z x z x z, ′ , ′1 1 2 to T and deleting x y x y x y′ ′, ′ ′,1 2 1 1 from T . □

By Claim 3.14, we may assume that x ′1 and x ′2 have no common neighbor fromW1 in G.

Claim 3.15. If x1 is adjacent to x ′i for some ∈i {1, 2} in G, then G has a HIST.

Proof. By symmetry, we assume ∈x x E G′ ( )1 1 . By Claim 3.10, x ′1 is adjacent to no vertex
of W1 in G. Thus x ′2 is adjacent to all vertices of W1 in G because every vertex of W1 is
adjacent to a vertex from x x{ ′, ′}1 2 in G. Let z and z′ be vertices inW1. Then we obtain a

HIST of G by adding x x x z x z x z′, , ′ , ′ ′1 1 1 2 2 to T and deleting vy vy x y yz, ′, ′ ′, ′1 1 from T . □

By Claim 3.15, we may assume that x1 is not adjacent to x ′i for any ∈i {1, 2} inG. Since the
diameter ofG is 2 and x1 and y′ are nonadjacent inG, x1 and y′ have a common neighbor, which
is not contained inW1 by Claim 3.12. Thus we have ∈y y E G′ ( )1 . Recall that each vertex inW1

is adjacent to x ′i for some ∈i {1, 2} in G. As ≥ W 31 , there exist ∈z z W, ′ 1 such that
∈x z x z E G′ , ′ ′ ( )1 1 or ∈x z x z E G′ , ′ ′ ( )2 2 . By symmetry, we assume ∈x z x z E G′ , ′ ′ ( )1 1 . Then we

obtain a HIST of G by adding x z x z x z y y, ′ , ′ ′, ′1 1 1 1 to T and deleting vy vy yz x y, ′, ′,1 1 1 from T .

Lemma 6. Let G be a graph of order ≥n 10 and diameter 2. If ≥δ G( ) 4, then G has a
HIST.

Proof. Again, we will use the notation introduced in the beginning of this subsection,
and take T be a spanning tree of G with the described properties. □

Claim 3.16. For each ∈w W3, w is adjacent to exactly d w( ) − 1G vertices from
∪ ∪ ∪N v W W W( )4

1 2 3 in G.

Proof. The vertex w is only adjacent to exactly one vertex from N v( )3 in G by the
minimality of the number of vertices of degree 2 of T . By Claim 3.5, w is not adjacent to
any vertex from ∪N v N v( ) ( )1 2 in G. Thus the rest d w( ) − 1G neighbors of w are
contained in ∪ ∪ ∪N v W W W( )4

1 2 3. □

If ∅W =3 , then T is a HIST of G. So we suppose ≠ ∅W3 .

Claim 3.17. If ∪ ∅W W =1 2 , then G has a HIST.

Proof. Let W x x= { , …, }k3 1 for some integer ≥k 1, and let ∈y N v( )i
3 such that

∈x y E T( )i i for each i. Since ≥d x d v( ) ( )G G1 , by Claims 3.5 and 3.16, x1 is adjacent to
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all vertices from ∪N v W x( ) ( − { })4
3 1 inG. Since ≥d y d v( ) ( )G G1 , y1 is adjacent to a vertex

∈z N v y( ) − { }G 1 in G. If ≠k 2, then we take a spanning tree T′ so that

∪ ∪ ∪


  






  


E T E T y z x x vz x y( ′) = ( ) { } { } − { } { } .

i

k

i
i

k

i i1
=2

1
=2

If k = 2, then we have ≥d v( ) 7G because ≥n 10. Let ∈z N v z′ ( ) − { }4 . We take a
spanning tree T′ so that

∪E T E T y z x z x x vz vz x y( ′) = ( ( ) { , ′, }) − { , ′, }.1 1 1 2 2 2

In either case, T′ is a HIST of G. □

By Claim 3.17, we may assume ∪ ≠ ∅W W1 2 . Suppose that for some ≥k 2, there are vertices
∈a a W, …, k1 3 such that they have a common neighbor z in G. By Claims 3.5 and 3.16,

∈ ∪ ∪z W W W a a( ) − { , …, }k1 2 3 1 . Let ∈b b N v, …, ( )k1
3 such that ∈a b E T( )i i ( ≤ ≤i k1 ). The

degree 2 vertex elimination (D2VE) operation on z is a transformation of T by adding a zi and
deleting a bi i for each ∈i k{1, …, }. A sequence of D2VE is the following transformation of T :

Step (1) Set ≔ ∪S W W1 2 and ≔S W′ 3.
Step (2) Take ∈s S such that ∩ N s S( ) ′ is maximum.
Step (3) If ∩ ≤ N s S( ) ′ 1, then no transformation on s. Otherwise, go to the next step.
Step (4) Apply D2VE on s.
Step (5) Set ≔ ∪ ∪ ∩S W W N s S( ( ) ′)1 2 .
Step (6) Set ≔S W S′ −3 .
Step (7) Return to Step (2).

Let T̂ be a spanning tree ofG obtained fromT by a sequence of D2VE. By the definition, the
number of vertices of degree 2 in T̂ cannot be reduced further by applying the D2VE operation.
In T̂ , we define subsets of N v( )G so that

• ≔N v N vˆ ( ) ( )
1 1 ,

• ≔N v N vˆ ( ) ( )
2 2 ,

• ≔ ∈N v u u N v d uˆ ( ) { ( ), ( ) = 2}i i T i
3 3

ˆ ,
• ≔N v N v N v′ˆ ( ) ( ) − ˆ ( )

3 3 3 , and
• ≔N v N vˆ ( ) ( )

4 4 .

Note that N v′ˆ ( )
3

were vertices of N v( )3 that now become leaves of T̂ . We define subsets of
∪V G N v v( ) − ( ( ) { })G so that

• ≔W Wˆ
1 1,

• ≔W Wˆ
2 2,

• ≔ ∈ ∈W w w u E T u N vˆ { ( ˆ ) for some ˆ ( )}i i3
3 , and

• ≔W W Wˆ ′ − ˆ
3 3 3.

See Figure 5 for a depiction of T̂ and the sets defined above.

SHAN and TSUCHIYA | 897

 10970118, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.23005 by A

uburn U
niversity Libraries, W

iley O
nline Library on [01/07/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Note that vertices of Ŵ ′3 are adjacent to vertices of ∪ ∪W W Wˆ ˆ ˆ ′
1 2 3 in T̂ . By the definition of T̂ ,

if ∅Ŵ =3 , then T̂ is a HIST ofG. So we suppose ≠ ∅Ŵ3 . Note that each vertex in Ŵ3 is a leaf of
T̂ . By Claim 3.16, we have the following claim.

Claim 3.18. For each ∈w Ŵ3, w is adjacent to exactly d w( ) − 1G vertices from
∪ ∪ ∪ ∪N v W W W Wˆ ( ) ˆ ˆ ˆ ˆ ′4

1 2 3 3 in G.

By the choice ofT and the D2VE procedure in getting T̂ fromT , we have the following claim.

Claim 3.19. For any pair of vertices ∈w w W, ′ ˆ
3, w and w′ have no common neighbor

from ∪ ∪ ∪N v W W Wˆ ( ) ˆ ˆ ˆ ′4
1 2 3 in G.

As the diameter of G is 2, by Claims 3.18 and 3.19, we know that any two vertices from Ŵ3

are adjacent in G or have a common neighbor from Ŵ3 in G. Thus the diameter of G W[ ˆ ]3 is 2.
We consider below two cases regarding whether or not  Ŵ = 23 .

Case 1. ≠ Ŵ 23 .

Let W x x xˆ = { , , …, }k3 1 2 for some integer ≠k 2. Assume, without loss of generality,

that the degree of x1 in G W[ ˆ ]3 is maximum. Let y y, …, k1 be vertices of N vˆ ( )
3 such that

∈x y E T( ˆ )i i . Since the diameter of G W[ ˆ ]3 is 2, if ≥k 3, then we can take a spanning tree H of
G W[ ˆ ]3 so that

• H contains all edges of ( )E x N x, ( )G G W1 [ ˆ ] 13
,

• all vertices of H other than leaves are contained in ∪N x x( ) { }G W[ ˆ ] 1 13
, and

• the number of vertices of degree 2 in H is as small as possible.

When ≥k 3, by the maximality of d x( )G W[ ˆ ] 13
, we have ≥d x d x( ) = ( ) 2G W H[ ˆ ] 1 13

. For some integer
≥p 0, we assume that H has exactly p vertices from ⧹V H x( ) { }1 that are of degree 2 in H . We

further assume, without loss of generality, that

≤ ≤ ≥d x i p p( ) = 2 for each 2 + 1 (this expression is meaningful only if 1 ).H i

FIGURE 5 A spanning tree T̂ (dot lines indicate edges of T deleted by the degree 2 vertex elimination
operation).
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We modify T̂ by adding E H( ) to T̂ and deleting ∪ vy x y{ } ( { })i
p

i i p
k

i i=2
+1

= +2 from T̂ . Denote

by T′ˆ the resulting spanning tree of G. If k = 1 (i.e.,  Ŵ = 13 ), then let T T′ˆ = ˆ . We will now
work on T′ˆ and modify it into a HIST of G. However, we will still use the sets

N v N v N v N v N v W Wˆ ( ), ˆ ( ), ˆ ( ), ˆ ′3( ), ˆ ( ), ˆ , ˆ1 2 3 4
1 2 and Ŵ3, which recall are defined with respect to

T̂ . By the definition, y1 is a degree 2 vertex in T̂′ (see Figure 6).

Claim 3.20. We have ≥d v( ) 4T̂ ′ . Thus y1 is the only degree 2 vertex in T′ˆ .

Proof. Suppose k = 1. Then we have T T′ˆ = ˆ . As ≥ ≥d v d v δ G( ) = ( ) ( ) 4T Gˆ , we have

≥d v( ) 4T̂ ′ . SinceW xˆ = { }3 1 , by the definition of N vˆ ( )
3 , y1 is the only degree 2 vertex in T′ˆ .

Thus we assume ≥k 3. In constructing T̂′ from T̂ , the edges in vy{ }i
p

i=2
+1 were deleted.

Thus d v d v p d v p( ) = ( ) − = ( ) −T T Gˆ ′ ˆ . When ≥ V H k( ) = 3, H has at least two leaves,
thus ≤  p k x k− { } − 2 = − 31 . By Claim 3.17, we may assume ∪ ≠ ∅W W1 2 . Thus
≤k d v( ) − 1G . Therefore ≥d v d v p d v p( ) = ( ) − = ( ) − 4T T Gˆ ′ ˆ .
Note that the vertex x1 has degree at least 3 inT′ˆ . Thus inT′ˆ , the set of possible vertices

of degree 2 are contained in ∪ ≤ ≤y y x i p{ , …, } { 2 + 1}k i1 . In constructing T′ˆ from T̂ ,
the edges in ∪ vy x y{ } ( { })i

p
i i p

k
i i=2

+1
= +2 were deleted. Thus every vertex from y y{ , …, }k2

has degree 1 in T′ˆ . Each vertex xi for ≤ ≤i p2 + 1 (if exists) has degree 2 in H ,
and xi is also adjacent to yi inT′ˆ . Thus xi has degree 3 inT′ˆ . Hence y1 is the only degree 2
vertex in T′ˆ . □

As ∪ ∪ ∪W W x W W W xˆ ( ˆ − { }) ˆ ′ = ( − { })1 3 1 3 1 3 1 ,W Wˆ =2 2, and N v N vˆ ( ) = ( )
2 2 , the minimality

of the number of degree 2 vertices ofT implies the following claim, which is similar to Claim 3.5.

Claim 3.21. The vertex y1 is not adjacent to any vertex from ∪ ∪W W x Wˆ ( ˆ − { }) ˆ ′
1 3 1 3 inG.

Moreover, for vertices ∈w w W, ′ ˆ
2 and ∈y N vˆ ( )

2 such that ∈wy w y E T, ′ ( ˆ′), if
∈wy E G( )1 , then ∉w y E G′ ( )1 .

Claim 3.22. If y1 is adjacent to a vertex from ∪ ∪N v N v N vˆ ( ) ˆ ( ) ˆ ( )
1 2 4 in G, thenG has a

HIST.

FIGURE 6 A spanning tree T̂′ (dot lines indicate edges of T̂ deleted by the transformation and strong lines
indicate edges of H ).
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Proof. Suppose that ∈y y E G′ ( )1 for some ∈ ∪ ∪y N v N v N v′ ˆ ( ) ˆ ( ) ˆ ( )
1 2 4 . Since

≥d v( ) 4T̂ ′ by Claim 3.20, by adding y y′1 to T′ˆ and deleting vy′ from T′ˆ , we obtain a
HIST of G. □

By Claim 3.22, we suppose that y1 is not adjacent to any vertex from ∪ ∪N v N v N vˆ ( ) ˆ ( ) ˆ ( )
1 2 4

inG. Also y1 is not adjacent to any vertex from ∪ ∪W W x Wˆ ( ˆ − { }) ˆ ′
1 3 1 3 inG by Claim 3.21. Thus

the possible neighbors of y1 in G are contained in ∪ ∪ ∪N v N v W xˆ ( ) ′ˆ ( ) ˆ { }
3 3

2 1 . Suppose y1 is
adjacent to no vertex from Ŵ2 inG. Then y1 is adjacent to ≥d y d v( ) − 1 ( ) − 1G G1 vertices from

∪N v N vˆ ( ) ′ˆ ( )
3 3

in G. Since ∪ ∪ ∪ ≤   N v N v d v N v N v N v d vˆ ( ) ′ˆ ( ) = ( ) − ˆ ( ) ˆ ( ) ˆ ( ) ( ) − 1G G
3 3 1 2 4

(note that ∪ ≠ ∅W W1 2 by Claim 3.17, and hence ∪ ≠ ∅N v N vˆ ( ) ˆ ( )
1 2 because

∪ ∪N v N v N v N vˆ ( ) ˆ ( ) = ( ) ( )
1 2 1 2 ), it follows that ∪ N v N v d v d yˆ ( ) ′ˆ ( ) = ( ) − 1 = ( ) −G G

3 3
1

≥1 3 and so y1 is adjacent to every vertex from ∪N v N vˆ ( ) ′ˆ ( )
3 3

in G. We choose a vertex z

so that

• ∈z N v′ˆ ( )
3

if ≠ ∅N v′ˆ ( )
3

, and
• ∈z N vˆ ( )

3 such that ∈vz E T( ˆ′) if ∅N v′ˆ ( ) =
3

(such z exists as H has leaves contained in Ŵ3

when ≥   k W N v= ˆ = ˆ ( ) 33
3 ).

Then we obtain a HIST by adding y z1 to T̂′ and deleting vz from T̂′.

Claim 3.23. Suppose y1 is adjacent to a vertex ∈w Ŵ2 in G. Let ∈w W′ ˆ
2 and ∈y N vˆ ( )

2

such that ∈yw yw E T, ′ ( ˆ′) by the definition of Ŵ2. Then ∉y w E G′ ( )1 , and G has a HIST
or ∈x w E G E T′ ( ) − ( ˆ′)1 .

Proof. We have ∉y w E G′ ( )1 by the second part of Claim 3.21. Thus we have

∈ ∈ ∉y w E G E T yw yw E T y w E G( ) − ( ′ˆ ) , , ′ ( ′ˆ ), and ′ ( ) .1 1

Since the diameter of G is 2, y1 and w′ have a common neighbor z in G.
By the first part of Claim 3.21, y1 is not adjacent to any vertex fromW xˆ − { }3 1 in G. By

the minimality of the number of degree 2 vertices of T , w′ is not adjacent to any vertex

from ∪N v N vˆ ( ) ˆ ′3( )
3 in G (otherwise, if w′ is adjacent to a vertex, say y*, from

∪N v N vˆ ( ) ˆ ′3( )
3 in G, then in T we would delete yw and yw′ and add y w1 and y w* ′ to

deduce the number of degree 2 vertices). As ⊂ ∪ ∪ ∪N y N v N v W x( ) ˆ ( ) ′ˆ ( ) ˆ { }G 1
3 3

2 1 , we
thus have ∈ ∪z W w x( ˆ − { ′}) { }2 1 .

If z w= , then we obtain a HIST of G by adding ww zw y w′(= ′), 1 to T′ˆ and deleting
vy yw, ′ from T′ˆ . If ∈z W w wˆ − { , ′}2 , then we obtain a HIST ofG by adding y w y z w z, , ′1 1 to
T′ˆ and deleting vy yw yw, , ′1 fromT′ˆ (in the resulting tree, the degree of y1 is 3 and the degree
of y is 1). Thus z x= 1 and so we have ∈x w E G E T′ ( ) − ( ′ˆ )1 by the construction of T′ˆ . □

We now suppose that y1 is adjacent to a vertex ∈w Ŵ1 2 in G. By the definition of Ŵ2, there
exist vertices ∈w Ŵ2 2 and ∈y N vˆ ( )

2 such that ∈yw yw E T, ( ′ˆ )1 2 . By Claim 3.23, we have
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∉y w E G( )1 2 , and G has a HIST or ∈x w E G E T( ) − ( ′ˆ )1 2 . So, we suppose that
∈x w E G E T( ) − ( ′ˆ )1 2 .

If ≥d x( ) 3T̂ ′ 1 , then we obtain a HIST of G by adding x w y w,1 2 1 1 to T′ˆ and deleting yw yw,1 2

from T′ˆ . If ≤d x( ) 2T̂ ′ 1 , since ≠d x( ) 2T̂ ′ 1 , we must have d x( ) = 1T̂ ′ 1 . This implies V H x( ) = { }1 .
Thus if y1 is adjacent to a vertex ∈z N vˆ ′3( ) in G, then we obtain a HIST of G by adding
y z1 to T′ˆ and deleting vz from T′ˆ . Thus we suppose that y1 is not adjacent to any vertex

from N vˆ ′3( ) in G. Note that when V H x( ) = { }1 , we have N v yˆ ( ) = { }
3

1 . As ≥δ G( ) 4,

⊂ ∪ ∪N y N v W x( ) ˆ ( ) ˆ { }G 1
3

2 1 , and ∉y w E G( )1 2 , it follows that y1 is adjacent to at least two
vertices of W w wˆ − { , }2 1 2 in G. Thus there exists ∈w W w w′ ˆ − { , }1 2 1 2 such that ∈y w E G′ ( )1 1 .

Since ∈w W′ ˆ
1 2 and ∉w w w′ { , }1 1 2 , there exist vertices ∈w W′ ˆ

2 2 and ∈y N v y′ ˆ ( ) − { }
2 such that

∈y w y w E T′ ′, ′ ′ ( ˆ′)1 2 . By Claim 3.23, we have ∉w y E G′ ( )2 1 , and G has a HIST or
∈x w E G E T′ ( ) − ( ′ˆ )1 2 . So, we suppose that ∈x w E G E T′ ( ) − ( ′ˆ )1 2 .

Then we obtain a HIST of G by adding x w x w y w y w, ′, , ′1 2 1 2 1 1 1 1 to T′ˆ and deleting
yw yw y w y w, , ′ ′, ′ ′1 2 1 2 from T′ˆ .

Case 2.  Ŵ = 23 .

Let W x xˆ = { , }3 1 2 . Let y1 and y2 be the vertices in N vˆ ( )
3 such that ∈x y x y E T, ( ˆ )1 1 2 2 . By

Claims 3.18 and 3.19, x1 and x2 have no common neighbor in G. Thus ∈x x E G( )1 2 because the
diameter of G is 2.

Claim 3.24. If ∅Ŵ =1 , then G has a HIST.

Proof. Note that ∅Ŵ =1 implies ∅N vˆ ( ) =
1 . By Claim 3.18, for each ∈i {1, 2}, xi is

adjacent to exactly d x( ) − 1G i vertices from ∪ ∪ ∪N v W W Wˆ ( ) ˆ ˆ ′ˆ4
2 3 3 in G. Since x1 and x2

have no common neighbor in G, we have ∪ ∪ ∪ ≥ N v W W W d xˆ ( ) ˆ ˆ ′ˆ ( ) −G
4

2 3 3 1

≥        d x d v N v N v N v N v1 + ( ) − 1 2 ( ) − 2 = 2( ˆ ( ) + ˆ ( ) + ′ˆ ( ) + ˆ ( ) ) − 2G G2
2 3 3 4 . As  Ŵ =2

 N v2 ˆ ( )
2 , W x xˆ = { , }3 1 2 , and    W N v′ˆ = ′ˆ ( )3

3
, it follows that ∪ ∅N v Wˆ ( ) ′ˆ =

4
3 . Thus

≥ N vˆ ( ) 2
2 as ≥d v( ) 4T̂ . Since ≥d x d v( ) ( )G i G , xi is adjacent to at least  N vˆ ( )

2

vertices from Ŵ2 inG for each ∈i {1, 2}. This, together with the facts that    W N vˆ = 2 ˆ ( )2
2

and x1 and x2 have no common neighbor inG, implies that each vertex in Ŵ2 is adjacent
to either x1 or x2 in G. For each i, let ∩W x N x Wˆ ( ) = ( ) ˆ

i G i2 2. Note that we have
∪W x W x Wˆ ( ) ˆ ( ) = ˆ

2 1 2 1 2 and ≥     W x W x N vˆ ( ) = ˆ ( ) = ˆ ( ) 22 1 2 2
2 . Since ≥ ≥d y d v( ) ( ) 4G G1 ,

∪ ∪ ∪ ∅N v W W N vˆ ( ) ˆ ′ˆ ˆ ( ) =
1

1 3
4 , and  Ŵ = 23 , it follows that y1 is adjacent to a vertex

∈ ∪z N v Wˆ ( ) ˆ2
2 in G.

If ∈z N vˆ ( )
2 , then we obtain a HIST of G by adding x x y z,1 2 1 and

∈x w w W x i{ ˆ ( ) for each = 1, 2}i i i i2 to T̂ and deleting x y vz,2 2 and E W N v( ˆ , ˆ ( ))T̂ 2
2 from

T̂ . Thus we suppose ∉z N vˆ ( )
2 (i.e., ∈z Ŵ2). If ∈z W xˆ ( )2 1 , then we obtain a HIST ofG by

adding x x y z,1 2 1 and ∈x w w W x i x z({ ˆ ( ) for each = 1, 2} − { })i i i i2 1 to T̂ and deleting x y2 2

and E W N v( ˆ , ˆ ( ))T̂ 2
2 from T̂ . If ∈z W xˆ ( )2 2 , then we obtain a HIST of G by adding x x y z,1 2 1

and ∈x w w W x i x z({ ˆ ( ) for each = 1, 2} − { })i i i i2 2 to T̂ and deleting vy2 and

E W N v( ˆ , ˆ ( ))T̂ 2
2 from T̂ . □

By Claim 3.24, we may assume ≠ ∅Ŵ1 . Thus ≠ ∅N vˆ ( )
1 .
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Claim 3.25. There exists a vertex ∈w Ŵ1 which is adjacent to either x1 or x2 in G.

Proof. Suppose to the contrary that ∪ ∩ ∅N x N x W( ( ) ( )) ˆ =G G1 2 1 . Then by the same
argument as in Claim 3.24, we have ∪ ∪ ∪ ≥ N v W W W d x d xˆ ( ) ˆ ˆ ˆ ′ ( ) − 1 + ( ) −G G

4
2 3 3 1 2

≥          d v N v N v N v N v N v1 2 ( ) − 2 = 2( ˆ ( ) + ˆ ( ) + ˆ ( ) + ′ˆ ( ) + ˆ ( ) ) − 2G
1 2 3 3 4 . Thus ∪N vˆ ( )

1

∪ ∅N v Wˆ ( ) ˆ ′ =
4

3 , contradicting the fact ≠ ∅N vˆ ( )
1 . □

By Claim 3.25 and symmetry, we suppose that x1 is adjacent to ∈w Ŵ1 in G. Let y be the
vertex in N vˆ ( )

1 such that ∈wy E T( ˆ ).

Claim 3.26. If w is adjacent to a vertex from Ŵ1 in G, then G has a HIST.

Proof. Suppose that w is adjacent to a vertex ∈w W w′ ˆ − { }1 inG. Let y′ be the vertex in
N vˆ ( )

1 such that ∈w y E T′ ′ ( ˆ ). Then we obtain a HIST of G by adding ww x x x w′, ,1 2 1 to T̂
and deleting vy x y y w, , ′ ′1 2 2 from T̂ . □

By Claim 3.26, we may assume that w is not adjacent to any vertex from Ŵ1 in G.

Claim 3.27. If y1 is adjacent to a vertex from N v( )G in G, then G has a HIST.

Proof. Let ∈y N v y′ ( ) − { }G 1 such that ∈y y E G′ ( )1 . Then we obtain a HIST of G by
adding y y x x x w′, ,1 1 2 1 to T̂ and deleting vy x y yw′, ,2 2 from T̂ . □

By Claim 3.27, we suppose that y1 is not adjacent to any vertex from N v( )G in G.
By the minimality of the number of degree 2 vertices of T , y1 is not adjacent to any
vertex from ∪ ∪W W xˆ ˆ ′ { }1 3 2 in G. Thus ⊂ ∪N y W v x( ) ˆ { , }G 1 2 1 and so y1 is adjacent to at least

∪ ≥ N v N vˆ ( ) ˆ ( ) 1
1 2 vertices from Ŵ2 in G by ≥d y d v( ) ( )G G1 . Let ∈w Ŵ1 2 such that
∈y w E G( )1 1 . Then by the definition of Ŵ2, there exist ∈w Ŵ2 2 and ∈y N v′ ˆ ( )

2 such
that ∈w y w y E T′, ′ ( ˆ )1 2 . By the minimality of the number of degree 2 vertices of T , we have

∉y w E G( )1 2 . Thus y1 and w2 have a common neighbor z inG because the diameter ofG is 2.
Since ⊆ ∪N y W v x( ) ˆ { , }G 1 2 1 and ∉w N v( )G2 , we have ∈ ∪z W w x( ˆ − { }) { }2 2 1 .

If z x= 1, then we obtain a HIST ofG by adding y w x x x w, ,1 1 1 2 1 2 to T̂ and deletingw y w y x y′, ′,1 2 2 2

from T̂ . If z w= 1, then we add y w w w x x x w, , ,1 1 1 2 1 2 1 to T̂ and delete vy w y yw x y′, ′, ,2 2 2 from T̂ to
get a HIST ofG. Thus we assume ∈z W w wˆ − { , }2 1 2 . In this case, we obtain a HIST ofG by adding
y w y z w z x x x w, , , ,1 1 1 2 1 2 1 to T̂ and deleting vy w y w y yw x y, ′, ′, ,1 1 2 2 2 from T̂ .

ACKNOWLEDGMENTS
This work was supported by NSF Grant number DMS2153938 (to Songling Shan), JSPS
KAKENHI Grant number JP19K14584 (to Shoichi Tsuchiya), a grant for Basic Science
Research Projects from The Sumitomo Foundation (to Shoichi Tsuchiya), and a research grant
of Senshu University 2022 (to Shoichi Tsuchiya). The authors are very grateful to the two
anonymous referees for their careful reading and valuable comments.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author
upon reasonable request.

902 | SHAN and TSUCHIYA

 10970118, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.23005 by A

uburn U
niversity Libraries, W

iley O
nline Library on [01/07/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



ORCID
Songling Shan https://orcid.org/0000-0002-6384-2876

REFERENCES
1. M. O. Albertson, D. M. Berman, J. P. Hutchinson, and C. Thomassen, Graphs with homeomorphically

irreducible spanning trees, J. Graph Theory. 14 (1990), 247–258.
2. K. Ando, Homeomorphically irreducible spanning trees in graphs with diameter 2, J. Graph Theory. to

appear.
3. M. Furuya and S. Tsuchiya, Forbidden subgraphs and existence of a spanning tree without small degree stems,

Discrete Math. 313 (2013), 2206–2212.
4. T. Ito and S. Tsuchiya, Degree sum conditions for the existence of homeomorphically irreducible spanning

trees, J. Graph Theory. 99 (2022), no. 1, 162–170.

How to cite this article: S. Shan and S. Tsuchiya, Characterization of graphs of diameter
2 containing a homeomorphically irreducible spanning tree, J. Graph Theory.
2023;104:886–903. https://doi.org/10.1002/jgt.23005

SHAN and TSUCHIYA | 903

 10970118, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.23005 by A

uburn U
niversity Libraries, W

iley O
nline Library on [01/07/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://orcid.org/0000-0002-6384-2876
https://doi.org/10.1002/jgt.23005

	Characterization of graphs of diameter 2 containing a homeomorphically irreducible spanning tree
	1 INTRODUCTION
	2 PROOF OF THEOREM 2
	3 PROOF OF THEOREM 3
	3.1 Proof of �Lemma 4
	3.2 Proof of �Lemmas 5 and 6

	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES




