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where the oriented vertex-sum of a vertex is the sum of labels of all arcs entering that
vertex minus the sum of labels of all arcs leaving it. A graph G admits an antimagic
orientation if G has an orientation D such that D has an antimagic labeling. Hefetz,
Miitze and Schwartz conjectured every connected graph admits an antimagic orientation.

f:ﬁg?;g& In this paper, we support this conjecture by proving that any forest obtained from a given
Antimagic labeling forest with at most one isolated vertex by subdividing each edge at least once admits an
Antimagic orientation antimagic orientation.

Forest © 2023 Elsevier B.V. All rights reserved.

1. Introduction

Graphs considered in this paper are simple, and digraphs in consideration are the orientations of simple graphs. If there
is no confusion, we use the same notation G to denote a graph or an underlying graph of a digraph. Also, we use the edges
to denote the arcs of a digraph if we do not care about the direction of the edges. Let m be a positive integer and G be a
graph with m edges. We use V(G), E(G) to denote the vertex set and edge set of G, respectively. A labeling of a graph G
with m edges is a bijection from E(G) to the set {1, 2,...,m}. A labeling of G is antimagic if for every two distinct vertices
u,v € V(G), the sum of labels on the edges incident with u differs from that of v. A graph is antimagic if it admits an
antimagic labeling.

Hartsfield and Ringel introduced antimagic labeling in 1990 and they conjectured that every connected graph other than
K> is antimagic [10], which is called the Antimagic Labeling Conjecture. This conjecture has received intensive attention,
but remains open in general, even for trees, as a relaxed version of the conjecture posed in the same paper. Some partial
results on the Antimagic Labeling Conjecture can be found in [1-6,8,11,13,14,16,18,19,25].

Hefetz, Miitze and Schwartz [12] introduced a variation of antimagic labelings, i.e., antimagic labelings on directed
graphs. An antimagic labeling of a directed graph with m arcs is a bijection from the set of arcs to the set {1,2,...,m}
such that any two oriented vertex-sums are distinct, where an oriented vertex-sum of a vertex is the sum of labels of all arcs
entering that vertex minus the sum of labels of all arcs leaving it. Given a graph G, we say G admits an antimagic orientation
if G has an orientation D such that D is antimagic. Regarding antimagic orientation of graphs, Hefetz, Miitze and Schwartz
[12] proposed the following conjecture.
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Conjecture 1.1 ([12]). Every connected graph admits an antimagic orientation.

For Conjecture 1.1, Hefetz, Miitze and Schwartz [12] showed that every orientation of a graph with order n and minimum
degree at least clogn is antimagic, where c is an absolute constant. Particularly, they showed that every orientation of stars
(other than Kj ), wheels, and complete graphs (other than K3) is antimagic. The conjecture is also verified for regular
graphs [12,15,23], biregular bipartite graphs [21], Halin graphs [26], graphs with large maximum degree [24], graphs with a
large independence set [22], lobsters [9], caterpillars [17] and subdivided caterpillars [7]. Recently, the first author showed
that Conjecture 1.1 is true for all bipartite graphs with no vertex of degree two or zero, and for all graphs with minimum
degree at least 33 [20].

Every antimagic bipartite graph G with partite sets X and Y admits an antimagic orientation, as we can direct all edges
from X to Y and apply any of the antimagic labelings of G. Thus, by the result in [14] with a minor error corrected by
Liang, Wong and Zhu [16] on antimagic labelings of trees, we know that every tree with at most one vertex of degree
two admits an antimagic orientation, and any tree obtained from a tree with no vertex of degree two by subdividing every
edge exactly once admits an antimagic orientation. These two results, together with the result of the first author [20] that
every bipartite graph with no vertex of degree two or zero admits an antimagic orientation, suggest that it is hard to find
an antimagic orientation if a graph has many vertices of degree two. In this paper, we overcome this issue for forests and
obtain the results below.

Theorem 1.2. Let F = (V, E) be a forest with at most one isolated vertex. If the set of vertices of degree distinct from two is independent,
then F admits an antimagic orientation.

The following result is a consequence of Theorem 1.2.

Corollary 1.3. Let F be obtained from any forest with at most one isolated vertex by subdividing each edge at least once. Then F admits
an antimagic orientation.

2. Notation and preliminary lemmas

Let G be a graph. For v € V(G), N¢(v) is the set of neighbors of v in G, and dg(v) = |Ng(v)| is the degree of v in G. For
S C V(G), the subgraph of G induced by S is denoted by G[S]. If F C E(G), then G — F is obtained from G by deleting all
the edges of F. For F € E(G), G + F is obtained from G by adding all the edges from F to G. We also use G — F and G + F
if G is a digraph. For two disjoint subsets X,Y C V(G), we denote by E¢(X,Y) the set of edges in G with one endvertex
in X and the other one in Y and let eg(X,Y) = |Eg(X, Y)|. A matching M in G is a set of independent edges, and we use
V(M) to denote the set of vertices saturated by M, here the vertices saturated by M are the vertices belonging to the edges
of M. If G is bipartite with two partite sets X and Y, we denote G by G[X, Y] to emphasis the bipartitions. For any two
integers a and b with a <b, let [a,b]={ieZ |a<i<b}.Ifa=1 and b > 1, we write [1, b] as [b] for simplicity.

Let G be a graph and D be an orientation of G. We denote by A(D) the set of arcs of D. For a labeling T on A(D) and
a vertex v e V(D), we use s(p 7)(v) to denote the oriented vertex-sum at v in D with respect to 7, which is the sum of
labels on all arcs entering v minus the sum of labels on all arcs leaving v in D. For simplicity, we write s(p,7)(v) as s(v) if
D and 7 are understood.

We will use the lemma below to partition an integer set such that all the sums of the elements from each subset are
congruent to zero modulo an integer.

Lemma 2.1. Let a and t be integers witha > 0andt > 1, and let r{ +1, + ...+ 1¢ be a partition of a positive integer k, where r; > 2 for
each i € [t]. Define A = [], L’j‘ﬂ U H%J +a+1,k+ a]. Then A can be partitioned into subsets A1, Az, ..., A; such that for every
i €[t], |Aijl=riand

ZXEO (mod k+a+1), ifkiseven;

XeA;

> x=0 (modk+a), ifk is odd.

XeA;

Proof. The case for even k is Corollary 2.2 (i) from [26]. Thus we assume k is odd. Since k=r; +1r + ...+ 71 and r; > 2
for each i € [t], there exists an odd r;, > 3 for some ig € [t]. Let rlfo =rj, —1 and r,f =r; for i € [t]\{ip}. Since k — 1 is even
and k —1=r] +r,+... 4+, applying the case when k is even, the set A\{k 4 a} can be partitioned into pairwise disjoint
subsets By, By, ..., B; such that for every i € [t],

Bil=r; and ) x=0 (modk+a).

XeB;
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Fig. 1. Illustration of the orderings of edges from three directed paths.

Define

A Bi, if i e [t]\{io};
"7 BiUk+a), ifi=ij.
It is clear that |Aj|=r; and ) x=0 (mod k+a). O

XeA;

This lemma below tells us how to label paths in a forest, which will be used in the proof of Theorem 1.2.

Lemma 2.2. Let n > 1 be an integer and F; F; e F,: be n internally disjoint directed paths. For each i € [n], let F: =VigVi1 ... Vi
where £; > 1 is the length ofﬁ. Suppose 2151-5“ £; = ¢, and the set of first edges vigVviy of each FT is labeled by a mapping o such

that o (vigvi1) =1 for every i € [n]. Then there exists a bijection T : U1515n A(F;) — [£] satisfying the following properties:

(i) T(viovi1) = o (vigviy) foreachi € [n]; and
— —
(ii) s(u) # s(v) for any two distinct vertices u and v such that u is internal of some P; and v is internal of some P; with i, j € [n];
and
(iii) for any vertex v that is internal of some F: with i € [n], we have |s(v)| € [¢ — 1] and s(v) <€ —n—1ifs(v) > 0.

Proof. Let i € [n], j € [¢;], and e;j = vj(j_1)Vjj. For two distinct edges e;; and es; with j and t having the same parity, we
write ejj < e if either j <t or j=t and i <s. Note that if ej; < es, then ej(j1) < es¢+1). By this definition, all arcs from
(U1<i<n A(P;) are ordered into two disjoint linear orderings:

Li:eq11<ex1<...<ép1 <...,

Ly:ej2<ejp<...<€j2<...,

where i1,1>,...0 with i; <iy <... < i} are indices such that P_>,j has length at least two for each j € [k]. To simplify the
labels assignment, we assume that the linear ordering L contains ¢, edges and the linear ordering L, contains ¢, edges for
some {,, £¢ € [£], and we denote the i-th edge of L by f;, and the j-th edge of L, by g; for each i € [¢,] and j € [£.]:

Li:fi<fa<...<fe,
Ly:g1<82<...< 8.

See Fig. 1 for an illustration of such orderings.
—
Define 7 : Ulﬁisn A(P;) — [£] such that

(1)

T(fi)=i forie[ty]; @
T(g)=L—i+1 forie[l]. (b)

The mapping 7 is a bijection. We show below that 7 satisfies properties (i) to (iii). By the definition of 7 in (1)(a), we have
T(vigvi1) =i =0 (vjovj1). Thus, Lemma 2.2 (i) is true.

Since F: is a directed path from vjo to vi, for any i € [n], for each j e [¢; — 1], we have s(vjj) = T(ejj) — T(€i(j+1))-
Therefore, by the definition of 7, s(v;;) > 0 if j is even and s(v;;) <0 if j is odd.

We now show Lemma 2.2 (ii). Let u and v be two distinct vertices such that u is internal of some FT and v is internal
of some FZ with i, j € [n]. Assume u =v;; and v = v for some se[1,¢; —1] and t € [1,¢; —1]. If s and t have different
parities, then one of s(u) and s(v) is positive and another is negative, and so s(u) # s(v). Thus, we assume s and t have

3
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the same parity and assume without loss of generality that e;s < ej. The assumption e;s < ej; further implies that ej;41) <
ej+1)- Then, as t(ejs) > T(ejr) and T(ejs41)) < T(€je+1)) When s is even, and 7 (e;s) < T(ej) and T(ejs4+1)) > T(€je+1))
when s is odd, we have

Is(u)| = [s(vis)| = |t (ejs) — T(eis+1)| > |T(ejt) — T(€jcs1)| = Is(Vje)| = [s(V)].

This proves (ii).

We lastly show Lemma 2.2 (iii). Let v be an internal vertex of some FT with i € [n]. Since the oriented vertex-sum at v
is the difference of the two labels on the edges incident to v, and the two labels are distinct numbers from [¢], we have
[s(v)| € [£ — 1]. Recall that s(v) > 0 if v =v;; for some even j € [2,£; — 1]. Since all the labels from [n] are assigned to
the set of the first edges of the n paths and j+ 1> 3 is odd, we have 7(e;j;+1)) =n+ 1. Thus s(v) = t(e;j) — T(€j(j+1)) <
£—(n+1)=4¢—n—1, proving the second part of (iii). O

3. Proof of Theorem 1.2

Let m = e(F). We may assume m > 0, as otherwise, the statement is vacuously true. If F has an isolated vertex, then its
oriented vertex-sum is zero. We will define next an orientation D of F and an antimagic labeling t of D such that each
oriented vertex-sum at a vertex of degree at least one is non-zero. Thus, in the following, we focus only on the nontrivial
components of F. Let

X={veV|dr(v)=2} and Y =V\X.

Since F has leaves, we have Y = ¢J. Furthermore, Y is independent by the condition on F. Since Y # ¢ and m > 0, we have
X # (). Because F[X] is a subgraph of F and all vertices in X have degree two in F, it follows that F[X] is a forest with
each component being a path. Let Pq, Py, ..., Ps be all the paths of F[X] for some integer s > 1, and for every i € [s], let

Pi=vioVi1Viz2... Vi, for some integer ¢; > 0.

As dp;(vio) =dp;(vig;) <1 and df(vig) = dr(vi) = 2, it follows that each one of the vertices vijp and vy, is adjacent to a
vertex from Y. Let Vgo and ng,' be the vertices from Y such that

/ /
VioVjgs Vi@i"iz,- S EF(X, Y).

It is possible to have v;g = vj;, but Vgo and v§€i are two distinct vertices as F is simple and contains no cycle.

Claim 3.1. There exists a matching M C Er(X,Y) saturating exactly one of the endvertices of P; for each i € [s] and saturating all
vertices of degree at least three from Y.

Proof. We construct a new bipartite graph H based on F. For each P; we contract it into a vertex w;j. Let V(H) =
{wi,...,ws}UY and E(H) = EF(X,Y). As the neighbor of vjo from Y is distinct with that of vj,, H is a forest such
that dy(w;) =2 for each i € [s]. It suffices to show that H has a matching saturating {wq,..., ws} and all vertices of Y
that have degree at least three in H. We claim first that H has a matching M; saturating {wq, ..., ws} and a matching M,
saturating all vertices of Y that have degree at least three in H. Suppose M1 does not exist. Then by Hall's Theorem, there is
A C{w1,..., ws} such that [Ny (A)| < |A|. This in turn implies that ey (A, Ny(A)) =2|A| > |A|+|Ny(A)|. Thus H[A, Ny(A)]
contains a cycle, which also corresponds to a cycle of F, a contradiction. Let H, be a resulting graph of deleting the edges
of M7 in H. For every component of Hy, note that every vertex from X; has degree one in Hj, and every vertex from Y has
degree at least one in H;. By Hall’'s theorem, there exists a matching, denoted by M, that saturates all vertices of degree
at least three in V(H)NY.

Let X1 ={wq,...,ws} and Y; =V (M3) NY. We claim next that we can construct a matching M that saturates both X;
and Y;. Let D be a component of the graph induced by the edges of M; and M,. By the constructions of M; and My, it
holds that M1 N M3 = @. Therefore, D can only be a path. Because M; saturates all vertices of X1, by the definition of D,
D can not be a path of even length and start and so end at two vertices from X;p. If D is a path of even length and start
and so end at two vertices from Y1, we let Mp = E(D) N M3 be a matching of D. If D is a path of odd length, then D has
a matching Mp saturating V(D). In both cases, by the construction, Mp saturates all vertices in (X1 NV (D)) U (Y1 NV (D)).
Let M be the union of matchings Mp for all the components D. By the construction, M is a matching with the desired
property. O

By Claim 3.1, we let M C Er(X,Y) be a matching saturating exactly one of the end-vertices of P; for each i € [s] and all
vertices of degree at least three from Y that exists by Claim 3.1. By the choice of M, we have |[M| =s. Assume

Y={y1,¥2,.--» ¥no }»



S. Shan and X. Yu Discrete Mathematics 347 (2024) 113666

for some integer n, > 2 (|Y| > 2 as F has at least two leaves). Note that n, > [M| as M C Ep(X,Y). Since M saturates all
the vertices having degree at least three from Y, each vertex y; ¢ V(M) has degree one. Denote by e; the only edge incident
to such y;. Let M* =M U{e; | yi ¢ V(M) fori € [n2]}, H= F[X, Y] — M*, and ny be the number of vertices from Y that have
degree at least three in F. Note that |M*| =n,. As Y contains no vertex of degree 2, Y has n, —nq vertices of degree one
in F. By renaming vertices of Y, assume

dr(yi) =3 forie[n];
dr(y;)) =1 forie[ny+1,n3].

Because dy(y;) =dr(y;) — 1> 2 for i € [nq], it holds that either e(H) =0 or e(H) > 2. As er(X,Y) =2s and |M| =s, we
have

h:=e(H) =ep(X,Y) — |M*| =2s — n,.

In the remainder, we find an orientation D of F and an antimagic labeling t of D in four steps.

Step 1 Orient and label H: direct each edge from Y to X. For each i € [ny], let A; be the set of all edges incident to y; in
H. Clearly, |A1| + |A2| + ...+ |An,| = h. Since each y; with i € [n1] has degree at least 2 in H, we have |A;| > 2. By
applying Lemma 2.1 with t =ny, a=m —s—h, k:=h and r; = |A;| for each i € [n1], the set

o= U] eesnea]- U [2] -]

can be partitioned into Ry, Ry, ..., Ry, such that for each i € [n1], |Ri| = |A;i| and ZreRi r=0 (modm-—s+1)if h
is even, and ZreRi r=0 (mod m —s) if h is odd. Label edges in A; by integers from R; arbitrarily such that distinct
edges receive distinct labels.

Let D1 be the orientation of H defined above and o1 be the labeling of H defined in Step 1. Then for every i € [n{],
we have

—a; (m—s+1), ifhiseven;

S1.01) (Vi) [ —a; (m—s), if h is odd, ?

for some positive integer a;.

Step 2 Orient and label edges in M* \ M: direct each edge from Y to X. Note that |[M* \ M| =n, —s. We assign arbitrarily
the labels in [m — [h/2] —ny +1,m — [h/2] — s] to edges in M* \ M such that distinct edges receive distinct labels.
We let D, be the orientation of H + M* \ M given through Steps 1 and 2 and o3 be the labeling of D, obtained
through Steps 1 and 2. The set of labels used so far on D is

U [2] ]

By renaming the vertices of each path P;, we may assume that the endvertex vi,, of P; is saturated by M. Thus the
edge Véovio € EF(X,Y) \ M. By permuting the s paths Pq,..., Ps, we further assume that

02(VigVvio) =1, ie [1, Lgﬂ @
(3)
m—s+h/2—i+1, ie[|4]+1s] ®

Notice that 2s =ep(X,Y) =e(H) + |[M*| =h +n,.
—
Step 3 Orient and label edges of F[X]: direct each P; from vjg to v, for i € [s], and denote the orientation by P;. Let g be
the number of paths P; with length at least one for all i € H_%J + 1,5]. Denote these g paths by Pr, Pr,, ..., Pr,,

where L%J +1<r; <rz <...<rg <s. Define a bijection o3 from {vrovr;11j€[g]} to [L%J +1, L%J + g] such that
of (v = Lh/2)+j  for jelgl. 4)
Denote by o4 the combination of the labeling o2 and o5 on D := D; + {vrjovr1 | Jj € [g]}. Since S(D%,G’é)(vrjo) =
O'z(V;,jOVrjg) — a;(vrjovrﬂ) for j € [g], by (3)(b) and (4), we have
m—s—(lh/2]+1) > S(DQ,gé)(VHO) > S(Dg,aé)(vrzo) > .= S(DQ,gé)(VrgO)
=m—2s+|h/2]+1—-(lh/2] + g
=m-2s—g+1>0, ()
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asm>er(X,Y)+e(F[X]) >2s+ g.
For i e H%J] let Rj = vgoviOP,- and E be the directed path from v§0 to vig. Forie H%J +1, L%J +g], let Ej =

7”., where j=1i— L%J € [g]. For every i € [Lh/2] + g], we have

e(R)>1 and > e®Rpy=m—|M*|—h+[h/2]=m—ny —[h/2].
1<j=<lh/2]+g
— — .
We apply Lemma 2.2 on Ry,..., R |p/2)4+¢ With

n:=|h/2] +g, £:=m—-ny—T[h/2], and o:=0}

to get a labeling for those arcs of the n directed paths.
Denote by D3 the orientation of F — M obtained through Steps 1 to 3, and let o3 be the labeling of D3 obtained
through the three steps. Then for any two distinct vertices u, v € X\ {vig;, vr;0, Vrjer, |ie[lh/2]],je[lh/2] +1,5]},

where the set consists of all internal vertices from the paths E? el R_)n by Lemma 2.2, we have
(i) $(D3,05) () # S(D3,03)(V); and
(ii) 1S(p3,05) (V)| € [1,m —ny — [h/2] —1]; and
(iii) if S(p3,45)(v) > 0, then s(p; o) (V) <m —np —g—h—1.
Step 4 Orient and label edges of M: direct each edge in M from Y to X. Recall that M = {V;l'_Vi({i | i € [s]}. Without loss of
generality, assume

$(D3.03) (Vigty,) = S(D3.03) (Vigty)) < - = S(D3.03) (Vigey)-

Let o4 be a bijection from M to [m — s + 1, m] such that
04(";;&]- Vij[ij) =m-—s+i
for every ij € [s].
Denote by D the orientation of F obtained through Steps 1 to 4, and let T be the labeling of D obtained through
the four steps. Then by Step 4, we have

(6)

!s(o,n(vie,-)=s<o3,a3>(viz,-)+U4(V§z,.vuz,-)zm—5+2 foreveryie[s]. (a)

S(D,r)("h&-l) < s(D,r)(v,-zgiz) <...<S.0)WVigy,) foreveryij e [s]. (b)
Since M saturates all vertices of degree at least three from Y by Claim 3.1, every vertex from V(M*\ M)NY is a degree
one vertex of F. By Step 4 and Step 2,

{sw,f)(yi) <—(m-s+1), yieVIMNY; €)) -

—smo,o)(¥yi) €m—Th/21 —ny+1,m—[h/21 —s], yie V(IM*\M)NY. (b)

Next, we show that t is an antimagic orientation of D. Note first that T is a bijection from A(D) to [m] as the new
labels used in each step are all distinct and they all together form the set [m], and the labelings defined in each step are all
bijections. Thus we show that for any two distinct vertices u, v € V(D), s(p,z)(U) # S(p,7)(v). Let

Xi={vig liels]}, Xo={violielgl}, X3=X\(X1UXy).

Note that X; = X N V(M) and X3 is the set of internal vertices from the paths R_)l, ey E,: defined in Step 3. We have the
following cases to consider:

(IYu,veXj,u,veXy, u,veXs,oru,vey;

(2) ue Xy and ve V(D) \ X1;

(3)ueY and ve Xy UXs;

(4) ue Xy and v € Xs.

Case (1): If u, v € X1, we get s(p,7)(u) # Sp,7r)(v) by (6)(b). If u, v € Xo, we have sp ¢)(u) # sp,7)(v) by (5). If u, v € X3, we
have s(p,r)(u) # s(p,7)(v) by Property (i) of o3 defined in Step 3. Thus we assume u,veY.Ifu,ve Y\ V(M), then u and v
are leaves of F by the choice of M and so s(p,¢)(u) #sp,r)(v). f u e Y\ V(M) and v e YNV (M), then sp 7)(u) > Spp,z)(v)
by (7)(a) and (7)(b). Hence we assume u, v € Y NV (M). Then by (2) and (7)(a), we have

6
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b (mod m—s+1), ifhiseven;

So.1)(U) =sp.0)(v) = b (mod m —s) if h is odd

where b is an integer satisfying b € [-(s —1),s — 1] and b # 0. Since m > 2s, we have b <m —s. Thus sp )(u) # s(p,7) (V).

Case (2): Let u € X1 and v € V(D) \ Xj. By (6)(a), we have s(p r)(u)>m—s+2.1f veY, we have sip r)(v) <0. Thus we
assume v € X U X3. By (5) and Property (ii) of o3 defined in Step 3, we have sp 7)(v) <max{m —s—(lh/2]+1),m—ny —
[h/2] =1} <m —s, as np > s. Thus sp ¢)(U) # S, 7) (V).

Case (3): Let u € Y and v € X3 U X3. Note that sp )(u) # spp,r)(v) if v € X3, as s(p,r)(u) <0 and sp,z)(v) > 0. Thus we
assume v € X3. By (7)(a) and (7)(b), we have |sp r)(u)| > m —ny — [h/2] 4 1. By Property (ii) of o3 defined in Step 3, we
have |spp,r)(V)| <m —ny — [h/2] =1 < |s(p,7)(W)]. Thus s(p,7) (1) # Sp.7) (V).

Case (4): Let u € X; and v € X3. By (5), we have s(p r)(u) >m+1—2s— g —h > 0. Thus we only consider v € X3 such that
s(,7)(v) > 0. By Property (iii) of o3 defined in Step 3, we have s(p ¢)(v) <m—-ny—g—-h—-1=m—-2s—g—1<m+1-2s—g,
where recall 2s =h +ny. Thus s ¢)(U) # S, 7)(V).

The proof is complete. O
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