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An antimagic labeling of a digraph D with n vertices and m arcs is a bijection from the 
set of arcs of D to {1, 2, . . . , m} such that all n oriented vertex-sums are pairwise distinct, 
where the oriented vertex-sum of a vertex is the sum of labels of all arcs entering that 
vertex minus the sum of labels of all arcs leaving it. A graph G admits an antimagic 
orientation if G has an orientation D such that D has an antimagic labeling. Hefetz, 
Mütze and Schwartz conjectured every connected graph admits an antimagic orientation. 
In this paper, we support this conjecture by proving that any forest obtained from a given 
forest with at most one isolated vertex by subdividing each edge at least once admits an 
antimagic orientation.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Graphs considered in this paper are simple, and digraphs in consideration are the orientations of simple graphs. If there 
is no confusion, we use the same notation G to denote a graph or an underlying graph of a digraph. Also, we use the edges 
to denote the arcs of a digraph if we do not care about the direction of the edges. Let m be a positive integer and G be a 
graph with m edges. We use V (G), E(G) to denote the vertex set and edge set of G , respectively. A labeling of a graph G
with m edges is a bijection from E(G) to the set {1, 2, . . . , m}. A labeling of G is antimagic if for every two distinct vertices 
u, v ∈ V (G), the sum of labels on the edges incident with u differs from that of v . A graph is antimagic if it admits an 
antimagic labeling.

Hartsfield and Ringel introduced antimagic labeling in 1990 and they conjectured that every connected graph other than 
K2 is antimagic [10], which is called the Antimagic Labeling Conjecture. This conjecture has received intensive attention, 
but remains open in general, even for trees, as a relaxed version of the conjecture posed in the same paper. Some partial 
results on the Antimagic Labeling Conjecture can be found in [1–6,8,11,13,14,16,18,19,25].

Hefetz, Mütze and Schwartz [12] introduced a variation of antimagic labelings, i.e., antimagic labelings on directed 
graphs. An antimagic labeling of a directed graph with m arcs is a bijection from the set of arcs to the set {1, 2, . . . , m}
such that any two oriented vertex-sums are distinct, where an oriented vertex-sum of a vertex is the sum of labels of all arcs 
entering that vertex minus the sum of labels of all arcs leaving it. Given a graph G , we say G admits an antimagic orientation
if G has an orientation D such that D is antimagic. Regarding antimagic orientation of graphs, Hefetz, Mütze and Schwartz 
[12] proposed the following conjecture.
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Conjecture 1.1 ([12]). Every connected graph admits an antimagic orientation.

For Conjecture 1.1, Hefetz, Mütze and Schwartz [12] showed that every orientation of a graph with order n and minimum 
degree at least c logn is antimagic, where c is an absolute constant. Particularly, they showed that every orientation of stars 
(other than K1,2), wheels, and complete graphs (other than K3) is antimagic. The conjecture is also verified for regular 
graphs [12,15,23], biregular bipartite graphs [21], Halin graphs [26], graphs with large maximum degree [24], graphs with a 
large independence set [22], lobsters [9], caterpillars [17] and subdivided caterpillars [7]. Recently, the first author showed 
that Conjecture 1.1 is true for all bipartite graphs with no vertex of degree two or zero, and for all graphs with minimum 
degree at least 33 [20].

Every antimagic bipartite graph G with partite sets X and Y admits an antimagic orientation, as we can direct all edges 
from X to Y and apply any of the antimagic labelings of G . Thus, by the result in [14] with a minor error corrected by 
Liang, Wong and Zhu [16] on antimagic labelings of trees, we know that every tree with at most one vertex of degree 
two admits an antimagic orientation, and any tree obtained from a tree with no vertex of degree two by subdividing every 
edge exactly once admits an antimagic orientation. These two results, together with the result of the first author [20] that 
every bipartite graph with no vertex of degree two or zero admits an antimagic orientation, suggest that it is hard to find 
an antimagic orientation if a graph has many vertices of degree two. In this paper, we overcome this issue for forests and 
obtain the results below.

Theorem 1.2. Let F = (V , E) be a forest with at most one isolated vertex. If the set of vertices of degree distinct from two is independent, 
then F admits an antimagic orientation.

The following result is a consequence of Theorem 1.2.

Corollary 1.3. Let F be obtained from any forest with at most one isolated vertex by subdividing each edge at least once. Then F admits 
an antimagic orientation.

2. Notation and preliminary lemmas

Let G be a graph. For v ∈ V (G), NG(v) is the set of neighbors of v in G , and dG (v) = |NG(v)| is the degree of v in G . For 
S ⊆ V (G), the subgraph of G induced by S is denoted by G[S]. If F ⊆ E(G), then G − F is obtained from G by deleting all 
the edges of F . For F ⊆ E(G), G + F is obtained from G by adding all the edges from F to G . We also use G − F and G + F
if G is a digraph. For two disjoint subsets X, Y ⊆ V (G), we denote by EG(X, Y ) the set of edges in G with one endvertex 
in X and the other one in Y and let eG (X, Y ) = |EG(X, Y )|. A matching M in G is a set of independent edges, and we use 
V (M) to denote the set of vertices saturated by M , here the vertices saturated by M are the vertices belonging to the edges 
of M . If G is bipartite with two partite sets X and Y , we denote G by G[X, Y ] to emphasis the bipartitions. For any two 
integers a and b with a ≤ b, let [a, b] = {i ∈Z | a ≤ i ≤ b}. If a = 1 and b ≥ 1, we write [1, b] as [b] for simplicity.

Let G be a graph and D be an orientation of G . We denote by A(D) the set of arcs of D . For a labeling τ on A(D) and 
a vertex v ∈ V (D), we use s(D,τ )(v) to denote the oriented vertex-sum at v in D with respect to τ , which is the sum of 
labels on all arcs entering v minus the sum of labels on all arcs leaving v in D . For simplicity, we write s(D,τ )(v) as s(v) if 
D and τ are understood.

We will use the lemma below to partition an integer set such that all the sums of the elements from each subset are 
congruent to zero modulo an integer.

Lemma 2.1. Let a and t be integers with a ≥ 0 and t ≥ 1, and let r1 + r2 + . . .+ rt be a partition of a positive integer k, where ri ≥ 2 for 
each i ∈ [t]. Define A =

[
1,

⌊
k
2

⌋]
∪

[⌊
k
2

⌋
+ a + 1,k + a

]
. Then A can be partitioned into subsets A1, A2, . . . , At such that for every 

i ∈ [t], |Ai| = ri and⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
x∈Ai

x ≡ 0 (mod k + a + 1), if k is even;
∑
x∈Ai

x ≡ 0 (mod k + a), if k is odd.

Proof. The case for even k is Corollary 2.2 (i) from [26]. Thus we assume k is odd. Since k = r1 + r2 + . . . + rt and ri ≥ 2
for each i ∈ [t], there exists an odd ri0 ≥ 3 for some i0 ∈ [t]. Let r′i0 = ri0 − 1 and r′i = ri for i ∈ [t]\{i0}. Since k − 1 is even 
and k − 1 = r′1 + r′2 + . . . + r′t , applying the case when k is even, the set A\{k + a} can be partitioned into pairwise disjoint 
subsets B1, B2, . . . , Bt such that for every i ∈ [t],

|Bi | = r′i and
∑

x ≡ 0 (mod k + a).

x∈Bi
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Fig. 1. Illustration of the orderings of edges from three directed paths.

Define

Ai =
{

Bi, if i ∈ [t]\{i0};
Bi ∪ {k + a}, if i = i0.

It is clear that |Ai | = ri and 
∑
x∈Ai

x ≡ 0 (mod k + a). �

This lemma below tells us how to label paths in a forest, which will be used in the proof of Theorem 1.2.

Lemma 2.2. Let n ≥ 1 be an integer and 
−→
P1, 

−→
P2, . . . , 

−→
Pn be n internally disjoint directed paths. For each i ∈ [n], let −→Pi = vi0vi1 . . . vi�i , 

where �i ≥ 1 is the length of 
−→
Pi . Suppose 

∑
1≤i≤n �i = �, and the set of first edges vi0vi1 of each 

−→
Pi is labeled by a mapping σ such 

that σ(vi0vi1) = i for every i ∈ [n]. Then there exists a bijection τ : ⋃1≤i≤n A(
−→
Pi ) → [�] satisfying the following properties:

(i) τ (vi0vi1) = σ(vi0vi1) for each i ∈ [n]; and
(ii) s(u) �= s(v) for any two distinct vertices u and v such that u is internal of some 

−→
Pi and v is internal of some 

−→
P j with i, j ∈ [n]; 

and
(iii) for any vertex v that is internal of some 

−→
Pi with i ∈ [n], we have |s(v)| ∈ [� − 1] and s(v) ≤ � − n − 1 if s(v) > 0.

Proof. Let i ∈ [n], j ∈ [�i], and ei j = vi( j−1)vij . For two distinct edges ei j and est with j and t having the same parity, we 
write ei j ≺ est if either j < t or j = t and i < s. Note that if ei j ≺ est , then ei( j+1) ≺ es(t+1) . By this definition, all arcs from ⋃

1≤i≤n A(
−→
Pi ) are ordered into two disjoint linear orderings:

L1 : e11 ≺ e21 ≺ . . . ≺ en1 ≺ . . . ,

L2 : ei12 ≺ ei22 ≺ . . . ≺ eik2 ≺ . . . ,

where i1, i2, . . . ik with i1 < i2 < . . . < ik are indices such that 
−→
Pi j has length at least two for each j ∈ [k]. To simplify the 

labels assignment, we assume that the linear ordering L1 contains �o edges and the linear ordering L2 contains �e edges for 
some �o, �e ∈ [�], and we denote the i-th edge of L1 by f i , and the j-th edge of L2 by g j for each i ∈ [�o] and j ∈ [�e]:

L1 : f1 ≺ f2 ≺ . . . ≺ f�o ,

L2 : g1 ≺ g2 ≺ . . . ≺ g�e .

See Fig. 1 for an illustration of such orderings.
Define τ : ⋃1≤i≤n A(

−→
Pi ) → [�] such that{

τ ( f i) = i for i ∈ [�o]; (a)

τ (gi) = � − i + 1 for i ∈ [�e]. (b)
(1)

The mapping τ is a bijection. We show below that τ satisfies properties (i) to (iii). By the definition of τ in (1)(a), we have 
τ (vi0vi1) = i = σ(vi0vi1). Thus, Lemma 2.2 (i) is true.

Since 
−→
Pi is a directed path from vi0 to vi�i for any i ∈ [n], for each j ∈ [�i − 1], we have s(vij) = τ (ei j) − τ (ei( j+1)). 

Therefore, by the definition of τ , s(vij) > 0 if j is even and s(vij) < 0 if j is odd.
We now show Lemma 2.2 (ii). Let u and v be two distinct vertices such that u is internal of some 

−→
Pi and v is internal 

of some 
−→
P j with i, j ∈ [n]. Assume u = vis and v = v jt for some s ∈ [1, �i − 1] and t ∈ [1, � j − 1]. If s and t have different 

parities, then one of s(u) and s(v) is positive and another is negative, and so s(u) �= s(v). Thus, we assume s and t have 
3
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the same parity and assume without loss of generality that eis ≺ e jt . The assumption eis ≺ e jt further implies that ei(s+1) ≺
e j(t+1) . Then, as τ (eis) > τ(e jt) and τ (ei(s+1)) < τ(e j(t+1)) when s is even, and τ (eis) < τ(e jt) and τ (ei(s+1)) > τ(e j(t+1))

when s is odd, we have

|s(u)| = |s(vis)| = |τ (eis) − τ (ei(s+1))| > |τ (e jt) − τ (e j(t+1))| = |s(v jt)| = |s(v)|.
This proves (ii).

We lastly show Lemma 2.2 (iii). Let v be an internal vertex of some 
−→
Pi with i ∈ [n]. Since the oriented vertex-sum at v

is the difference of the two labels on the edges incident to v , and the two labels are distinct numbers from [�], we have 
|s(v)| ∈ [� − 1]. Recall that s(v) > 0 if v = vij for some even j ∈ [2, �i − 1]. Since all the labels from [n] are assigned to 
the set of the first edges of the n paths and j + 1 ≥ 3 is odd, we have τ (ei( j+1)) ≥ n + 1. Thus s(v) = τ (ei j) − τ (ei( j+1)) ≤
� − (n + 1) = � − n − 1, proving the second part of (iii). �
3. Proof of Theorem 1.2

Let m = e(F ). We may assume m > 0, as otherwise, the statement is vacuously true. If F has an isolated vertex, then its 
oriented vertex-sum is zero. We will define next an orientation D of F and an antimagic labeling τ of D such that each 
oriented vertex-sum at a vertex of degree at least one is non-zero. Thus, in the following, we focus only on the nontrivial 
components of F . Let

X = {v ∈ V | dF (v) = 2} and Y = V \X .

Since F has leaves, we have Y �= ∅. Furthermore, Y is independent by the condition on F . Since Y �= ∅ and m > 0, we have 
X �= ∅. Because F [X] is a subgraph of F and all vertices in X have degree two in F , it follows that F [X] is a forest with 
each component being a path. Let P1, P2, . . . , Ps be all the paths of F [X] for some integer s ≥ 1, and for every i ∈ [s], let

Pi = vi0vi1vi2 . . . vi�i for some integer �i ≥ 0.

As dPi (vi0) = dPi (vi�i ) ≤ 1 and dF (vi0) = dF (vi�i ) = 2, it follows that each one of the vertices vi0 and vi�i is adjacent to a 
vertex from Y . Let v ′

i0 and v ′
i�i

be the vertices from Y such that

vi0v
′
i0, vi�i v

′
i�i

∈ E F (X, Y ).

It is possible to have vi0 = vi�i , but v
′
i0 and v ′

i�i
are two distinct vertices as F is simple and contains no cycle.

Claim 3.1. There exists a matching M ⊆ E F (X, Y ) saturating exactly one of the endvertices of Pi for each i ∈ [s] and saturating all 
vertices of degree at least three from Y .

Proof. We construct a new bipartite graph H based on F . For each Pi we contract it into a vertex wi . Let V (H) =
{w1, . . . , ws} ∪ Y and E(H) = E F (X, Y ). As the neighbor of vi0 from Y is distinct with that of vi�i , H is a forest such 
that dH (wi) = 2 for each i ∈ [s]. It suffices to show that H has a matching saturating {w1, . . . , ws} and all vertices of Y
that have degree at least three in H . We claim first that H has a matching M1 saturating {w1, . . . , ws} and a matching M2
saturating all vertices of Y that have degree at least three in H . Suppose M1 does not exist. Then by Hall’s Theorem, there is 
A ⊆ {w1, . . . , ws} such that |NH (A)| < |A|. This in turn implies that eH (A, NH (A)) = 2|A| > |A| +|NH (A)|. Thus H[A, NH (A)]
contains a cycle, which also corresponds to a cycle of F , a contradiction. Let H2 be a resulting graph of deleting the edges 
of M1 in H . For every component of H2, note that every vertex from X1 has degree one in H2, and every vertex from Y has 
degree at least one in H2. By Hall’s theorem, there exists a matching, denoted by M2, that saturates all vertices of degree 
at least three in V (H) ∩ Y .

Let X1 = {w1, . . . , ws} and Y1 = V (M2) ∩ Y . We claim next that we can construct a matching M that saturates both X1
and Y1. Let D be a component of the graph induced by the edges of M1 and M2. By the constructions of M1 and M2, it 
holds that M1 ∩ M2 = ∅. Therefore, D can only be a path. Because M1 saturates all vertices of X1, by the definition of D , 
D can not be a path of even length and start and so end at two vertices from X1. If D is a path of even length and start 
and so end at two vertices from Y1, we let MD = E(D) ∩ M2 be a matching of D . If D is a path of odd length, then D has 
a matching MD saturating V (D). In both cases, by the construction, MD saturates all vertices in (X1 ∩ V (D)) ∪ (Y1 ∩ V (D)). 
Let M be the union of matchings MD for all the components D . By the construction, M is a matching with the desired 
property. �

By Claim 3.1, we let M ⊆ E F (X, Y ) be a matching saturating exactly one of the end-vertices of Pi for each i ∈ [s] and all 
vertices of degree at least three from Y that exists by Claim 3.1. By the choice of M , we have |M| = s. Assume

Y = {y1, y2, . . . , yn2},

4
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for some integer n2 ≥ 2 (|Y | ≥ 2 as F has at least two leaves). Note that n2 ≥ |M| as M ⊆ E F (X, Y ). Since M saturates all 
the vertices having degree at least three from Y , each vertex yi /∈ V (M) has degree one. Denote by ei the only edge incident 
to such yi . Let M∗ = M ∪ {ei | yi /∈ V (M) for i ∈ [n2]}, H = F [X, Y ] − M∗ , and n1 be the number of vertices from Y that have 
degree at least three in F . Note that |M∗| = n2. As Y contains no vertex of degree 2, Y has n2 − n1 vertices of degree one 
in F . By renaming vertices of Y , assume{

dF (yi) ≥ 3 for i ∈ [n1];
dF (yi) = 1 for i ∈ [n1 + 1,n2].

Because dH (yi) = dF (yi) − 1 ≥ 2 for i ∈ [n1], it holds that either e(H) = 0 or e(H) ≥ 2. As eF (X, Y ) = 2s and |M| = s, we 
have

h := e(H) = eF (X, Y ) − |M∗| = 2s − n2.

In the remainder, we find an orientation D of F and an antimagic labeling τ of D in four steps.

Step 1 Orient and label H : direct each edge from Y to X . For each i ∈ [n1], let Ai be the set of all edges incident to yi in 
H . Clearly, |A1| + |A2| + . . . + |An1 | = h. Since each yi with i ∈ [n1] has degree at least 2 in H , we have |Ai | ≥ 2. By 
applying Lemma 2.1 with t = n1, a =m − s − h, k := h and ri = |Ai | for each i ∈ [n1], the set

A =
[
1,

⌊
h

2

⌋]⋃[⌊
h

2

⌋
+ a + 1,h + a

]
=

[
1,

⌊
h

2

⌋]⋃[
m − s −

⌈
h

2

⌉
+ 1,m − s

]

can be partitioned into R1, R2, . . . , Rn1 such that for each i ∈ [n1], |Ri| = |Ai | and 
∑

r∈Ri
r ≡ 0 (mod m − s + 1) if h

is even, and 
∑

r∈Ri
r ≡ 0 (mod m − s) if h is odd. Label edges in Ai by integers from Ri arbitrarily such that distinct 

edges receive distinct labels.
Let D1 be the orientation of H defined above and σ1 be the labeling of H defined in Step 1. Then for every i ∈ [n1], 
we have

s(D1,σ1)(yi) =
{

−ai (m − s + 1), if h is even;

−ai (m − s), if h is odd,
(2)

for some positive integer ai .
Step 2 Orient and label edges in M∗ \ M: direct each edge from Y to X . Note that |M∗ \ M| = n2 − s. We assign arbitrarily 

the labels in [m − �h/2� − n2 + 1, m − �h/2� − s] to edges in M∗ \ M such that distinct edges receive distinct labels.
We let D2 be the orientation of H + M∗ \ M given through Steps 1 and 2 and σ2 be the labeling of D2 obtained 
through Steps 1 and 2. The set of labels used so far on D2 is[

1,

⌊
h

2

⌋]⋃[
m − n2 −

⌈
h

2

⌉
+ 1,m − s

]
.

By renaming the vertices of each path Pi , we may assume that the endvertex vi�i of Pi is saturated by M . Thus the 
edge v ′

i0vi0 ∈ E F (X, Y ) \ M . By permuting the s paths P1, . . . , Ps , we further assume that⎧⎪⎨
⎪⎩

σ2(v ′
i0vi0) = i, i ∈

[
1,

⌊
h
2

⌋]
; (a)

m − s + �h/2� − i + 1, i ∈
[⌊

h
2

⌋
+ 1, s

]
. (b)

(3)

Notice that 2s = eF (X, Y ) = e(H) + |M∗| = h + n2.
Step 3 Orient and label edges of F [X]: direct each Pi from vi0 to vi�i for i ∈ [s], and denote the orientation by 

−→
Pi . Let g be 

the number of paths Pi with length at least one for all i ∈
[⌊

h
2

⌋
+ 1, s

]
. Denote these g paths by Pr1 , Pr2 , . . . , Prg , 

where 
⌊
h
2

⌋
+ 1 ≤ r1 < r2 < . . . < rg ≤ s. Define a bijection σ ∗

3 from {vr j0vr j1 | j ∈ [g]} to [� h
2 � + 1, � h

2 � + g] such that

σ ∗
3 (vr j0vr j1) = �h/2� + j for j ∈ [g]. (4)

Denote by σ ′
3 the combination of the labeling σ2 and σ ∗

3 on D ′
3 := D2 + {vr j0vr j1 | j ∈ [g]}. Since s(D ′

3,σ
′
3)

(vr j0) =
σ2(v ′

r j0
vr j0) − σ ∗

3 (vr j0vr j1) for j ∈ [g], by (3)(b) and (4), we have

m − s − (�h/2� + 1) ≥ s(D ′
3,σ

′
3)

(vr10) > s(D ′
3,σ

′
3)

(vr20) > . . . > s(D ′
3,σ

′
3)

(vrg0)

≥m − 2s + �h/2� + 1− (�h/2� + g)

=m − 2s − g + 1 > 0, (5)
5
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as m ≥ eF (X, Y ) + e(F [X]) ≥ 2s + g .

For i ∈
[⌊

h
2

⌋]
, let Ri = v ′

i0vi0Pi and 
−→
Ri be the directed path from v ′

i0 to vi�i . For i ∈
[⌊

h
2

⌋
+ 1,

⌊
h
2

⌋
+ g

]
, let 

−→
Ri =

−→
P r j , where j = i −

⌊
h
2

⌋
∈ [g]. For every i ∈ [�h/2� + g], we have

e(Ri) ≥ 1 and
∑

1≤ j≤�h/2�+g

e(R j) =m − |M∗| − h + �h/2� =m − n2 − �h/2� .

We apply Lemma 2.2 on 
−→
R1, . . . , 

−→
R �h/2�+g with

n := �h/2� + g, � :=m − n2 − �h/2� , and σ := σ ′
3

to get a labeling for those arcs of the n directed paths.
Denote by D3 the orientation of F − M obtained through Steps 1 to 3, and let σ3 be the labeling of D3 obtained 
through the three steps. Then for any two distinct vertices u, v ∈ X \ {vi�i , vr j0, vr j�r j | i ∈ [�h/2�], j ∈ [�h/2� + 1, s]}, 
where the set consists of all internal vertices from the paths 

−→
R1, . . . , 

−→
Rn , by Lemma 2.2, we have

(i) s(D3,σ3)(u) �= s(D3,σ3)(v); and
(ii) |s(D3,σ3)(v)| ∈ [1, m − n2 − �h/2� − 1]; and
(iii) if s(D3,σ3)(v) > 0, then s(D3,σ3)(v) ≤m − n2 − g − h − 1.

Step 4 Orient and label edges of M: direct each edge in M from Y to X . Recall that M = {v ′
i�i

vi�i | i ∈ [s]}. Without loss of 
generality, assume

s(D3,σ3)(vi1�i1
) ≤ s(D3,σ3)(vi2�i2

) ≤ . . . ≤ s(D3,σ3)(vis�is ).

Let σ4 be a bijection from M to [m − s + 1, m] such that

σ4(v
′
i j�i j

vi j�i j
) =m − s + i

for every i j ∈ [s].
Denote by D the orientation of F obtained through Steps 1 to 4, and let τ be the labeling of D obtained through 
the four steps. Then by Step 4, we have{

s(D,τ )(vi�i ) = s(D3,σ3)(vi�i ) + σ4(v ′
i�i

vi�i ) ≥m − s + 2 for every i ∈ [s]. (a)

s(D,τ )(vi1�i1
) < s(D,τ )(vi2�i2

) < . . . < s(D,τ )(vis�is ) for every i j ∈ [s]. (b)
(6)

Since M saturates all vertices of degree at least three from Y by Claim 3.1, every vertex from V (M∗ \ M) ∩ Y is a degree 
one vertex of F . By Step 4 and Step 2,{

s(D,τ )(yi) ≤ −(m − s + 1), yi ∈ V (M) ∩ Y ; (a)

−s(D,τ )(yi) ∈ [m − �h/2� − n2 + 1,m − �h/2� − s], yi ∈ V (M∗ \ M) ∩ Y . (b)
(7)

Next, we show that τ is an antimagic orientation of D . Note first that τ is a bijection from A(D) to [m] as the new 
labels used in each step are all distinct and they all together form the set [m], and the labelings defined in each step are all 
bijections. Thus we show that for any two distinct vertices u, v ∈ V (D), s(D,τ )(u) �= s(D,τ )(v). Let

X1 = {vi�i | i ∈ [s]}, X2 = {vri0 | i ∈ [g]}, X3 = X \ (X1 ∪ X2).

Note that X1 = X ∩ V (M) and X3 is the set of internal vertices from the paths 
−→
R1, ..., 

−→
Rn defined in Step 3. We have the 

following cases to consider:

(1) u, v ∈ X1, u, v ∈ X2, u, v ∈ X3, or u, v ∈ Y ;
(2) u ∈ X1 and v ∈ V (D) \ X1;
(3) u ∈ Y and v ∈ X2 ∪ X3;
(4) u ∈ X2 and v ∈ X3.

Case (1): If u, v ∈ X1, we get s(D,τ )(u) �= s(D,τ )(v) by (6)(b). If u, v ∈ X2, we have s(D,τ )(u) �= s(D,τ )(v) by (5). If u, v ∈ X3, we 
have s(D,τ )(u) �= s(D,τ )(v) by Property (i) of σ3 defined in Step 3. Thus we assume u, v ∈ Y . If u, v ∈ Y \ V (M), then u and v
are leaves of F by the choice of M and so s(D,τ )(u) �= s(D,τ )(v). If u ∈ Y \ V (M) and v ∈ Y ∩ V (M), then s(D,τ )(u) > s(D,τ )(v)

by (7)(a) and (7)(b). Hence we assume u, v ∈ Y ∩ V (M). Then by (2) and (7)(a), we have
6



S. Shan and X. Yu Discrete Mathematics 347 (2024) 113666
s(D,τ )(u) − s(D,τ )(v) ≡
{
b (mod m − s + 1), if h is even;

b (mod m − s), if h is odd,

where b is an integer satisfying b ∈ [−(s − 1), s − 1] and b �= 0. Since m ≥ 2s, we have b <m − s. Thus s(D,τ )(u) �= s(D,τ )(v).

Case (2): Let u ∈ X1 and v ∈ V (D) \ X1. By (6)(a), we have s(D,τ )(u) ≥ m − s + 2. If v ∈ Y , we have s(D,τ )(v) < 0. Thus we 
assume v ∈ X2 ∪ X3. By (5) and Property (ii) of σ3 defined in Step 3, we have s(D,τ )(v) ≤ max{m − s − (�h/2� + 1), m −n2 −
�h/2� − 1} <m − s, as n2 ≥ s. Thus s(D,τ )(u) �= s(D,τ )(v).

Case (3): Let u ∈ Y and v ∈ X2 ∪ X3. Note that s(D,τ )(u) �= s(D,τ )(v) if v ∈ X2, as s(D,τ )(u) < 0 and s(D,τ )(v) > 0. Thus we 
assume v ∈ X3. By (7)(a) and (7)(b), we have |s(D,τ )(u)| ≥ m − n2 − �h/2� + 1. By Property (ii) of σ3 defined in Step 3, we 
have |s(D,τ )(v)| ≤m − n2 − �h/2� − 1 < |s(D,τ )(u)|. Thus s(D,τ )(u) �= s(D,τ )(v).

Case (4): Let u ∈ X2 and v ∈ X3. By (5), we have s(D,τ )(u) ≥m + 1 − 2s − g − h > 0. Thus we only consider v ∈ X3 such that 
s(D,τ )(v) > 0. By Property (iii) of σ3 defined in Step 3, we have s(D,τ )(v) ≤m −n2− g−h −1 =m −2s − g−1 <m +1 −2s − g , 
where recall 2s = h + n2. Thus s(D,τ )(u) �= s(D,τ )(v).

The proof is complete. �
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