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ABSTRACT function is first used to retrieve a limited number of candidates

While current search engines use highly complex ranking functions
with hundreds of features, they often perform an initial candidate
generation step that uses a very simple ranking function to identify
a limited set of promising candidates. A common approach is to use
a disjunctive top-k query for this step. There are many methods
for disjunctive top-k computation, but they tend to be slow for the
required values of k, which are in the hundreds to thousands.

We propose a new approach to safe disjunctive top-k computa-
tion that, somewhat counterintuitively, uses precomputed conjunc-
tions of inverted lists to speed up disjunctive queries. The approach
is based on a generalization of the well-known MaxScore algo-
rithm, and utilizes recent improvements in threshold estimation
techniques as well as new ideas to obtain significant improvements
in performance. Our algorithms are implemented as an extension
of the PISA framework for search-engine query processing, and
available as open-source to support replication and follow-up work.
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1 INTRODUCTION

Modern search engines use highly complex ranking functions to
return high-quality results. These functions may involve hundreds
of features and are often obtained using learning-to-rank tech-
niques [20] or, more recently, neural network technologies such
as transformers [19]. While complex rankers significantly improve
relevance in the top positions compared to simple ranking schemes,
such as BM25 or query likelihood, they are also expensive to evalu-
ate on large numbers of documents. As a result, most systems use
a cascading approach to ranking [36], where a very simple ranking
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that are subsequently reranked using more complex and expen-
sive methods. This initial phase is often referred to as candidate
generation, and is the focus of our work here.

One popular approach to candidate generation involves running
a disjunctive top-k query on the query terms to retrieve a few
hundred to a few thousand initial candidates. This approach is
known to achieve better retrieval quality than a purely conjunctive
approach, which requires all query terms to be present in candidate
documents. However, it comes at the cost of a significant increase
in processing time, since a disjunctive query has to score many
more documents than a conjunctive one.

This has motivated a lot of work on more efficient ways to
process disjunctive top-k queries, with continuous improvements
over the past three decades. We focus on so-called safe methods,
which are guaranteed to return all correct top-k results under the
simple ranking function, as opposed to unsafe methods, which may
miss some results. Well-known algorithms for disjunctive top-k
retrieval include MaxScore [35], WAND [3], Block-Max WAND
[12] and related methods such as BMM [4, 11] and VBMW [23],
and JASS [8]. While these methods perform well for small k (e.g.,
k = 10), many of them slow down significantly when k increases
to 1000 or more [8, 25], which is common in candidate generation
[5, 6,9, 22, 29, 40]. It was also observed [25] that for larger k, the
fastest method is often the much older and simpler MaxScore [35].

The goal of this work is to improve the performance of disjunc-
tive top-k query processing for larger k by extending MaxScore.
In particular, we generalize the concept of essential lists in MaxS-
core by allowing precomputed intersections (conjunctions) of query
terms to be used as essential lists. Since intersections of two lists
tend to be much shorter than either list, this can result in much
smaller essential index structures, and thus faster processing under
a MaxScore-style approach. Our approach requires a good initial
estimate of the top-k threshold, and then uses the concept of result
classes to select an optimal set of essential structures as access
paths for candidate retrieval. Our main contributions are:

(1) We propose a novel and interesting generalization of the
Maxscore approach for safe disjunctive top-k queries that
allows intersections to be selected as essential lists.

(2) We describe methods for choosing which intersections to
precompute at indexing time, which index structures to use
as essential structures at query time, and which lookups to
perform during index traversal.

(3) We present extensive experiments on carefully optimized im-
plementations of our methods and previous work that show
the benefits of our approach. While we require significant
additional data structures, the overhead of retrieving these
from SSD is shown to be small compared to overall cost.
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(4) We provide an implementation of the proposed approach as
an extension of the open-source PISA IR framework [24].

2 BACKGROUND AND RELATED WORK

In this section, we define inverted indexes and disjunctive top-k
query processing, and discuss disjunctive query processing algo-
rithms. Then we discuss previous methods that exploit intersections
for faster query processing, and the role of threshold estimation in
accelerating retrieval algorithms.

2.1 Inverted Indexes and Top-k Queries

An inverted index is a basic data structure used in almost all search
systems. It stores information about where each term occurs in the
collection; more precisely, the inverted index contains an inverted
list 1,, for each distinct term w. An inverted list I, is a sequence of
index postings, where each index posting is a pair (d, f), where d
is the document ID (docID) of a document containing w, and f is
the frequency (number of occurrences) of f in the document. We
assume that postings in each inverted list are sorted by docID.

A ranking function is defined as a function s that, given a query
q, assigns each document d a score s(d, g). We assume a simple
ranking function of the form s(d, q) = Z?;Bl f(d, w;), where the
w; are the m terms occurring in g and f is a function that can be
efficiently computed from the information in the index postings
for w; plus some limited global statistics such as document sizes
and inverted list lengths. This means that scores f(d, w;) can be
precomputed, quantized, and stored in place of frequencies to speed
up query processing. We note that well-known families of ranking
functions such as Cosine measures, BM25, and some methods based
on language modeling satisfy this condition.

Given a ranking function s and query g, a disjunctive top-k query
returns the k highest scoring documents among those that contain
at least one of the query terms. Conversely, a conjunctive top-k
query only selects from documents that contain all terms in gq.

Current engines use highly complex ranking functions with
hundreds of features. For efficiency, they often perform an initial
selection of candidate documents using a top-k query on a simple
ranking function, for k in the hundreds or thousands. Candidates
are then reranked using the complex ranker. While conjunctive top-
k queries are more efficient for the initial step, disjunctive queries
often give better results and are thus preferred in many scenarios.

2.2 Disjunctive Top-k Algorithms
Given the importance of disjunctive top-k queries, there has been
a lot of work on efficient algorithms. Approaches can be divided
into safe and unsafe methods. The former always return the same
top-k results as an exhaustive approach that scores all documents
containing at least one query term, while the latter may miss some
results but return most of the same, or similar quality, results. We
focus on safe methods. We also assume that the inverted index is
kept in main memory, or that at least enough data is cached to
eliminate disk access as a major bottleneck, which is a realistic
assumption for current large-scale search architectures.
Commonly studied safe algorithms include MaxScore [35], WAND
[3], Block-Max WAND [12] and related methods such as BMM
[4, 11], VBMW [23] and other block-max based approaches [26],
JASS [8], the algorithm by Strohman and Croft [32], and methods
based on Fagin’s TA algorithm [13]. A recent study [25] shows that

block-max based approaches are very fast on common data sets
when k is small (say, k < 100). However, for larger k they tend to
slow down, while the simpler and older MaxScore often performs
best. We focus on the MaxScore approach, and show how to further
improve its speed for larger k.

We now briefly describe MaxScore. For simplicity, we assume
that we already know the top-k threshold th for the query, and thus
the goal is to find all documents with score above th. Also, for each
term w in the inverted index, we have precomputed the maxscore
of w, defined as the maximum score f(d, w) of any document d.

We first sort the query terms in order of ascending maxscore.
Let this order be wp, wy, ..., wp—1. We select a maximum prefix of
terms wy, ... wyy—1 such that Zﬁlo_l maxscore(w;) < th. We call
the inverted lists of these terms non-essential lists, and the remaining
ones essential lists. Clearly any document that scores at or above
the threshold must occur in at least one essential list. This leads to a
fairly simple algorithm that performs a disjunctive traversal of the
essential lists, and then makes lookups into the non-essential lists
for any documents found in the essential lists. Since the max scores
of inverted lists are usually inversely correlated with their lengths,
the non-essential lists typically contain most of the postings for
the query terms, assuming a large enough threshold th. Thus, we
reduce a disjunctive query to a disjunctive traversal of a much
smaller set of lists, plus some lookups into the other lists.

Note that at the surface the above also resembles the approach
by Fontoura et al. [14]. However, they used a heuristic to select an
initial set of terms that is processed first to estimate the threshold
used in the remaining phase. As discussed later, we can compute
a good threshold estimate before starting posting traversal, and
thus use a more systematic approach to minimize the number of
processed postings. Furthermore, as we show, this approach can be
generalized to use intersections of lists for additional speedup.

2.3 Using Intersections for Faster Querying
There is some previous work that uses precomputed, cached, or
on-the-fly generated intersections of two or more inverted lists
to accelerate query processing. Long and Suel [21] used a set of
training queries to select intersections that should be precomputed
and added to the index. Then incoming conjunctive top-k queries
are rewritten to incorporate available precomputed intersections.
Subsequent improvements include [7, 34, 41].

While the above work considers conjunctive queries, there is also
previous work that uses intersections to approximate disjunctive
queries, and in particular as a faster alternative to full disjunctions in
the context of candidate generation. Most relevant to our work are
the approaches in [2, 30, 37]. In particular, [30] describes candidate
generation in the Bing search engine, where a query is rewritten
into a number of conjunctions that are used as efficient access paths
for retrieving candidates. A different approach to candidate gen-
eration is described in [38], where intersections are precomputed
and placed into the first layer of a layered index. Finally, Vigna [2]
proposed a method called Model B that first attempts to process a
query as a pure intersection query, and then backs off into a more
and more disjunctive format if not enough results are produced.

The above approaches are unsafe as they cannot guarantee the
same results as an exhaustive query. This motivated the question we
address here, whether we can use intersections for safe disjunctive



query processing. Our basic idea is to precompute and store certain
intersections as part of the index, and to then replace some of the
essential lists in MaxScore with intersections. Since intersections
tend to be much smaller than their constituent lists, this should
decrease the size of the essential lists that need to be traversed.

2.4 Top-k Threshold Estimation

Given a query g, disjunctive top-k threshold estimation is the prob-
lem of estimating the score of the k-th highest scoring document,
called the threshold. The goal is to get a good estimate much faster
than executing the query. A strong initial threshold can speed up
many common top-k query processing algorithms [12, 28, 39]. How-
ever, it is important to avoid overestimates, since that might result
in fewer than k results being returned by the algorithm. Several
approaches for threshold estimation exist, including Taily [1], ran-
dom sampling [31, 33], machine learning [28], and quantile-based
techniques [10, 16, 27, 39]. We use a hybrid method combining
sampling and quantiles from [27], described in Section 3.3.

3 OUR APPROACH

We now describe our approach. We explain the basic idea with
examples, outline the necessary steps, and give details on each step.

3.1 Overview

Recall that in MaxScore, the inverted lists for the query terms are
divided into essential and non-essential lists based on maxscores.
By designating many low-maxscore, and thus usually fairly long,
lists as non-essential, we minimize the number of postings in the
essential lists. Put another way, we are trying to select the smallest
possible set of essential postings such that any document in the
top-k for the query must have at least one representative posting
in the set. Thus, essential lists are basically used as a compact and
efficient access path to retrieve all top-k candidates.

Consider a query g with query terms A, B, and C. We refer to the
corresponding inverted lists as [A], [B], and [C]. Let their maxs-
cores be 5.0, 6.0, and 8.0, respectively, and let the top-k threshold
for g be 12.0. Then the MaxScore approach would select [C] as the
only essential lists, since any top-k result must contain C.

Suppose we also have precomputed intersection lists, denoted as
[A, B], [A, C], and [B, C]. A posting in an intersection list consists of
adocID and two scores, one for each list. While any top-k document
must contain C, this is not sufficient — any top-k result must either
contain C and A, or C and B. This gives us the idea to select [A, C]
and [B, C] as essential lists, and to label all three lists [A], [B], and
[C] as non-essential. The MaxScore algorithm then proceeds as
before, traversing the union of the essential structures, and making
lookups as needed into other lists on documents encountered during
traversal. We expect the two intersection lists to be much smaller
than [C], leading to faster traversal. Moreover, for this example,
we do not need any lookups at all: if we find a document in both
essential lists, we know its complete score. If we only find it in one
list, say in [A, C] but not in [B, C], then we know that it cannot
have a posting in [B] (and vice versa for the other case and [A]).

Suppose the threshold for the query is 10.0 instead. Then MaxS-
core would choose [B] and [C] as essential lists. With intersections,
we have several alternative choices. We could choose [C] and [A, B]
as essential lists, since any top-k result that does not contain C must
contain both A and B. In this case, for any docID found in both

essential structures, no lookup is needed. For any docID only found
in [A, B], we also need no lookup, since we know that C cannot
occur. For any posting found only in [C], we can first perform a
lookup into B. If this lookup retrieves a posting, no further lookup
on [A] is needed as the document cannot have both A and B. Or we
could choose all three intersections as essentials, which would likely
result in even fewer essential postings (though the first solution is
still useful in cases where not all intersections are available).

Finally, assume an additional term D with maxscore 9.0 and a
top-k threshold of 16.0. MaxScore would then choose [C] and [D]
as essential lists. Our approach could choose, e.g., [D] and [B, C],
or [C,D] and [A, B], or [B, D] and [C], and so on. In summary, we
see that there is potential for improvements by using intersections
in a MaxScore approach. We also see that this can get complicated,
with many possible choices depending on the maxscores, top-k
threshold, and available intersections, and thus we need a more
formal approach. We propose the following mechanisms, which are
described in detail in the following:

e Precomputing Intersections: At indexing time, we select
a set of intersections that should be created, subject to a space
limit. We should choose intersections commonly occurring
in queries that are much smaller than each of the two lists.

e Threshold Estimation: Given an incoming query, we need
a good and fast estimate of the top-k threshold to allow us
to select a small set of essential structures.

o Selecting Essential Structures: Given a threshold estimate,
maxscores for the query terms, and a list of available inter-
section of query terms, we select essential structures in a
way that minimizes query processing costs.

¢ Avoiding Unnecessary Lookups: During traversal of the
selected essential structures, we need to decide which lookups
into non-essential lists must be performed. The answer de-
pends on the threshold and the already accumulated partial
score of a document, as well as on the intersections selected
as essential structures, in a complex way, and we need a very
fast way to make these decisions.

3.2 Selecting Precomputed Intersections
First, we discuss how to select the intersections that are built at
indexing time. Given a space budget B, our goal is to select a set of
intersections of total size at most B that maximizes the expected
query processing speedup. We estimate three quantities for each
considered intersection: (1) how likely the intersection will be use-
ful, F, (2) the savings in query processing cost that occur when it is
used, C, and (3) the amount of space taken up by the intersection,
S. Our goal is to maximize the expected benefit per space: F - C/S
We approximate the first quantity with a language model on a
set of training queries, to estimate the likelihood that a random
incoming query from the query distribution contains both terms
in the intersection. This is a rough approximation since the inter-
section may not actually be useful even if both terms are in the
query. The second quantity is approximated as the difference be-
tween the length of the shorter of the two lists and the intersection,
where the length of the intersection is scaled to account for the
fact that intersections are more expensive to traverse, per posting,
than single-term lists. Finally, the space S is simply estimated as
the number of postings in the intersection.



We then first identify a large set of candidates by taking inter-
sections with F above a minimum threshold. We estimate C and S
for these intersections, and greedily choose intersections based on
F - C/S, until the space budget for intersections is spent.

3.3 Threshold Estimation

Our threshold estimation uses a hybrid between sampling and
quantile-based methods from [27]. In particular, we implemented a
quantile-based method called Qi that stores the k-th highest score
for each term in the collection, and for each pair, triple, and 4-tuple
of terms encountered in queries of a large training query trace.
We combined this with the sampling-based method from [27] as
follows: Given a query, we execute the quantile-based method. If
the full query is contained in one of the pairs, triples, or 4-tuples
that was stored, then the quantile-based method guarantees an
exact threshold. Otherwise, we execute the sampling-based method
(with an initial threshold equal to the one estimated by Ql‘i), and
take the maximum of the two estimates. The quantile-based method
never returns an overestimate. The sampling-based method can
overestimate, but the probability of doing so can be easily bounded
as discussed in [27], and this bound also applies to the hybrid.
Note that our overall query processing method is safe, i.e., always
returns the correct top-k results, even in the presence of overesti-
mates. The reason is that an overestimate is easily detected once
the query has been executed, as we end up with fewer than k re-
sults above the threshold. In this rare case, we simply reexecute the
query using a baseline method, and all our results include this cost.

3.4 Selecting Essential Structures

Next, we discuss how to select essential index structures given a
top-k threshold estimate and a set of available intersections. This
task is more complex and requires some new definitions.

Result Classes and Score Bounds. Given an m-term query q = (wy,
w1, ..., Wm-1), a result class is identified by a bitvector c of length
m, and consists of all documents that contain all w; where c|[i]
is set to one, and none of the w; where c[i] is set to zero. For
example, if ¢ = (dog, cat, mouse); then result class (1,0, 1) consists
of all documents that contain “dog” and “mouse” but not “cat”. For
simplicity, we use a binary vector ¢ as a synonym for its result class.

Thus, there are 2™ result classes for a query of length m, where
the class defined by a vector of all zeros consists of documents
containing none of the query terms, and the class for a vector of
all ones consists of documents containing all the terms. The 2™
classes form a lattice with a partial order <, where ¢; < c3 iff the
1-bit positions in ¢y properly contain those in c;.

Given a query q and a result class c, let u(g, c) be an upper
bound on the score of any document in c. The easiest way to get
such a bound is to add up the relevant maxscores, i.e., u(g,c) =
Yo<i<m & c[i]=1 maxscore(w;). Tighter upper bounds are possible,
for example by storing additional maxscore information for some
intersections, though this appears to give only minor improvements
in the bounds. It is reasonable to assume that ¢; < ¢z implies
that u(q, c1) < u(q, c2), for the types of bounds we can efficiently
compute — though the actual top score in ¢; might sometimes be
higher than that in c,. We say that a result class c is critical for q if
u(q,c) > th, where th is the (estimated) top-k threshold of q.

Figure 1: Result class lattice for query with terms A, B, C, D,
assuming a threshold of 16.0.

Index Structures and Retrieval of Result Classes. Given an incoming
query g, we have a set of available index structures for the query
terms, including single term lists, two-term intersections, and in
principle even intersections of more than two terms. An inverted list
for query term w; contains a posting for every document containing
wj. Translating this to result classes, this means that the list contains
a posting for every document that is in a result class ¢ with c[i] = 1.
Formally, we say that the index structure retrieves all these classes
c. Furthermore, an intersection list for terms w; and w; retrieves
all result classes ¢ with c[i] = ¢[j] = 1, and correspondingly for
intersections of more than two terms.

Given these definitions, we can restate the task of selecting essen-
tial index structures. We say that a set of essential index structures
is safe for a query g and threshold th if every critical result class is
retrieved by at least one structure. Note that this implies that we
can find all top-k results by traversing the essential structures and
then performing lookups into non-essential lists as needed. Thus,
our goal can be stated as follows:

Problem Definition: Given a query q, a top-k threshold th, and
a set of available index structures on the query terms, the goal is to
select a safe subset of the structures that minimizes the cost.

We assume here that the cost is simply the total number of
postings in the selected essential structures, with a weight factor to
account for the fact that postings from multi-term structures take
more time to process. The actual running time also includes the
cost of lookups into non-essential lists. However, the lookup cost is
hard to estimate, as the number of necessary lookups per posting
can differ significantly between lists. Thus, our goal is to select
essential structures of minimal total size, in the expectation that
smaller essential structures typically lead to faster overall times.

Example. Figure 1 shows an example of a query with terms A, B, C,
and D. Critical result classes are shown in grey. An index structure
retrieves the result class with the corresponding label and any class
reachable from it. The left side shows a safe set of three intersections,
[A, D], [B,C], [B, D], assuming these are available in the index. The
right side shows another safe set where an intersection of three
terms, [A, C, D], is selected together with [B, C] and [B, D].

Our approach is to treat this as a weighted set cover problem.
Here, the elements of the set cover problem are any critical classes
that are not reachable from other critical classes, while the sets are



defined by the available index structures. A set associated with an
index structure contains a critical result class iff the index struc-
ture retrieves that class. In Figure 1, the set associated with [B] is
Sg = {(BC), (BD)}. We could also include the rest of the critical
(shaded) classes containing B in Sg, but it is unnecessary as they
are reachable from those in Sg. The goal is to cover everything at
least once while minimizing the total cost of the selected posting
lists (we expand on the chosen cost model in Section 4).

The general Set Cover problem is NP Complete [15], though our
version has additional structure that might make it easier. However,
the number of critical result classes that are part of the input to
our problem can be exponential in the number of query terms,
while the number of available index structures can be quadratic
for pairwise intersections, or higher for intersections of more than
two terms. Moreover, the complexity of the problem may depend
on the upper bounds for the result classes, e.g., if they are assumed
to be sums of term-wise maxscores, or if they could be arbitrary
values. A complexity analysis is deferred to future work.

We implemented two methods for selecting essential structures:
an exhaustive and a greedy one. Both start by first finding critical
classes not reachable from other critical classes, and then identifying
the subsets that correspond to the available single-term or pairwise
index structures. The exhaustive method considers all possible
solutions to find the one minimizing cost. This is quite fast for short
queries and cases where only few intersections are available, but
slow in other cases. The greedy method uses the standard greedy
approximate algorithm for Set Cover. We found this to be highly
accurate for the case where only single terms and pairs of terms
are considered. We discuss the results in the experimental section.

3.5 Avoiding Unnecessary Lookups

Next, we describe our policies for performing lookups into the non-
essential lists. We start by describing lookup policies for the stan-
dard MaxScore algorithm, with only single-term index structures.
Suppose you have a 4-term query with terms A, B, C, and D, and
maxscores 4.0, 5.0, 6.0, and 7.0, respectively. If the threshold is, say,
13.0, then MaxScore will select [C] and [D] as essential lists. When
a document is found in the essential lists, we consider whether to
look up its scores in the non-essential lists, usually in order from
highest to lowest maxscore. If the partial score accumulated from
the essential lists is less than 4.0, then no lookups are needed as the
threshold cannot be reached. If the score is higher, then at least one
more lookup is needed. In general, before each lookup, we check the
partial score accumulated so far, and the maximum possible score
from further lookups (the sum of the maxscores of the remaining
lists). If the sum of these two is less than the threshold, we can
discard the document without further lookups.

This becomes more complicated if we allow intersections as es-
sential lists. There are two challenges: First, while traversing the
essential lists, there is additional overhead as a document may be
encountered in two overlapping intersections, say in [B, D] and in
[C, D]. This needs to be detected so that we do not add up the score
from [D] twice, creating some overhead. Second, rules for avoiding
lookups are more complex. As in standard MaxScore, we do not need
to do any lookups into single-term lists that are essential structures.
However, suppose [B, D] is an essential lists, but the document be-
ing evaluated was not found in it. Then we know that the document

does not contain both B and D, but it could contain either one. If
we know that the document contains B, say because either [B] or
[B, C] is another essential list containing the document, or we have
done a lookup into [B], then no lookup in [D] is needed. Thus,
intersections result in more complex rules about what lookups are
necessary, and more complex bounds for the maximum score from
further lookups - if [C] and [B, D] are essential, then a document
discovered in [C] but not in [B, D] has a maximum score from fur-
ther lookups of maxscore(A) + max(maxscore(B), maxscore(D)),
as it cannot contain both B and D.

We designed two methods for dealing with these challenges.
The first one, eager, focuses on the first challenge, at the cost of
additional lookups. It treats all selected single-term essential lists
as in standard MaxScore, aggregating their essential scores and
then performing lookups into the other lists, while ignoring the
existence of any essential intersections. If the same document also
occurs in one of the essential intersections, then it will be processed
again separately, with additional lookups as needed. However, in-
tersections are usually shorter than single-term lists, so that most
documents are found only in single-term lists or in at most one
essential intersection. Thus, the amount of extra work is limited.
After aggregating results for single-term essential lists, we aggre-
gate the results from each intersection, one by one, with lookups
into non-essential single-term lists not in the intersection. Finally,
the different result sets are merged, and any duplicates removed.

The second approach, state, focuses on the other challenge, avoid-
ing lookups as much as possible, while speeding up the logic for
deciding what lookups are needed. It maintains a lookup state for
any document found in the essential structures, which is an integer
in [(n+1)-2"] for an n-term query. Terms are ordered from highest
to lowest maxscore, and lookups occur in this order. The state en-
codes in its higher bits which terms have already been considered
for lookups (a number from 0 to n as lookups occur in a fixed order),
and in the lower n bits which lookups retrieved a posting.

At the start of a query, after essential structures have been se-
lected, we precompute two small arrays indexed by lookup state,
one called next for telling us which lookup to consider next, and one
called mps that stores the maximum possible additional score from
further lookups, given the current state. All the logic for deciding
what lookups to perform is precomputed into these tables, which
are consulted as we evaluate a document. In particular, we check
mps to see if the maximum possible scores in the current state
could lead to a top-k result. If not, we terminate lookups for this
document; otherwise, we check next to decide on the next lookup,
update the lookup state, and continue.

Experiments showed eager to be faster for up to three terms,
while state is faster otherwise. This is because the logic of state is
more complex, which causes some overhead, including computing
next and mps tables, but the potential savings due to avoiding
unnecessary lookups increase with the number of query terms.
Thus, we used a hybrid, with the eager version for short queries,
and the state version otherwise. We include the pseudocode for both
algorithms in Appendix A. We also encourage interested readers to
study the implementation details on Github.!

Uhttps://github.com/elshize/using-conjunctions-docker
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Table 1: Accuracy of greedy selection for different k.

Collection Queries 10 100 1000 10000

ClueWeb09B TREC 2005 0.94 0.94 0.94 0.95
ClueWeb09B TREC 2006 0.92 0.91 0.89 0.89
ClueWeb12B TREC 2005 0.94 0.93 0.93 0.95
ClueWeb12B  TREC 2006 0.90 0.88 0.87 0.86

4 EXPERIMENTS

We now analyze the performance of the proposed methods with an
extensive experimental evaluation in a realistic and reproducible
setting, using state-of-the-art baselines and standard data sets.

Setup. All methods were implemented based on the PISA frame-
work [24], written in C++ and compiled with GCC 8.3 with highest
optimization settings. Tests are performed on a machine with 8 Intel
Core i7-4770 3.50GHz Haswell cores, with 32GiB RAM, running
Linux 4.15. Only a single core is used in each run. Inverted indexes
were saved to disk after construction, and memory-mapped for
querying; thus, there are no hidden costs due to loading of addi-
tional data structures in memory. Before timing the queries, we
ensure that all required single-term posting lists are in memory.
We precomputed and stored different sets of pairwise structures
(intersections) according to the algorithm in Section 3.2. Due to
their larger size, these structures were not loaded into memory, but
instead kept on an SSD drive and fetched during query processing.
We used a Samsung 860 EVO 2.5 Inch SATA III Internal SSD drive
with sequential read speed up to 550 MB/s and up to 98K random
read IOPS. This is a low-cost drive, at about $200 for the 2TB version,
and not as fast as many available NVMe drives. Nonetheless, we
found the overhead SSD accesses to be small. Complete source code,
data, and a docker image will be made available at publication time.

Datasets. We used two standard text collections, ClueWeb09B and
ClueWeb12B, with 50.2M and 52.3M documents. Collections were
parsed using PISA, with terms stemmed using the Porter2 stemmer.
Data was then exported to Common Index File Format [18] files,
which are the input to our scripts. This makes it easier to repro-
duce results, or to use indexes parsed by other software such as
Apache Lucene. For each collection, we built one inverted index
with frequencies (non-quantized), and one with quantized scores
(quantized) using 8-bit linear quantization. Posting docIDs and fre-
quencies were encoded using SIMD-BP128 [17]. To evaluate query
processing speed, we use TREC 2005 and TREC 2006 Terabyte Track
Efficiency Task data. From each, we selected 1000 random queries
with 2 to 16 terms. We also used the AOL query log of 20M queries
as training data for threshold estimation and to select intersections.

Query Cost Model. Recall that traversing intersections is more ex-
pensive than traversing single-term posting lists, due to having two
frequencies or quantized scores per posting. We found empirically
that multiplying the number of postings by 1.25 for intersections
gives the best results, and thus we use this factor to select intersec-
tions at indexing time and essential structures at query time.

4.1 Preliminary Experiments

We start with an initial set of experiments to explore the impact of
threshold estimation and greedy selection on performance. Due to
space constraints, we cannot give results for all data sets.

Table 2: Average query times (in ms) for the Max-Inter-All
algorithm with k = 1000, with selections performed by the
greedy and exhaustive approaches. We show query times
without selection cost (Time) and with selection cost (+Sel).

Greedy Exhaustive
Queries Time +Sel Time +Sel

Collection

ClueWeb09B TREC 2005 9.22 923 9.16  9.62
ClueWeb09B TREC 2006 11.16 11.17 10.77 11.77
ClueWeb12B TREC 2005 8.19  8.21 799  8.44
ClueWeb12B  TREC 2006 9.9 991 9.39 10.37

Table 3: Average number of postings in the essential lists P,
and lookups into the non-essential lists Ly for k = 1000 on
ClueWeb09B.

TRECO05 TRECO06

Pg Lng Pg LNE
MaxScore 1232970 146952 1508983 269374
MaxScore-T 1063127 101341 1272617 206692
Max-Inter-x2 470384 105473 791108 182588
Max-Inter-x5 420 660 85707 669347 160966
Max-Inter-x10 392747 74 285 582454 140337
Max-Inter-x15 385677 65 346 512719 123677
Max-Inter-x20 375209 60222 482628 111823

Max-Inter-All 230483 19056 125560 23022

Threshold Estimation. As discussed in Section 3.3, we used a hybrid
of random sampling and quantile methods, building on work in
[27] and [39]. Our quantile method, Q;ﬁ-log, stores top-k quantile
information for all terms in the index, and for all pairs, triples, and
4-tuples encountered in a large query log. Following [27], we used
the AOL query log, resulting in about 13 million unique term pairs,
60 million unique triples, and 340 million 4-tuples. This results in
space overhead of about 2GB, though this could be significantly
reduced at little loss in precision by selecting fewer triples and
4-tuples. For random sampling, we chose a sample size of 0.5% and
limited the expected overestimation rate to 1% (see [27] for more
details). Overestimates are detected when fewer than k results above
the threshold are returned. In this case, the query is rerun with
MaxScore, similar to [27, 28], and the cost of doing so is included
in the reported running times.

Table 7 in Appendix B shows the performance of our estimator
using the mean under-prediction fraction (MUF) measure proposed
in [28]. The method performs very well on our data, with mean
estimates mostly above 90% of the real threshold, and even better
numbers for larger k. Table 8 in Appendix B shows the cost of
threshold estimation in microseconds for different configurations.
As expected, costs increase with k and query length. Results on
other data sets were very similar.

Selecting Essential Structures. Next, we evaluate our greedy essen-
tial list selection algorithm and compare it against the exhaustive
approach. Due to exponential complexity of the latter, we could
only perform this comparison for queries with up to five terms.
As shown in Table 1, the greedy algorithm made exactly the same
selections of essential structures between 86% to 95% of the time,
depending on collection, query log, and k. Table 2 furthermore



Table 4: Average query times (in ms) for top-1000 on non- Table 5: Average query times (in ms) for top-1000 on quan-

quantized indexes, using estimated thresholds. tized indexes, using estimated thresholds.
Number of query terms Number of query terms

2 3 4q s 5 o 8 2 3 4q y5 o V8

ClueWeb09B TREC 2005 ClueWeb09B TREC 2005
VBMW-T 9.23 1591 2258 3882 79.63 22.16 VBMW-T 6.5 13.8 2041 3549 75.02 19.44
MaxScore-T 19.46 20.58 22.97 30.02 36.6 2291 MaxScore-T 7.63 896 11.65 1598 21.24 10.62
Max-Inter-x2 932 16.41 1936 2598 3346 16.34 Max-Inter-x2 547 6.86 9.22 13.15 19.94 8.42
Max-Inter-x5 8.98 14.88 17.99 2539 33.02 15.52 Max-Inter-x5 4.72 6.3 842 1252 18.96 7.7
Max-Inter-x10 8.9 1431 16.64 23.48 31.67 14.84 Max-Inter-x10  4.36  6.03 7.59 11.48 18.76 7.25
Max-Inter-x15  8.63 14.05 16.14 23.25 30.55 14.46 Max-Inter-x15 4.0 593 736 1139 18.17 6.98
Max-Inter-x20 8.5 1394 16.18 22.1 30.51 14.28 Max-Inter-x20 3.82 5.86 7.29 10.56 17.21 6.71
Max-Inter-All 7.68 9.63 10.86 13.68 2293 10.6 Max-Inter-All  2.85 3.97 4.32 6.3 13.32 4.64

ClueWeb09B TREC 2006 ClueWeb09B TREC 2006
VBMW-T 8.15 16.75 29.1 46.03 11549 4135 VBMW-T 6.64 144 26.29 42.17 108.85 37.99
MaxScore-T 16.19  20.59 27.63 37.2  56.59 30.88 MaxScore-T 6.55 9.51 1438 20.29 35.59 16.75
Max-Inter-x2 7.92 17.3 24.78 33.58 55.33 27.2 Max-Inter-x2 6.34 7.77 1252 1838 35.54 15.53
Max-Inter-x5 7.63 1579 2336 30.67 52.59 2546 Max-Inter-x5 597 7.12 1149 16.05 33.63 14.33
Max-Inter-x10  6.39 149 21.48 2898 50.63 23.95 Max-Inter-x10  4.59 6.74 1048 1535 3246 13.44
Max-Inter-x15  6.24 14.52 20.82 27.86 49.55 23.3 Max-Inter-x15 4.27 6.54 9.85 13.95 3192 1287
Max-Inter-x20 6.16 14.2 20.06 26.95 49.09 22.8 Max-Inter-x20 3.78 6.36 9.52 13.49 30.96 12.41
Max-Inter-All 5.0 8.6 13.68 182 37.69 16.16 Max-Inter-All 247 378 5.53 8.22 233 8.33

ClueWeb12B TREC 2005 ClueWeb12B TREC 2005
VBMW-T 10.71 16.76 21.96 35.15 89.09 2343 VBMW-T 5.12 10.46 15.17 26.01 61.52 15.12
MaxScore-T 22.15 23.38 25.17 30.79 448 25.83 MaxScore-T 734 795 9.72 13.64 19.79 9.6
Max-Inter-x2 7.77 1412 16.57 23.53 32.07 14.34 Max-Inter-x2 ~ 4.29  5.88 7.8 12.06 18.81 7.26
Max-Inter-x5 7.79 12.8 15.05 22.2  30.29 13.5 Max-Inter-x5 393 523 6.81 11.01 17.48 6.58
Max-Inter-x10  7.77 12.17 1391 21.51 29.99 13.07 Max-Inter-x10  3.71 495 6.24 10.67 17.9 6.34
Max-Inter-x15  7.69 11.88 13.57 20.07 29.37 12.73 Max-Inter-x15 3.49 4.84 6.12 9.98 17.11 6.07
Max-Inter-x20 7.62 11.74 13.6 19.5 28.68 12.55 Max-Inter-x20 3.34 4.77 6.04 9.59 16.53 5.89
Max-Inter-All 7.17 8.06 9.09 12.11 21.18 9.41 Max-Inter-All ~ 2.72 332  3.67 5.86 12.29 4.19

ClueWeb12B TREC 2006 ClueWeb12B TREC 2006
VBMW-T 535 11.85 22.17 34.72 88.34 31.15 VBMW-T 3.99 10.28 19.42 31.27 82.54 28.25
MaxScore-T 14.39 17.1  25.28 32.65 50.17 27.24 MaxScore-T 501 8.14 12.78 17.12 30.65 14.35
Max-Inter-x2 5.3 14.1 23.24 29.04 48.22 2355 Max-Inter-x2 3.72 6.65 11.59 14.71 29.77 12.93
Max-Inter-x5 4.99 13.6 22.13 27.19 46.43 2248 Max-Inter-x5 336 633 1096 13.38 28.54 12.2
Max-Inter-x10  4.87 124 19.84 2552 4499 21.09 Max-Inter-x10  3.09 5.87 9.55 12,57 27.79 11.44
Max-Inter-x15 4.78 11.78 18.78 24.29 43.68 20.22 Max-Inter-x15 2.91 561 889 11.78 26.96 10.91
Max-Inter-x20 4.78 11.28 18.48 245 4432 20.18 Max-Inter-x20  2.99 53 8.51 11.51 26.84 10.69
Max-Inter-All 394 673 1334 1648 3342 1436 Max-Inter-All 20 322 588 7.34  20.87 7.6

4.2 Comparison of all Algorithms
We now compare the performance of our approach to several base-

shows that the exhaustive method results in only minor improve- lines. We implemented the following MaxScore-based methods:

ments in running time that are more than erased by extra selection (1) MaxScore is an implementation of the MaxScore algorithm,
cost. Thus, potential benefits of using a smarter algorithm for selec- with initial threshold 0 and thus no threshold estimation.
tion are very limited. Note that greedy selection costs are included (2) MaxScore-T is a version of Maxscore where threshold esti-
in all subsequent results. Also, selection is only performed once mation is used to select an initial set of essential lists. When
in our approach, right after threshold estimation. While it might the threshold grows beyond the initial estimate, the algo-
be beneficial to rerun selection once the actual top-k threshold rithm recomputes the selection of essential lists.

grows beyond the initial estimate during query processing, this (3) Max-Inter-xN uses the greedy algorithm to select both

also creates additional overheads that limit the possible gains. single-term lists and intersections as essential lists, based
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Figure 2: Query times for selected algorithms run on the
non-quantized ClueWeb09B index with TREC 2005 queries.
The middle bar indicates the median value, while the boxes
extend to the first and third quartiles. Whiskers extend to
the 5-th and the 95-th percentiles. Means are marked by di-
amonds. Outliers are removed for better readability.

Table 6: Average query times (in ms) for Max-Inter-x20 (k =
1000) with pairs stored on SSD and in main memory.

Non-quantized  Quantized
SSD Memory SSD Memory

Collection Queries

ClueWeb09B TREC 2005 14.28 1398  6.71 6.44
ClueWeb09B TREC 2006  22.8 2243 1241 12.06
ClueWeb12B  TREC 2005 12.55 124  5.89 5.64
ClueWeb12B TREC 2006 20.18 19.47 10.69  10.32

on the initial threshold estimate. The selected structures are
then used during the entire query. Intersections are chosen
from a large set of precomputed pairwise intersections, as ex-
plained in Section 3.2, with a space budget of N X |I| where
|I| is the size of the inverted index. We report results for
N € {2,5,10, 15, 20}. If the selection includes only single-
term lists, we use VBMW-T (see below) for two-term queries
and MaxScore-T otherwise, as Max-Inter provides no im-
provements without intersections. Intersections are fetched
from SSD, and we include this cost in all reported results.
(4) Max-Inter-All is the case of Max-Iter-xN where all pairwise
intersections are available, i.e., unlimited space budget.

Essential List Sizes and Lookups. In Table 3, we show two statis-
tics that drive the cost of our approach: the number of essential
postings traversed (Pg) and random lookups into non-essential lists
(LNE). We see that MaxScore-T significantly reduces both Pg and
LnE compared to MaxScore by using an initial threshold estimate.
Recall that essential structures in Max-Inter methods are selected to
minimize the number of essential postings. Thus, the more precom-
puted intersections are available, the fewer essential postings are
traversed. Moreover, we see that Ly also significantly decreases
as Pp gets smaller. While Max-Inter-x20 reduces both statistics
significantly over the baselines, Max-Inter-All shows additional
reductions of up to 50% for Pg and up to 80% for LyE.

Performance of all Methods. We also implemented two block max-
based methods, VBMW [23] and a version of VBMW with initial
estimated threshold called VBMW-T. Our experiments showed that
MaxScore-T and VBMW-T always significantly outperformed MaxS-
core and VBMW without initial threshold, and thus in the following
we only report numbers for MaxScore-T and VBMW-T.

Tables 4 and 5 show average query times across all methods on
non-quantized and quantized indexes, for different query lengths.
We see that VBMW-T is fast for very short queries. Also, MaxScore-
based methods benefit more from using a quantized index, and
for that case significantly outperform VBMW-T. Our new Max-
Inter methods achieve promising improvements over the baselines
for larger N (such as N = 20), of about 25 to 35%. Improvements
are even larger for the idealized case where all intersections are
available, indicating that a better algorithm for selecting which
intersections to precompute might give further benefits.

In Figure 2 we show the distribution of query processing times
for different algorithms as a box-and-whiskers plot. As we see,
our new methods do not just outperform the baselines in terms of
average times, but also improve mean and 75- and 95-percentile
tail latencies.

Further extensive experiments (see Appendix C) show results
obtained by using idealized clairvoyant threshold estimates, i.e.,
estimates equal to the exact threshold obtained at zero cost. This
increases the performance advantage of our new methods over
baselines to about 30 to 45%, suggesting that our results would
benefit from further progress on threshold estimation techniques.
Other results how the cost of threshold estimation and essential
list selection for the different data sets. Overall, these costs are
low (on the order of a few percent) compared to overall query
execution costs. Finally, results for different values of k show how
our methods do particularly well for larger K, while still obtaining
more moderate benefits for small k.

Finally, Table 6 shows the overhead of fetching intersections
from SSD. As we see, running times would only be reduced by
a small amount if we could hold all intersections in main mem-
ory. This justifies our decision to store large sets of precomputed
intersections on a low-cost SSD drive.

To summarize, our new results show significant improvements in
running time over state-of-the-art baselines, with the potential for
additional improvements through better selection of precomputed
intersections or improved threshold estimation.

5 DISCUSSION AND CONCLUDING REMARKS

In this paper, we have described a new approach for optimizing safe
disjunctive top-k query processing. Our approach is a novel and
interesting generalization of the MaxScore algorithm that allows
precomputed pairwise intersections to be used as essential lists. The
experimental results showed the potential for significant improve-
ments in performance over the standard MaxScore approach. While
the improvements required a significant amount of precomputed
data structures, we showed that this can be efficiently addressed by
storing the structures on a low-cost SSD drive.
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A ALGORITHMIC DETAILS

Algorithm 1 shows the pseudocode of the "eager" MaxInter algo-
rithm. The UN1onLooxkup algorithm used in lines 9 and 11 is a
slightly modified version of MaxScoreT, where the essential and
non-essential lists stay the same throughout the entire run of the al-
gorithm. This modification generalizes it to work with precomputed
intersections of of an arbitrary number of terms.

Algorithm 2 shows the pseudocode of the "state” MaxInter al-
gorithm. Algorithm 3 illustrate the process of generating the two
auxiliary tables used in the "state” algorithm. These tables are pre-
computed once per query.

Algorithm 1 Eager Inter algorithm

1: E « essential query terms

2: N « non-essential terms sorted by decreasing maxscore
3: I « set of selected pair intersections

4: U « set of selected single-term lists

5: @ « estimated score threshold

6: function EAGERINTER(E, N, I, U, k, 0)

7: if I = 0 then
8: return MaxScorg(E, N, 60)

9: R < UnrtonLookur(U, N — U, 6)
10: for L € I do

> 1o pair intersections were selected
> fall back to MaxScore

11: R « R + UntonLookup(L, N — L, 0)

12: R « RemoveDurLIcATEDOCS(R) > always keep higher score
13: R < SORTBYSCOREDESCENDING(R)

14: return {ry, 7, ..., 1%}

Algorithm 2 State Inter algorithm

1: lo < DAAT union of the selected essential posting lists
2: Ly « list of the selected non-essential posting lists

3: M « maximum possible score table

4: N « next lookup table

5: |q| < number of terms in the query

6: function STATEINTER(le, L, M, N, |q|)

7: R « size-bounded min-heap for accumulating top results
8: M~ (1<|q|)-1

9: So « |E| < |q|
10: while NoNEmPTY(U) do
11: d < DocIp(l,)
12: s « Score(le)
13: S « State(le) | (|E| < |ql)
14: n < N[S]

15: while n > 0 and WOULDENTER(R, s + M[S]) do
16: l—L[n-|E|]

17: NExTGEQ(!)

18: if DocID(/) = d then

19: s « s+ Scorg(l)
20: S—S|(1«n)
21: S—(&((1xlg))-1))+((n+1) < |q])
22: n < N[S]
23: function STATE(l.)
24: s<0
25: fori=0,1,...,|q| do
26: if term i is part of union /. then
27: se—s|(1xi)

return s

Algorithm 3 Computation of lookup tables

1: to, tq,. .., tp_1 < essential query terms

2t tg, tktls - - - » En—1 < non-ess. terms sorted by decreasing maxscore
3: I « set of selected pair intersections

4: function UNNECESSARY(p, s)

5: if (1 < p) & s) > 0 then return true

6: for k — {k|(p,k) €I} do

7: if ((1 < k) & s) > 0 then return true
8: return false

9: function PRECOMPUTENEXTLOOKUP

10: fort=kk+1,...,n-1do

11: fors=0,1,...,2" —1do

12: pet

13: while p < nA UNNECESSARY(p, s) do
14: pe—p+1

15: if p=1tthenp « -1

16: N(t<<n)+s «—p

17: return N

18: function MAXIMUMPOSSIBLESCORE

19: fori=nn-1,...,0do
20: for j=2"-1,2"-2,...,0do
21: s—(i<n)+j
22: ny < N

23: if n, = —1then M5 « 0

24: else

25: ige— (ny+1) <n)+ (| (1 <ny))
26: a < MAXSCORE(i) + M;,

27: ip — (i+1) <n)+j

28: b — M;,

29: M; < max(a, b)

30: return M

B THRESHOLD ESTIMATION

In Table 7, we can see mean under-prediction fraction (MUF) results
for several k values, and for different query lengths when thresh-
olds are estimated on ClueWeb09B and for TREC 2005. Average
threshold estimation cost in microseconds when thresholds are
estimated on ClueWeb09B and for TREC 2005 are shown in Table 8.

Table 7: MUF of threshold estimates for different query
lengths and k on ClueWeb09B, for TREC 2005 queries.

k 2 3 4 5 6+ avg

10 087 0.87 087 0.86 0.84 0.86
100 092 091 090 090 0.89 0.90
1000 096 095 094 095 095 0.95
10000 096 0.97 096 0.96 096 0.96

Table 8: Average cost (in ps) of threshold estimates on
ClueWeb09B, for TREC 2005 queries.

k 2 3 4 5 6+ avg

10 110 110 105 148 184 119
100 119 121 124 174 226 135
1000 150 151 176 227 317 177
10000 203 242 303 399 558 279




C CLAIRVOYANT THRESHOLD ESTIMATES

Tables 9 and 10 show average query times across all methods on non-
quantized and quantized indexes, for different query lengths when
clairvoyant threshold estimates are employed. All methods benefits
from a better threshold estimate. When compared to Tables 4 and 5,
we can see that our proposed methods, Max-Inter, achieve even
better improvements over the baselines, sometimes requiring a
smaller space budget to obtain a similar speedup.

Table 9: Average query times (in ms) for k = 1000 on
non-quantized ClueWeb09B and ClueWeb12B indexes, us-
ing clairvoyant (exact) thresholds.

Number of query terms

2 3 3 5 e e
ClueWeb09B TREC 2005
VBMW-T 885 149 2047 3503 69.14  20.1

MaxScore-T 19.04 1954 21.84 2824 32.84 21.77
Max-Inter-x2 9.12 1537 17.96 24.24 29.76 15.27
Max-Inter-x5 8.65 13.72 16.26 22.69 289 14.19
Max-Inter-x10 843 12.89 1499 20.62 27.18 13.36
Max-Inter-x15  8.28 12.67 14.68 20.51 264 13.11
Max-Inter-x20  8.62 12.95 14.56 18.99 26.13 13.14
Max-Inter-All 7.31 826 9.62 12.04 19.73 9.47

ClueWeb09B TREC 2006

VBMW-T 7.57 1523 26.62 40.76 99.33 36.42
MaxScore-T 15.57 19.1 2544 33.72 50.87 2827
Max-Inter-x2 743 1582 2236 29.78 48.42 24.28
Max-Inter-x5 7.14 14.5 20.62 25.85 4496 22.21
Max-Inter-x10 591 13.53 19.2 24.63 4346 20.96
Max-Inter-x15  5.73 13.11 19.08 23.87 44.08 20.79
Max-Inter-x20 5.66 12.73 17.85 22.71 41.74 19.77
Max-Inter-All 4.48 7.27 11.36 14.8 31.34 1347

ClueWeb12B TREC 2005

VBMW-T 741 1134 1598 26.24 57.7 16.07
MaxScore-T 18.24 19.51 19.88 24.21 30.3 20.5
Max-Inter-x2 7.35 13.22 15.56 21.41 273 13.15
Max-Inter-x5 7.38 11.84 14.05 20.11 259 12.34
Max-Inter-x10  7.44 11.32 12.84 19.44 2451 11.86
Max-Inter-x15 7.3 10.85 13.72 19.34 27.48 12.1
Max-Inter-x20 7.21 10.66 12.46 17.42 23.76 11.3
Max-Inter-All 6.77 7.06 8.2 1091 16.81 8.35

ClueWeb12B TREC 2006

VBMW-T 5.03 1093 19.78 30.21 76.21 27.32
MaxScore-T 13.5 16.27 2328 29.76 44.73 2493
Max-Inter-x2 4.89 13.28 20.44 26.08 42.0 20.98
Max-Inter-x5 4.66 12.57 19.58 23.88 39.95 19.83
Max-Inter-x10  4.52 1145 17.71 2255 37.69 18.45
Max-Inter-x15  4.47 10.72 169 21.24 37.15 17.75
Max-Inter-x20 4.44 10.2 16.07 20.79 36.84 17.29
Max-Inter-All 358 575 1136 13.89 2696 11.97

Table 10: Average query times (in ms) for top-1000 on quan-
tized ClueWeb09B and ClueWeb12B indexes, using clairvoy-
ant (exact) thresholds.

Number of query terms

2 3 4 5 6 V8
ClueWeb09B TREC 2005
VBMW-T 61 1271 18.18 3141 63.19 17.19

MaxScore-T 735 831 1043 1433 18.05 9.71
Max-Inter-x2  5.19 6.9 8.2 11.7 16.33 7.68
Max-Inter-x5 447 6.22 7.35 10.72 1541 6.92
Max-Inter-x10 4.14 589 6.58 95 1444 6.38
Max-Inter-x15 3.76 5.81 6.48 954 1395 6.15
Max-Inter-x20 3.64 5.78 6.28 8.47 13.68 5.93
Max-Inter-All  2.79  3.86 34 512 104 4.06

ClueWeb09B TREC 2006

VBMW-T 598 1331 235 36,51 91.92 32.88
MaxScore-T 8.4 8.8 1275 17.56 30.66 15.14
Max-Inter-x2 576 7.11 10.8 15.23 29.54 13.24
Max-Inter-x5 543 653 9.73 124 27.04 11.87
Max-Inter-x10  4.07  6.11 89 11.69 2587 11.01
Max-Inter-x15 3.81  5.89 84 10.53 2541 10.52
Max-Inter-x20 3.5 5.71 8.07 10.43 24.24 10.11
Max-Inter-All  2.16 3.25 4.46 597 17.53  6.46

ClueWeb12B TREC 2005

VBMW-T 473 9.76 13.86 2349 53.0 13.56
MaxScore-T 7.01 742 888 1217 16.45 8.76
Max-Inter-x2 398 5.89 7.1 10.34 14.83 6.5
Max-Inter-x5  3.78 521 6.17 934 13.87 5.93
Max-Inter-x10 3.58 495 553 89 1299 556
Max-Inter-x15  3.39 48 544 824 1289 536
Max-Inter-x20 3.26 4.72 5.39 7.92 12.54 5.22
Max-Inter-All  2.65 3.21 3.05 479 8.74 3.6

ClueWeb12B TREC 2006

VBMW-T 3.6 935 1742 27.17 7021 24.51
MaxScore-T 475 747 1135 15.09 26.09 12.63
Max-Inter-x2 346 593 9.78 12.7 2455 10.99
Max-Inter-x5 3.07 5.67 9.13 11.14 2285 10.13
Max-Inter-x10 2.81 5.14 8.09 10.54 21.33 9.34
Max-Inter-x15 2.63 48 7.74 9.85 20.98 8.96
Max-Inter-x20 2.75 4.56 7.2  9.59 2091 8.74
Max-Inter-All 1.75 2.65 4.5 5.84 14.82 5.72
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