An Ore-type condition for hamiltonicity in tough

graphs and the extremal examples

Masahiro Sanka® Songling Shan®

Submitted: Oct 18, 2023; Accepted: Jan 24, 2024; Published: Mar 8, 2024
(©) The authors. Released under the CC BY license (International 4.0).

Abstract

Let G be a t-tough graph on n > 3 vertices for some t > 0. It was shown by
Bauer et al. in 1995 that if the minimum degree of G is greater than H-Ll —1, then G
is hamiltonian. In terms of Ore-type hamiltonicity conditions, the problem was only
studied when ¢ is between 1 and 2, and recently the second author proved a general
result. The result states that if the degree sum of any two nonadjacent vertices of
G is greater than ti—"l +t—2, then G is hamiltonian. It was conjectured in the same
paper that the “+t” in the bound t%r—"l +t — 2 can be removed. Here we confirm the
conjecture. The result generalizes the result by Bauer, Broersma, van den Heuvel,
and Veldman. Furthermore, we characterize all t-tough graphs G on n > 3 vertices
for which o3(G) = t%r_nl — 2 but G is non-hamiltonian.

Keywords. Ore-type condition; toughness; hamiltonian cycle.

Mathematics Subject Classifications: 05C38

1 Introduction

We consider only finite simple graphs. Let G be a graph. Denote by V(G) and
E(G) the vertex set and edge set of G, respectively. Let v € V(G), S C V(G), and
H C G. Then Ng(v) denotes the set of neighbors of v in G, dg(v) := |Ng(v)| is the
degree of v in G, and §(G) := min{dg(v) : v € V(G)} is the minimum degree of G.
Define degg(v, H) = |Ng(v) N V(H)|, Ng(S) = (U,es Na(x)) \ S, and we write Ng(H)
for No(V(H)). Let Ny(v) = Ng(v) NV (H) and Ny (S) = Ne(S)NV(H). Again, we
write Ny (R) for Ny(V(R)) for any subgraph R of G. We use G[S]| and G — S to denote
the subgraphs of G induced by S and V(G) \ S, respectively. For notational simplicity we
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write G — x for G — {z}. Let V1, Va2 C V(G) be two disjoint vertex sets. Then Eq(Vi, V3)
is the set of edges in G with one endvertex in V; and the other endvertex in V5. For two
integers a and b, let [a,b] = {i € Z : a <i < b}.

Throughout this paper, if not specified, we will assume ¢ to be a nonnegative real
number. The number of components of a graph G is denoted by ¢(G). The graph G is
said to be t-tough if | S| > t-¢(G—S) for each S C V(G) with ¢(G—S5) > 2. The toughness
7(G) is the largest real number ¢ for which G is t-tough, or is oo if G is complete. This
concept was introduced by Chvéatal [7] in 1973. Tt is easy to see that if G has a hamiltonian
cycle then G is 1-tough. Conversely, Chvatal [7] conjectured that there exists a constant
to such that every typ-tough graph is hamiltonian. Bauer, Broersma and Veldman [1] have
constructed t-tough graphs that are not hamiltonian for all ¢ < %, so tp must be at least
% if Chvatal’s toughness conjecture is true.

Chvatal’s toughness conjecture has been verified for certain classes of graphs including
planar graphs, claw-free graphs, co-comparability graphs, and chordal graphs [2]. The
classes also include 2Ks-free graphs [6, 15, 13], and R-free graphs for R € {P, U P3, P3 U
2P, P, U kP } [16, 9, 17, 12, 19], where k£ > 4 is an integer. In general, the conjecture
is still wide open. In finding hamiltonian cycles in graphs, sufficient conditions such as

Dirac-type and Ore-type conditions are the most classic ones.

Theorem 1.1 (Dirac’s Theorem [8]). If G is a graph on n > 3 wertices with 6(G) > 3,

then G is hamiltonian.

Define 05(G) = min{dg(u) + dg(v) : u,v € V(G) and they are nonadjacent} if G is
noncomplete, and define o9(G) = oo otherwise. Ore’s Theorem, as a generalization of

Dirac’s Theorem, is stated below.

Theorem 1.2 (Ore’s Theorem [11]). If G is a graph on n > 3 vertices with oo(G) = n,

then G is hamiltonian.

Analogous to Dirac’s Theorem, Bauer, Broersma, van den Heuvel, and Veldman [4]

proved the following result by incorporating the toughness of the graph.

Theorem 1.3 (Bauer et al. [4]). Let G be a t-tough graph on n > 3 vertices. If §(G) >

n

@1 — L, then G is hamiltonian.

A natural question here is whether we can find an Ore-type condition involving the
toughness of G that generalizes Theorem 1.3. Various theorems were proved prior to
Theorem 1.3 by only taking 7(G) between 1 and 2 [10, 3, 5]. Let G be a t-tough graph
on n > 3 vertices. The author showed in [14] that if o5(G) > 2% + ¢ — 2, then G is

hamiltonian. It was also conjectured in [14] that o3(G) > 2% — 2 is the right bound. In
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this paper, we confirm the conjecture. For any odd integer n > 3, the complete bipartite
2n
1+n 1

not hamiltonian. Thus, the degree sum condition that oy(G) > t+_1 — 2 is best possible for

a t-tough graph on at least three vertices to be hamiltonian. In fact, for any odd integers

graph G := Kui w1 i n-tough and satisfies 0(G) =n—1= — 2. However, G is

n > 3, any graph from the family H = {Hanl +fnT+1 : Hanl is any graph on "T_l vertices}

is an extremal graph, where “+” represents the join of two graphs. We also show that H
is the only family of extremal graphs.

Theorem 1. Let G be a t-tough graph on n > 3 vertices. Then the following statements
hold.

(a) If o9(G) > t+—1 — 2, then G is hamiltonian.

(b) If 02(G) = 2% — 2 and G is not hamiltonian, then G € H.

The remainder of this paper is organized as follows: in Section 2, we introduce some

notation and preliminary results, and in Section 3, we prove Theorem 1.

2 Preliminary results

Let G be a graph and A be a positive integer. Following [18], a cycle C' of G is a
Dy -cycle if every component of G — V(C') has order less than \. Clearly, a D;-cycle is
just a hamiltonian cycle. We denote by ¢, (G) the number of components of G with order
at least A, and write ¢;(G) just as ¢(G). Two subgraphs H; and Hy of G are remote if
they are disjoint and there is no edge of GG joining a vertex of H; with a vertex of H,. For
a subgraph H of G, let dg(H) = |Ng(H)| be the degree of H in G. We denote by ,(G)
the minimum degree of a connected subgraph of order A in G. Again 0,(G) is just 6(G).

Lemma 2.1 ([16]). Let t > 0 and G be a non-complete n-vertex t-tough graph. Then
(W < 5 for every independent set W in G.

Denote by 5 an orientation of C. We assume that the orientation is clockwise through-
out the rest of this paper. For z € V(C'), denote the immediate successor of x on 5 by
2t and the immediate predecessor of z on 8 by 7. We use N, +( ) to denote the set of
1mmed1ate successors for Vertlces from Ne¢(z). For u,v € V(C'), uCv denotes the > segment
of C starting at u, followmg C in the orientation, and ending at v. Likewise, uC'v is the

opposite segment of C' with endpoints as u and v. Let dlstc(u,v) denote the length of
the path uCwv. For any vertex u € V(C) and any positive integer k, define

Li(k)={veV() : dist; (u, v) € [1, K]}
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to be the set of k consecutive successors of u. Hereafter, all cycles urlder consideration
are oriented, and we will not distinguish between the notation C' and C'.

The following lemma provides a way of extending a cycle C' provided that the vertices
outside C' have many neighbors on C'. The proof follows from Lemma 2.1 and is very
similar to the proof of Lemma 10 in [16]: if we assume instead that C' cannot be extended
by including x, then N/ (z) U {x} is an independent set in G.

Lemma 2.2. Let t > 0 and G be an n-vertex t-tough graph, and let C' be a non-
hamiltonian cycle of G. If v € V(G) \ V(C) satisfies degg(z,C) > 75 — 1, then G
has a cycle C" such that V(C") = V(C) U {x}.

A path P connecting two vertices u and v is called a (u, v)-path, and we write uPv or
vPu in order to specify the two endvertices of P. Let uPv and xQy be two paths. If vz
is an edge, we write uPvxQy as the concatenation of P and () through the edge vzx.

For an integer A > 1, if a graph G contains a Dy, ;-cycle C' but no Djy-cycle, then
V(G)\V(C) # 0. Furthermore, G — V(C) has a component of order A\. The result below
with dg(H) replaced by §,(G) and H replaced by any component of G —V(C') with order
A was proved in [4, Corollary 7(a)].

Lemma 2.3 ([14]). Let G be a t-tough 2-connected graph of order n. Suppose G has a
Dy 1-cycle but no Dg-cycle for some integer s > 1. Let C' be a Dy 1-cycle of G such that
C minimizes ¢,(G — V(C)) prior to minimizing c¢,(G — V(C)) for any p,q € [1,s] with
p>q. Thenn > (t+|V(H)|)(de(H) + 1) for any component H of G — V(C).

The lemma below is the key to get rid of the “+t” in the lower bound 2% +¢ — 2 on

1
02(@G) for guaranteeing the existence of a hamiltonian cycle [14].

Lemma 2.4. Let G be at-tough 2-connected graph of order n. Suppose that G has a Dy,1-
cycle but no Dy-cycle for some integer A > 1. Let C' be a cycle of G. Then G—V(C) has

a component H with order at least X\ such that degq(x,C) < &~ — X for some x € V(H).

= t+1

Proof. Since G has no D)-cycle, it is clear that G — V(C') has a component of order
at least A\. We suppose to the contrary that for each component H with order at least A
of G = V(C) and each z € V(H), we have degg(z,C) > #5
of G that satisfy the two conditions below, we may assume that C' is one that minimizes

— A. Among all cycles ¢’

c,(G — V/(C)) prior to minimizing ¢,(G — V(C)) for any p > X and any ¢ with ¢ < p.
(1) Each component of G — V(C') either has order at most A — 1, or

(2) the component H has order at least A such that for each x € V(H), we have

degy(z,C) > oA
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We take a component H with order at least A\ and assume that No(H) has size k

for some integer k£ > 2, and that the k neighbors are vy, ..., v, and appear in the same
order along 5 Note that & > 5 — A by our assumption. For each i € [1, k], and each
UNS V(v;rav;rl), where vy1 := vy, we let C(v) be the set of components of G — V(C)
that have a vertex joining to v by an edge in G. As No(H) N V(vfav;rl) = (), we have

H ¢ C(v). Let w} € V(v; Cv;, ;) be the vertex with dista(vi, w;) minimum such that

> V(D) + V(v Cw)| = A
pe U  Cl
UEV(UJBW:)

If such a vertex w; exists, let L} (X) be the union of the vertex set V(v Cw}) and all
those vertex sets of graphs in U C(v); if such a vertex w} does not exist, let
UEV(v:rEw;‘)

L; (X\) = L} (X). Note that when w} exists, by its definition, w; € V(v Cv; ;). Thus
V(v Cw;) NV (v Cwr) = 0 if both w} and w} exist for distinct 4,5 € [1,k]. If w} exists,

for any r € [1, dista(vi, w})], let v be the vertex from v;"Cw} such that dista(vi, ) =r.
Then define

Lt (A7) = U V(D) | UV (vfCul).
De U C(v)
UEV(U?EU{)

We will show that we can make the following assumptions:

(a) If for some i € [1, k], it holds that L; (\) = L} ()), then dista(vi,vj) > A+ 1 for any
J € [1, k] with j # 4. Thus the vertex w; exists for each i € [1, k].

(b) G[L;, (N)] and G[L; (A)] are pairwise remote for any distinct 4, j € [1, k].

With Assumptions (a) and (b), we can reach a contradiction as follows: note that
G[L;, (V)] and G[L;, (A)] are remote for any distinct 4, j € [1, k] and H and G[L}, (A)] are
remote for any i € [1,k]. Let § = V(G)\ ((Uill L (A) U V(H)). Then [S] < n—(k+1)A
and ¢(G — S) =k + 1. As G is t-tough, we get

n—(k+DA>|S|>t-¢(G—-8)=tlk+1),

giving k < 5 — 1. Since n > (A +1¢)(2t + 1) by Lemma 2.3 (G has a Dy;-cycle C” such

that G — V(C") has a component H' of order A, and dg(H') > 2t by G being t-tough),
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we get

n n A=Dn—-0t+1)(t+N)
— A= —-1)] = > 0,
t+1 L+ A (t+1)(t+ N
and so kK < 2 — 1K — A. This gives a contradiction to £ > = — A. Thus we are

L+ t+1 t+1
only left to show Assumptions (a) and (b). We show that if any one of the assumptions

is violated, then we can decrease ¢,(G — V(C')) for some p > .

For Assumption (a), if L} (X) = L ()) for some i € [1, k] but dista(vi,vj) < A for
some v; € No(H) with j # ¢, then there must exist two consecutive indices 4,5 € [1, k]
such that dista(vi,vj) < A. Thus we may just assume j = i + 1, where the index is
taken modulo k. Let v}, v}, € V(H) such that vv,v;11v), € E(G), and let P be a
(vf,vf,)-path in H. Let C, = viavi+1vj+1ijvi.

Note ;chat every component of G — V(C') not having any vertex joining to a vertex

from v;*Cv;,, in G is still a component of G — V(C). Those components automatically

satisfy Conditions (1) and (2) as listed in the beginning of this proof. Vertices in v} Cv;
are contained in a distinct component of G—V (C}), and the component has order at most
A — 1 by the assumption that L (A) = L ()\) and dista(vi,viﬂ) < A. Finally, as any
vertex from each component of H — V' (vf,, Pv}) is not adjacent in G to any vertex from
v Cv;, 4, we know that components of H —V (v}, Pv}) are components of G—V (Cy), and
that degg(w,Cy) > 5 — A for any w € V(H — V(vj; Pvy)). Hence each component of
G — V(C) either has order at most A — 1 or is a component of order at least A such that
each vertex from the component has in G more than 5 — A neighbors on C;. However,
C|V(H)‘(G — V(Cl)) < C|V(H)‘(G — V(C)) and Cq(G — V(Cl)) = Cq(G — V(C)) for any
q > |V(H)|, contradicting the choice of C. Therefore we have Assumption (a), which
implies that the vertex w} exists for each i € [1,k].

For Assumption (b), suppose it is false. Then there exist distinct i, j € [1, k] such that
G[L;,(N)] and G[L; (A)] are not remote. By the definition of remote subgraphs, we have
either Ly (A\) N Ly, (A) # 0 or Ly (A) N Ly (A) = 0 but Eg(L;,(A), Ly, (A) # 0. In order to
achieve a contradiction, we first show the following general claim, call it Claim ().
Claim (): For any r € [1, dist~ (vz, f)] and s € [1, dist~ (vj, wi)], if Ly, (A, 7)NLy (A, 8) =
0, then Eq(Ly, (A7), L, (A, s)) 0.

Suppose otherwise that Eg(L;, (A,7), Ly, (A, s)) # 0. Since Ly (A7) N Ly (A, s) = 0,
Eq(Ly, (A1), Ly, (A, s)) # 0 implies that there exist y € V(vfCw?) N Li (A7) and z €
V(v Cwy) N Ly (A, s) such that yz € E(G). We choose y € V(v Cwy) N L; (A7) with
dista(vi,y) minimum and z € V(v] Cw}) N Ly (A, s) with dist (vj, z) minimum such

that yz € E(G). By the choice of y and z, we have Eg(V (v jC’y ), V(vfCz7)) = 0.
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Let vf,vi € V(H) such that vvf,v;07 € E(G), P be a (vf,v})-path in H, and let

i j
C) = vZC’zyC'v] viPvfv;. Note that no vertex of H is adjacent in G to any vertex of
+Cy or U+CZ by the fact that V(v +Cy ) € V(v Cwy) and V(v;Cz7) C V(v] Cw})
and Assumptlon (a). By the assumption that L; (r) N L; (s) = 0 and the definitions of

L;,(A) and Lj (A), we know that v;"Cy~ and v] Cz~ are respectively contained in distinct
components of G — V(C}) that each have order at most A — 1. By the same reasoning
as in proving Assumption (a), we know that each component of G — V(C}) has order at

most A — 1 or is a component such that each vertex from the component has in G more

than 5 — A neighbors on Cy. However, ¢y (G — V(C1)) < ey (G — V(C)) and

c(G =V (CY)) = ¢,(G—V(C)) for any ¢ > |V(H)|, contradicting the choice of C'. Thus
Claim (x) holds.
Now let us get back to proving Assumption (b) by contradiction. Assume first that

Ly,(A) N Ly (A) # 0. Then there exist v € V(v +C’w ) and u € V(v +C’w ) such that

C(v) N C(u) # 0, we then further choose v closest to K and u closest to v, along C
such that C(v) N C(u) # (. Thus for any w; € V(v +C’v ) and any w; € V(v ;rCu ),
it holds that C(w;) N C(w;) = 0. Let D € C(v) NC(u) and v',u’ € V(D) such that
v’ uu’ € E(G), and P’ be a (v',u')-path of D. Let v}, v} € V(H) such that vV}, VU] €
E(G), and let P be a (v}, vj)-path in H. Then Cy = vv} Pvj U]C’vv’P’u’uC’vZ is a cycle.
Since each of V(v*av ) and V(v ;rCu ) contains at most A\ — 1 vertices and they are
proper subsets of V(v +Cw ) and V(v;raw;) respectively, by Assumption (a) above, we
have No(H) N (V (v ;FCU ) U V(v;fau_)) = (). By the choices of v and u that for any
w; € V(v +5v‘) and any w; € V(v +5u_), it holds that C(w;) N C(wj) = (), Claim (*)
implies that the components of G — V(C}) that respectlvely contain UJrCU and v*C’u

are disjoint. Since V(v ;FCU ) is a proper subset of V(v ;erZ-) and V(v ;-rC’u ) is a proper
subset of V (v} aw;f), it follows by the definitions of Ly, (A) and Lj (A) that the components
of G—V(C}) that respectively contain v;" 51}’ and v;-r(?’u’ have order at most A—1. By the
same reasoning as in proving Assumption (a), we know that each component of G —V(Ch)

has order at most A — 1 or is a component such that each vertex from the component has
in G more than = — A neighbors on Cy. However, ¢jy ) (G =V (C1)) < ey (G=V(C))

1
and ¢, (G—V(C4)) = ¢,(G=V(C)) for any ¢ > |V (H)|, contradicting the choice of C'. Thus
we must have Lj (A) N Lj (A) = 0. Applying Claim () again with r = dista(vi, wy) and
s = dist— (v], *), we have Eg(Ljy,(A), Ly, (M) = 0. Therefore, G[L; (A)] and G[L; (A)]

are remote contradicting our assumption. Thus Assumption (b) holds. O
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3 Proof of Theorem 1

Let G be a t-tough graph on n > 3 vertices such that o5(G) > 2 1 — 2. We may assume
that G is not a complete graph. Thus G is [2t]|-connected as it is t-tough. Suppose to

the contrary that G is not hamiltonian.
Claim 1. We may assume that G is 2-connected.

Proof. Since t > 0, GG is connected. Assume to the contrary that G' has a cut vertex x.
By considering the degree sum of two vertices respectively from two components of G —x,
we know that 09(G) < n—1. On the other hand, G has a cut vertex implies ¢ < 5 and so

02(G) = 2 =22 2 —2. If 05(G) > 2 —2, then we get a contradiction to 03(G) < n—1
as n > 3. Thus we assume 05(G) = 4; 2, which contradicts 02(G) < n—1if n > 4.
Thus n = 3 and so G = P3, but this implies G € H. O

Since (G is 2-connected, Lemma 2.3 implies
n = (t+1)(]2t] +1).

Also as G is 2-connected, G contains cycles. Let A > 0 be the integer such that G
admits no Dy-cycle but a D, i-cycle. Then we choose C' to be a longest Dy, 1-cycle that
minimizes ¢,(G —V(C)) prior to minimizing ¢,(G —V(C)) for any p, ¢ € [1,\] with p > g¢.
As G is not hamiltonian, we have A > 1. Thus V(G) \ V(C) # 0. Since C is not a
Dj-cycle but a D, -cycle, G — V(C) has a component H of order . Let

W =Nc(H) and w=|W]|.

Since G is a connected t-tough graph, it follows that w > [2t]. On the other hand,
Lemma 2.3 implies that w < 75 — 1.

X
Claim 2.
Atw< " ifAz2
t+1
Aw< Hil iFA=1.
Proof. If A\ =1, then the assertion holds by w < t+A — 1. Thus we assume \ > 2 and
assume to the contrary that A+w > 7. Then we have n < (A+w)(t+1). By Lemma 2.3,

we have n > (A +¢)(w + 1). Thus we have
A+ (w+1) <(A+w)(t+1),

which implies A\w + A +tw+t < At + A+ tw+w and so (A —1)w < (A —1)t. Since A > 2
we get w < t, a contradiction to w > 2t. Note that the argument above for A > 2 holds
for all components of G —V(C') as Lemma 2.3 holds for all components of G —V (C). O
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Claim 3. If 05(G) > 2% — 2, then H is the only component of G — V (C).

t+_1

Proof. Suppose H* # H is another component of G — V(C'). Then we have dg(z) +
da(y) = 02(G) for any v € V(H) and y € V(H*). Since dg(x) < A+ w — 1 and
da(y) < |V(H*)| + |Ne(H*)| — 1, Claim 2 implies that |V (H*)| 4+ |[No(H*)| > 02(G) —
(Zg—1)+1 > #5 if A > 2. Repeating exactly the same argument for |V (H*)|+|[Nc(H*)|
as in the proof of Claim 2 leads to a contradiction.

Thus we assume A = 1. We get the same contradiction as above if 05(G) > 2% — 2 or

Atw < 75, Thus we have 03(G) = t+1 —2and w = 5 — 1 by Claim 2. Then ;}Lland H*
each contains only one vertex, say x and y, respectively. We first claim that the vertex y
is adjacent in G’ to at most one vertex from W*. For oiherwise, suppose there are distinct
u,v € W7 such that yu,yv € E(G). Then C* = v~ CoyuCv~xu~ is a Dy yq-cycle of G
with e\ (G — V(C*)) < ex(G — V(C)). This contradicts the choice of C.

We then claim that the set W+ is an independent set in G. For otherwise, suppose

there are distinct u,v € W7 such that wv € E(G). Then C* = v CvuCv~zu~ is a
Dji1-cycle of G with ¢ (G — V(C*)) < ex(G — V(C)). This contradicts the choice of C'.
Now let S =V(G)\ (WTUV(H)UV(H*)). Then ¢(G — S) > w + 1. However

El n—w-2 gr-1l_.
B — n )

a contradiction.
Therefore, H is the only component of G — V(C). O]
Since H is the only component of G — V(C), every vertex v € V(C)\ W is only
adjacent in G to vertices on C. As vertices from V(C) \ W are nonadjacent in G with

vertices from H, we have
degn(v,C) 2 03(G) — (w+ A —1) forany v e V(C)\W. (1)
We construct the vertex sets L} for each u € W as follows:

{veV(C) distz(uv) < == —w+1} if0a(G) = 2 —2

L+ o +1 t+1
O . n .
{veV(C): dlSta(u,U) < ol +1} if 0o(G) > 2 —

Claim 4. The following statements hold.

(a) If 02(G) = 2% =2, then for any two distinct vertices u,v € W, we have dist— (u, v) =

g —w+1and Eq(Lf, LY) = 0.

(b) If 02(G) > 2% =2, then for any two distinct vertices u,v € W, we have dista(u,v) >
5 —w+1and Eg(Lf, L) = 0.
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Proof. We only show Claim 4(a), as the proof for Claim 4(b) follows the same argument
by just using the strict inequality. Let u* € Ny (u),v* € Ny(v) and P be a (u*,v*)-path
of H. For the first part of the statement, it suffices to show that when we arrange the
vertices of W along C', for any two consecutive Verti(ies u and v from the arrangement,

we have dista(u,v) > 57 —w+ 1. Note that V(u"Cv™) N W = § for such pairs of u

and v. Assume to the contrary that there are distinct u,v € W with V(utCo™)NW =

() and dista(u,v) < g7 —w+ 1 Let " = uCvv*Pu*u. Since H has order A and

V(u*g'v*) AW =0, H— V(P) is a union of components of G — V(C*) that each is

N

of order at most A — 1 and u"Cv™ is a component of G — V(C*) of order less than

75 — w but at least A (G has no Dy-cycle). By (1), for each vertex z € V(u"Cv™),

degg(z,C%) > 09(G) — (w+ A —1) = (5 —w—1) = #5 — A. This shows a contradiction

to Lemma 2.4.

For the second part of the statement, we assume to the contrary that Eq (L), L) # 0.
Applying the first part, we know that dista(u, v) 2 g7 —wtland dista(v, u) = f5—wtl
(exchanging the role of u and v). Thus L} N LI = (). We choose x € L} with dista(u, )

minimum and y € L} with dista(v, y) minimum such that zy € E(G). By this choice of =
and vy, it follows that Eq(V(utCxz™),V(vtCy~)) = 0. Let C* = uCyxCvv* Pu*u. Since
H is of order X and no vertex of H is adjacent in G to any vertex of u™Caz~ or vtCy~
by the first part of the statement, H — V' (P) is a union of components of G — V(C*) that

each have order at most A — 1. Also utCz~ and v*Cy~ are components of G — V(C*)

that each have order less than ;77 — w but at least one of them has order at least A.
Since Eg(V(utCz™),V(vtCy~)) = 0, by (1), for each vertex w € V(utCz™) U
V(vTCy~), degg(w, C*) > 25 — A. This shows a contradiction to Lemma 2.4. O

By Claim 4, G[L}] and G[L;] are remote for any two distinct u,v € W. Furthermore,
H is remote with G[L;[] for any u € W. In addition, we have [L]| > ;5 — w if 02(G) =
ti—”l =2, and [L] > 75 —w if 02(G) > ti—"l —2. Let S =V(G)\ (Uyew L) UV (H)).
Then ¢(G — S) =w+ 1 and

: 2n
|S|<n—w(t+—1—w)—)\ if 09(G) > 7% — 2,

\S\@—“(t%“”) —A i ea(G) =55 -
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As G is t-tough and so |S| = te(G — 5) = t(w + 1), we get

n . 2n
n>W(t+—1_w+t)+)\+t if 02(G) > 75 = 2,

n)w(i—wjtt) + A+t if oy(G) = 2 —2.

t+1 .
Claim 5. [t holds that 09(G) = ti—"l —2,A=1, andw= 5 -1
Proof. Note that we have w < 77 — A < 7 — 1 by Claim 2. Suppose to the contrary
that oo(G) > t+—1 2, A 22, orw < 7 — 1. Now we have
n
n>w|——-—-w+t|] +A+1,
t+1
implying
w
— -1 —t)—A—t 2
(7o -1)nswe—n- B
The inequality (2) cannot achieve equality when o9(G) > jr—”l — 2, since we have n >
w (t+_1 —w+ t) + A+ t under the current assumptions. If w < ¢+ 1, then we have w < 2

because 2t < w < t+ 1 implies ¢ < 1, a contradiction to Claim 1. Thus we have w > t+1,
implying ;%5 — 1 > 0. Then by Claim 2, we have

(%_1)712(%—1) (WH+N)(E+1). (3)

Note that if A > 2 or w < 5 — 1, then the inequality (3) cannot achieve the equality. By

the assumption for the contrary, at least one of the inequalities (2) or (3) cannot achieve

the equality. Therefore, combining (2) and (3), we get

t+1

ww—1t)—A—t> (L— 1) (wW+A)(t+1),
which implies
wWw—wt—A—t > ww+A)—(wH+N(E+1)
= WHwA—wt—w— M=\
This gives (A — 1)t > (A — 1)w, leading to 0 < 0 or w < ¢, a contradiction. O
By Claim 5, Theorem 1(a) holds. In the rest of the proof, we show Theorem 1(b).
Recall that H consists of a single vertex, and this assumption will be used in the remainder

of the proof. Let
W*=WTUV(H).

Since u™ € L} for each u € W, Claim 4 implies that W* is an independent set in G.
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Claim 6. Every vertex in V(G)\ W* is adjacent in G to at least two vertices from W*.

Proof. Suppose to the contrary that there exists x € V(G) \ W* such that z is adjacent
in G to at most one vertex from W*. Let S = V(G)\ (W*U{x}). Then ¢(G—-S) > w+1.

However .
S n—w-—2 e —
S| _ 1+l <t

c(G-5) " w+l o

a contradiction. O

Claim 7. For every v € W+, we have deg,(v,C) =

to any two consecutive vertices on C.

Hil — 1 and v is not adjacent in G

Proof. Since 05(G) = ti—"l — 2, we have deg;(v,C) > 5 — 1 for every v € W*. As
W* is an independent set in G, vt & W*. By Claiin 6, v* is adjacent in G to another
vertex u from W*. If {u} = V(H), then C* = v~ Cvtuv™ is a Dy,i-cycle of G with v
being the only component of G — V(C*). Assume instead that u € WT. Let V(H) = {z}.

Then C* = vtuCv zu~Cvt is a Dy i-cycle of G with v being the only component of
G-V (C).

Again, since G has no D)-cycle and v is the only vertex of G outside V(C), it follows
that v is not adjacent in G to any two consecutive vertices on C*. Furthermore, we
must have degg(v, C*) = 75 — 1. As if degg(v,C*) > 5 — 1, then {v} U No(v)™ is an
independent set of G with more than ;75 vertices, a contradiction to Lemma 2.1. The
claim follows as degq (v, C') = deg (v, C*) and two neighbors of v that are consecutive on
C will also be consecutive on C* as v is not adjacent in G to any vertex from W*. [

Our goal is to show thathC(W+) = N¢(H). To do so, we investigate how vertices in
N (W) are located along C'. We start with some definitions. A chord of C' is an edge
wv with u,v € V(C) and wv ¢ E(C). Two chords uz and vy of C' that do not share any
endvertices are crossing if the four vertices u, z, v,y appear along C' in the order u, v, z,y
or u,y,x,v. For two distinct vertices z,y € No(W™), we say x and y form a crossing if
there exist distinct vertices u,v € W+ such that uz and vy are crossing chords of C.

Claim 8. For any two distinct x,y € No(W™T) with xy € E(C), it follows that x and y
do not form any crossing.

Proof. Suppose to the contrary that for some distinct x,y € No(W™) with zy € E(C),
the two vertices z and y form a crossing. Let u,v € W™ such that zu,yv € E(G).
Assume, WithOlit loss of generality, that the f(iur \;ertices u, v, x,y appear in the order
u,v,z,y along C. Let V(H) = {w}. Then uxCvyCu wv~Cu is a hamiltonian cycle of
(&, a contradiction to our assumption that G is not hamiltonian. O
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Claim 9. For any vertex v € W and any two distinct x,y € Nc(v), Cy contains a
vertex from W,

Proof. By Claim 7, xay has at least three vertices. Suppose to the contrary that xay
contains no vertex from W*. We furthermore choose x and y so that xC'y contains no
other vertex from Ng(v) \ {z,y}. Assume that the three vertices v,z,y appear in the
order v, z, y along E’ . By Claim 6, each internal vertex of xay is adjacent in G to a vertex
from W*. Then by our selection of z and y, we know that each internal vertex of xC'y is
adjacent in G to a vertex from W\ {v}. Applying Claim 8, % does not form a crossing
with z, and so 2 forms a crossing with y. Similarly, 2% does not form a crossing with
xt, an(i so forms a crossing with y. Continuing this argument for all the internal vertices
of z7TCy, we know that y~ forms a crossing with y, a contradiction to Claim 8. O

We assume that the w neighbors of the vertex from V(H) on C are vy, .. ., v, and they
appear in the same order along 5 For each ¢ € [1,w], let [; = V(viaviﬂ) \ {v;}, where

Vya1 i= Ug.

Claim 10. For every v € W, it holds that No(v) = W.

Proof. Since xCy contains a vertex from W for any two distinct 2,y € Ng(v) by
Claim 9, it follows that no I; can contain more than one vertex from Ng(v). Since
degs(v,C) = w = |WT| by Claim 7 and {Iy, ..., 1,} is a partition of V(C'), the Pigeon-
hole Principle implies that each I; contains exactly one vertex from Ng(v).

Assume to the contrary that Ngo(v) # W. Let i € [1,w] be the index such that
dista(v,vi) is largest and vv; € E(G). Note that the index ¢ exists since v~ € W and

vw~ € E(G). In particular, every vertex u € W N V(v Cv) is adjacent to v by the
choice of . Let z be the vertex in No(v) N I;_1. We prove the four subclaims below. Let
V(H) = {z} in the rest arguments.

Claim A: z = v, .

Proof of Claim A. Suppose otherwise that z # v; . Then by Claim 6, z* is adjacent in
G to at least two vertices from W*. By Claim 8, No(zt) N W C V(vfav). Thus
2t is adjacent in G to a vertex from W' N V(v;rav_) as z is the only neighbor of
v from I,_; in GG. By repeating this procedure for all the vertices from V(z**gv;)

[N

iteratively, we conclude that v; is adjacent in G to a vertex u € W NV (v;;Cv™). As
viv; € E(G) and vv; € E(C), Claim 7 implies that v;" is not adjacent in G to v; . Thus
we lLave ug&' {v;:, v}. However, since u~v € E(G) by our choice of the index i, the cycle
xv~Cuv; Cvu~ Cvzx is longer than C, a contradiction. Thus z must be v; . O

Claim B: v, ; =v~.
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Proof of Claim B. Suppose that v, # v~. Considering v;, in the place of v and apply-
ing Claim A to it, v}, must be adjacent to v; or v; (if v/ v; & E(G), then i is the index
such that dist—~ ( ,+1>Uz) is largest and v/ v; & E(G)). If v ,v; € E(G), then the cycle

v C’vzﬂv C’UUHIC’UZ:U is longer than C', a contradiction. Thus we have v} L € BE(G).
We consider the vertex v™. Since W~ is independent in G and v is adjacent to v; € W™,
we have v ¢ W~. Thus v" & W. Then by Claim 6, v is adjacent in G to a vertex
u € W\ {v}. However, the cycle

xviavvi’auv+8’u’x if ue V(v+8’vi+_1),
xvivalavvi_g’fvfaviﬂx if u=uv,
xv’g’qurav;vu’EUix if ue V(v;ﬁrlav_),

is longer than C', a contradiction. O

Claim C: w >4

Proof of Claim C. By Claim 1, we have w > 2. Suppose that w € [2,3]. First, suppose

= 2. Since v € WT is adjacent to a vertex in W~ and W is independent in G,
we have W= \ W' = ). Also a vertex v € W~ \ W is adjacent to all vertices in
W+ by Claim 6. Then u™ € W and so vt € W is adjacent to u™ and u, contrary
to Claim 7. Next, suppose w = 3. We let, without loss of generality, v = v;. Then
Claim B implies v} v; € F(G). Note that since W+ is independent in G, vy must not

be vy. We also have v v, € E(G ), as otherwise v;v; Cv3 U] Cvngngl is a cycle longer
than C. Appl}ﬁng Claim A to vy, we get vyv; € E(G). Similarly, vivy ¢ FE(G), a

otherwise v3 v,Cv7v3CV5v; Cvg is a cycle longer than C. Applying Claim A to vy, we
get viv, € E(G). Then as the degrees of all vertices from W+ are of degree 3 in G,
Claims 3, 6, and 7 imply that the graph G is isomorphic to the Petersen graph. However,
3 =w = +1 — 1 implies that G is ——tough contradicting that the toughness of the
Petersen graph is at most 2 3 (in the Petersen graph, deleting two independent vertices
from one 5-cycle and another two independent vertices that are non-neighbors of the first
two deleted vertices from the second disjoint 5-cycle gives three components). Thus we
have w > 4. O

Claim D: For every j € [1,w], |I;| # 3.

Proof of Claim D. Suppose that |I;| = 3 for some j € [1, w] Then we have v+vj+1 €
E(C), which implies No(v)") # W. Applying Clalm A to vf, we get vj vy, € E(G). By
symmetry of the orlentatlon of C we have v, v, € E(G). Also we have w>=4 by Claim

C, which implies v;_; € V(UjJrQCUj’). Then the cycle zv;_ 1CU v 1C’v]+2v]+1Cv]+2x is
longer than C, a contradiction. O
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We now show a contradiction. The vertex v™ must not be in W since vv; € E(G) by
Claim A and W~ is independent in G. Thus v is adjacent in G to a vertex u € W\ {v} by

Claim 6. If u # v}, then the cycle zv;Cvv; CuvtCu~x is longer than C, a contradiction.

Thus we have u = v;". We consider the cycle C* = vTCv;zv~Cuv v in G. Note that
we have V(C*) = V(G) \ {v}. Then since the length of C* is equal to the length of C/,
we can apply Claim D to C*. However, v™,x,v;,v; are four consecutive vertices on C*
appearing in the order v, x, v;,v; and v™,v; € Ne=(v), showing that C* does not satisfy
Claim D, a contradiction. This completes the proof of Claim 10. U
Claim 10 implies that No(W*) = W. Thus every vertex from W* is adjacent in G

(W]

to every vertex from W. Therefore t < 7(G) < e as W* is an independent set in G.

Consequently, [W| > t[W*| = £ and so W = V(G) \ W* by noticing |[W*| = 5. Thus
(G contains a spanning complete bipartite graph between W* and W. On the other hand,
since [WF| = |W| =25 —1and V(G)=W"UW = (WHrUV(H))UW, we know that
2(% —1)+1 =nandsot= 2= Thus [W|= 23 and [W*| = %51 41 = 21, Therefore,
G € H. The proof of Theorem 1 is now complete. O
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