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Abstract We consider the problem of complex root classification, i.e., finding the conditions on the coefficients

of a univariate polynomial for all possible multiplicity structures on its complex roots. It is well known that

such conditions can be written as conjunctions of several polynomial equations and one inequation in the

coefficients. Those polynomials in the coefficients are called discriminants for multiplicities. It is also known

that discriminants can be obtained by using repeated parametric gcd’s. The resulting discriminants are usually

nested determinants, that is, determinants of matrices whose entries are determinants, and so on. In this paper,

we give a new type of discriminants which are not based on repeated gcd’s. The new discriminants are simpler

in the sense that they are non-nested determinants and have smaller maximum degrees.
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1 Introduction

In this paper, we consider the problem of complex root classification, i.e., finding the conditions on the
coefficients of a polynomial over the complex field C for every potential multiplicity structure its complex
roots may have. For example, consider a quintic polynomial F = a5x5 + a4x4 + a3x3 + a2x2 + a1x+ a0
where ai’s take values over C. We would like to find conditions C0, C1, . . . , C6 on a = (a0, . . . , a5) such
that

multiplicity structure of F =





























(1, 1, 1, 1, 1) , if C0 (a) holds;

(2, 1, 1, 1), if C1 (a) holds;

(2, 2, 1), if C2 (a) holds;

(3, 1, 1), if C3 (a) holds;

(3, 2), if C4 (a) holds;

(4, 1) , if C5 (a) holds;

(5) , if C6 (a) holds.
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*Corresponding author

http://arxiv.org/abs/2301.00315v3
http://crossmark.crossref.org/dialog/?doi=&domain=pdf
math.scichina.com
link.springer.com


2 Hoon Hong et al. Sci China Math

In general, the problem is stated as follows:

Problem: For every µ = (µ1, . . . , µm) such that µ1 ! . . . ! µm > 0 and µ1 + · · · + µm = n, find a
condition on the coefficients of a polynomial Fover C of degree n such that the multiplicity structure of
F is µ.

The problem is important because many tasks in mathematics, science and engineering can be reduced
to the problem. Due to its importance, the problem and several related problems have been already
carefully studied [5, 7–10,13].

The problem can be viewed as a generalization of the well known problem of finding a condition
on coefficients such that the polynomial has the given number of distinct roots. This subproblem has
been extensively studied. For instance, the subdiscriminant theory provides a complete solution to the
subproblem: a univariate polynomial of degree n hasm distinct roots if and only if its 0-th, . . ., (n−m−1)-
th psd’s (i.e., principal subdiscriminant coefficient) vanish and the (n−m)-th psd does not. For details,
see standard textbooks on computational algebra (e.g., [1]).

In [13], Yang, Hou and Zeng gave an algorithm to generate conditions for discriminating different
multiplicity structures of a univariate polynomial (referred as YHZ’s condition hereinafter) by making
use of repeated gcd computation for parametric polynomials [3,4,11]. It is based on a similar idea adopted
by Gonzalez-Vega et al. [5] for solving the real root classification and quantifier elimination problems by
using Sturm-Habicht sequences. The conditions produced by these methods are conjunctions of several
polynomial equations and one inequation on the coefficients. Those polynomials in the coefficients are
called discriminants for multiplicities. The maximum degree of the discriminants grows exponentially in
the degree of F . Furthermore, each discriminant is a “nested” determinant, that is, it is a determinant
of a matrix whose entries are again determinants and so on.

In [7], the authors developed a new type of multiplicity discriminants to distinguish different
multiplicities when the number of distinct roots is fixed. The main idea is to convert the multiplicity
condition expressed as a permanent inequation in roots into a sum of determinants in coefficients. In
order to generate conditions for all the possible multiplicity structures of a univariate polynomial, one
may first use subdiscriminants in classical resultant theory to decide the number of distinct complex roots
and then add one more inequation to discriminate different multiplicity structures with the same number
of distinct roots. In the new condition, the maximum degree of the discriminants grows linearly in the
degree of F , which makes the size of discriminants significantly smaller. However, the form of resulting
discriminants is a sum of many determinants, which makes the further analysis (reasoning) difficult.

The main contribution in this paper is to provide a new type of discriminants, which are non-nested
determinants and whose maximum degrees are smaller than those in the previous methods. The method
is based on a significantly different theory and techniques from the previous methods (which are essentially
based on repeated parametric gcd or subdiscriminant theory). The new condition is given by a newly
devised multiplicity discriminant in coefficients for every potential multiplicity vector of a given degree,
which can be viewed as a generalization of subdiscriminant theory to higher order derivatives. To build
up the connection between the new discriminants and multiple roots, we first convert it into the ratio of
two determinants in terms of generic roots (without considering the multiplicities). Then by making use
of the connection between divided difference with multiple nodes and the derivatives of higher orders at
the nodes, we integrate the multiplicity information into the expression and convert it into an expression
in terms of multiple roots. After careful manipulation, it is shown that the new discriminant can capture
the multiplicity information.

The paper is structured as follows. In Section 2, we first present the problem to be solved in a formal
way. In Section 3, we give a precise statement of the main result of the paper (Theorem 3.5). Then
a proof of Theorem 3.5 is provided in Section 4. The proof is long thus we divide the proof into three
subsections which are interesting on their own. In Section 5, we compare the form and size of polynomials
in the multiplicity-discriminant condition in Theorem 3.5 and those given by previous works.
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2 Problem

Definition 2.1 (Multiplicity vector). Let F ∈ C [x] with m distinct complex roots, say r1, . . . , rm, with
multiplicities µ1, . . . , µm respectively. Without losing generality, we assume that µ1 ! · · · ! µm > 0.
Then the multiplicity vector of F , written as mult (F ), is defined by

mult (F ) = (µ1, . . . , µm) .

Example 2.2. Let F = x5− 5x4+7x3+x2− 8x+4. Then mult (F ) = (2, 2, 1), since it can be verified
that F = (x− 1)2 (x+ 1)1 (x− 2)2. Note that the multiplicity vector is a partition of 5, which is the
degree of F .

Definition 2.3 (Potential multiplicity vectors). Let n be a positive integer. Let M(n) stand for the
set of all the potential multiplicity vectors of polynomials of degree n, equivalently, the set of all partitions
of n, that is,

M(n) = {(µ1, . . . , µm) : µ1 + · · ·+ µm = n, µ1 ! · · · ! µm > 0} .

Example 2.4. M (5) = { (1, 1, 1, 1, 1) , (2, 1, 1, 1) , (2, 2, 1) , (3, 1, 1) , (3, 2) , (4, 1) , (5) }.

Problem 2.5 (Parametric multiplicity problem). The parametric multiplicity problem is stated as:

In : n, a positive integer standing for the polynomial of degree n with parametric coefficients a, that is,

F =
n
∑

i=0

aix
i where an #= 0.

Out: For each µ ∈ M(n), find a condition Cµ on a such that mult (F ) = µ.

3 Main Result

Definition 3.1 (Determinant polynomial). Consider a vector of univariate polynomials

P =







P0

...

Pk






∈ C[x]k+1

where degPi " k and Pi =
∑

0!j!k aijx
j . The coefficient matrix of P, written as C (P ) , is defined by

C (P ) = coef (P ) =







coef (P0)
...

coef (Pk)






=







a0k · · · a00
...

...

akk · · · ak0






.

The determinant polynomial of P, written as dp (P ) , is defined by

dp (P ) = |C (P ) |.

Definition 3.2 (Multiplicity Discriminant). Let F =
∑n

i=0 aix
i where an #= 0. Let γ = (γ1, . . . , γs) ∈
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M (n). The the γ-discriminant of F , written as D (γ) , is defined by

D (γ) =
1

an
dp




























F (0)xγ0−1

...

F (0)x0

F (1)xγ1−1

...

F (1)x0

...

F (s)xγs−1

...

F (s)x0




























where γ0 is the smallest so that the above matrix is square and F (i) is the i-th derivative of F in terms
of x. It is straightforward to show that γ0 = γ1 − 1.

Example 3.3. Let n = 5 and F =
∑n

i=0 aix
i and an #= 0. Then

D (5) = dp






















F (0)x3

F (0)x2

F (0)x1

F (0)x0

F (1)x4

F (1)x3

F (1)x2

F (1)x1

F (1)x0






















=
1

a5

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a5 a4 a3 a2 a1 a0

a5 a4 a3 a2 a1 a0

a5 a4 a3 a2 a1 a0

a5 a4 a3 a2 a1 a0

5a5 4a4 3a3 2a2 1a1

5a5 4a4 3a3 2a2 1a1

5a5 4a4 3a3 2a2 1a1

5a5 4a4 3a3 2a2 1a1

5a5 4a4 3a3 2a2 1a1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

D (4, 1) = dp




















F (0)x2

F (0)x1

F (0)x0

F (1)x3

F (1)x2

F (1)x1

F (1)x0

F (2)x0




















=
1

a5

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a5 a4 a3 a2 a1 a0

a5 a4 a3 a2 a1 a0

a5 a4 a3 a2 a1 a0

5a5 4a4 3a3 2a2 1a1

5a5 4a4 3a3 2a2 1a1

5a5 4a4 3a3 2a2 1a1

5a5 4a4 3a3 2a2 1a1

5 · 4a5 4 · 3a4 3 · 2a3 2 · 1a2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

D (3, 2) = dp

















F (0)x1

F (0)x0

F (1)x2

F (1)x1

F (1)x0

F (2)x1

F (2)x0

















=
1

a5

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a5 a4 a3 a2 a1 a0

a5 a4 a3 a2 a1 a0

5a5 4a4 3a3 2a2 1a1

5a5 4a4 3a3 2a2 1a1

5a5 4a4 3a3 2a2 1a1

5 · 4a5 4 · 3a4 3 · 2a3 2 · 1a2

5 · 4a5 4 · 3a4 3 · 2a3 2 · 1a2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,
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D (3, 1, 1) = dp

















F (0)x1

F (0)x0

F (1)x2

F (1)x1

F (1)x0

F (2)x0

F (3)x0

















=
1

a5

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a5 a4 a3 a2 a1 a0

a5 a4 a3 a2 a1 a0

5a5 4a4 3a3 2a2 1a1

5a5 4a4 3a3 2a2 1a1

5a5 4a4 3a3 2a2 1a1

5 · 4a5 4 · 3a4 3 · 2a3 2 · 1a2

5 · 4 · 3a5 4 · 3 · 2a4 3 · 2 · 1a3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

D (2, 2, 1) = dp















F (0)x0

F (1)x1

F (1)x0

F (2)x1

F (2)x0

F (3)x0















=
1

a5

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a5 a4 a3 a2 a1 a0

5a5 4a4 3a3 2a2 1a1

5a5 4a4 3a3 2a2 1a1

5 · 4a5 4 · 3a4 3 · 2a3 2 · 1a2

5 · 4a5 4 · 3a4 3 · 2a3 2 · 1a2

5 · 4 · 3a5 4 · 3 · 2a4 3 · 2 · 1a3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

D (2, 1, 1, 1) = dp















F (0)x0

F (1)x1

F (1)x0

F (2)x0

F (3)x0

F (4)x0















=
1

a5

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a5 a4 a3 a2 a1 a0

5a5 4a4 3a3 2a2 1a1

5a5 4a4 3a3 2a2 1a1

5 · 4a5 4 · 3a4 3 · 2a3 2 · 1a2

5 · 4 · 3a5 4 · 3 · 2a4 3 · 2 · 1a3

5 · 4 · 3 · 2a5 4 · 3 · 2 · 1a4

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

D (1, 1, 1, 1, 1) = dp












F (1)x0

F (2)x0

F (3)x0

F (4)x0

F (5)x0












=
1

a5

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

5a5 4a4 3a3 2a2 1a1

5 · 4a5 4 · 3a4 3 · 2a3 2 · 1a2

5 · 4 · 3a5 4 · 3 · 2a4 3 · 2 · 1a3

5 · 4 · 3 · 2a5 4 · 3 · 2 · 1a4

5 · 4 · 3 · 2 · 1a5

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Note that the last one D (1, 1, 1, 1, 1) = 5544332211a45. Since a5 #= 0, we see that D (1, 1, 1, 1, 1) #= 0.

To present the main theorem, we recall the following definition for the conjugate of µ ∈ M(n).

Definition 3.4 (Conjugate). Let µ = (µ1, . . . , µm) ∈ M(n). Then the conjugate µ = (µ1, . . . , µs) of
µ is defined by

s = max
1!i!m

µi = µ1,

µi = # {µj : µj ! i} for i = 1, . . . , s.

Theorem 3.5 (Main Result). Let F =
∑n

i=0 aix
i where an #= 0. Let M(n) = {µ0,µ1, . . . ,µp} where

the entries are ordered in the lexicographically decreasing order in their conjugates µi’s. Then we have
the following conditions for the multiplicity vectors.

mult(F ) =

















µ0, if D (µ0) #= 0;
...

...
...

µp−1, else if D (µp−1) #= 0;

µp, else if D (µp) #= 0.

Equivalently,

mult(F ) = µi ⇐⇒ D (µ0) = · · · = D (µi−1) = 0 ∧D (µi) #= 0.
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Example 3.6. We have the following condition for each multiplicity vector for degree 5.

mult(F ) =




























(1, 1, 1, 1, 1) , if D (5) #= 0;

(2, 1, 1, 1), else if D (4, 1) #= 0;

(2, 2, 1), else if D (3, 2) #= 0;

(3, 1, 1), else if D (3, 1, 1) #= 0;

(3, 2), else if D (2, 2, 1) #= 0;

(4, 1) , else if D (2, 1, 1, 1) #= 0;

(5) , else if D (1, 1, 1, 1, 1) #= 0.

Equivalently, for instance,

mult(F ) = (2, 2, 1) ⇐⇒ D (5) = D (4, 1) = 0 ∧D (3, 2) #= 0.

Remark 3.7. Note that µp = (1, . . . , 1) and

D (µp) =
1

an

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

nan · · · · · · 1a1

n (n− 1)an · · · 2 · 1a2
. . .

...

n (n− 1) · · · 1an

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
n
∏

i=1

ii · an−1
n #= 0.

Hence the last condition is always satisfied and there is no need to check the condition.

4 Proof of the Main Theorem

Here is a high level view of the proof. We start with converting D (µ) into the equivalent symmetric
polynomials in generic roots (though displayed as a ratio of two determinants) which is easier to embed
the multiplicity information. Then by making use of the connection between divided difference with
multiple nodes and the derivatives of higher orders at the nodes, we convert the expression in generic
roots to that in distinct roots with multiplicity information integrated. The theorem will be proved by
eliminating the entries in the determinantal expression obtained from the second stage which may vanish
under the given multiplicity structure.

4.1 Multiplicity discriminant in terms of roots

We first understand what the multiplicity discriminants look like in terms of roots. .

Notation 4.1. V (α1, . . . ,αn) :=

∣
∣
∣
∣
∣
∣
∣
∣

αn−1
1 · · · αn−1

n

...
...

α0
1 · · · α0

n

∣
∣
∣
∣
∣
∣
∣
∣

.

Lemma 4.2 (Multiplicity discriminant in generic roots). Let F = an(x − α1) · · · (x − αn) and γ =
(γ1, . . . , γs) ∈ M(n). Then

D(γ) =

aγ1−2
n ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

F (1)(α1)α
γ1−1
1 · · · F (1)(αn)αγ1−1

n

...
...

F (1)(α1)α0
1 · · · F (1)(αn)α0

n

...
...

F (s)(α1)α
γs−1
1 · · · F (s)(αn)αγs−1

n
...

...

F (s)(α1)α0
1 · · · F (s)(αn)α0

n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

V (α1, . . . ,αn)
. (4.1)
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Proof.

1. Since γ1 ! · · · ! γs and γ0 = γ1 − 1, we have

deg(F (0)xn−2) > · · · > deg(F (0)xγ1−1) > max(deg(F (0)xγ0−1), deg(F (1)xγ1−1), . . . , deg(F (s)xγs−1)).

Thus

D(γ) =
1

an
dp




























F (0)xγ1−2

...

F (0)x0

F (1)xγ1−1

...

F (1)x0

...

F (s)xγs−1

...

F (s)x0




























=
1

an
· aγ1−n

n dp




































F (0)xn−2

...

F (0)xγ1−1

F (0)xγ1−2

...

F (0)x0

F (1)xγ1−1

...

F (1)x0

...

F (s)xγs−1

...

F (s)x0




































= aγ1−n−1
n dp




























F (0)xn−2

...

F (0)x0

F (1)xγ1−1

...

F (1)x0

...

F (s)xγs−1

...

F (s)x0




























.

2. Now we recall the following result from [7] which is the key for proving the lemma. Let G1, . . . , Gn ∈
C [x]2n−2 where C [x]2n−2 consists of all the polynomials in x with degree no greater than 2n− 2.
Then

dp
















F (0)xn−2

...

F (0)x0

G1

...

Gn
















=

an−1
n ·

∣
∣
∣
∣
∣
∣
∣
∣

G1(α1) · · · G1(αn)
...

...

Gn(α1) · · · Gn (αn)

∣
∣
∣
∣
∣
∣
∣
∣

V (α1, . . . ,αn)
. (4.2)

3. After specializing G1, . . . , Gn in (4.2) with F (1)xγ1−1, . . . , F (1)x0, . . . , F (s)xγs−1, . . . , F (s)x0, respec-
tively, we have

D(γ) = aγ1−n−1
n ·

an−1
n ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(

F (1)xγ1−1
)

(α1) · · ·
(

F (1)xγ1−1
)

(αn)
...

...
(

F (1)x0
)

(α1) · · ·
(

F (1)x0
)

(αn)
...

...
(

F (s)xγs−1
)

(α1) · · ·
(

F (s)xγs−1
)

(αn)
...

...
(

F (s)x0
)

(α1) · · ·
(

F (s)x0
)

(αn)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

V (α1, . . . ,αn)

which can be easily simplified into (4.1).
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Remark 4.3. It is very important to note that the right hand side is a polynomial function in
α1, . . . ,αn, even though written as a rational function, since the numerator is exactly divisible by the
denominator. Hence the above definition should be read as follows:

1. Treating α1, . . . ,αn as distinct indeterminates, carry out the exact division obtaining a polynomial.

2. Treating α1, . . . ,αn as numbers, evaluate the resulting polynomial.

Lemma 4.4 (Multiplicity discriminant in multiple roots). Let F be of degree n with m distinct roots
r1, . . . , rm, of multiplicities µ1, . . . , µm, that is µ1 + · · ·+ µm = n. Let γ = (γ1, . . . , γs) ∈ Γ(n). Then we
have

D(γ) =

c ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(F (1)xγ1−1)(0)(r1) · · · (F (1)xγ1−1)(µ1−1)(r1) · · · · · · (F (1)xγ1−1)(0)(rm) · · · (F (1)xγ1−1)(µm−1)(rm)
...

...
...

...

(F (1)x0)(0)(r1) · · · (F (1)x0)(µ1−1)(r1) · · · · · · (F (1)x0)(0)(rm) · · · (F (1)x0)(µm−1)(rm)
...

...
...

...

(F (s)xγs−1)(0)(r1) · · · (F (s)xγs−1)(µ1−1)(r1) · · · · · · (F (s)xγs−1)(0)(rm) · · · (F (s)xγs−1)(µm−1)(rm)
...

...
...

...

(F (s)x0)(0)(r1) · · · (F (s)x0)(µ1−1)(r1) · · · · · · (F (s)x0)(0)(rm) · · · (F (s)x0)(µm−1)(rm)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∏

1!i<j!m
(ri − rj)µiµj

(4.3)

where c = ±1
/(

∏m
i=1

∏µi−1
j=0 j!

)

· aγ1−2
n .

Proof.

1. Let F = an(x−α1) · · · (x−αn). When α1, . . . ,αn are treated as numbers, without loss of generality,
we may assume that α1, . . . ,αn are grouped into m sets as follows:

S1 := {α1 · · · · · · · · · · · · αµ1},

S2 := {αµ1+1 · · · · · · · · · αµ1+µ2},
...

Sm := {αµ1+···+µm−1+1 · · · αµ1+···+µm−1+µm}.

where elements in Si are all equal to ri.

2. Recall that

D(γ) = aγ1−2
n ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(F (1)xγ1−1)(α1) · · · (F (1)xγ1−1)(αn)
...

...

(F (1)x0)(α1) · · · (F (1)x0)(αn)
...

...
...

...

(F (s)xγs−1)(α1) · · · (F (s)xγs−1)(αn)
...

...

(F (s)x0)(α1) · · · (F (s)x0)(αn)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

/

V (α1, . . . ,αn).

Next we will treat α1, . . . ,αn as indeterminates and carry out the exact division so that difference
between the collapsed αi’s do not appear in the denominator.
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3. For the sake of simplicity, we use the follow shorthand notion:

F :=
[

F (1)xγ1−1, . . . , F (1)x0, . . . , F (s)xγs−1, . . . , F (s)x0
]T

.

4. Let P [x1, . . . , xi] denote the (i−1)th divided difference of P ∈ C[x] at x1, . . . , xi defined recursively
as follows:

P [x1, . . . , xi] =









P (x1), if i = 1;

P [x1, . . . , xi−2, xi]− P [x1, . . . , xi−2, xi−1]

xi − xi−1
, if i > 1.

Let

F [α1, . . . ,αi] :=
[

(F (1)xγ1−1)[α1, . . . ,αi], . . . , (F
(1)x0)[α1, . . . ,αi],

. . . . . . , (F (s)xγs−1)[α1, . . . ,αi], . . . , (F
(s)x0)[α1, . . . ,αi]

]T
.

5. It follows that

D(γ) = aγ1−2
n ·

∣
∣
∣F (α1) · · · F (αn)

∣
∣
∣

V (α1, . . . ,αn)

= aγ1−2
n ·

∣
∣
∣F [α1] · · · F [αµ1 ] F [αµ1+1] · · · F [αn]

∣
∣
∣

∏

αi,αj∈S1

j−i>0

(αi − αj)
∏

αi,αj /∈S1
j−i>0

(αi − αj)
∏

αi∈S1
αj /∈S1

(αi − αj)

= ±aγ1−2
n ·

∣
∣
∣F [α1] F [α1,α2] · · · F [αµ1−1,αµ1 ] F [αµ1+1] · · · F [αn]

∣
∣
∣

∏

αi,αj∈S1
j−i>1

(αi − αj)
∏

αi,αj /∈S1
j−i>0

(αi − αj)
∏

αi∈S1
αj /∈S1

(αi − αj)

= ±aγ1−2
n ·

∣
∣
∣F [α1] F [α1,α2] F [α1,α2,α3] · · · F [αµ1−2,αµ1−1,αµ1 ] F [αµ1+1] · · · F [αn]

∣
∣
∣

∏

αi,αj∈S1
j−i>2

(αi − αj)
∏

αi,αj /∈S1
j−i>0

(αi − αj)
∏

αi∈S1
αj /∈S1

(αi − αj)

...

= ±aγ1−2
n ·

∣
∣
∣F [α1] F [α1,α2] · · · F [α1, . . . ,αµ1 ] F (αµ1+1) · · · F (αn)

∣
∣
∣

∏

αi,αj /∈S1

j−i>0

(αi − αj)
∏

αi∈S1
αj /∈S1

(αi − αj)
.

6. Repeating the procedure for αj ’s in each Si for i = 2, . . . ,m successively, we get

D(γ) = ±aγ1−2
n ·

∣
∣
∣F [α1] · · · F [α1, . . . ,αµ1 ] · · · · · · F [αµ1+···+µm−1+1] · · · F [αµ1+···+µm−1+1, . . . ,αn]

∣
∣
∣

∏

1!i<j!m

∏

αp∈Si

αq∈Sj

(αp − αq)
.

7. Now we substitute α1 = · · · = αµ1 = r1, . . . , αµ1+···+µm−1+1 = · · · = αn = rm into D(γ) and obtain

D(γ) = ±aγ1−2
n ·

∣
∣
∣F [r1] · · · F [r1, . . . , r1] · · · · · · F [rm] · · · F [rm, . . . , rm]

∣
∣
∣

∏

1!i<j!m
(ri − rj)µiµj

. (4.4)
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8. By [12, Equation (2.1.5.7a)], for any given polynomial P ∈ C[x],

P [ri, . . . , ri
︸ ︷︷ ︸

k ri’s

] =
P (k−1)(ri)

(k − 1)!
.

Hence

F [ri, . . . , ri
︸ ︷︷ ︸

k ri’s

] =

[
(F (1)xγ1−1)(k−1)(ri)

(k − 1)!
, . . . ,

(F (1)x0)(k−1)(ri)

(k − 1)!
, . . . ,

(F (s)xγs−1)(k−1)(ri)

(k − 1)!
, . . . ,

(F (s)x0)(k−1)(ri)

(k − 1)!

]T

.

(4.5)

9. Substituting (4.5) into (4.4) , we have

D(γ) = ±aγ1−2
n ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(F (1)xγ1−1)(0)(r1)
0! · · · (F (1)xγ1−1)(µ1−1)(r1)

(µ1−1)! · · · · · · (F (1)xγ1−1)(0)(rm)
0! · · · (F (1)xγ1−1)(µm−1)(rm)

(µm−1)!
...

...
...

...
(F (1)x0)(0)(r1)

0! · · · (F (1)x0)(µ1−1)(r1)
(µ1−1)! · · · · · · (F (1)x0)(0)(rm)

0! · · · (F (1)x0)(µm−1)(rm)
(µm−1)!

...
...

...
...

(F (s)xγs−1)(0)(r1)
0! · · · (F (s)xγs−1)(µ1−1)(r1)

(µ1−1)! · · · · · · (F (s)xγs−1)(0)(rm)
0! · · · (F (s)xγs−1)(µm−1)(rm)

(µm−1)!
...

...
...

...
(F (s)x0)(0)(r1)

0! · · · (F (s)x0)(µ1−1)(r1)
(µ1−1)! · · · · · · (F (s)x0)(0)(rm)

0! · · · (F (s)x0)(µm−1)(rm)
(µm−1)!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∏

1!i<j!m
(ri − rj)µiµj

=

c ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(F (1)xγ1−1)(0)(r1) · · · (F (1)xγ1−1)(µ1−1)(r1) · · · · · · (F (1)xγ1−1)(0)(rm) · · · (F (1)xγ1−1)(µm−1)(rm)
...

...
...

...

(F (1)x0)(0)(r1) · · · (F (1)x0)(µ1−1)(r1) · · · · · · (F (1)x0)(0)(rm) · · · (F (1)x0)(µm−1)(rm)
...

...
...

...

(F (s)xγs−1)(0)(r1) · · · (F (s)xγs−1)(µ1−1)(r1) · · · · · · (F (s)xγs−1)(0)(rm) · · · (F (s)xγs−1)(µm−1)(rm)
...

...
...

...

(F (s)x0)(0)(r1) · · · (F (s)x0)(µ1−1)(r1) · · · · · · (F (s)x0)(0)(rm) · · · (F (s)x0)(µm−1)(rm)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∏

1!i<j!m
(ri − rj)µiµj

where c = ±1
/(

∏m
i=1

∏µi−1
j=0 j!

)

· aγ1−2
n .

4.2 Connection between the multiplicity discriminants and multiplicity vectors

By decompiling Theorem 3.5, we identify the two essential ingredients therein, which are re-stated as
Lemmas 4.6 and 4.7 below. From now on, we will use γ to denote the conjugate of γ ∈ M(n). To prove
the lemmas, we recall the following well known fact [2] which depicts the connection between γ and its
conjugate.

Lemma 4.5. Let γ ∈ M(n). Then γ = γ. Moreover, if γ and µ are conjugates to each other, then
#{µj : µj ! i} = γi and #{λj : λj ! i} = µi.

Lemma 4.6. Let mult(F ) = µ. Then D(µ̄) #= 0.

Proof. In order to convey the main underlying ideas effectively, we will show the proof for a particular
case first. After that, we will generalize the ideas to arbitrary cases.

Particular case: Consider the case n = 5 and mult(F ) = µ = (3, 2).
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1. Assume that r1 and r2 are the two distinct roots with multiplicities 3 and 2, respectively. In other
words, F = a5(x− r1)3(x− r2)2.

2. Let γ = µ̄. Then

γ1 = #{µj : µj ! 1} = 2, γ2 = #{µj : µj ! 2} = 2, γ3 = #{µj : µj ! 3} = 1.

Thus γ = (2, 2, 1).

3. By Lemma 4.4,

D(γ) =

c ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(F (1)x1)(0)(r1) (F (1)x1)(1)(r1) (F (1)x1)(2)(r1) (F (1)x1)(0)(r2) (F (1)x1)(1)(r2)

(F (1)x0)(0)(r1) (F (1)x0)(1)(r1) (F (1)x0)(2)(r1) (F (1)x0)(0)(r2) (F (1)x0)(1)(r2)

(F (2)x1)(0)(r1) (F (2)x1)(1)(r1) (F (2)x1)(2)(r1) (F (2)x1)(0)(r2) (F (2)x1)(1)(r2)

(F (2)x0)(0)(r1) (F (2)x0)(1)(r1) (F (2)x0)(2)(r1) (F (2)x0)(0)(r2) (F (2)x0)(1)(r2)

(F (3)x0)(0)(r1) (F (3)x0)(1)(r1) (F (3)x0)(2)(r1) (F (3)x0)(0)(r2) (F (3)x0)(1)(r2)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(r1 − r2)6

where
c = ±1

/

[(0! · 1! · 2!) · (0! · 1!)] · a05 = ±1/2.

4. Since

F (i)(r1)

{

= 0, for i = 0, 1, 2;

#= 0, for i = 3;
F (i)(r2)

{

= 0, for i = 0, 1;

#= 0, for i = 2,
(4.6)

by the Leibniz’s rule for derivatives, we immediately know

(F (1)x1)(0)(r1) = 0, (F (1)x1)(1)(r1) = 0, (F (1)x1)(2)(r1) = F (3)(r1)r
1
1, (F (1)x1)(0)(r2) = 0, (F (1)x1)(1)(r2) = F (2)(r2)r

1
2,

(F (1)x0)(0)(r1) = 0, (F (1)x0)(1)(r1) = 0, (F (1)x0)(2)(r1) = F (3)(r1)r
0
1, (F (1)x0)(0)(r2) = 0, (F (1)x0)(1)(r2) = F (2)(r2)r

0
2,

(F (2)x1)(0)(r1) = 0, (F (2)x1)(1)(r1) = F (3)(r1)r
1
1, (F (2)x1)(0)(r2) = F (2)(r2)r

1
2,

(F (2)x0)(0)(r1) = 0, (F (2)x0)(1)(r1) = F (3)(r1)r
0
1, (F (2)x0)(0)(r2) = F (2)(r2)r

0
2,

(F (3)x0)(0)(r1) = F (3)(r1)r01 .

5. Therefore,

D(γ) =

c ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 0 F (3)(r1)r11 0 F (2)(r2)r12

0 0 F (3)(r1)r01 0 F (2)(r2)r02

0 F (3)(r1)r11 · F (2)(r2)r12 ·

0 F (3)(r1)r01 · F (2)(r2)r02 ·

F (3)(r1)r01 · · · ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(r1 − r2)6
.

6. By rearranging the columns of the determinant in the numerator, we have

D(γ) = ±

c ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

F (3)(r1)r11 F (2)(r2)r12

F (3)(r1)r01 F (2)(r2)r02

F (3)(r1)r11 F (2)(r2)r12 · ·

F (3)(r1)r01 F (2)(r2)r02 · ·

F (3)(r1)r01 · · · ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(r1 − r2)6
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= ±

c ·

∣
∣
∣
∣
∣
∣
∣
∣

M1

M2 ·

M3 · ·

∣
∣
∣
∣
∣
∣
∣
∣

(r1 − r2)6

where

M1 =

[

F (3)(r1)r11 F (2)(r2)r12

F (3)(r1)r01 F (2)(r2)r02

]

, M2 =

[

F (3)(r1)r11 F (2)(r2)r12

F (3)(r1)r01 F (2)(r2)r02

]

, M3 =
[

F (3)(r1)r
0
1

]

.

7. Obviously,

D(γ) = ±
c · |M1| · |M2| · |M3|

(r1 − r2)6
.

We only need to show that Mi #= 0 for i = 1, 2, 3. The claim follows from the following observations:

|M1| = F (3)(r1)F
(2)(r2)V (r1, r2) #= 0,

|M2| = F (3)(r1)F
(2)(r2)V (r1, r2) #= 0,

|M3| = F (3)(r1)V (r1) #= 0.

The proof is completed.

Arbitrary case. Now we generalize the above ideas to arbitrary cases.

1. Let µ = (µ1, . . . , µm). Assume that r1, . . . , rm are them distinct roots with multiplicities µ1, . . . , µm

respectively. In other words, F = an(x− r1)µ1 · · · (x− rm)µm .

2. Let γ = µ̄ = (γ1, . . . , γs), i.e., γi = #{µj : µj ! i}. Note that γ1 = m and s = µ1 since
µ1 ! · · · ! µm ! 1.

3. Recall that

D(γ) =

c ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(F (1)xγ1−1)(0)(r1) · · · (F (1)xγ1−1)(µ1−1)(r1) · · · · · · (F (1)xγ1−1)(0)(rm) · · · (F (1)xγ1−1)(µm−1)(rm)
...

...
...

...

(F (1)x0)(0)(r1) · · · (F (1)x0)(µ1−1)(r1) · · · · · · (F (1)x0)(0)(rm) · · · (F (1)x0)(µm−1)(rm)
...

...
...

...

(F (µ1)xγµ1−1)(0)(r1) · · · (F (µ1)xγµ1−1)(µ1−1)(r1) · · · · · · (F (µ1)xγµ1−1)(0)(rm) · · · (F (µ1)xγµ1−1)(µm−1)(rm)
...

...
...

...

(F (µ1)x0)(0)(r1) · · · (F (µ1)x0)(µ1−1)(r1) · · · · · · (F (µ1)x0)(0)(rm) · · · (F (µ1)x0)(µm−1)(rm)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∏

1!i<j!m
(ri − rj)µiµj

(4.7)

where c = ±1
/(

∏m
i=1

∏µi−1
j=0 j!

)

· aγ1−2
n .

4. Since F and its first µj − 1 derivatives are equal to zero at x = rj , by the Leibniz’s rule for
derivatives, we immediately know that for i = 1, . . . , s and j satisfying µj ! i:

(F (i)xk)(#)(rj) =










0, if $ < µj − i;

F (µj)(rj) · rkj , if $ = µj − i;

∗, if $ > µj − i.

(4.8)
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5. Plugging (4.8) into (4.7), we have

D(γ) =

c ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 · · · 0 F (µ1)(r1)r
γ1−1
1 · · · 0 · · · 0 F (µi)(ri)r

γ1−1
i · · ·

...
...

...
...

...
...

0 · · · 0 F (µ1)(r1)r01 · · · 0 · · · 0 F (µi)(ri)r0i · · ·

0 · · · F (µ1)(r1)r
γ2−1
1 · · · · 0 · · · F (µi)(ri)r

γ2−1
i · · · ·

...
...

...
...

...
...

0 · · · F (µ1)(r1)r01 · · · · 0 · · · F (µi)(ri)r0i · · · ·

...
...

...
...

...
...

0 · · · · · F (µi)(ri)r
γµi

−1
i · · · · ·

...
...

...
...

...
...

0 · · · · · F (µi)(ri)r0i · · · · ·

...
...

...
...

...
...

F (µ1)(r1)r
γµ1−1
1 · · · · · · · · · · · · · · · · ·

...
...

...
...

...
...

F (µ1)(r1)r01 · · · · · · · · · · · · · ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∏

1!i<j!m
(ri − rj)µiµj

where the block Dij at the i-th row and the j-th column is a matrix







0 · · · 0 F (µj)(rj)r
γi−1
j ∗ · · · ∗

...
. . .

...
...

...
. . .

...

0 · · · 0 F (µj)(rj) ∗ · · · ∗







of size γi × µj .

6. By rearranging the columns of the determinant in the numerator, we have

D(γ) = ±

c ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

F (µ1)(r1)r
γ1−1
1 · · · F (µm)(rm)rγ1−1

m

.

.

.
.
.
.

F (µ1)(r1)r
0
1 · · · F (µm)(rm)r0m

F (µ1)(r1)r
γ2−1
1 · · · F (µγ2 )(rγ2)r

γ2−1
γ2

· · · · ·

.

.

.
.
.
.

.

.

.
.
.
.

F (µ1)(r1)r
0
1 · · · F (µγ2 )(rγ2)r

0
γ2

· · · · ·

· · · · · · · · · · · · · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

· · · · · · · · · · · · · · ·

F (µ1)(r1)r
γµ1−1

1 · · · F
(µγµ1

)
(rγµ1

)r
γµ1−1
γµ1

· · · · · · · · · · · · · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

F (µ1)(r1)r
0
1 · · · F

(µγµ1
)
(rγµ1

)r0γµ1
· · · · · · · · · · · · · · ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∏

1!i<j!m
(ri − rj)µiµj

= ±

c ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

M1

M2 ·

. .
.

·

Mµ1 · · · · ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∏

1!i<j!m
(ri − rj)µiµj
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where

Mi =







F (µ1)(r1)r
γi−1
1 · · · F (µγi

)(rγi)r
γi−1
γi

...
...

F (µ1)(r1)r01 · · · F (µγi
)(rγi)r

0
γi







for i = 1, . . . , µ1. Then

D(γ) = ±
c · |M1| · · · |Mµ1 |
∏

1!i<j!m
(ri − rj)µiµj

.

7. It only remains to show that |Mi| #= 0. The claim follows from the following observations:

|Mi| =





γi∏

j=1

F (µj)(rj)



V (r1, . . . , rγi) #= 0 for i = 1, . . . , µ1.

The proof is completed.

Lemma 4.7. Let mult(F ) = µ. Then D(λ) = 0 for any λ such that µ̄ ≺lex λ.

Proof. In order to convey the main underlying ideas, we will show the proof for a particular case first.
After that, we will generalize the ideas to arbitrary cases.

Particular case: Consider the case n = 5 and mult(F ) = µ = (3, 2). Let γ = µ̄ = (2, 2, 1) and
λ = (3, 1, 1). Obviously, µ̄ ≺lex λ. We will show that D(λ) = 0.

1. Assume that r1 and r2 are the two distinct roots with multiplicities 3 and 2, respectively. In other
words, F = a5(x− r1)3(x− r2)2.

2. By Lemma 4.4,

D(λ) =

c ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(F (1)x2)(0)(r1) (F (1)x2)(1)(r1) (F (1)x1)(2)(r1) (F (1)x2)(0)(r2) (F (1)x2)(1)(r2)

(F (1)x1)(0)(r1) (F (1)x1)(1)(r1) (F (1)x1)(2)(r1) (F (1)x1)(0)(r2) (F (1)x1)(1)(r2)

(F (1)x0)(0)(r1) (F (1)x0)(1)(r1) (F (1)x0)(2)(r1) (F (1)x0)(0)(r2) (F (1)x0)(1)(r2)

(F (2)x0)(0)(r1) (F (2)x0)(1)(r1) (F (2)x0)(2)(r1) (F (2)x0)(0)(r2) (F (2)x0)(1)(r2)

(F (3)x0)(0)(r1) (F (3)x0)(1)(r1) (F (3)x0)(2)(r1) (F (3)x0)(0)(r2) (F (3)x0)(1)(r2)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(r1 − r2)6

where

c = ±1/
[

(0! · 1! · 2!) · (0! · 1!)] · a15 = ±a5/2.

3. Recall (4.6). Then we immediately have

(F (1)x2)(0)(r1) = 0, (F (1)x2)(1)(r1) = 0, (F (1)x2)(2)(r1) = F (3)(r1)r21, (F (1)x2)(0)(r2) = 0, (F (1)x2)(1)(r2) = F (2)(r2)r22,

(F (1)x1)(0)(r1) = 0, (F (1)x1)(1)(r1) = 0, (F (1)x1)(2)(r1) = F (3)(r1)r11, (F (1)x1)(0)(r2) = 0, (F (1)x1)(1)(r2) = F (2)(r2)r12,

(F (1)x0)(0)(r1) = 0, (F (1)x0)(1)(r1) = 0, (F (1)x0)(2)(r1) = F (3)(r1)r
0
1, (F (1)x0)(0)(r2) = 0, (F (1)x0)(1)(r2) = F (2)(r2)r

0
2,

(F (2)x0)(0)(r1) = 0, (F (2)x0)(1)(r1) = F (3)(r1)r
0
1, (F (2)x0)(0)(r2) = F (2)(r2)r

0
2,

(F (3)x0)(0)(r1) = F (3)(r1)r
0
1 .



Hoon Hong et al. Sci China Math 15

Therefore,

D(λ) =

c ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 0 F (3)(r1)r21 0 F (2)(r2)r22

0 0 F (3)(r1)r11 0 F (2)(r2)r12

0 0 F (3)(r1)r01 0 F (2)(r2)r02

0 F (3)(r1)r01 · F (2)(r2)r02 ·

F (3)(r1)r01 · · · ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(r1 − r2)6
.

4. By rearranging the columns of the determinant in the numerator, we have

D(λ) = ±

c ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

F (3)(r1)r21 F (2)(r2)r22

F (3)(r1)r11 F (2)(r2)r12

F (3)(r1)r01 F (2)(r2)r02

F (3)(r1)r01 F (2)(r2)r02 · ·

F (3)(r1)r01 · · · ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(r1 − r2)6

= ±

c ·

∣
∣
∣
∣
∣
∣
∣
∣

M1

M2 ·

M3 · ·

∣
∣
∣
∣
∣
∣
∣
∣

(r1 − r2)6

where

M1 =







F (3)(r1)r21 F (2)(r2)r22

F (3)(r1)r11 F (2)(r2)r12

F (3)(r1)r01 F (2)(r2)r02






, M2 =

[

F (3)(r1)r01 F (2)(r2)r02

]

, M3 =
[

F (3)(r1)r01

]

.

5. We repartition the columns so that the reverse diagonal consists of two square matrices and obtain
the following:

D(λ) = ±

c ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

F (3)(r1)r21 F (2)(r2)r22

F (3)(r1)r11 F (2)(r2)r12

F (3)(r1)r01 F (2)(r2)r02

F (3)(r1)r01 F (2)(r2)r02 · ·

F (3)(r1)r01 · · · ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(r1 − r2)6

= ±

c ·

∣
∣
∣
∣
∣

T

B ·

∣
∣
∣
∣
∣

(r1 − r2)6

where the size of the square matrix T is λ1 = 3, namely,

T =
[

0 M1

]

,

where 0 is the λ1 × (λ1 − γ1) matrix.

6. Since λ1 − γ1 = 3− 2 > 0, the first column of T is all zeros. Hence |T | = 0 and in turn D(λ) = 0.
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Arbitrary case. Now we generalize the above ideas to arbitrary cases.

1. Let µ = (µ1, . . . , µm). Assume that r1, . . . , rm are the m distinct roots of F with multiplicities
µ1, . . . , µm respectively. In other words, F = an(x− r1)µ1 · · · (x− rm)µm .

2. Let γ = µ̄ = (γ1, . . . , γs). By the definition of conjugate, γi = #{µj : µj ! i}. Note that γ1 = m
and s = µ1 since µ1 ! · · · ! µm ! 1.

3. Consider λ = (λ1, . . . ,λt) ∈ M(n) such that γ ≺lex λ. By Lemma 4.4, we have

D(λ) =

c ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(F (1)xλ1−1)(0)(r1) · · · (F (1)xλ1−1)(µ1−1)(r1) · · · · · · (F (1)xλ1−1)(0)(rm) · · · (F (1)xλ1−1)(µm−1)(rm)
...

...
...

...
(F (1)x0)(0)(r1) · · · (F (1)x0)(µ1−1)(r1) · · · · · · (F (1)x0)(0)(rm) · · · (F (1)x0)(µm−1)(rm)

...
...

...
...

(F (t)xλt−1)(0)(r1) · · · (F (t)xλt−1)(µ1−1)(r1) · · · · · · (F (t)xλt−1)(0)(rm) · · · (F (t)xλt−1)(µm−1)(rm)
...

...
...

...
(F (t)x0)(0)(r1) · · · (F (t)x0)(µ1−1)(r1) · · · · · · (F (t)x0)(0)(rm) · · · (F (t)x0)(µm−1)(rm)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∏

i<j(ri − rj)µiµj

(4.9)

where c = ±1
/(

∏m
i=1

∏µi−1
j=0 j!

)

· aλ1−2
n .

4. Recall (4.8) and plug (4.8) into (4.9). Then we get

D(γ) =

c ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 · · · 0 F (µ1)(r1)r
λ1−1
1 · · · 0 · · · 0 F (µi)(ri)r

λ1−1
i · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 · · · 0 F (µ1)(r1)r
0
1 · · · 0 · · · 0 F (µi)(ri)r

0
i · · ·

0 · · · F (µ1)(r1)r
λ2−1
1 · · · · 0 · · · F (µi)(ri)r

λ2−1
i · · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 · · · F (µ1)(r1)r
0
1 · · · · 0 · · · F (µi)(ri)r

0
i · · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 · · · · · F (µi)(ri)r
λµi

−1

i · · · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
0 · · · · · F (µi)(ri)r

0
i · · · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

F (µ1)(r1)r
λµ1−1

1 · · · · · · · · · · · · · · · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
F (µ1)(r1)r

0
1 · · · · · · · · · · · · · ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∏

1!i<j!m
(ri − rj)µiµj

.

5. By rearranging the columns of the determinant in the numerator, we have

D(λ) = ±

c ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

F (µ1)(r1)r
λ1−1
1 · · · F (µγ1 )(rγ1)r

λ1−1
γ1

.

.

.
.
.
.

F (µ1)(r1)r
0
1 · · · F (µγ1 )(rγ1)r

0
γ1

F (µ1)(r1)r
λ2−1
1 · · · F (µγ2 )(rγ2)r

λ2−1
γ2

· · · · ·

.

.

.
.
.
.

.

.

.
.
.
.

F (µ1)(r1)r
0
1 · · · F (µγ2 )(rγ2)r

0
γ2

· · · · ·

· · · · · · · · · · · · · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

· · · · · · · · · · · · · · ·

F (µ1)(r1)r
λt−1
1 · · · F (µγs )(rγs )r

λt−1
γs

· · · · · · · · · · · · · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

F (µ1)(r1)r
0
1 · · · F (µγs )(rγs )r

0
γs

· · · · · · · · · · · · · · ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∏

1!i<j!m
(ri − rj)µiµj
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= ±

c ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

M1

M2 ·

. .
.

·

Mµ1 · · · · ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∏

1!i<j!m
(ri − rj)µiµj

where Mi is λi by γi.

6. Since γ ≺lex λ, there exists $ such that γj = λj for j < $ and γ# < λ#. Thus

γ1 + · · ·+ γ# < λ1 + · · ·+ λ#.

7. We repartition the numerator matrix so that the reverse diagonal consists of two square matrices
T and B as follows:

D(λ) = ±

c ·

∣
∣
∣
∣
∣

T

B ·

∣
∣
∣
∣
∣

∏

1!i<j!m
(ri − rj)µiµj

where the size of the square matrix T is λ1 + · · ·+ λ#, namely,

T =







M1

0 . .
. ...

M# · · · ·






,

where again 0 is the γ# × p and p = (λ1 + · · ·+ λ#)− (γ1 + · · ·+ γ#).

8. Obviously,

D(λ) = ±
c · |T | · |B|

∏

1!i<j!m
(ri − rj)µiµj

.

9. Since p > 0, the first column of T is all zeros. Hence |T | = 0, which implies that D(λ) = 0.

4.3 Proof of Theorem 3.5

Now we are ready to prove Theorem 3.5.

Proof of Theorem 3.5. Theorem 3.5 is equivalent to the following claim: let

δ = max
γ∈M(n)
D(γ) #=0

γ

where max is with respect to the lexicographic ordering ≺lex. Then mult(F ) = δ.
Next we will show the correctness of the claim.

1. Assume that mult(F ) = µ. We will show µ = δ by disproving δ ≺lex µ and µ ≺lex δ.

2. If δ ≺lex µ, then by the condition for determining δ, we immediately have D(µ) = 0, leading to a
contradiction with Lemma 4.6.

3. If µ ≺lex δ, then by Lemma 4.7, D(δ) = 0. However, it contradicts the condition for determining δ.

4. Therefore, the only possibility is µ = δ.
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5 Comparison

In this section, we compare the multiplicity discriminant condition given by Theorem 3.5 (mentioned as
HY22 hereinafter) and that given by a complex root version of YHZ’s condition [13] as well as the one
given by the authors in [7, Theorem 6] (mentioned as HY21 hereinafter). In particular, we will make
comparison on the forms and the maximum degrees of discriminants appearing in the conditions.

5.1 Form of discriminants

We will illustrate the forms of conditions generated by the three methods for a fixed µ. For example, we
consider the polynomial F = a5x5 + a4x4 + a3x3 + a2x2 + a1x+ a0 and µ = (2, 2, 1). The condition for
F having the multiplicity structure µ is given as follows:
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2. HY21’s condition: Q1 = 0 ∧Q2 = 0 ∧Q3 #= 0 ∧Q4 #= 0 where Q1 = P1, Q2 = P2 and
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3. HY22’s condition: R1 = 0 ∧R2 = 0 ∧R3 #= 0 where R1 = P1 and

R2 =
1
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R3 =
1
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From the above conditions, we make the following observations which are also true in general.

1. YHZ’s discriminant involves one nested determinant;

2. HY21’s discriminant involves a sum of several non-nested determinants;

3. HY22’s discriminant involves one non-nested determinant.

5.2 Maximum degree of discriminants

For the sake of simplicity, we use the following short-hands:

• dYHZ : the maximum of the degrees of the polynomials appearing in YHZ’s conditions ([13]);

• dHY21 : the maximum of the degrees of the polynomials appearing in HY21’s conditions ([7]);

• dHY22 : the maximum of the degrees of the polynomials appearing in the new conditions
(Theorem 3.5).

Lemma 5.1. Let dYHZ(µ),dHY21(µ) and dHY22(µ) denote the maximum degrees of the polynomials
appearing in YHZ’s condition, HY21’s condition and HY22’s condition for a given µ = (µ1, . . . , µm) ∈
M(n), respectively. Then we have:

1. Under some minor and reasonable assumption (see [6, Assumption 2]),

dYHZ(µ) =













µ2∏

j=1
(2mj − 1)










1 if µ1 = µ2

1 + 2
2mµ2−1 if µ1 = µ2 + 1

(2 (µ1 − µ2)− 1) if µ1 > µ2 + 1

! 2n+ 3µ2 − 4µ2, for m > 1;

2n− 1, for m = 1,

where mi = #{µk : µk ! i};

2. dHY21(µ) = 2n− 1;

3. dHY22(µ) = 2n− 2.

Proof.

1. When m = 1, µ = (n). In this case, the condition for the polynomial having multiplicity structure
µ is given by the 0-th,. . . ,(n−1)-th subdiscriminants. Thus the maximum degree dYHZ(µ) is 2n−1,
achieved at the 0-th subdiscriminant.

When m > 1, see [6, Appendix] for a detailed proof.
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2. Recall that HY21’s condition consists of two parts: (i) the 0-th,. . . ,(n − m)-th subdiscriminants
whose highest degree is 2n− 1; (ii) the multiplicity discriminant given by

∑

σ∈Sp

dp
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...

x0F

xn−1F (σ1)/σ1!
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x0F (σn )/σn!
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







where p = (µ1, . . . , µ1
︸ ︷︷ ︸

µ1

, . . . , µm, . . . , µm
︸ ︷︷ ︸

µm

) and Sp is the set of all permutations of p. It is easy to

see that the degree of the multiplicity discriminant is 2n− µm. Hence the maximum degree of the
above discriminants is 2n− 1.

3. HY22’s condition only consists of the multiplicity discriminants given by

D (γ) =
1
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dp




























F (0)xγ0−1

...

F (0)x0

F (1)xγ1−1

...

F (1)x0

...

F (s)xγs−1

...

F (s)x0




























where γ = (γ1, . . . , γs) ranges over µ ≺lex · · · ≺lex (n). Note that the highest degree is achieved
when γ = (n). In this case, the degree of D (γ) is 2n− 2.

Remark 5.2. It is noted that in HY21’s condition, the multiplicity discriminant is always divisible by
the leading coefficient an and thus with this division carried out, the degree can be made smaller by 1.

By Lemma 5.1, the maximum degree in YHZ’s condition grows exponentially with respect to n while
the maximum degrees in HY21 and HY22’s conditions grow linearly. Below we show a comparison with
examples where n < 10.

n dYHZ dHY21 dHY22

3 5 5 4

4 9 7 6

5 15 9 8

6 27 11 10

7 45 13 12

8 81 15 14

9 135 17 16

Table 1 Comparison on the maximal degrees
of polynomials in the conditions generated with
the three methods
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Figure 1 An illustration on the changes of maximal
degrees of polynomials in the conditions generated with
the three methods along with the degree n
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