Learning Passage Impacts for Inverted Indexes

Antonio Mallia Omar Khattab
antonio.mallia@nyu.edu okhattab@stanford.edu
New York University Stanford University
ABSTRACT

Neural information retrieval systems typically use a cascading
pipeline, in which a first-stage model retrieves a candidate set of
documents and one or more subsequent stages re-rank this set using
contextualized language models such as BERT. In this paper, we pro-
pose Deeplmpact, a new document term-weighting scheme suitable
for efficient retrieval using a standard inverted index. Compared
to existing methods, Deeplmpact improves impact-score model-
ing and tackles the vocabulary-mismatch problem. In particular,
Deeplmpact leverages DocT5Query to enrich the document collec-
tion and, using a contextualized language model, directly estimates
the semantic importance of tokens in a document, producing a
single-value representation for each token in each document. Our
experiments show that Deeplmpact significantly outperforms prior
first-stage retrieval approaches by up to 17% on effectiveness met-
rics w.r.t. DocT5Query, and, when deployed in a re-ranking scenario,
can reach the same effectiveness of state-of-the-art approaches with
up to 5.1 speedup in efficiency.

ACM Reference Format:

Antonio Mallia, Omar Khattab, Torsten Suel, and Nicola Tonellotto. 2021.
Learning Passage Impacts for Inverted Indexes. In Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (SIGIR 21), July 11-15, 2021, Virtual Event, Canada. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3404835.3463030

1 INTRODUCTION

Modern search engines employ complex, machine-learned rank-
ing functions to retrieve the most relevant documents for a query.
Recently, the development of pre-trained contextualized language
models such as BERT [6] has resulted in impressive benefits in
search effectiveness, at the cost of expensive query processing
times, which can make their deployment in production scenarios
challenging. Nogueira and Cho [18] and MacAvaney et al. [14]
showed the superior performance of BERT in term of effectiveness
for passage and document re-ranking tasks, respectively, by fine-
tuning the pre-trained transformer network to distinguish between
relevant and non-relevant query—document pairs. However, several
recent studies [7, 14] have shown that this can have very high com-
putational cost, even if re-ranking just the top 1000 results. Other
studies [9, 12, 13] proposed methods with lower computational cost
but typically some loss in retrieval quality. BERT s Transformer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGIR 21, July 11-15, 2021, Virtual Event, Canada.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8037-9/21/07...$15.00
https://doi.org/10.1145/3404835.3463030

Nicola Tonellotto
nicola.tonellotto@unipi.it
University of Pisa

Torsten Suel
torsten.suel@nyu.edu
New York University

encoder is composed of many neural layers performing expensive
processing to compute the query-document relevance signals. Dif-
ferent solutions have been proposed to address this performance
bottleneck, based on the pre-computation of query-document repre-
sentations produced by BERT. EPIC [13] proposes to build on top of
BERT a new ranking model trained to generate query and document
representations in a given fixed-length vector space, equal to the
size of the lexicon. Document representations are pre-computed,
while query representations are computed at retrieval time, and
then used to obtain a ranking score by computing a similarity be-
tween the two representations.

PreTTR [12] and ColBERT [9] experimentally show that the
query-document interactions in most layers of BERT have little
impact on the final effectiveness. This leads them to pre-compute
document representations at indexing time, which are used at query
processing time to compute the query-document interaction only
in a final layer. While PreTTR still relies upon a first-stage candi-
date generation based on BM25, ColBERT investigates the ability
of the pre-computed document representations to identify relevant
documents among all documents in the index. Due to space/time
requirements of the document representation, ColBERT leverages
approximate nearest neighbor (ANN) search applied to dense rep-
resentations as a first-stage retrieval system, followed by an exact
re-ranking stage, while similar approaches using exact nearest
neighbor search [23] can perform processing in a single stage.

Following a different paradigm, Dai and Callan [4] investigated
the use of the contextual word representations from BERT to gen-
erate more effective document term weights for bag-of-words re-
trieval. DeepCT [4], for passages, and HDCT [5], for documents, esti-
mate a term’s context-specific importance in each passage/document,
by projecting each word’s BERT representation into a single term
weight. These term weights are then transformed into term frequency-
like integer values that can be stored in an inverted index to be used
with classical retrieval models. A main limitation of DeepCT that
we address in this work is that it is trained as a per-token regression
task, in which a ground truth term weight for every word is needed,
and which does not permit the individual impact scores to co-adapt
for the downstream objective of identifying relevant documents.

By storing new integer values as term frequencies in the in-
verted index, DeepCT and HDCT enrich a document’s bag-of-words
representation with additional document-level context informa-
tion, to match queries more accurately. Using a different approach,
Nogueira and Lin [19] propose DocT5Query, a document expan-
sion strategy to enrich each document with additional terms able
to improve the retrieval effectiveness of documents w.r.t. queries
for which they are relevant. DocT5Query trains a sequence-to-
sequence model to predict queries potentially relevant to a given
document, and appends these queries to the documents before in-
dexing. As another way of expanding documents, the very recent
SparTerm [1] method predicts an importance score for every term

https://doi.org/10.1145/3404835.3463030
https://doi.org/10.1145/3404835.3463030

in the vocabulary and uses a gating mechanism to only keep a
sparse subset of those, using them to learn an end-to-end score for
relevant and non-relevant documents. However, this only increases
the MRR@10 of DocT5Query from 0.277 to 0.279.

We propose Deeplmpact, a more effective approach for learn-
ing a relevance score contribution for term-document pairs that
can also be stored in a classical inverted index. Deeplmpact im-
proves impact-score modeling and tackles the vocabulary-mismatch
problem [25] between queries and documents. Instead of learning
independent term-level scores without taking into account the term
co-occurrences in the document, as in DeepCT, or relying on un-
changed BM25 scoring, as in DocT5Query, Deeplmpact directly
optimizes the sum of query term impacts to maximize the score dif-
ference between relevant and non-relevant passages for the query.
In other words, while DeepCT learns the term frequency component
of existing IR models, e.g., BM25, in this work we aim at learning
the final term impact jointly across all query terms occurring in a
passage. In this way, our proposed model learns richer interaction
patterns among the impacts, when compared to training each im-
pact in isolation. To address vocabulary mismatch, Deeplmpact
leverages DocT5Query to enrich every document with new terms
likely to occur in queries for which the document is relevant. Using
a contextualized language model, it directly estimates the semantic
importance of tokens in a document, producing a single-value rep-
resentation for each token in each document that can be stored in
an inverted index for efficient retrieval. Our experiments show that
Deeplmpact significantly outperforms prior first-stage retrieval ap-
proaches by up to 17% on effectiveness metrics w.r.t. DocT5Query.
When deployed in a re-ranking scenario, it reaches the same effec-
tiveness as state-of-the-art approaches up to 5.1x faster.

In summary, this paper makes the following contributions:

e We propose Deeplmpact, a more effective scheme for jointly
learning term impacts over expanded documents.

e We evaluate Deeplmpact on the MS MARCO passage rank-
ing task. We find that Deeplmpact can improve ranking
effectiveness for passage ranking versus prior first-stage re-
trieval approaches and is competitive when compared to
complex systems based on ANN search, while exhibiting
much lower computational costs.

e We evaluate Deeplmpact as a first-stage model in a re-ranking
pipeline, and show that this pipeline matches or outperforms
strong baseline approaches, while being highly efficient.

2 DEEP IMPACT FRAMEWORK

Document Expansion. In our approach, we leverage DocT5Query
document expansion to enrich the original document collection
with expansion terms. As noted by Nogueira et al. [21], document
expansion can be seen as a two-fold approach. By adding terms
that are already part of the document, it rewrites their frequen-
cies, similar to DeepCT. Furthermore, it injects into the passage
new terms, originally not part of the document, in order to address
the term mismatch problem. We refer to the two as Rewrite and
Inject, respectively. Table 1 summarizes the effect of DocT5Query
when applied to the MSMARCO passage ranking collection, and iso-
lates the two contributions. While Rewrite alone achieves stronger
MRR@10 than Inject, the latter achieves higher recall. Using both

Impact Scores

S i AR 1
Impact Scores Encoder

750, . B8

Contextualized Language Model Encoder

©OOOO 6 6

Document terms

Expansion terms

Figure 1: Neural network architecture of Deeplmpact.

significantly outperforms either one on both measures. Indeed, In-
Jject is important for capturing additional results, but Rewrite is
needed to then properly weight the injected terms. However, the
comparison of Rewrite vs. DeepCT indicates that DocT5Query is
still sub-optimal in determining the right frequencies, and resulting
impact scores, for the terms.

This motivates our approach, Deeplmpact, where we first use
the Inject step of DocT5Query to add new terms, and then directly
learn the right impact scores for both old and newly injected terms.

Table 1: Different contributions to effectiveness metrics on
the MSMARCO passage ranking collection.

BM25 DeepCT DocT5Query
Cumulative Rewrite Inject
MRR@10 0.188 0.244 0.278 0.215 0.194
Recall 0.858 0.910 0.947 0.878 0.912

Neural Network Architecture. The overall architecture of the
Deeplmpact neural network is depicted in Figure 1. Deeplmpact
feeds a contextual LM encoder the original document terms (in
white) and the injected expansion terms (in gray), separating both
by a [SEP] separator token to distinguish both contexts. The LM
encoder produces an embedding for each input term. The first oc-
currence of each unique term is provided as input to the impact
score encoder, which is a two-layer MLP with ReLU activations.
This produces a single-value score for each unique term in the docu-
ment, representing its impact. Given a query g, we model the score
of document d as simply the sum of impacts for the intersection of
terms in q and d.

Network Training. We train our model using triples sampled from
the official MS-MARCO training dataset, consisting of a query, a
relevant passage, and a presumed non-relevant passage per sample.
We expand each passage using the DocT5Query as discussed. The
model converts each document into a list of scores, correspond-
ing to the document terms matching the query. These scores are
then summed up, obtaining an accumulated query-document score.
For each triple, two scores for the corresponding two documents

are computed. The model is optimized via pairwise softmax cross-
entropy loss over the computed scores of the documents. We use
BERT-base as the contextualized language model. Max input text
length was set to 160 tokens. Losses are back-propagated through
the whole Deeplmpact neural model with a learning rate of 3x 1076
with the Adam optimizer. We used batches of 32 triples and train
for 100,000 iterations.

Impact Scores Computation. Following the training phase, Deep-
Impact can leverage the learned term-weighting scheme to predict
the semantic importance of each token of the documents without
the need for queries. Each document is represented as a list of
term-score pairs, which are converted into an inverted index. The
index can then be deployed and searched as usual for efficient query
processing. We infer the scores using three digits of precision, and
we do not perform any scaling.

Quantization and Query Processing. In our approach we pre-
dict real-valued document-term scores, also called impact scores,
that we store in the inverted index. Since storing a floating point
value per posting would blow up the space requirements of the in-
verted index, we decided to store impacts in a quantized form. The
quantized impact scores belong to the range of [1, 2P — 1], where b
is the number of bits used to store each value. We experimented
with b = 8 using linear quantization, and did not notice any loss in
precision w.r.t. the original scores. Since we quantized all the scores
in the index in the same way, to compute a query-document score
at query processing we can just sum up all the quantized scores of
the document terms matching the query.

3 EXPERIMENTAL RESULTS

In this section, we analyze the performance of the proposed method
with an extensive experimental evaluation in a realistic and repro-
ducible setting, using state-of-the-art baselines and a standard test
collection and query logs.

Hardware. To evaluate the latency, we use a single core of a ma-
chine with four Intel Xeon Platinum 8268 CPUs and 369 GB of RAM,
running Linux 4.18. To run ColBERT a GPU is required, and we
used an NVIDIA RTX8000 with 48GB of memory.

Dataset and query logs. We conduct our experiments on the MS-
MARCO passage ranking [17] dataset. To evaluate query processing
effectiveness and efficiency, we compare with existing methods us-
ing the MSMARCO Dev Queries,! and we test all methods on the
TREC 2019 [3] and TREC 2020 [2] queries from the TREC Deep
Learning passage ranking track.

Baselines. We perform two different sets of experiments. Our ini-
tial experiment aims at comparing the performance of Deeplmpact
as a first-stage ranker, processing queries on inverted indexes but
without complex reranking. In this experiment we compare our pro-
posed Deeplmpact with the classical BM25 relevance model over
the unmodified collection, and state-of-the-art solutions dealing
with inverted indexes, namely DeepCT, and BM25 over a collection
expanded with DocT5Query. We do not compare with DeepCT over
the collection expanded with DocT5Query, since that would involve
training a new DeepCT model from scratch to learn how to weigh

1We have made a submission to the official leaderboard and obtained an MRR@10 of
0.318 on the “eval” queries.

expanded documents. Our second set of experiments compares
Deeplmpact in a re-ranking setting. First, the top 1000 documents
retrieved by Deeplmpact are re-ranked by EPIC and ColBERT and
compared to ColBERT end-to-end (E2E) where the candidates are
generated using ANN search. Finally, we look at first-stage recall
and re-ranking-stage MRR@10 when applying ColBERT at several
first-stage cutoffs to different candidate generation methods.

Implementations. We use Anserini [24] to generate the inverted
indexes of the collections. We then export the Anserini indexes us-
ing the CIFF common index file format [10], and process them with
PISA [16] using the MaxScore query processing algorithm [22]. We
use the BM25 scoring method provided by Anserini. For DeepCT,
we used the source code and data® provided by Mackenzie et al.
[15]. For DocT5Query we use the predicted queries available on-
line?, using 40 concatenated predictions for each passage in the
corpus, as recommended by Nogueira and Lin [19]. We use the
EPIC implementation in OpenNIR [11] and the official pretrained
model®. We use the ColBERT implementation® provided by Khat-
tab and Zaharia [9], trained for 200k iterations. Both training and
indexing tasks of Deeplmpact are implemented in Python. After
the quantization step, the documents are indexed directly by PISA.
Query processing efficiency is measured using PISA for all base-
lines. Query processing is performed using MaxScore to retrieve
the top 1000 documents. Our source code is publicly available®.

Metrics. To measure effectiveness, we use the official metrics for
each query set, mean reciprocal rank (MRR@10) for MSMARCO
queries, and normalised discounted cumulative gain (NDCG@10)
as well as mean average precision (MAP) for TREC queries, follow-
ing [8]. We also report recall on the first stage and MRR@10 on the
re-ranking stage at different cutoff values. Finally, we compute the
mean response time (MRT) for every query processing strategy, in
ms. We conduct Bonferroni corrected pairwise t-tests, and report
significance with p < 0.05.

Overall comparison. Our first experiment aims to show the early-
stage effectiveness improvements that Deeplmpact achieves when
compared to prior work. The results are presented in Table 2, which
shows effectiveness and efficiency for the three query logs on MS
MARCO. We retrieve the top 1000 documents for each query, with-
out re-ranking, and report the values of NDCG@10, MRR@10, and
MAP, as well as MRT.

Deeplmpact significantly outperforms all methods and is statis-
tically significantly better than other strategies for all effectiveness
metrics on the MSMARCO Dev Queries. For the TREC 2019 and
TREC 2020 queries, Deeplmpact is always better than the competi-
tors, with statistically significant improvements on NDCG@10 and
MAP in some cases. Statistical significance on the latter two query
traces is limited by their relatively small number of queries.

We also see that Deeplmpact mean response time exceeds the
time reported for other methods. We trace this to the query pro-
cessing strategy: the distribution of scores induced by BM25, used
in BM25, DeepCT, and DocT5Query is exploited more efficiently by

Zhttps://github.com/jmmackenzie/term-weighting-efficiency
Shttps://github.com/castorini/docTTTT Tquery
*https://github.com/Georgetown-IR-Lab/epic-neural-ir
Shttps://github.com/stanford- futuredata/ColBERT
®https://github.com/DI4IR/SIGIR2021

https://github.com/jmmackenzie/term-weighting-efficiency
https://github.com/Georgetown-IR-Lab/epic-neural-ir
https://github.com/stanford-futuredata/ColBERT
https://github.com/DI4IR/SIGIR2021

the MaxScore algorithm. In contrast, Deeplmpact learns new scores,
whose distribution is not efficiently exploited by MaxScore. We per-
formed additional experiments using disjunctive query processing
without optimizations, omitted for space limitations. These experi-
ments show Deeplmpact to be in line with the speed of the other
approaches. Optimizing the query processing speed of Deeplmpact
is an interesting open problem for future research.

Table 2: Effectiveness metrics and mean response time (MRT,
in ms) for first-stage methods, on MSMARCO Dev Queries,
TREC 2019 queries, and TREC 2020 queries. The symbol v
denotes a significant difference viz. Deeplmpact

Strategy NDCG@10 MRR@10 MAP MRT
MSMARCO Dev Queries
BM25 0.235" 0.188V 0.196Y 13.24
DeepCT 0.298" 0.244" 0.2527 1091
DocT5Query 0.338Y 0.278" 0.2867 12.62
Deeplmpact 0.385 0.326 0.332 58.64
TREC 2019
BM25 0.497Y 0.683 0.290V 10.27
DeepCT 0.578" 0.714 0.329¥ 11.02
DocT5Query 0.648 0.799 0.405 1176
Deeplmpact 0.695 0.863 0.456 51.23
TREC 2020
BM25 0.483Y 0.6597 0.286Y 14.67
DeepCT 0.550" 0.705 0.349¥ 12.00
DocT5Query 0.619 0.742 0.408 15.51
Deeplmpact 0.651 0.820 0.426 58.00

Table 3: Effectiveness metrics and mean response time (MRT,
in ms) using several re-ranking techniques on MSMARCO
Dev Queries, TREC 2019 queries, and TREC 2020 queries. v
denotes a significant difference viz. ColBERT E2E

NDCG@10 MRR@10 MRT
MSMARCO Dev Queries

Strategy

Deeplmpact + EPIC 0.367" 03037 194.64

Deeplmpact + ColBERT 0.425 0.362 81.00

ColBERT E2E 0.424 0.361 380.97
TREC 2019

Deeplmpact + EPIC 0.711 0.880 191.23

Deeplmpact + ColBERT 0.722 0.826 73.29

ColBERT E2E 0.694 0.826 370.98
TREC 2020

Deeplmpact + EPIC 0.646 0.773 196.00

Deeplmpact + ColBERT 0.691 0.781 79.84

ColBERT E2E 0.676 0.776 364.82

Re-ranking evaluation. Table 3 shows the effect of re-ranking
the top 1000 candidates produced by Deeplmpact using two com-
plex re-rankers, EPIC and ColBERT. The table also shows, as a
comparison, the performance obtained by ColBERT when used
end-to-end by employing ANN search as the first-stage retrieval
mechanism. Deeplmpact followed by a ColBERT re-ranker obtains
higher effectiveness values than ColBERT E2E on all query sets.
Moreover, Deeplmpact + ColBERT exhibits a 4.4 X —5.1X speedup
w.r.t. CoIBERT E2E.

First-stage cutoff evaluation. Deeplmpact is able to achieve sta-
tistically significant higher recall than all the compared methods
(with one single exception at cutoff 1000). In particular, Table 4
shows that the gap with the other methods is greater with smaller
cutoff values, which reduces the re-ranking cost and thus could
enable the use of more complex pairwise ranking models, such as
DuoBERT [20]. In re-ranking, Deeplmpact outperforms all other
methods at cutoff 10. Moreover, it outperforms DeepCT on all cutoff
values except 1000, and it is comparable with DocT5Query.

Table 4: First-stage recall and re-rank-stage MRR@10 using
ColIBERT at several first-stage cutoffs for different candi-
date generation methods w.r.t. MSMARCO Dev Queries. The
symbol v denotes a significant difference viz. Deeplmpact

k BM25 DeepCT DocT5Query Deeplmpact
Recall (first stage)

10 0.394" 0.484" 0.5427 0.584
20 0.483Y 0577V 0.649" 0.680
200 07397 0.816" 0.869" 0.882
1000 0.858Y 0.910Y 0.947 0.948

MRR@10 (re-rank stage)

10 0.270Y 0.302Y 0.341Y 0.350
20 0.299V 0.322Y 0.355 0.357
200 0.343V 0.353" 0.361 0.361
1000 0.355Y 0.360 0.362 0.362

4 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced Deeplmpact, a new first-stage retrieval
method that leverages a combination of a traditional inverted in-
dexes and contextualized language models for efficient retrieval.
By estimating semantic importance, Deeplmpact produces a single-
value impact score for each tokens of a document collection. Our
results show that Deeplmpact outperforms every inverted-index
based baseline, in some cases even matching the effectiveness of
more complex neural retrieval approaches such as ColBERT. Fur-
thermore, when ColBERT is used to re-rank candidates retrieved
by Deeplmpact instead of approximate nearest neighbor, we find a
dramatic reduction of query processing latency, and a more modest
improvement in effectiveness of the whole pipeline. Future work
will focus on further enhancing the underlying model. First, we
would like to experiment with more relaxed matching conditions,
instead of exact match, between the query-document terms. Sec-
ond, we believe that we could improve further term expansion with
more sophisticated techniques. Finally, we plan to investigate how
changing the distribution of impact scores affects query processing
algorithms such as MaxScore, and how we can address this issue.

Acknowledgments: This research was partially supported by NSF
Grant IIS-1718680 and CAREER grant CNS-1651570, affiliate members and
other supporters of the Stanford DAWN project—Ant Financial, Facebook,
Google, Infosys, NEC, and VMware—as well as Cisco and SAP, the Italian
Ministry of Education and Research (MIUR) in the framework of the Cross-
Lab project (Departments of Excellence), and by the University of Pisa in
the framework of the AUTENS project (Sustainable Energy Autarky). We
would like to thank Matei Zaharia for insightful discussions and feedback.
Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

REFERENCES [12

[1] Yang Bai, Xiaoguang Li, Gang Wang, Chaoliang Zhang, Lifeng Shang, Jun
Xu, Zhaowei Wang, Fangshan Wang, and Qun Liu. 2020. SparTerm: Learn-
ing Term-based Sparse Representation for Fast Text Retrieval. arXiv preprint

Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Nazli
Goharian, and Ophir Frieder. 2020. Efficient Document Re-Ranking for Trans-
formers by Precomputing Term Representations. In Proc. SIGIR. 49-58.

[13] Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Nazli
Goharian, and Ophir Frieder. 2020. Expansion via Prediction of Importance with

arXiv:2010.00768 (2020). o
[2] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos. 2021. Overview Contextualization. In Proc. SIGIR. 1573-1576. i R
of the TREC 2020 deep learning track. Preprint arXiv:2102.07662 (2021). [14] Sean MacAvaney, Andrew Yates, Arman Cohan, and Nazli Goharian. 2019. CEDR:

Contextualized Embeddings for Document Ranking. In Proc. SIGIR. 1101-1104.

[15] J. Mackenzie, Z. Dai, L. Gallagher, and J. Callan. 2020. Efficiency Implications of
Term Weighting for Passage Retrieval. In Proc. SIGIR. 1821-1824.

[16] Antonio Mallia, Michal Siedlaczek, Joel Mackenzie, and Torsten Suel. 2019. PISA:
performant indexes and search for academia. OSIRRC@SIGIR (2019).

[17] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, and Li Deng. 2016. Ms Marco: A human-generated machine reading
comprehension dataset. (2016).

[18] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.

arXiv:Preprint arXiv:1901.04085

Rodrigo Nogueira and Jimmy Lin. 2019. From doc2query to docTTTTTquery.

Online preprint (2019).

Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. 2019. Multi-stage

document ranking with BERT. arXiv preprint arXiv:1910.14424 (2019).

Rodrigo Nogueira, Wei Yang, Jimmy Lin, and Kyunghyun Cho. 2019. Document

expansion by query prediction. Preprint arXiv:1904.08375 (2019).

[22] Howard Turtle and James Flood. 1995. Query evaluation: strategies and optimiza-

[3] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M
Voorhees. 2020. Overview of the trec 2019 deep learning track. Preprint
arXiv:2003.07820 (2020).

[4] Zhuyun Dai and Jamie Callan. 2019. Context-aware sentence/passage term
importance estimation for first stage retrieval. Preprint arXiv:1910.10687 (2019).

[5] Zhuyun Dai and Jamie Callan. 2020. Context-aware document term weighting
for ad-hoc search. In Proc. WWW. 1897-1907.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of deep bidirectional transformers for language understanding.
Preprint arXiv:1810.04805 (2018).

[7] Sebastian Hofstétter and Allan Hanbury. 2019. Let’s measure run time! Ex-
tending the IR replicability infrastructure to include performance aspects. In
OSIRRC@SIGIR. (20

[8] Sebastian Hofstitter, Hamed Zamani, Bhaskar Mitra, Nick Craswell, and Allan
Hanbury. 2020. Local self-attention over long text for efficient document retrieval.
In Proc. SIGIR. 2021-2024.

) =
= ©°

[9] Omar Khattab and Matei Zaharia. 2020. ColBERT: Efficient and effective passage : ‘ '
search via contextualized late interaction over BERT. In Proc. SIGIR. 39-48. tions. 'Informatlon Proce'ssmg & quagement 31,6 (1995)} 8'317'850‘
[10] Jimmy Lin, Joel Mackenzie, Chris Kamphuis, Craig Macdonald, Antonio Mallia, [23] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett,

Michat Siedlaczek, Andrew Trotman, and Arjen de Vries. 2020. Supporting
interoperability between open-source search engines with the common index
file format. In Proc. SIGIR. 2149-2152.

Sean MacAvaney. 2020. OpenNIR: A Complete Neural Ad-Hoc Ranking Pipeline.
In WSDM 2020.

Junaid Ahmed, and Arnold Overwijk. 2020. Approximate Nearest Neighbor
Negative Contrastive Learning for Dense Text Retrieval. Preprint arXiv:2007.00808
(2020).

Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini: Enabling the use of Lucene
for information retrieval research. In Proc. SIGIR. 1253-1256.

Le Zhao. 2012. Modeling and solving term mismatch for full-text retrieval. Ph.D.
Dissertation. Carnegie Mellon University.

https://arxiv.org/abs/Preprint arXiv:1901.04085

	Abstract
	1 Introduction
	2 Deep Impact Framework
	3 Experimental Results
	4 Conclusions and future work
	References

