Faster Learned Sparse Retrieval with Guided Traversal

Antonio Mallia
antonio.mallia@nyu.edu
New York University
New York, US

Torsten Suel
torsten.suel@nyu.edu
New York University

New York, US

ABSTRACT

Neural information retrieval architectures based on transformers
such as BERT are able to significantly improve system effectiveness
over traditional sparse models such as BM25. Though highly effec-
tive, these neural approaches are very expensive to run, making
them difficult to deploy under strict latency constraints. To ad-
dress this limitation, recent studies have proposed new families of
learned sparse models that try to match the effectiveness of learned
dense models, while leveraging the traditional inverted index data
structure for efficiency.

Current learned sparse models learn the weights of terms in
documents and, sometimes, queries; however, they exploit different
vocabulary structures, document expansion techniques, and query
expansion strategies, which can make them slower than traditional
sparse models such as BM25. In this work, we propose a novel
indexing and query processing technique that exploits a traditional
sparse model’s “guidance” to efficiently traverse the index, allowing
the more effective learned model to execute fewer scoring opera-
tions. Our experiments show that our guided processing heuristic is
able to boost the efficiency of the underlying learned sparse model
by a factor of four without any measurable loss of effectiveness.
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1 INTRODUCTION

Neural information retrieval architectures based on transformers
such as BERT [8] are able to significantly improve system effec-
tiveness over traditional sparse models such as BM25. At the same
time, they also pose new challenges, as transformers are very com-
putationally expensive. This has motivated a lot of recent work on
making transformer-based ranking more efficient. This includes
the use of special-purpose hardware such as Google’s Tensor Pro-
cessing Units (TPUs) [13], nearest-neighbor methods for quickly
identifying candidate documents in dense retrieval scenarios [12],
and the design of late-interaction transformer-based rankers such
as ColBERT [14].

A straightforward application of transformer-based ranking in-
volves applying a transformer at query time to each document that
is being re-ranked, leading to significant computational costs. While
this can be reduced through approaches such as ColBERT [14], or
by re-ranking only a small set of candidates, the resulting methods
are still much more expensive than a simple ranking function that
can be directly evaluated over an inverted index. On the other hand,
approaches based on learned sparse representations aim to come
close to the best transformer-based methods in effectiveness while
preserving the efficiency of simple bag-of-words rankers such as
BM25 [28].

The main goal in (most) learned sparse representations, as dis-
cussed by Lin and Ma [15], is to learn a set of terms under which a
document should be indexed (document expansion), and the impact
scores that should be stored in the corresponding inverted index
postings (learning impacts), such that the resulting ranking function
approximates the effectiveness of a full transformer-based ranker
while retaining the efficiency of the fastest inverted-index based
methods. Recent work has shown, however, that while effective re-
trieval is possible with learned sparse approaches, they are often still
much slower than their traditional counterparts [18, 19, 23]. In this
work, we propose a novel heuristic index traversal mechanism that
closes the performance gap between learned and traditional rankers.
Experiments over the MSMARCO passage collection demonstrate
that our heuristic approach can accelerate Deeplmpact retrieval by
a factor of four without any measurable loss in effectiveness.

2 BACKGROUND & MOTIVATION

We now briefly introduce some background and related work before
motivating our proposed approach.
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Learned Sparse Models. While various learned sparse models
have been proposed, they all improve effectiveness in two ways:

(1) Term Expansion: Adding new terms to document or query
representations; and

(2) Term Re-weighting: Changing the weights of the terms in
documents or queries.

To this end, learned sparse models typically make use of the contex-
tual word representations of large language models such as BERT,
allowing them to “learn” when new terms should be added, or when
terms are important. It is important to note that both expansion
and re-weighting can be applied to documents (before indexing),
to queries (before searching), or any combination thereof.

DeepCT [6, 7] is the first example of learned sparse retrieval,
exploiting the contextual word representations from BERT to re-
weight term frequencies for BM25 scoring. The main limitation of
DeepCT lies in the fact that it does not address the vocabulary mis-
match problem [33]: only terms already appearing in the documents
will receive learned weights to improve their relevance signals.
DocT5Query [25] addresses the vocabulary mismatch problem by
expanding documents offline via the T5 [27] sequence-to-sequence
model. However, DocT5Query does not explicitly re-weight the
terms within each document and, like DeepCT, relies on BM25
scoring.

A way to address the shortcomings of DeepCT and DocT5Query
was first proposed by Mallia et al. [23]. Instead of using the original
document collection, their model, Deeplmpact, expands the docu-
ments to include new terms to address the vocabulary mismatch
via the DocT5Query model. Then, instead of scoring the documents
with BM25, Deeplmpact directly optimizes the sum of query term
impacts to maximize the score difference between relevant and
non-relevant passages for the query. That is, Deeplmpact actually
learns the ranking function instead of applying an existing one.

Other approaches for learning expansion terms and term im-
portance re-weighting include uniCOIL [15], TILDEv2 [34], and
SPLADEv2 [10], all of which employ document expansion and the
use of a contextualized language model to learn a ranking model.
As opposed to Deeplmpact, uniCOIL and SPLADEvV2 also perform
weighting on the query terms, such that document ranking becomes
a weighted sum over term impacts. Furthermore, SPLADEv2 also
employs query expansion, thereby adding new terms to each query
rather than just re-weighting the existing ones.

In order to make use of an inverted index for querying, all of
the learned term scores derived from the aforementioned models
are quantized and embedded into the postings lists of the index.
Then querying proceeds as usual, with document scores computed
as the weighted sum of term impacts. Although TILDEv2 was ini-
tially proposed in the context of re-ranking a set of candidates, we
employ it here as an effective first-stage ranker. It is also worth
mentioning that Formal et al. [10] train SPLADEV2 using knowl-
edge distillation [11], an approach which substantially increases the
model accuracy with no particular effect on the retrieval latency;
this could be leveraged by the other models as well, but we leave
this as future work.

Table 1 summarizes the index statistics and the average query
lengths of the different learned sparse models. The average number
of postings per term ranges from 100 to 178 for methods exploiting

word-level tokenization, namely BM25, DeepCT, DocT5Query, and
Deeplmpact, and from 21K to 72K postings per term for methods
exploiting BERT’s WordPiece tokens [8], namely uniCOIL, TILDEv2,
and SPLADEvV2. The latter tokenization algorithm greedily restricts
the number of tokens to subwords that are part of the BERT vo-
cabulary. This process is very different from the more popular
word-level tokenization, where tokens are generated by splitting
on whitespaces and punctuation characters. These ranges, as well
as the average number of query terms, have a serious impact on
the query processing times, as we will show in Section 4.

Table 1: Basic statistics for the indexes of several traditional and
learned sparse retrieval models.

Model Terms Postings Avg. Query Length
BM25 2,660,824 266,247,718 4.5
DeepCT 989,873 128,969,826 4.5
DocT5Query 3,929,111 452,197,951 4.5
uniCOIL 27,678 587,435,995 686.3
TILDEv2 27,437 809,658,361 4.9
SPLADEv2 28,131  2,028,512,653 2037.8
Deeplmpact 3,514,102 628,412,657 4.2

Efficient Index Traversal. To avoid the expensive scoring of all
documents matching at least one query term in the document col-
lection, several dynamic pruning techniques for disjunctive queries
have been proposed. Safe dynamic pruning methods enrich the
inverted index with additional information used to skip documents;
during query processing, documents that cannot possibly score
high enough to be in the list of the final top-K documents are
bypassed. Thus, the final list of returned documents is the same
as in exhaustive scoring of all documents, but with significantly
less work. The most widely adopted dynamic pruning techniques
include MaxScore [30], WAND [2], BlockMax WAND (BMW) [9],
and Variable BMW [21]. In general, dynamic pruning techniques
exhibit good efficiency speed-ups when able to exploit the under-
lying distribution of scores, global upper bounds, and local upper
bounds [29]. Given a query, if few composing terms have high up-
per bounds, while the remaining posting lists or blocks of postings
have low upper bounds, there are many possibilities to skip over
documents that cannot make it into the final top-K. In particular,
the BM25 and DPH [1] scoring functions are known to exhibit
favorable score distributions, while scores based on probabilistic
language models are less amenable to skipping [26].

Motivation. Prior work has empirically demonstrated that learned
sparse models are typically slower than their traditional counter-
parts [18, 19, 23], suggesting that the resulting score distributions
are less amenable to dynamic pruning. To illustrate this phenome-
non, consider Figure 1, which plots the list-wise upper-bound scores
assigned to each of the query terms in the MSMARCO dev query
set. Clearly, Deeplmpact scoring yields many more high impact
terms than BM25 and DocT5Query, making it more difficult for
dynamic pruning algorithms to avoid work. Figure 2 shows this
effect, with Deeplmpact scoring a much higher proportion of docu-
ments than BM25 and DocT5Query under the popular MaxScore
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Figure 1: The distribution of list-wise upper-bound scores for all
terms in the MSMARCO Dev Queries. Deeplmpact gives much
higher weights to terms, on average, than the others.
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Figure 2: Relative percentage of documents scored (as compared
to an exhaustive algorithm) with MaxScore for k = 1000 over the
MSMARCO Dev Queries.

algorithm. What is the cause of these high impacts? Consider any
common term such as “the”; BM25 will, by nature, give this term a
low impact because it appears in most documents. However, the
contextual nature of the language model Deeplmpact is trained
over means it can predict when “the” is an important word, such as
in an article discussing the definition or origin of the term “the”. As
such, we are interested in exploring heuristic processing techniques
that can achieve the efficiency of the traditional rankers with the
effectiveness of the learned sparse models.

3 FAST TOP-K GUIDED TRAVERSAL

Motivated by the analysis in Section 2, we now propose a fast heuris-
tic query processing strategy that exploits the favorable score dis-
tributions provided by BM25. In particular, our technique employs
BM25 scoring over a DocT5Query expanded index to decide which
documents to process, but uses the Deeplmpact model to compute
the document scores, thereby running nearly as fast as plain BM25
traversal, but with significantly better effectiveness. This method
relies on the fact that Deeplmpact uses DocT5Query to expand
the underlying corpus and also uses word-level tokenization; thus
the underlying posting lists are basically the same.! We hypoth-
esize that the documents visited during index traversal over the
DocT5Query index are typically high-impact documents under the
Deeplmpact model, which should allow fast, yet effective, retrieval.

To implement this query processing strategy, the impact value
for both BM25 (on the DocT5Query index) and Deeplmpact must

!In practice, there may be slight differences due to different tokenization techniques.
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Figure 3: Guided traversal for a single-term query: (a) the threshold
of the BM25 top-K min-heap is used to find the next document to
process, (b) the combined impact is decoded into its two component
values, and checked against the respective results sets.

be stored for each posting in the index.? Fortunately, due to the
fact that a small number of bits is sufficient for representing the
impact scores for these models, they can be packed into a single
32-bit integer, with each score represented with 16 bits. At query
processing time, two top-K min-heaps are initialized [20]; the first
heap maintains the top-K documents according to BM25, and the
second heap maintains the top-K documents for Deeplmpact. Query
processing proceeds, as usual, using the BM25 min-heap to drive
the index traversal, including any dynamic pruning. When it comes
time to score a document, the combined impacts are unpacked from
the index, and each min-heap is updated. At the end of processing,
both top-K heaps will contain the K highest scoring documents that
were visited during BM25 traversal. Figure 3 sketches one cycle of
this process, which we denote guided traversal (GT).

An interesting extension to the guided traversal process de-
scribed above is to also account for interpolated scoring regimes [31].
In particular, since the secondary learned top-K set is computed
over exactly those documents visited by the BM25-driven traver-
sal, it is possible to compute interpolated scores in the secondary
heap. We investigate this idea in our experiments by applying an
unweighted linear interpolation between BM25 and Deeplmpact,
denoted as guided traversal with interpolation (GTI).

While we expect that our Deeplmpact-GT and Deeplmpact-GTI
methods could generalize to other models, we only apply them to
Deeplmpact since uniCOIL, TILDEv2, and SPLADEv2 use BERT
WordPiece tokenization resulting in incompatible vocabularies (see
Table 1). We leave this investigation for future work.

4 EXPERIMENTS AND RESULTS

In this section, we analyze the performance of the proposed method
using the popular MSMARCO [24] dataset, consisting of 8.8M pas-
sages. To evaluate query processing effectiveness and efficiency,
all models are compared using the MSMARCO Dev Queries, TREC
2019 [4] and TREC 2020 [5] queries from the TREC Deep Learning
passage ranking track. All experiments were conducted in memory
using a single thread of a Linux machine with two 3.50 GHz Intel
Xeon Gold 6144 CPUs and 512 GiB of RAM.

Implementations. We use Anserini [32] to generate the inverted
indexes of the collections. We then export the Anserini indexes

2Where the postings do not align one-to-one, the missing score is set to zero.



Table 2: Efficiency and Effectiveness for different processing strate-
gies over the MSMARCO dev queries, with GT and GTI denoting
our guided traversal without or with interpolation, respectively.

MSMARCO Dev Queries
Strategy
Mean Median Py9 RR@10
BM25 5.7 43 24.0 0.187
DeepCT 1.1 0.9 4.5 0.244
DocT5Query 3.8 2.8 16.5 0.272
TILDEv2 20.7 14.3 90.6 0.333
uniCOIL 37.9 21.4 194.5 0.352
SPLADEv2 219.9 201.3 581.6 0.369
Deeplmpact 19.5 14.0 79.6 0.326
Deeplmpact-GT 438 4.2 16.1 0.326
Deeplmpact-GTl 5.0 4.4 16.7 0.341
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Figure 4: Effectiveness vs Mean Latency overall collections. Both
TREC 2019 and TREC 2020 are evaluated with NDCG@10, whereas
the MSMARCO dev queries are evaluated with RR@10. Note the
log scale on the x-axis, and the differing y-axis breaks.

using the common index file format [16], and process them with
PISA [22] using the MaxScore query processing algorithm [30]. All
indexes are pre-quantized to allow for “sum of impact” scoring [3].

Ranking Models. We use the BM25 scoring method provided
by Anserini with the recommended parameters k; = 0.82 and
b = 0.68 [17]. For DeepCT, we used the source code and data?
provided by Mackenzie et al. [18]. DeepCT also uses BM25 to score
documents, with k; = 8.0 and b = 0.9 [6, 18]. For DocT5Query we

3https://github.com/jmmackenzie/term-weighting-efficiency

use the predicted queries available online,* using 40 concatenated
predictions for each passage in the corpus, as recommended by
Nogueira and Lin [25]; documents are scored with BM25 using
k1 = 0.82 and b = 0.68. For uniCOIL we use the official imple-
mentation® which makes use of a DocT5Query expanded index.
For TILDEv2 we use the official implementation® which first ex-
pands the whole MSMARCO passage collection with 200 expansion
terms per document, and then indexes the expanded collection to
generate an inverted index. This goes beyond the methodology
adopted by Zhuang and Zuccon [34], where TILDE was used as a re-
ranker. For SPLADEv2 we used the model provided by Formal et al.
[10].7 We refer here to their best performing approach, also named
DistilSPLADE-max. For Deeplmpact we use the model provided
by Mallia et al. [23].8

Metrics. To evaluate retrieval effectiveness, we follow common
practice and report RR@10 for the MSMARCO dev queries and
NDCG@10 for TREC 2019 and TREC 2020. To carefully evaluate
the retrieval performance of guided traversal with respect to the
other strategies, we report the mean, the median, and the 99 th
percentile of the response time in ms. Values are taken as the mean
of three independent runs.

Results Analysis. In Table 2 we report our results on the large
MSMARCO Dev Queries, and in Figure 4 we show the performance
of the various strategies on all three query sets in terms of both
effectiveness and efficiency, where the optimal region is the top left
corner (minimal latency and maximal effectiveness).

Among the query processing strategies employing BM25 as the
underlying ranking model, namely BM25, DeepCT, and DocT5Query,
DeepCT is the most efficient strategy, with a mean response time
of 1.1ms and a tail response time of 4.5ms. However, the most ef-
fective strategy is DocT5Query across all query sets (see Figure 4).
Among the baseline learned sparse models, namely TILDEv2, uni-
COIL, SPLADEv2, and Deeplmpact, SPLADEV2 is consistently the
most effective one, but it is also the least efficient. With respect to
the most efficient competitor, Deeplmpact, its mean response time
is 10 to 14 times larger, and its 99 th percentile response time is
7 to 8 times larger, while SPLADEV2 effectiveness is 13.2% higher
on MSMARCO Dev Queries, 4.6% higher on TREC 2019, and 8.4%
higher on TREC 2020.

Our proposed Deeplmpact-GT strategy, deployed with Deeplm-
pact, improves its mean response time by up to 4.3X, its median
response time by up to 3.6x%, and its tail response time by up to
5.8X, with no measurable impact on effectiveness. Our Deeplmpact-
GTlI strategy, interpolating BM25 scores and learned Deeplmpact
impacts, slightly increases the mean response time of Deeplmpact-
GT by 0.2 ms, but it improves the overall effectiveness: +4.6% on
MSMARCO Dev Queries, +1.6% on TREC 2019, and +4.9% on TREC
2020. A pairwise t-test reported these improvements to be signif-
icant (p ~ 1071%) for only the dev queries, with p = 0.46 and
p = 0.049 reported for TREC 2019 and TREC 2020, respectively.

*https://github.com/castorini/docTTTT Tquery
Shttps://github.com/luyug/COIL
®https://github.com/ielab/TILDE/tree/main/TILDEv2
7https://github.com/naver/splade
8https://github.com/DI4IR/SIGIR2021
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Figure 4 allows us to easily detect the characteristics of the sev-
eral approaches and quickly identify the suitability of a method for a
precise use case. We observe that DeepCT, DocT5Query, SPLADEv2,
Deeplmpact-GT, and Deeplmpact-GTI are on the Pareto frontier
in all the plots, reducing the number of strategies to choose from
depending on the efficiency-effectiveness constraints.

5 CONCLUSIONS

Learned sparse models result in substantial retrieval quality im-
provements while reducing the efficiency gap between neural re-
trieval and the faster traditional sparse models based on inverted
indexes. This gap correlates with vocabulary structures, document
expansion techniques, and query expansion strategies, making the
several learned sparse models quite different efficiency-wise. In this
work, we have proposed a “guided traversal” approach to accel-
erate index traversal by coupling a learned sparse ranking model
with a traditional ranking model. Our proposed approach employs
BM25 ranking over a DocT5Query expanded index to lead the index
traversal, but uses the Deeplmpact ranking impacts to compute
document scores. Our preliminary results on top of Deeplmpact
show that our guided traversal approach is almost able to match
the processing efficiency of traditional sparse models, while also
improving the retrieval effectiveness of the learned sparse models
through interpolation of the scores of the traditional and learned
sparse ranking models. In future work, we plan to explore whether
our guided traversal heuristic is practical for other learned sparse
models, as well as different efficient query processing strategies.

Software. In the interest of reproducibility, software is available
for generating our guided traversal runs. See https://github.com/
DI4IR/dual-score for more information.
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