

1 **Title:** Environmental variables that influence resource temporal variability and abundance drive
2 trophic diversity in mammals

3 **Authors:** Jaron Adkins¹, Edd Hammill¹, Umarfarooq A. Abdulwahab¹, John P. Draper^{1,2}, J.
4 Marshall Wolf¹, Catherine M. McClure¹, Adrián A. González Ortiz¹, Emily A. Chavez¹, Trisha
5 B. Atwood¹

6 **Affiliations:**

7 ¹The Department of Watershed Sciences and The Ecology Center, Utah State University, Logan,
8 UT 84321, USA

9 ²Current Address: Department of Ecology, Montana State University, Bozeman, MT 59715,
10 USA

11 **Email Addresses:** JA – jaron.adkins@usu.edu; EH – edd.hammill@usu.edu; UA –
12 farooqadavudi@gmail.com; JD – john.draper@usu.edu; JMW – marshall.wolf@usu.edu; CM –
13 cat.mcclure@usu.edu; AGO – adgon@umich.edu; EC – chavez.emilyann@gmail.com; TA –
14 trisha.atwood@usu.edu

15 **Running Title:** Drivers of mammal trophic diversity

16 **Keywords:** mammal diversity; trophic diversity; trophic levels; global biodiversity; species
17 richness

18 **Article Type:** Letter

19 **Abstract Word Count:** 150

20 **Main Text Word Count:** 5020

21 **Number of References:** 55

22 **Number of Figures:** 4

23 **Number of Tables:** 2

24 **Number of Supplementary Figures:** 1

25 **Number of Supplementary Tables:** 1

26 **Corresponding Author:** Dr. Jaron Adkins, Utah State University, 5210 Old Main Hill, NR 210,
27 Logan, UT 84322; Email – jaron.adkins@usu.edu; Phone: +1 208-869-4374

28 **Statement of Authorship:** TA conceived the study, and all authors contributed substantially to
29 data collection and preparation. JA, EH, and UA performed statistical analysis and prepared
30 figures. JA wrote the first draft of the manuscript and all authors contributed substantially to
31 revisions.

32 **Data Accessibility Statement:** The authors confirm that, should the manuscript be accepted,
33 associated data will be archived in a public repository and DOI included at end of article.

34 **Abstract**

35 Understanding environmental drivers of species diversity has become increasingly
36 important under climate change. Different trophic groups (predators, omnivores, herbivores)
37 interact with their environments in fundamentally different ways, and may therefore be
38 influenced by different environmental drivers. Using random forest models, we identified drivers
39 of terrestrial mammals' total and proportional species richness within trophic groups at a global
40 scale. Precipitation seasonality was the most important predictor of richness for all trophic
41 groups. Richness peaked at intermediate precipitation seasonality, indicating that moderate levels
42 of environmental heterogeneity promote mammal richness. Gross primary production (GPP) was
43 the most important correlate of the relative contribution of each trophic group to total species
44 richness. The strong relationship with GPP demonstrates that basal-level resource availability
45 influences how diversity is structured among trophic groups. Our findings suggest that
46 environmental characteristics that influence resource temporal variability and abundance are
47 important predictors of terrestrial mammal richness at a global scale.

48 **Introduction**

49 Global geographic patterns in species richness have been studied since the 19th century
50 (Hawkins 2001). Although we have posited a host of explanations, there is no consensus
51 regarding the mechanisms that drive geographic patterns of biodiversity. This lack of consensus
52 is perhaps because no single mechanism dictates diversity at such a broad geographic scale, and
53 because different drivers may underly patterns for different organismal groups (Richardson &
54 Pennington 2016).

55 Several mechanisms hypothesized to underpin the global richness gradient are related to
56 energy and resource acquisition, which are also integral to understanding ecological food webs.
57 Despite the overlap between diversity and food web theories, how diversity gradients vary

58 among different trophic groups (i.e., herbivores, omnivores, and predators) has only been
59 described at the global scale for arthropods (Castagneyrol & Jactel 2012) and coral reef fishes
60 (Siqueira *et al.* 2023), and at a very coarse spatial scale for the role of trophic interactions in
61 shaping mammalian diversity patterns (Zhang *et al.* 2018a). Our study helps identify drivers that
62 underly species richness patterns in different mammalian trophic groups, shedding new light on
63 drivers of ecological patterns in species and providing valuable information for biodiversity
64 conservation in an era of global change.

65 Broadly, two major categories of mechanisms have been invoked to explain latitudinal
66 patterns of species richness: evolutionary mechanisms and ecological mechanisms. Evolutionary
67 mechanisms focus on the processes that promote speciation and extinction, whereas ecological
68 mechanisms focus on the current and historical abiotic and biotic interactions that help shape
69 diversity patterns (Mittelbach *et al.* 2007). Although evolutionary processes are ultimately
70 responsible for creating diversity, ecological conditions can affect speciation (e.g., diversification
71 rate), extinction, and dispersal processes to influence spatial patterns in species and trait-based
72 richness (Graham *et al.* 2014; Wiens 2023). Furthermore, because diversity is rapidly declining
73 in response to changing ecological conditions, identifying the ecological mechanisms that help
74 drive richness patterns may provide better insight for managing and predicting diversity under
75 global change.

76 Recent increases in the availability of animal diet and climate data now allow scientists to
77 examine patterns and ecological drivers in an understudied area of diversity, trophic diversity. In
78 this study, we focus on three longstanding ecological-diversity hypotheses that can be tested
79 using global-scale climate data to explain patterns in trophic richness in mammals: the species-

80 energy hypothesis (Willig *et al.* 2003), the environmental heterogeneity hypothesis (Stein *et al.*
81 2014), and the environmental harshness hypothesis (Chesson & Huntly 1997).

82 The species-energy hypothesis posits that species richness increases with the amount of
83 energy and resources available to species (Willig *et al.* 2003) and has previously been assessed
84 using plant productivity [e.g., gross primary production (GPP), net primary production (NPP),
85 normalized difference vegetation index (NDVI)], solar radiation, or temperature data. The
86 species-energy hypothesis implies that richness increases with the quantity and quality of
87 biomass available lower on the food web, and species richness should decrease sequentially with
88 increasing trophic levels (Hawkins *et al.* 2003). Therefore, if the species-energy hypothesis
89 holds, herbivore richness would be more tightly coupled to plant productivity than other trophic
90 groups due to their position on the food web. Studies have demonstrated that, among arthropods,
91 positive relationships between plant and consumer diversity are dampened at higher trophic
92 positions (Haddad *et al.* 2009; Scherber *et al.* 2010). This effect could be due to a positive
93 relationship between plant diversity and productivity, leading to greater resource availability for
94 herbivores (Tilman *et al.* 1996, Zhang *et al.* 2018b). A second, non-exclusive explanation is that
95 plant diversity increases the number of ecological niches for all trophic groups by increasing
96 habitat complexity (Castagneyrol & Jactel 2012).

97 The environmental heterogeneity hypothesis suggests that environmental variability (here
98 proxied by precipitation seasonality, temperature seasonality, and isothermality) affects diversity
99 by influencing niche specialization and competition. Environmental heterogeneity operates on
100 both a spatial and temporal scale, and climate data lends itself particularly well to testing the
101 temporal component. The impact of temporal environmental fluctuations on diversity can be

102 tested on a daily, seasonal, or annual scale using temperature and precipitation data, two of the
103 most important environmental filters that influence terrestrial species distributions.

104 Predictions about the direction of the effects of heterogeneity on richness are varied.

105 Some have suggested that stable environments promote greater diversity through increased
106 specialization, as species can focus on a narrow, but predictable resource to reduce competition.

107 Meanwhile, unstable environments could limit diversity by imposing physiological constraints

108 on organisms (Klopf 1959; Luo *et al.* 2012). Conversely, others have posited that some

109 environmental fluctuation or disturbance promotes species co-existence by preventing

110 competitive exclusion (e.g., the intermediate disturbance hypothesis; Hutchinson 1961; Connell

111 1978). This dichotomy of the impact of environmental stability on species richness may be due

112 to the temporal scale considered. For example, short-term (i.e., seasonal) environmental

113 fluctuations may promote biodiversity by allowing for predictable variation (i.e., variability that

114 recurs reliably), whereas longer-term fluctuations may negatively impact biodiversity by forcing

115 species to endure sub-optimal conditions for extended periods (Liu *et al.* 2021).

116 Due to their generalist lifestyle, omnivores may better tolerate fluctuations in

117 environmental conditions and food availability due to flexibility in the types of resources they

118 exploit, and may rely on environmental fluctuations to balance competitive abilities (Wootton

119 2017). Environmental fluctuations that alter food quality and quantity may improve omnivores'

120 fitness relative to predators and herbivores because they can change their feeding habits to

121 tolerate a wider range of environmental conditions (Kondoh 2008). For example, omnivorous

122 fish in environments with fluctuating water levels consume different amounts of plant vs. animal

123 tissue during wet seasons compared to dry seasons (McMeans *et al.* 2019). In contrast, in stable

124 systems, omnivores are often inferior competitors compared to herbivores and predators due to
125 trade-offs associated with maintaining the ability to consume multiple food types (Diehl 2003).

126 The environmental harshness hypothesis also predicts that the environment operates on
127 diversity by influencing niche differentiation and competition (Chesson & Huntly 1997), and
128 could be assessed using extremes in mean annual temperature and precipitation. Similar to the
129 effects of environmental variability on trophic structure diversity, omnivores may be more
130 tolerant of harsh environments than herbivores and predators. For example, omnivores can adjust
131 their degree of herbivory or carnivory in response to temperature-induced changes in food
132 quality and quantity (Boersma *et al.* 2016; Zhang *et al.* 2018b).

133 This study aims to determine whether the three ecological mechanisms outlined above
134 operate differently at different trophic levels of mammals. Here, we posit that global patterns of
135 mammal species richness will differ among trophic groups (herbivores, omnivores, and
136 predators) due to different dominant environmental mechanisms influencing their diversity.

137 Specifically, we hypothesize that 1) plant production will be the dominant driver of herbivore
138 diversity and be less important for other trophic groups, and 2) that the negative impacts of
139 environmental harshness and temporal heterogeneity will be greater for herbivores and predators
140 than omnivores. We assessed these hypotheses by leveraging multiple global-scale, spatial
141 datasets that characterize mammal species richness and ecological properties.

142 **Methods**

143 *Trophic Categories and Environmental Variables*

144 We used and updated a database by Atwood *et al.* (2020) to assess global, extant
145 terrestrial mammal biodiversity across trophic levels. The original database contained trophic
146 group classifications (predator, omnivore, and herbivore) and geographical data on all extant

147 mammals assessed on the 2019-2 IUCN Red List of Threatened Species (IUCN 2019). We
148 augmented the database by adding previously unincluded extant mammals assessed on the 2021-
149 1 IUCN Red List of Threatened Species (IUCN 2021). We characterized the diets and trophic
150 groups of species following an approach described in detail by Atwood *et al.* (2020). Briefly, we
151 searched published literature and reference texts for diet information from wild populations (see
152 supplementary table 1 for diet source references). For ~5% of species, diet information was not
153 available in published resources; for these species, we extrapolated a diet from the most closely
154 related taxonomic group with published diet information, typically congeners or confamilials.
155 Atwood *et al.* (2020) used this extrapolation approach in their study and found it predicted coarse
156 trophic groups of mammals with 94% accuracy. We classified species as either predators,
157 omnivores, or herbivores based on the contribution of plant vs. animal material to a species' diet:
158 we defined predators as species that consume $\geq 80\%$ animal-based diets, herbivores as species
159 that consume $\geq 80\%$ plant-based diets, and all other species as omnivores.

160 To reduce overall uncertainty in diet classifications and trophic diversity patterns, we did
161 not classify species' diets further than predator, herbivore, or omnivore. Past quantifications of
162 more refined diet categories, such as those in EltonTraits 1.0, only provide semiquantitative
163 information on the importance of different diet categories, and taxonomic extrapolations were
164 used to fill in missing species' diets (Wilman *et al.* 2014; Atwood *et al.* 2020). While
165 extrapolating diets from related taxa performs well for coarse diet categories (i.e., herbivore,
166 omnivore, predator), it is less accurate for more refined diets (Gainsbury *et al.* 2018). Finally,
167 grouping species into more refined diet categories (frugivore, insectivore, etc.) can obscure
168 global diversity patterns because, unlike coarse categorizations, most species are not confined to
169 a single category, and diets may vary spatially, seasonally, and temporally for a single species.

170 Without quantitative information that captures spatial and temporal variation in the importance
171 of different diet items to a species, it becomes difficult to ascertain global patterns and their
172 drivers for more refined diet categories.

173 We used gross GPP as an indicator of plant production and resource availability. We used
174 isothermality and seasonal variations in temperature and precipitation as proxies for temporal
175 environmental heterogeneity. Finally, we characterized environmental harshness based on mean
176 annual temperature (MAT) and mean annual precipitation (MAP).

177 We leveraged published geographic environmental databases as sources for
178 environmental variables. We extracted MAT ($^{\circ}\text{C}$), temperature seasonality (standard deviation \times
179 100), isothermality (diurnal range/annual range), MAP (cm), and precipitation seasonality
180 (coefficient of variation) from the WorldClim v. 2 global climate database at a resolution of 30
181 arc seconds (0.083 degrees; $\sim 85 \text{ km}^2$); values were annual means from 1970-2000 (Fick &
182 Hijmans 2017). We used annual GPP ($\text{g C m}^{-2} \text{ y}^{-1}$) at a 0.05 degree resolution ($\sim 30 \text{ km}^2$) (Zhang
183 *et al.* 2017).

184 There has been great debate about the implications of spatial scale on species distribution
185 data, with some arguing that analyses using a finer resolution than 200 km \times 200 km
186 overestimates occupancies (Hurlbert & Jetz 2007). Yet others have suggested that such a coarse
187 grain resolution degrades the data and obscures important diversity patterns driven by finer-scale
188 changes in climatic variables, such as those imposed by changes in elevation (Jenkins *et al.*
189 2013). Acknowledging that some species distributions could be overestimated, we gridded the
190 terrestrial surface of the globe into 30 km \times 30 km pixels to better capture relevant variability in
191 climatic variables. We calculated the average of each environmental variable, total mammal
192 species richness, species richness for each trophic group within each pixel. We also calculated

193 the relative contribution of each trophic group to total richness in each pixel, and we identified
194 pixels where a particular trophic group is overrepresented. We considered a trophic group to be
195 overrepresented if its relative contribution to total diversity in each pixel was greater than its
196 global upper quartile value. For example, the global upper quartile for relative predator richness
197 is 52.17%. Thus, they are overrepresented in pixels where they contribute to more than 52.17%
198 of relative diversity. In this interpretation, overrepresentation indicates that a geographic region
199 is more favorable to a certain trophic lifestyle than others.

200 *Random Forest Modelling*

201 We used random forest modeling to identify environmental drivers of total mammal
202 richness, the richness of each trophic group, and the relative contribution of each trophic group
203 to total richness. We opted to use random forest modeling due to its robustness in dealing with
204 non-linear responses and because it allowed us to determine the relative importance of different
205 environmental variables (Cutler *et al.* 2007). To balance the distribution of mammal richness for
206 our analyses, we performed stratified sampling of 30×30 km geographic pixels based on total
207 mammal richness. We grouped pixels into 19 bins at richness intervals of ten (i.e., 0-10 species,
208 10-20 species, etc.) except for richness levels greater than 180 (max=228), which we grouped
209 into a single bin. We randomly sampled 1500 pixels from each bin for a total of 28,500 pixels.
210 Our stratified sampling approach also mitigates spatial autocorrelation, reducing the number of
211 adjacent or nearby pixels used in the data set (Chevalier *et al.* 2021).

212 Each random forest model initially included latitude coordinate, MAT, temperature
213 seasonality, isothermality, MAP, precipitation seasonality, and GPP as explanatory variables. We
214 performed reverse-fold cross-validation to determine the optimal number of variables for each
215 model and eliminated non-useful variables based on a measure of variable importance (increase

216 in MSE) and on variance inflation factors (VIF). We assessed the marginal effects of each
217 predictor variable using random forest partial dependency plots (Breiman 2001). Random forest
218 models were constructed using the *randomForest* package (Liaw & Wiener 2002) in the R
219 statistical computing environment (R Core Team 2022).

220 **Results**

221 Our final dataset included 5713 unique mammal species, with 2024 species classified as
222 predators, 2268 species classified as herbivores, and 1421 classified as omnivores. The global
223 average of terrestrial mammal richness is 59.41 ± 44.24 (SD) species per 30×30 km pixel. Mean
224 per pixel predator richness is 28.57 ± 22.31 species, mean herbivore richness is 18.13 ± 14.40
225 species, and mean omnivore richness is 12.72 ± 9.34 species. Predator, herbivore, and omnivore
226 mammal diversity all peak near the equator and decrease poleward (Figs. 1 and 2a). Across most
227 regions of the globe, predator richness is higher than the other trophic groups, followed by
228 herbivore richness and omnivore richness. However, from $\sim 15\text{--}30$ °N, omnivore richness is
229 slightly higher than herbivore richness. At the northernmost latitudes (>65 °N), herbivore
230 richness tends to be similar or slightly higher than predator richness (Fig. 2). On average,
231 predator species represent $46.75 \pm 11.93\%$ of per pixel richness. In contrast, herbivore species
232 represent $30.16 \pm 11.64\%$, and omnivore species represent $22.72 \pm 9.69\%$. The relative
233 contribution of each trophic group to total richness varies with latitude (Fig. 2b). Predator
234 relative richness exhibits local maxima at ~ 25 °S and ~ 10 °N. Herbivore relative richness
235 exhibits local maxima at ~ 5 °S and ~ 60 °N, and omnivore relative richness exhibits local
236 maxima at ~ 10 °S and ~ 25 °N.

237 Each trophic group exhibits different patterns of over-representation across the globe
238 (Fig. 3). Over much of the tropics and subtropics, omnivory is overrepresented. In the temperate

239 zones, particularly the northernmost parts of the temperate zone, herbivory tends to be
240 overrepresented. Predators do not exhibit clear latitudinal patterns in overrepresentation, but are
241 overrepresented in portions of tropical Africa, temperate humid regions of Europe and northern
242 Africa, and Greenland tundra (Fig. 3).

243 *Random Forest Models – Raw Species Richness*

244 Based on reverse fold cross-validation and percent increase in mean square error
245 (increase in MSE), we included the following five parameters in all trophic models: precipitation
246 seasonality, latitude coordinate, GPP, MAP, and MAT (Table 1). We omitted isothermality and
247 temperature seasonality because they were the least important variables based on increase in
248 MSE. They also exhibited the highest VIFs at 6.82 and 8.90, respectively. All random forest
249 models explained high amounts of variance, ranging from 87.29-91.60% variance explained.

250 Random forest modeling revealed commonalities in predictors of total mammal richness
251 and richness within trophic groups. For total mammal richness and all three trophic groups, an
252 increase in MSE indicates that precipitation seasonality is, by a large margin, the most important
253 variable explaining global richness patterns (Table 1). Latitude is the second most important
254 explanatory variable for total mammal and herbivore richness. In contrast, GPP is a more
255 important explanatory variable for predator richness than latitude. For omnivore richness, MAT
256 and MAP are more important than latitude.

257 Although the relative importance of the explanatory variables differed among trophic
258 groups, partial dependency plots indicate that species richness of different trophic groups tends
259 to respond similarly to the explanatory variables, except for the response to MAT (Fig 4).
260 Predator richness increases with MAT to ~15 °C and then exhibits fairly consistent diversity
261 levels at higher temperatures. Herbivore richness also increases to a maximum at ~15 °C,

262 whereas omnivore richness achieves a maximum at a lower temperature of ~ 12 °C. In contrast to
263 predator richness, herbivore and omnivore richness decrease at higher temperatures.

264 *Random Forest Models – Relative Contribution to Richness*

265 Because patterns in species richness across trophic levels can be masked by the
266 disproportionate number of species in different regions, we also investigated the mechanisms
267 controlling diversity across different trophic groups by using their relative contribution to
268 richness. Reverse-fold cross-validation indicated that the best model configuration included five
269 explanatory variables. However, variable importance measures based on increase in MSE
270 indicated different top predictors for the three trophic groups. To facilitate comparisons among
271 trophic groups, we retained the six most important variables in all models (GPP, precipitation
272 seasonality, temperature seasonality, MAT, MAP, and latitude coordinate) according to their
273 increase in MSE (Table 2). We omitted isothermality because it was the least important variable
274 in all models. For predators and herbivores, GPP was the most important predictor explaining the
275 relative contributions of trophic groups to total richness. Precipitation seasonality and
276 temperature seasonality were the next most important predictors for predator relative richness
277 and were of similar importance. Temperature seasonality, MAP, and latitude were the next most
278 important variables explaining herbivore relative richness and were all of similar importance.
279 The top three most important variables for omnivore relative richness (precipitation seasonality,
280 MAP, and GPP) were equally important. The individual models for predator, omnivore, and
281 herbivore relative richness explained 79.91%, 73.40%, and 76.30% of the variance, respectively.

282 Partial dependency plots indicate that for any given variable, trophic groups varied in
283 their response (Fig. 4). Here, we focus on the responses of relative richness to GPP and
284 precipitation seasonality, which tended to be among the most important predictors for all trophic

285 groups (Table 2). The relative richness of omnivores was negatively related to GPP between
286 100-1500 g C m⁻² y⁻¹, decreasing by ~5% between these values. In contrast, relative richness for
287 predators and herbivores increased by ~3.5% and ~1%, respectively, between these GPP values.
288 At GPP values above 1500 g C m⁻² y⁻¹, the relative richness of all three trophic groups remained
289 fairly consistent. Predator relative richness was positively related to precipitation seasonality
290 between 0-125 (CV), increasing by ~4.5% between these values. Omnivore relative richness
291 decreased by ~4% between the same precipitation values, while herbivore relative richness
292 decreased by ~0.5%.

293 **Discussion**

294 The objective of our study was to determine whether environmental conditions
295 differentially impact mammal species richness at different trophic levels. Our results support the
296 hypothesis that species richness spatially varies across trophic groups, with mammalian
297 predators, herbivores, and omnivores dominating different regions of the globe. A combination
298 of climate and productivity variables helps predict the global patterns in total mammal richness,
299 richness within trophic groups, and the relative contribution of trophic groups to total richness.
300 However, the relative importance of different environmental characteristics and their relationship
301 with richness varied among predators, omnivores, and herbivores. These differences suggest that
302 the interplay between a mammal's environment and its trophic strategy influences how
303 mammalian diversity is structured.

304 We did not find support for our hypothesis that GPP would be a more important predictor
305 for herbivores and omnivores than predators. Although GPP emerged as an important predictor
306 of total mammal richness, when segregated by trophic groups, it was a more important predictor
307 for total predator richness than herbivore or omnivore richness. Varied responses by the different

308 trophic groups to GPP indicate that future changes in this variable could alter how diversity is
309 structured among trophic levels, with predators experiencing the most dramatic effects with
310 changes to GPP.

311 When considering the relative contribution of trophic groups to diversity, GPP was again
312 an important predictor for predators, herbivores, and omnivores. However, in contrast to
313 predators and herbivores, which increased in proportion with GPP, the proportion of omnivores
314 slightly declined with increasing GPP. Studies on the tempo of lineage diversification and
315 trophic transition in mammals show that omnivore diversity primarily evolves through
316 transitions into that strategy from herbivores and carnivores (Price *et al.* 2012). Additionally,
317 herbivores and carnivores have developed greater diversity than omnivores through
318 specialization and subdivision of niches (Price *et al.* 2012). Thus, one might expect that under
319 higher GPP, more specialized trophic niches would develop for herbivores and, subsequently,
320 carnivores, suppressing the need to transition to omnivory. Simulation models support this
321 hypothesis by showing that the evolution of omnivory decreases with increased plant production
322 (Chubaty *et al.* 2014).

323 Our findings that GPP is the most important variable predicting the relative contribution
324 of trophic groups to total diversity and the generally positive relationship between GPP and
325 species richness for all trophic groups indicates that total energy and basal resource availability
326 are key correlates of diversity. These results support the species-energy hypothesis, which posits
327 that overall diversity is positively correlated with the energy available in an ecosystem (Wright
328 1983). Our finding that the magnitude of the effect of GPP on species diversity is greatest at the
329 highest trophic level (i.e., for predators) provides an interesting new context to the version of the
330 species-energy hypothesis asserting that productivity exerts bottom-up controls on diversity.

331 The bottom-up formulation of the species-energy hypothesis suggests that the number of
332 trophic levels is regulated by the energy available at the base of the food chain, and that in areas
333 of high productivity, longer food chains promote greater predator richness (Evans *et al.* 2005a,
334 b). However, in this explanation, herbivores and omnivores are expected to have a stronger
335 positive relationship with productivity than predators (Hawkins *et al.* 2003; Jetz *et al.* 2009). Yet,
336 we observed the opposite: the rate of increase of species richness with GPP is greater for
337 predators than for herbivores and omnivores. Furthermore, when considering simple bivariate
338 correlations between GPP and predator, herbivore, or omnivore richness in our global dataset
339 ($n=134,491$), GPP is more strongly correlated with predator richness (Spearman's $\rho=0.74$) than
340 herbivore or omnivore richness ($\rho=0.70$ and $\rho=0.65$, respectively). Together, this indicates that
341 the influence of GPP on mammal diversity is not necessarily damped in higher trophic groups.
342 However, our findings do not entirely refute the bottom-up hypothesis. Although we did not
343 assess diet specialization within trophic groups in this study (i.e., classifying mammals as
344 insectivores, frugivores, granivores, etc.), Atwood *et al.* (2020) found that the diets of >90% of
345 extant mammalian predators included insects. Thus, we cannot conclude that predator diversity is
346 not driven by bottom-up processes acting on lower taxa, as Zhang *et al.* (2018b) found.

347 Another formulation of the species-energy hypothesis suggests that highly productive
348 ecosystems contain abundant resources that increase the number of available niches, thereby
349 allowing species to specialize on a few resource types and leading to increased species co-
350 existence and richness (Evans *et al.* 2005a, b; Pautasso & Gaston 2005). If this hypothesis holds,
351 we would expect positive correlations between GPP and raw species richness for all trophic
352 groups, positive correlations between GPP and the relative contribution of diet specialists to
353 richness, and negative correlations between GPP and diet generalist relative richness. If we

354 consider trophic grouping as a coarse scale indicator of diet specialization, with predators and
355 herbivores representing specialists because they feed on only plant or animal tissue and
356 omnivores as generalists because they feed on both, we indeed observe these trends in our data.
357 Additionally, at very low GPP, the relative contribution of omnivores to diversity is similar to
358 that of herbivores, but then declines as GPP increases. However, we recognize substantial
359 variation in the degree of diet specialization within trophic groups, and more refined diet
360 specialization analyses are required to test this hypothesis thoroughly.

361 Alternative versions of the species-energy hypothesis suggest that temperature should be
362 the strongest correlate with diversity because, at higher temperatures, species can switch energy
363 investments from thermoregulation to reproduction, thereby maintaining larger populations and
364 decreasing extinction risk (Evans *et al.* 2005b). Our findings do not necessarily refute this
365 version of the species-energy hypothesis, as we found a positive relationship between mammal
366 richness and MAT between temperatures of -10 and 20 °C. While GPP was more important than
367 MAT for explaining total mammal richness, predator richness, and herbivore richness, the
368 opposite was true for omnivore richness. Furthermore, the relative contribution of omnivores to
369 diversity generally increased with MAT, suggesting that some temperature-driven effect other
370 than productivity is important for driving omnivore richness.

371 We did not find support for our hypothesis that omnivore richness is more tolerant to
372 environmental harshness and heterogeneity than predator and herbivore richness. We considered
373 harsh environments to be areas with very high or very low MAT (i.e., extreme heat or extreme
374 cold) and/or low MAP (drought stricken). There was no indication that omnivore richness
375 benefited in harsh conditions; instead, they appeared less tolerant. Omnivore richness peaked at
376 milder MAT levels than herbivores and predators, and their relative contribution to diversity was

377 lowest where annual precipitation was minimal. In contrast, predators appear to be reasonably
378 tolerant of harsh temperature conditions as they maintained high richness levels at MAT
379 exceeding 25 °C, and the relative contribution of predators to diversity increased at extreme
380 temperatures. Additionally, predators accounted for 35.4% of the mammals in our data set,
381 representing 46.75% of per pixel richness on average. The overrepresentation of predators
382 indicates they are more cosmopolitan than herbivores and omnivores, potentially due to an
383 ability to tolerate a broader range of environmental conditions.

384 We considered precipitation seasonality, temperature seasonality, and isothermality to
385 represent temporal environmental heterogeneity. We found that environmental heterogeneity in
386 the form of precipitation seasonality, an uncommonly explored predictor variable in mammal
387 diversity studies, was very important for predicting mammal richness as a whole. Precipitation
388 seasonality emerged as the most important explanatory variable for the richness of all trophic
389 groups, with maximum richness at intermediate seasonality values. Intermediate levels of
390 precipitation seasonality correspond to regions that receive precipitation seasonally with a
391 defined, but often short dry season (Walsh & Lawler 1981; O'Donnell & Ignizio 2012). Total
392 mammal richness was lowest in regions of low seasonality (i.e., precipitation evenly distributed
393 throughout the year) and high seasonality (i.e., areas with long dry/short wet seasons). Again, we
394 found no evidence that omnivore richness disproportionately benefited from more heterogenous
395 conditions. However, we did find evidence that predators benefit from intermediate levels of
396 precipitation and that omnivores appeared to be replaced by predators as precipitation seasonality
397 increased from low to intermediate values.

398 The peaking of mammal richness in regions with seasonal precipitation supports the
399 theory that intermediate levels of environmental heterogeneity promote species diversity (Adler

400 & Drake 2008; Tonkin *et al.* 2017). Ecological theory and modeling studies have indicated that
401 temporal fluctuations in environmental conditions promote more species co-existence than stable
402 environments as long as the oscillations occur with intermediate and predictable frequency (Liu
403 *et al.* 2021). Seasonal variability satisfies these criteria and likely promotes species co-existence
404 by creating temporal niches and minimizing fitness differences between species with different
405 competitive abilities, particularly in predators and herbivores (Chesson 2000; White *et al.* 2010).

406 In contrast, low temporal environmental variability may limit species co-existence by
407 promoting competitive exclusion of inferior competitors, while high variability limits diversity
408 by forcing species to endure long periods of suboptimal conditions that could increase extinction
409 risk (Adler & Drake 2008; Liu *et al.* 2021). There is empirical support for the positive impact of
410 seasonal fluctuations of various environmental conditions, including precipitation seasonality, on
411 species diversity among stream invertebrates, waterfowl, and small mammals (Asher & Thomas
412 1984; Dalby *et al.* 2014), an effect that appears to be driven by seasonal turnover in species
413 assemblages. Our results indicate that this phenomenon influences mammal diversity globally
414 and likely affects how diversity is structured among trophic groups by favoring predators at the
415 expense of omnivores. Under climate change, drought frequency, severity, and spatial extent are
416 projected to increase in many regions, including areas that currently experience intermediate
417 precipitation seasonality (Parmesan *et al.* 2022). Such changes will shift these regions to higher
418 values of the precipitation seasonality index, potentially making these regions more vulnerable to
419 biodiversity loss.

420 **Conclusions**

421 Past studies on latitudinal gradients in species diversity have largely overlooked the role
422 of trophic ecology on the distribution of species. Our results show that diversity patterns in

423 mammal trophic groups are not randomly distributed and that different ecological drivers
424 influence predators, omnivores, and herbivore diversity patterns. Overall, our results suggest that
425 temporal environmental heterogeneity (particularly in precipitation) and basal energy availability
426 (e.g., GPP) are important drivers of total mammal richness, the richness within trophic groups,
427 and the relative contribution of each trophic group to total richness.

428 Although our models accounted for 73-92% of the variability in mammalian richness
429 across trophic groups, the best-performing models always included latitude, indicating that
430 environmental heterogeneity and basal energy availability do not fully explain the observed
431 patterns in trophic diversity. As a result, we cannot discount other hypotheses that attempt to
432 explain diversity patterns with evolutionary (e.g., cradle hypothesis), anthropogenic, or other
433 ecological causes. In particular, anthropogenic activities have led to non-random species
434 extinctions and invasions, and can also modify the environmental variables we found to be
435 associated with richness patterns (Pacifici *et al.* 2020). Thus, the diversity patterns we identify
436 here may reflect natural processes and human impacts.

437 The most important drivers of total mammal richness were precipitation seasonality and
438 GPP, which are both predicted to shift under climate change. Furthermore, we found that areas
439 experiencing intermediate levels of environmental heterogeneity expressed the highest trophic
440 richness. However, climate projections and recent weather phenomena indicate that the intensity
441 and duration of extreme weather events will increase (Diffenbaugh *et al.* 2017), likely resulting
442 in higher environmental heterogeneity in many systems. Such changes could negatively impact
443 terrestrial mammal richness and potentially increase the relative contribution of predators to
444 mammal diversity.

445 Given the strong relationship between precipitation seasonality and terrestrial mammal
446 richness, our findings indicate the need for additional research on the impacts of precipitation
447 seasonality on local and global biodiversity. Precipitation seasonality is expected to shift in many
448 ecosystems under climate change (Pascale *et al.* 2016; Breinl *et al.* 2020). However, projected
449 changes to precipitation seasonality have been understudied compared to other potential impacts
450 of climate change (Parmesan *et al.* 2022), making it difficult to predict how trophic richness
451 could vary geographically under changing precipitation regimes. Therefore, better projections of
452 precipitation seasonality and concomitant changes to biodiversity are paramount for conservation
453 and resource management.

454 **Acknowledgments**

455 Support for this paper was provided by an OPP NSF grant (1932889) and an Early Career
456 Research Fellowship from the Gulf Research Program of the National Academies of Sciences,
457 Engineering, and Medicine grant to TBA (The content is solely the responsibility of the authors
458 and does not necessarily represent the official views of the Gulf Research Program of the
459 National Academies of Sciences, Engineering, and Medicine). We would also like to thank the
460 Utah State University Ecology Center for supporting this research. We thank Dr. Richard Cutler
461 for his advice on random forest modeling.

462 **Data Availability**

463 The compiled dataset used for analysis in this study can be found in an online repository at
464 <http://dx.doi.org/10.17632/pw8r7jh8kw.1>

465

466 **Figure Captions**

467 **Figure 1.** Global geographic patterns of species richness for a) herbivores, b) omnivores, and c)
468 predators. Richness was assessed at a pixel resolution of 30×30 km.

469 **Figure 2.** Distribution of terrestrial mammal species richness by latitude a) and relative
470 contribution to the richness of each trophic group b). Richness was assessed at a pixel resolution
471 of 30×30 km, and distributions were fit using the GAM function within the ggplot2 package in
472 the R statistical computing environment.

473 **Figure 3.** Global geographic patterns of species richness overrepresentation for herbivores,
474 omnivores, and predators. In some regions, two trophic groups are overrepresented. A trophic
475 group is considered to be overrepresented if its richness within a pixel is greater than the value of
476 its global upper quartile of richness.

477 **Figure 4.** Partial dependency plots depicting marginal effects of random forest models for total
478 richness of all mammals (first column), species richness within trophic groups (second column),
479 and relative contribution of each trophic group to total richness (third column). Only
480 environmental variables retained in the final models are presented. Temperature seasonality was
481 only retained in models of relative richness contribution and so is not presented for total mammal
482 richness or within trophic group richness.

483 **Figure S1.** Bivariate correlations between explanatory variables used in random forest models.
484 Correlations are based on all data points in the global dataset ($n=134,491$), and presented
485 coefficients are Spearman's ρ .

Tables

Table 1. Importance of five predictor variables retained in final random forest models for raw species diversity. Importance is measured as percent increase in mean square error.

	All Mammals	Predators	Omnivores	Herbivores
Precipitation Seasonality	133.7	126.3	132.9	130.8
Latitude Coordinate	99.8	87.6	86.0	98.1
Gross Primary Production	91.7	102.4	85.1	88.1
Mean Annual Temperature	70.1	75.1	109.1	68.8
Mean Annual Precipitation	60.7	72.6	91.9	60.9

Table 2. Importance of six predictor variables retained in final random forest models explaining relative contribution (%) of each trophic group to total mammal richness. Importance is measured as percent increase in mean square error.

	Predators	Omnivores	Herbivores
Gross Primary Production	97.3	50.7	74.8
Precipitation Seasonality	81.4	57.0	56.4
Temperature Seasonality	78.5	27.4	64.1
Mean Annual Temperature	64.6	41.7	36.8
Mean Annual Precipitation	63.1	52.3	62.7
Latitude Coordinate	66.9	33.7	62.3

Figure 1

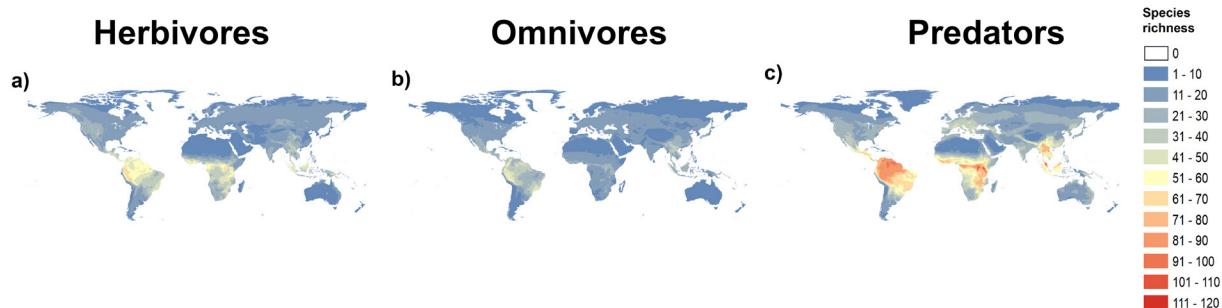


Figure 2

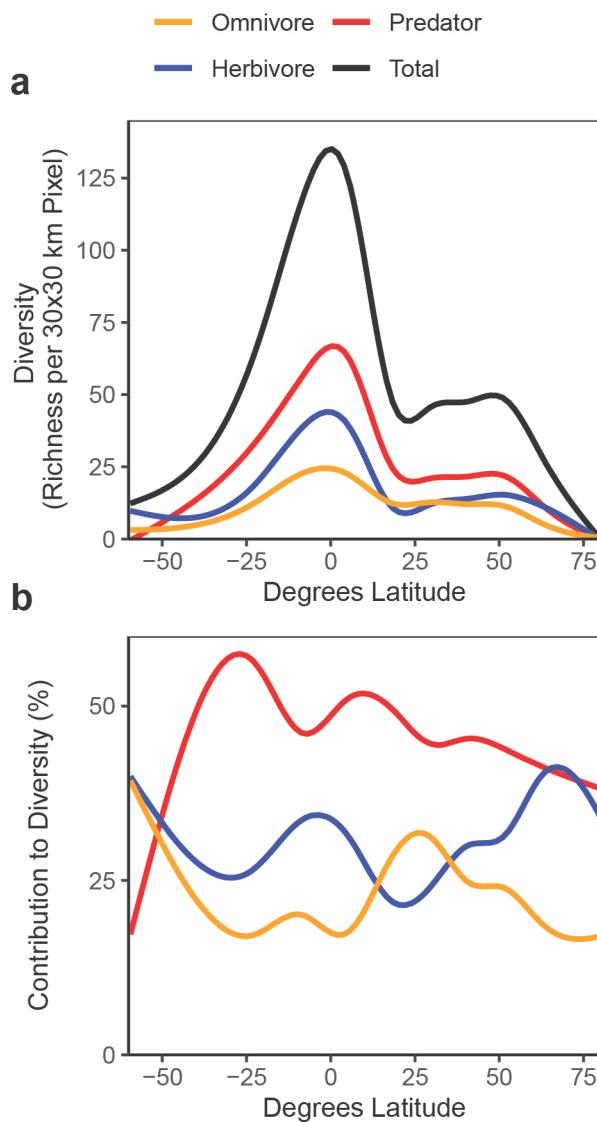


Figure 3

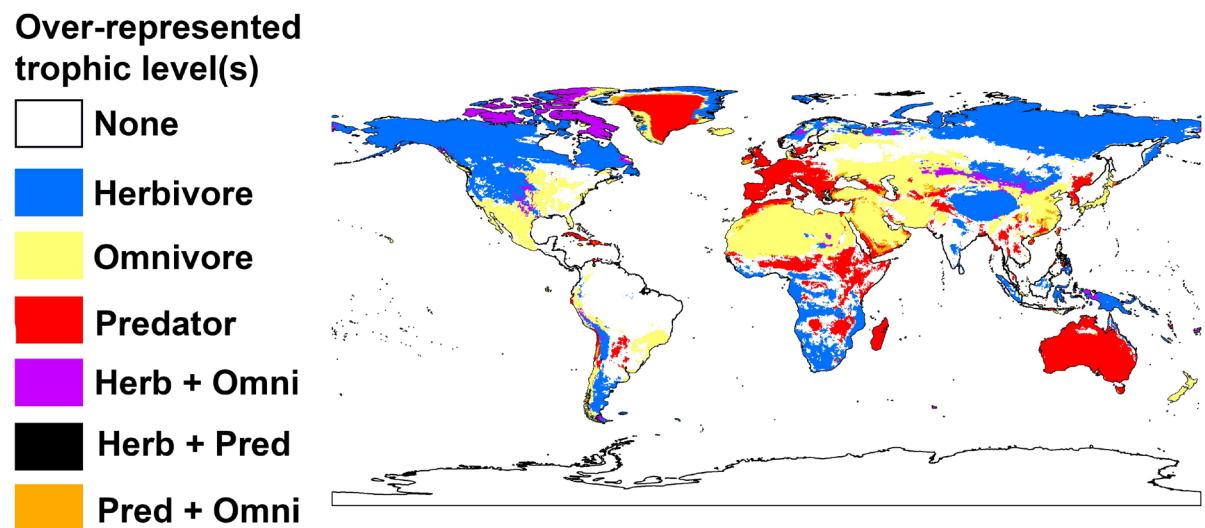
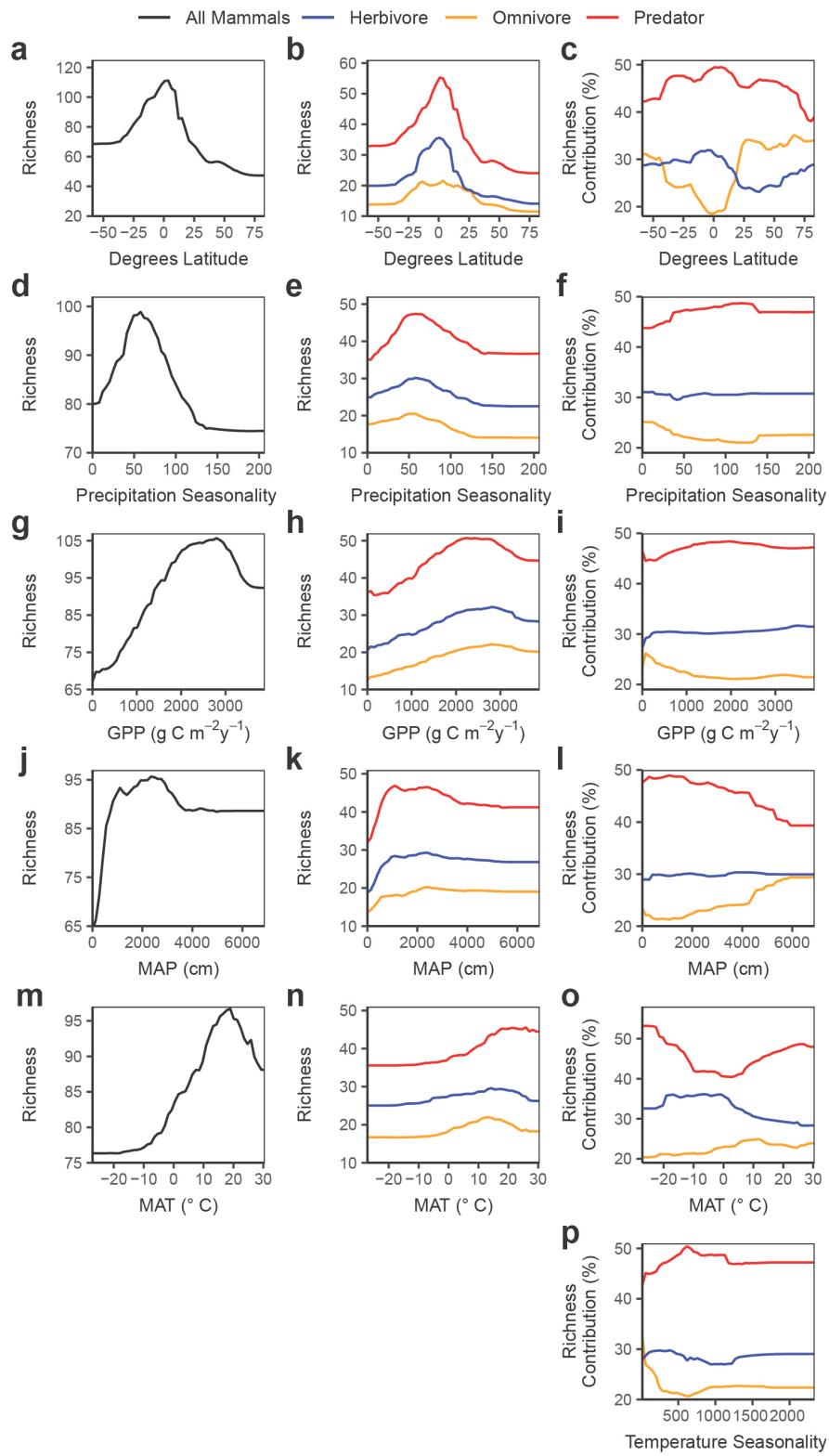



Figure 4

References

Adler, P.B. & Drake, J.M. (2008). Environmental variation, stochastic extinction, and competitive coexistence. *Am. Nat.*, 172.

Asher, S.C. & Thomas, V.G. (1984). Analysis of temporal variation in the diversity of a small mammal community. *Can. J. Zool.*, 63, 1106–1109.

Atwood, T.B., Valentine, S.A., Hammill, E., McCauley, D.J., Madin, E.M.P., Beard, K.H., *et al.* (2020). Herbivores at the highest risk of extinction among mammals, birds, and reptiles. *Sci. Adv.*, 6.

Boersma, M., Mathew, K.A., Niehoff, B., Schoo, K.L., Franco-Santos, R.M. & Meunier, C.L. (2016). Temperature driven changes in the diet preference of omnivorous copepods: no more meat when it's hot? *Ecol. Lett.*, 19, 45–53.

Breiman, L. (2001). Random Forests. *Mach. Learn.*, 45, 5–32.

Breinl, K., Di Baldassarre, G., Mazzoleni, M., Lun, D. & Vico, G. (2020). Extreme dry and wet spells face changes in their duration and timing. *Environ. Res. Lett.*, 15.

Castagneyrol, B. & Jactel, H. (2012). Unraveling plant – animal diversity relationships: A meta-regression analysis. *Ecology*, 93, 2115–2124.

Chesson, P. (2000). Mechanisms of maintenance of species diversity. *Annu. Rev. Ecol. Syst.*, 31, 343–358.

Chesson, P. & Huntly, N. (1997). The roles of harsh and fluctuating conditions in the dynamics of ecological communities. *Am. Nat.*, 150, 519–553.

Chevalier, M., Mod, H., Broennimann, O., Di Cola, V., Schmid, S., Niculita-Hirzel, H., *et al.* (2021). Low spatial autocorrelation in mountain biodiversity data and model residuals. *Ecosphere*, 12.

Chubaty, A.M., Ma, B.O., Stein, R.W., Gillespie, D.R., Henry, L.M., Phelan, C., *et al.* (2014). On the evolution of omnivory in a community context. *Ecol. Evol.*, 4, 251–265.

Connell, J.H. (1978). Diversity in tropical rain forests and coral reefs. *Science*, 199, 1302–1310.

Cutler, D.R., Edwards, T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J., *et al.* (2007). Random forests for classification in ecology. *Ecology*, 88, 2783–2792.

Dalby, L., McGill, B.J., Fox, A.D. & Svenning, J.-C. (2014). Seasonality drives global-scale diversity patterns in waterfowl (Anseriformes) via temporal niche exploitation. *Glob. Ecol. Biogeogr.*, 23, 550–562.

Diehl, S. (2003). The evolution and maintenance of omnivory. *Ecology*, 84, 2557–2567.

Diffenbaugh, N.S., Singh, D., Mankin, J.S., Horton, D.E., Swain, D.L., Touma, D., *et al.* (2017). Quantifying the influence of global warming on unprecedented extreme climate events. *Proc. Natl. Acad. Sci. U. S. A.*, 114, 4881–4886.

Evans, K.L., Greenwood, J.J.D., Gaston, K.J., B, P.R.S., Evans, K.L., Greenwood, J.J.D., *et al.* (2005a). Dissecting the species-energy relationship, 272, 2155–2163.

Evans, K.L., Warren, P.H. & Gaston, K.J. (2005b). Species-energy relationships at the macroecological scale: A review of the mechanisms. *Biol. Rev. Camb. Philos. Soc.*, 80, 1–25.

Fick, S.E. & Hijmans, R.J. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. *Int. J. Climatol.*

Gainsbury, A.M., Tallowin, O.J.S. & Meiri, S. (2018). An updated global data set for diet preferences in terrestrial mammals: testing the validity of extrapolation. *Mamm. Rev.*, 48, 160–167.

Graham, C.H., Carnaval, A.C., Cadena, C.D., Zamudio, K.R., Roberts, T.E., Parra, J.L., *et al.*

(2014). The origin and maintenance of montane diversity: Integrating evolutionary and ecological processes. *Ecography*, 37, 711–719.

Haddad, N.M., Crutsinger, G.M., Gross, K., Haarstad, J., Knops, J.M.H. & Tilman, D. (2009). Plant species loss decreases arthropod diversity and shifts trophic structure. *Ecol. Lett.*, 12, 1029–1039.

Hawkins, B.A. (2001). Ecology's oldest pattern? *Trends Ecol. Evol.*, 16, 470.

Hawkins, B.A., Field, R., Cornell, H. V., Currie, D.J., Guegan, J.-F., Kaufman, D.M., *et al.* (2003). Energy, water, and broad-scale geographic patterns of species richness. *Ecology*, 84, 3105–3117.

Hurlbert, A.H. & Jetz, W. (2007). Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. *Proc. Natl. Acad. Sci. U. S. A.*, 104, 13384–13389.

Hutchinson, G.E. (1961). The paradox of the plankton. *Am. Nat.*, 95, 137–145.

IUCN. 2019. The IUCN Red List of Threatened Species. Version 2019-2.
<https://www.iucnredlist.org>. Accessed on [2019].

IUCN. 2021. The IUCN Red List of Threatened Species. Version 2021-1.
<https://www.iucnredlist.org>. Accessed on [May 2021].

Jenkins, C.N., Pimm, S.L. & Joppa, L.N. (2013). Global patterns of terrestrial vertebrate diversity and conservation. *Proc. Natl. Acad. Sci. U. S. A.*, 110, E2603–E2610.

Jetz, W., Kreft, H., Ceballos, G. & Mutke, J. (2009). Global associations between terrestrial producer and vertebrate consumer diversity. *Proc. R. Soc. B Biol. Sci.*, 276, 269–278.

Klopfer, P.H. (1959). Environmental determinants of faunal diversity. *Am. Nat.*, 93, 337–342.

Kondoh, M. (2008). Building trophic modules into a persistent food web. *Proc. Natl. Acad. Sci. U. S. A.*, 105, 16631–16635.

Liaw, A. & Wiener, M. (2002). Classification and regression by randomForest. *R News*, 2, 18–22.

Liu, M., Rubenstein, D.R., Cheong, S.A. & Shen, S.F. (2021). Antagonistic effects of long- and short-term environmental variation on species coexistence. *Proc. R. Soc. B Biol. Sci.*, 288.

Luo, Z., Tang, S., Li, C., Fang, H., Hu, H., Yang, J., *et al.* (2012). Environmental effects on vertebrate species richness: Testing the energy, environmental stability and habitat heterogeneity hypotheses. *PLoS One*, 7.

McMeans, B.C., Kadoya, T., Pool, T.K., Holtgrieve, G.W., Lek, S., Kong, H., *et al.* (2019). Consumer trophic positions respond variably to seasonally fluctuating environments. *Ecology*, 100, 1–10.

Mittelbach, G.G., Schemske, D.W., Cornell, H. V., Allen, A.P., Brown, J.M., Bush, M.B., *et al.* (2007). Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography. *Ecol. Lett.*, 10, 315–331.

O'Donnell, M.S. & Ignizio, D.A. (2012). Bioclimatic predictors for supporting ecological applications in the conterminous United States. *U.S Geol. Surv. Data Ser.* 691.

Pacifici, M., Rondinini, C., Rhodes, J.R., Burbidge, A.A., Cristiano, A., Watson, J.E.M., *et al.* (2020). Global correlates of range contractions and expansions in terrestrial mammals. *Nat. Commun.*, 11, 1–9.

Parmesan, C., Morecroft, M.D., Trisurat, Y., Adrian, R., Anshari, G.Z., Arneth, A., *et al.* (2022). Terrestrial and freshwater ecosystems and their services. In: *Climate Change 2022: Impacts, Adaptations, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change* (eds. Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Algría, A., *et al.*).

Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 197–377.

Pascale, S., Lucarini, V., Feng, X., Porporato, A. & ul Hasson, S. (2016). Projected changes of rainfall seasonality and dry spells in a high greenhouse gas emissions scenario. *Clim. Dyn.*, 46, 1331–1350.

Pautasso, M. & Gaston, K.J. (2005). Resources and global avian assemblage structure in forests. *Ecol. Lett.*, 8, 282–289.

Price, S.A., Hopkins, S.S.B., Smith, K.K. & Roth, V.L. (2012). Tempo of trophic evolution and its impact on mammalian diversification. *Proc. Natl. Acad. Sci. U. S. A.*, 109, 7008–7012.

R Core Team. (2022). A language and environment for statistical computing. *R Found. Stat. Comput.*

Richardson, J.E. & Pennington, R.T. (2016). Editorial: Origin of tropical diversity: From clades to communities. *Front. Genet.*, 7, 1–3.

Scherber, C., Eisenhauer, N., Weisser, W.W., Schmid, B., Voigt, W., Fischer, M., *et al.* (2010). Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. *Nature*, 468, 553–556.

Siqueira, A.C., Muruga, P. & Bellwood, D.R. (2023). On the evolution of fish–coral interactions. *Ecol. Lett.*, 1348–1358.

Stein, A., Gerstner, K. & Kreft, H. (2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. *Ecol. Lett.*, 17, 866–880.

Tilman, D., Wedin, D. & Knops, J. (1996). Productivity and sustainability influenced by biodiversity in grassland ecosystems. *Nature*, 379, 718–720.

Tonkin, J.D., Bogan, M.T., Bonada, N., Rios-Touma, B. & Lytle, D.A. (2017). Seasonality and predictability shape temporal species diversity. *Ecology*, 98, 1201–1216.

Walsh, R.P.D. & Lawler, D.M. (1981). Rainfall seasonality: Description, spatial patterns, and change through time. *Weather*, 36.

White, E.P., Morgan Ernest, S.K., Adler, P.B., Hurlbert, A.H. & Kathleen Lyons, S. (2010). Integrating spatial and temporal approaches to understanding species richness. *Philos. Trans. R. Soc. B Biol. Sci.*, 365, 3633–3643.

Wiens, J.J. (2023). Trait-based species richness: ecology and macroevolution. *Biol. Rev.*, 1381, 1365–1387.

Willig, M.R., Kaufman, D.M. & Stevens, R.D. (2003). Latitudinal Gradients of Biodiversity: Pattern, Process, Scale, and Synthesis. *Annu. Rev. Ecol. Evol. Syst.*, 34, 273–309.

Wilman, H., Belmaker, J., Jennifer, S., de la Rosa, C., Rivadeneira, M.M. & Jetz, W. (2014). EltonTraits 1.0: Species-level foraging attributes of the world's birds and mammals. *Ecology*, 95, 2027.

Wootton, K.L. (2017). Omnivory and stability in freshwater habitats: Does theory match reality? *Freshw. Biol.*, 62, 821–832.

Wright, D.H. (1983). Species-Energy Theory: An Extension of Species-Area Theory. *Oikos*, 41, 496–506.

Zhang, J., Qian, H., Girardello, M., Pellissier, V., Nielsen, S.E. & Svenning, J.C. (2018a). Trophic interactions among vertebrate guilds and plants shape global patterns in species diversity. *Proc. R. Soc. B Biol. Sci.*, 285.

Zhang, P., Blonk, B.A., van den Berg, R.F. & Bakker, E.S. (2018b). The effect of temperature on herbivory by the omnivorous ectotherm snail *Lymnaea stagnalis*. *Hydrobiologia*, 812, 147–155.

Zhang, Y., Xiao, X., Wu, X., Zhou, S., Zhang, G., Qin, Y., *et al.* (2017). A global moderate

resolution dataset of gross primary production of vegetation for 2000-2016. *Sci. data*, 4, 170165.